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Abstract—Graph processing is increasingly used in knowledge
economies and in science, in advanced marketing, social network-
ing, bioinformatics, etc. A number of graph-processing systems,
including the GPU-enabled Medusa and Totem, have been
developed recently. Understanding their performance is key to
system selection, tuning, and improvement. Previous performance
evaluation studies have been conducted for CPU-based graph-
processing systems, such as Giraph and GraphX. Unlike them,
the performance of GPU-enabled systems is still not thoroughly
evaluated and compared. To address this gap, we propose an
empirical method for evaluating GPU-enabled graph-processing
systems, which includes new performance metrics and a selection
of new datasets and algorithms. By selecting 9 diverse graphs and
3 typical graph-processing algorithms, we conduct a comparative
performance study of 3 GPU-enabled systems, Medusa, Totem,
and MapGraph. We present the first comprehensive evaluation
of GPU-enabled systems with results giving insight into raw
processing power, performance breakdown into core components,
scalability, and the impact on performance of system-specific op-
timization techniques and of the GPU generation. We present and
discuss many findings that would benefit users and developers
interested in GPU acceleration for graph processing.

I. INTRODUCTION

Many graph-processing algorithms have been designed to

analyze graphs in industry and academic applications, for

example, item and friend recommendation in social net-

works [1], cheater detection in online games [2], and subnet-

work identification in bioinformatics [3]. To address various

graphs and applications, many graph-processing systems have

been developed on top of diverse computation and storage

infrastructure. Among them, GPU-enabled systems promise

to significantly accelerate graph-processing [4]. Understanding

their performance, for example to select, tune, and extend

these systems, is very challenging. Previous studies [5], [6]

have investigated the performance of popular CPU-based

distributed systems, such as Giraph [7], GraphLab [8], and

Hadoop [9]. However, few of them include GPU-enabled

systems. To address this problem, in this work we conduct

the first comprehensive assessment of GPU-enabled graph-

processing systems (including GPU-only and hybrid CPU and

GPU systems).

We have identified three dimensions of diversity that com-

plicate the performance evaluation of graph-processing sys-

tems in our previous work [5]. Dataset diversity originates

from the variety of application areas for graph processing,

from genomics to social networks, from citation databases to

online games, all of which may create unique graph structures

and characteristics. Algorithm diversity is the result of the

different insights and knowledge that users and analysts want

to gain from their graphs—a large number of algorithms

have been developed for calculating basic graph metrics, for

searching for important vertices, for detecting communities,

etc. System diversity derives from the uncoordinated effort

of different groups of developers who try to solve specific

graph-processing problems, while tuning for their existing

hardware infrastructure. Many graph-processing systems have

appeared in recent years, from single-node systems such as

GraphChi [10] and Totem [11] to distributed systems such

as Giraph [7]; from generic systems such as Hadoop [9] to

graph specific systems such as GraphX [12]; from CPU-based

systems such as GraphLab [8] to single-node GPU-enabled

systems such as Medusa [13] and MapGraph [14]. (To date,

no mature, distributed graph-processing system using GPUs is

publicly available.)

Understanding the performance of single-node GPU-

enabled systems is important for two main reasons. Firstly,

we argue that many datasets already fit to be processed in-

memory on such systems. This corresponds, for example, to

the datasets in use at many Small and Medium Enterprise

(SMEs), and thus may affect up to 60% of the entire industry

revenue [15]. Secondly, single-node systems are representative

for, performance-wise, and the basic building block of future

GPU-clusters for graph processing.

Understanding the performance of graph-processing sys-

tems is difficult. There is no analytical approach to under-

stand their performance comprehensively. Thus, experimental

performance evaluation studies [5], [6] have been recently

proposed. However, they do not cover GPU-enabled systems.

Moreover, many new challenges, such as different formats of

in-memory graph representations, many optional optimization

techniques provided by GPU-enabled systems, and different

types of equipped GPUs, make it challenging to thoroughly

understand the performance of GPU-enabled systems.

