Ana Lucia Vărbănescu

Professor at University of Twente

Research Focus
Paralell computing, performance engineering

Contact

Links

Publications
Master Theses

Publications
The Graph-Massivizer Approach Toward a European Sustainable Data Center Digital Twin
IEEE Annual Computers, Software, and Applications Conference (COMPSAC 23)
PDF
Graph Greenifier: Towards Sustainable and Energy-Aware Massive Graph Processing in the Computing Continuum
ICPE GraphSys 2023
PDF
Towards Extreme and Sustainable Graph Processing for Urgent Societal Challenges in Europe
2022 IEEE Cloud Summit, 23-30
PDF
  • Sherif Sakr,
  • Angela Bonifati,
  • Hannes Voigt,
  • Alexandru Iosup,
  • Khaled Ammar,
  • Renzo Angles,
  • Walid Aref,
  • Marcelo Arenas,
  • Maciej Besta,
  • Peter A. Boncz,
  • Khuzaima Daudjee,
  • Emanuele Della Valle,
  • Stefania Dumbrava,
  • Olaf Hartig,
  • Bernhard Haslhofer,
  • Tim Hegeman,
  • Jan Hidders,
  • Katja Hose,
  • Adriana Iamnitchi,
  • Vasiliki Kalavri,
  • Hugo Kapp,
  • Wim Martens,
  • M. Tamer Özsu,
  • Eric Peukert,
  • Stefan Plantikow,
  • Mohamed Ragab,
  • Matei R. Ripeanu,
  • Semih Salihoglu,
  • Christian Schulz,
  • Petra Selmer,
  • Juan F. Sequeda,
  • Joshua Shinavier,
  • Gábor Szárnyas,
  • Riccardo Tommasini,
  • Antonino Tumeo,
  • Alexandru Uta,
  • Ana Lucia Vărbănescu,
  • Hsiang-Yun Wu,
  • Nikolay Yakovets,
  • Da Yan,
  • Eiko Yoneki
  • (2021)
The Future is Big Graphs: A Community View on Graph Processing Systems
Communications of the ACM, September 2021, Vol. 64 No. 9, Pages 62-71
DDLBench: Towards a Scalable Benchmarking Infrastructure for Distributed Deep Learning
2020 IEEE/ACM Fourth Workshop on Deep Learning on Supercomputers (DLS)
A Sampling-Based Tool for Scaling Graph Datasets
2020, ACM/SPEC International Conference on Performance Engineering (ICPE)
PDF
Exploring HPC and Big Data Convergence: A Graph Processing Study on Intel Knights Landing
Cluster 2018 : IEEE International Conference on Cluster Computing
PDF
Towards the Next Generation of Large-Scale Network Archives.
Euro-Par Workshops 2016: 571-579
PDF
Design and Experimental Evaluation of Distributed Heterogeneous Graph-Processing Systems
CCGrid 2016: 203-212
PDF
An Empirical Performance Evaluation of GPU-Enabled Graph-Processing Systems.
CCGRID 2015: 423-432
PDF
Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics.
WBDB 2014: 109-131
PDF
Benchmarking graph-processing platforms: a vision.
ICPE 2014: 289-292
PDF
How Well Do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis.
IPDPS 2014: 395-404
PDF

Supervised Master Theses
A Performance-Based Recommender System for Distributed DNN Training