Our vision [16] is a four-stage empirical method for the

performance evaluation of any graph-processing system. In

this work, we extend our previous method [5] for evaluating

graph-processing systems to include GPU-enabled systems.

We define several new performance metrics to comprehen-

sively evaluate the interesting performance aspects of GPU-

enabled graph-processing systems—raw processing power,

performance breakdown, scalability, the impact on perfor-

mance of system-specific optimization techniques and of the
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GPU generation. We then conduct experiments, by implement-

ing 3 typical graph algorithms and selecting 9 datasets with

different structures, on 3 GPU-enabled systems—Medusa,

Totem, and MapGraph. Our main contributions are:

1) We propose a method for the performance evaluation

of GPU-enabled graph-processing systems (Section II).

This method extends significantly our previous work for

evaluating the performance of graph-processing systems,

by defining new performance aspects and metrics, and

by selecting new datasets and algorithms.

2) We demonstrate how our method can be used for eval-

uating and comparing GPU-enabled systems in prac-

tice. We setup comprehensive experiments (Section III),

which we then conduct for three GPU-enabled graph-

processing systems (Section IV). Last, we also identify,

for these systems, various highlights and limitations

(Section V).

II. EXTENDED METHOD FOR GPU-ENABLED

GRAPH-PROCESSING SYSTEMS

Our previous method for the performance evaluation of

graph-processing systems [5] consists of four main stages:

identifying interesting and important performance aspects and

metrics; defining and selecting workloads with representative-

ness and coverage; implementing, configuring, and executing

the experiments; and analyzing and presenting results in stan-

dard format. To address the challenges of the performance

evaluation of GPU-enabled systems, in this section we adapt

and extend our previous method, by identifying new perfor-

mance aspects and metrics, and by selecting and including

new datasets and algorithms.

A. Performance Aspects, Metrics, Process

To understand the performance of GPU-enabled systems, we

identify five important performance aspects: three of them are

adapted from our previous work, and two are newly designed

relative to our previous work. For each aspect, we use at least

one performance metric to quantify and characterize system

performance. We further adapt for GPU-enabled systems the

process for measuring and calculating the metrics.

We consider five performance aspects in this work:

1) Raw processing power (adapted from previous work):

reflects the user perception of how quickly graphs are

processed. We report in this work the run time of the

algorithm for GPU-enabled systems.

2) Performance breakdown (adapted from previous work):

the algorithm run time is not sufficient to understand

all the details of system performance. Breaking down

the total execution time into separate processing stages

(system initialization time, algorithm run time, and data

transfer time) enables the in-depth comparison of sys-

tems and, possibly, the identification of bottlenecks.

3) Scalability (adapted from previous work): the ability of

a system to maintain its performance behavior when

resources are added to its infrastructure. In our method,

we test the vertical scalability (by adding GPUs) of

systems in both strong and weak scaling. The observed

changes in performance depend on both the number of

added GPUs, and the algorithm and dataset. Indirectly,

scalability allows us to reason about how well do graph-

processing systems utilize accelerators.

4) The impact on performance of system-specific optimiza-
tion techniques (newly designed): systems that can use

different types of computing resources, for example both

CPUs and GPUs, allow programmers to provide differ-

ent implementations of the same algorithm, optimized

for the different hardware. We study the impact of such

optimizations (e.g., load balancing, graph representa-

tion), to understand their impact on system performance.

5) The impact on performance of the GPU generation
(newly designed): several GPU generations are currently

present in computing infrastructures, from mobile de-

vices to servers and clusters. Understanding the correla-

tion between their characteristics (compute capability,

the number of cores, and memory capacity) and the

system performance could guide users towards optimal

(cost, performance) choices for their applications.

We summarize in Table I the performance metrics used to

quantify the five performance aspects. For each of the metrics,

we define how it can be obtained: by direct measurement

or by calculation using measured parameters and dataset

(i.e., graphs) properties. We define the total execution time

(��) as the time from submission until completion. For each

submission, we do not write output data to disk, but transfer

the output data from GPUs to host memory. Algorithm run

time (��) is the time used for actually executing the graph

algorithms. Total execution time can be divided into times for

different processing stages of the whole execution, including

graph and configuration initialization time (�� ), algorithm run

time (��), data transfer time from device to host (���� ),

and overhead time (��) which includes the overhead in the

initialization stage and the clear up stage. �� can be further

split into (1) graph initialization time (����, which includes

reading and building graph in the host memory and trans-

ferring the graph data from host to device (����)) , and (2)

algorithm configuration time (���	 , which includes setting up

algorithm-related configuration parameters and initial values in

GPUs). We formulate the relationship of the total execution

time and its breakdown as follows:
�� � ���� � ���	 � �� � ���� � ��

We define Edges Per Second (EPS) as the ratio between the

number of all edges of the executed algorithm and the algo-

rithm run time. EPS is a straightforward extension of the TEPS

metric used by Graph500 [17]. To investigate the performance

per computing unit, we further define the performance metric

Normalized Edges Per Second (NEPS) as the ratio between

EPS and the total number of computing units (GPUs in this

work). For the same algorithm running on the same dataset,

but with different setups (optimization techniques and GPU

generations), we define the speedup as the ratio between the

algorithm run time of baseline (see Section IV-D and IV-E

for our baseline settings) and that of a different setup.
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TABLE I
SUMMARY OF PERFORMANCE METRICS USED IN THIS STUDY.

Metric How measured? Derived Relevant aspect (use)
Total execution Total time of the - Raw processing power

time (�� ) full execution (Table VI)

Algorithm Time of the - Raw processing power

run time (��) algorithm running (Figure 1, 2, 3)

Time breakdown Time of the - Performance breakdown

detailed execution (Table VI)

Strong scaling �� of multiple GPUs (� ) - Scalability

for the same graph (Figure 4)

Weak scaling �� of multiple GPUs (� ) - Scalability

for different graphs (Figure 6)

Normalized edges - ������� Scalability

per second (NEPS) (Figure 5)

Speedup - ���� �

�
Optimization, GPUs

(Figure 7, 8, 9)

�� is the number of all edges of the executed algorithm. � �

�
is the

algorithm run time of a different setup.

B. Selection of graphs and algorithms

In this section, we discuss our selection of graphs and

algorithms, which we used to evaluate the GPU-enabled graph-

processing systems.

1) Graph selection: We select nine different graphs and

summarize their information in Table II. We select both

directed (Amazon, WikiTalk, and Citation) and undirected

graphs (KGS, DotaLeague, Scale-22 to Scale-25). To comply

with the requirement of many GPU-enabled systems, we need

to store input undirected graphs in a directed manner. Thus,

for each undirected edge, we create two directed edges as an

equivalent. The selected graphs match well to the datasets used

by SMEs in terms of scale and diversity. The graphs are from

diverse sources (e-business, social networks, synthetic graphs),

and different characteristics (e.g., high vs. low average degree,

directed and undirected graphs). The Scale-22 to Scale-25

are undirected graphs created by the Kronecker generator

introduced in Graph500 [17], with the scale from 22 to 25

and edge factor of 16. The other graphs have been collected

from real-world applications, and have been shared through

the Stanford Network Analysis Project (SNAP) [18]) and the

Game Trace Archive (GTA) [2].

2) Algorithm selection: Considering the simplicity of the

programming model of several GPU-enabled systems, we

avoid algorithms using complex messages and mutating graph

structures. Based on our comprehensive survey of graph-

processing algorithms and applications [19], we select BFS,

PageRank, and WCC as representative for three popular al-

gorithms classes: graph traversal (used in Graph500), general

statistics, and connected components, respectively. We sum-

marize the characteristics of these algorithms in Table III.

Breadth First Search (BFS) is a widely used algorithm in

graph traversal. BFS can be used as a building block for more

complex algorithms, such as all-pairs shortest path and item

search. BFS is a textbook algorithm. The PageRank algorithm

(PageRank) is originally designed to rank websites in search

engines. It can also be used to compute the importance of

vertices in a graph. Several versions of PageRank have been

proposed. In this work, we use the version described in

Medusa [13]. Weakly Connected Component (WCC) is an

TABLE II
SUMMARY OF DATASETS USED IN THIS STUDY.

Graphs V E d �D Max D
Amazon (D) 262,111 1,234,877 1.8 5 5

WikiTalk (D) 2,388,953 5,018,445 0.1 2 100,022

Citation (D) 3,764,117 16,511,742 0.1 4 770

KGS (U) 293,290 22,390,820 26.0 76 18,969

DotaLeague (U) 61,171 101,740,632 2,719.0 1,663 17,004

Scale-22 (U) 2,394,536 128,304,030 2.2 54 163,499

Scale-23 (U) 4,611,439 258,672,163 1.2 56 257,910

Scale-24 (U) 8,870,942 520,760,132 0.7 59 406,417

Scale-25 (U) 17,062,472 1,047,207,019 0.4 61 639,144

V and E are the vertex count and edge count of the graphs. d is the link density
(�����). �D is the average vertex out-degree. Max D is the largest out-degree.
(D) and (U) stands for the original directivity of the graph. For each original
undirected graph, we transfer it to directed graph (see Section II-B1).

TABLE III
SUMMARY OF ALGORITHMS USED IN THIS STUDY.

Algorithm Main features Use
BFS iterative, low processing building block

PageRank iterative, medium processing decision-making

WCC iterative, medium processing building block

TABLE IV
SUMMARY OF SYSTEMS USED IN THIS STUDY.

System Version Type Release date
Medusa Medusa-0.2 Multiple GPUs 2013-02

Totem Trunk version Hybrid, multiple GPUs 2014-08

MapGraph MapGraph 0.3.2 Single GPU 2014-04

algorithm for extracting groups of vertices connected via graph

edges. For directed graphs, we say a group of vertices is

weakly connected if any vertex in this group can be linked

by an edge (no matter the direction) to another vertex in this

group. We select in this work an implementation of WCC

created by Wu and Du [20].

III. EXPERIMENTAL SETUP

In this section, we make a selection of GPU-enabled graph-

processing systems, discuss the implementation of the graph-

processing algorithms on the selected systems, and set the

configuration of the parameters for running the algorithms.

A. System selection

Compared with the number of CPU-based graph-processing

systems, there are fewer single-node GPU-enabled systems,

and no distributed GPU-enabled graph-processing systems

available for the public. Thus, in this work, we select three of

the most mature single-node GPU-enabled graph-processing

systems: Medusa, Totem, and MapGraph. Table IV summa-

rizes our selected systems. We introduce each system in the

following.

Medusa [13] is a graph-processing framework designed to

help programmers use the GPU computing power with writing

only sequential code. To achieve this goal, Medusa provides

a set of user-defined APIs to hide the GPU programming

details. Medusa can support multiple GPUs. Medusa extends

the Bulk Synchronous Parallel (BSP) model by applying a

“Edge-Vertex-Message” (EMV) model for each superstep.

The EMV model breaks down the vertex-centric workload

into separate chunks; the key concepts related to a chunk
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are vertices, edges, and messages. Compared with a vertex-

centric programming model, the fine-grained EMV model

can achieve better workload balance of threads [13]. Medusa

supports four different formats to store graphs in-memory:

the vertex-oriented format Compressed Sparse Rows (CSR,

or AA used in [13]), the edge-oriented format (ESL), the

hybrid format (HY) of CSR and ESL, and the column-major

adjacency array (MEG, or CAA used in [13]). HY and MEG

are designed to reduce the uncoalesced memory access on

GPUs. A graph-aware message buffer scheme is designed by

Medusa to achieve better performance of processing messages

between vertices. To maintain this buffer, a message index

needs to be stored for each edge. For multiple GPUs, Medusa

provides a multi-hop replication scheme and overlapping of

computation and communication to alleviate the pressure from

data transfers between partitions.

Totem [11] is a graph-processing system that can leverage

both the CPU and the GPU (hybrid) as computing units by

assigning graph partitions to them. Totem can also support

multiple GPUs (with or without the CPU). Totem uses a

vertex-centric programming abstraction under the BSP model.

Each superstep of the BSP model includes three phases: a

computation phase in which each computing unit executes the

algorithm kernel on its assigned partitions, a communication

phase in which each computing unit exchanges messages, and

a synchronization phase to deliver all messages. Totem strictly

uses CSR to represent graphs in-memory. To alleviate the

cost of communication between partitions, Totem uses user-

provided aggregation to reduce the amount of messages and

maintains two sets of buffers on each computing unit for over-

lapping communication and computation. Totem implements

other optimizations to improve the performance, for example,

partitioning graphs by the vertex degrees and placing higher-

degree vertices on CPU.

MapGraph [14] is an open-source project to support

high-performance graph processing. The latest version (see

Table IV) of MapGraph can only support a single GPU.

MapGraph uses a modified Gather-Apply-Scatter model [8]

to present each superstep of graph-processing algorithms. In

the Gather phase, vertices collect updated information from in-

edges and/or out-edges. During the Apply phase, every active

vertex in the current superstep updates its value. In the Scatter

phase, vertices send out messages to their neighbours. For

each superstep, MapGraph maintains an array called frontier

which consists of active vertices, to reduce the computation.

The frontier for the next superstep is created in the Scatter

phase of the current superstep. MapGraph uses CSR and the

Compressed Sparse Column format (CSC [21], which is a

reverse topology index of CSR) to store graphs. MapGraph

adapts two strategies, dynamic scheduling and two-phase

decomposition, to balance the workload of different threads.

Notation: From hereon, we use M for Medusa, T-H for

Totem in hybrid mode using both the CPU and the GPU, T-G
for Totem using the GPU(s) as the only computing resource,

and MG for MapGraph.

B. System and experiment configuration

Hardware: We perform our experiments on DAS4 [22],

which is a cluster with many different types of machines to

cater different computation requirements of researchers in the

Netherlands. We use four types of machines from DAS4 to

conduct our experiments. Type 1 includes an Nvidia GeForce

GTX 480 GPU (1.5 GB onboard memory) and an Intel Xeon

E5620 2.4 GHz CPU. Type 2 is equipped with 8 Nvidia

GeForce GTX 580 GPU (3 GB onboard memory per GPU)

and dual Intel Xeon X5650 2.66 GHz CPUs. Type 3 consists

of an Nvidia GeForce GTX 580 GPU (3 GB onboard memory)

and an Intel Xeon E5620 2.4 GHz CPU. Type 4 has an Nvidia

Tesla K20m GPU (5 GB onboard memory) and an Intel Sandy

Bridge E5-2620 2.0 GHz CPU. The machines are used for

different experiments as shown in Table V.

Algorithms: Some of the algorithms belong to libraries

distributed with the systems, but the programming details may

be different. When this is the case, we select a unique imple-

mentation, as described in Section II-B2. For each algorithm,

we set the parameters identically on all systems. For BFS,

we use the same source vertex for each graph on all systems.

For PageRank, we consider maximum iteration as the only

termination condition and set maximum iteration to 10 times.

WCC does not need any specific parameter configuration.

System tuning: Several configuration parameters could be

tuned in each system. The tuning of parameters can change

the performance of these systems. We explore the influence of

several common techniques for system tuning in SectionIV-D.

For the other experiments, we use the default settings of each

system. For example, for the hybrid mode of Totem, we place

on the CPU higher-degree vertices, that is, the vertices whose

total degree is about one third of the number of edges of the

whole graph.

Dataset considerations: Because the WCC algorithm con-

siders that two vertices are connected when there is an edge

between them, when running the WCC algorithm for directed
graphs (Amazon, WikiTalk, and Citation), we create a reverse

edge for each pair of vertices which are originally connected

by a single directed edge. The new datasets are AmazonWCC,
WikiTalkWCC, and CitationWCC, with the number of edges

1,799,584, 9,313,364, and 33,023,481, respectively.

Further configuration and settings: For all systems, the

GPU compiler is Nvidia CUDA 5.5. We use CUDPP 2.1 [23]

and Intel TBB 4.1 [24] as third-party libraries for Medusa and

Totem, respectively. We repeat each experiment 10 times, and

we report the arithmetic mean. We only show error bars in

our scalability test, because in all the other experiments our

results from 10 runs are very stable, with the largest variance

under 5%.

IV. EXPERIMENTAL RESULTS

In this section we present our experimental results. Table V

summarizes our experimental setups. The experiments we have

performed are:
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TABLE V
EXPERIMENTAL SETUP FOR EACH EXPERIMENT IN SECTION IV.

Section Systems Algorithms Datasets Metrics GPU (Machine Type) Graph Formats
Section IV-A All All 6 Algorithm run time GTX 480 (Type 1) CSR

Section IV-B All All 2 Total execution time and its breakdown GTX 480 (Type 1) CSR

Section IV-C Medusa, Totem PageRank 4 Strong and weak scaling, NEPS GTX 580 (Type 2) CSR

Section IV-D All PageRank 6 Speedup GTX 480 (Type 1) CSR, HY, MEG

Section IV-E All All 6 Speedup GTX 480, GTX 580, K20m (Type 1, 3, 4) CSR
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Fig. 1. The algorithm run time for BFS of 6 datasets on all systems. (Missing
bars are explained in text.)

� Raw processing power (Section IV-A): we have measured

the algorithm run time and we report it for all combina-

tion of algorithms, datasets, and systems.

� Performance breakdown (Section IV-B): we have ana-

lyzed the total execution time in detail. We show the

breakdown of the total execution time as introduced in

Section II.

� Scalability (Section IV-C): we have measured the vertical

scalability of Totem and Medusa in both strong scaling

and weak scaling.

� The impact on performance of system-specific optimiza-

tion techniques (Section IV-D): we have applied system-

specific optimization techniques and we report the impact

they have on the performance of systems.

� The impact on performance of the GPU generation (Sec-

tion IV-E): we have investigated the behavior of all three

systems on three different generations of GPUs and we

report the performance changes we have observed.

A. Raw processing power: algorithm run time

In this section, we reported a full set of experiments

(all algorithms, all systems, and 6 datasets) and analyze the

algorithm run time.

Key findings:
� Totem is the only system that can process all 6 datasets

for all algorithms. Medusa and MapGraph crash for some

of the setups.

� There is no overall best performer, but in most cases

Totem performs the worst.

� The optimization techniques used by the graph-

processing systems lead to inconsistent performance ben-

efits across different algorithms.

� Relative to the performance we have observed on CPU-

based systems [5], the results of the GPU-enabled sys-

tems studied in this work are significantly faster.
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Fig. 2. The algorithm run time for PageRank of 6 datasets on all systems.
(Missing bars are explained in text.)
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Fig. 3. The algorithm run time for WCC of 6 datasets on all systems.(Missing
bars are explained in text.)

We report results for the NVIDIA GTX 480 GPU, which

fits all real-world datasets and the Scale-22 synthetic one

(experiments on larger datasets are discussed in Section IV-C).

We show the algorithm run time, for each combination of setup

parameters, in Figures 1, 2, and 3. For the horizontal axis of

each figure, we order the datasets by their number of edges,

from left to right.

We depict the performance of BFS in Figure 1. We see that

only Totem can handle all 6 datasets. Medusa and MapGraph

crash attempting to construct DotaLeague and Scale-22 in-

memory and report an “out of memory” error. Although in

these experiments, all systems use the CSR format to store

graphs in-memory, the implementation details are different.

Totem strictly represents the graph in the CSR format by using

two arrays V and E: array V contains the start indices that can

be used to fetch the neighbour lists, which are stored in array

E. Medusa uses a structure of arrays, which includes extra data

such as the number of edges for each vertex and the message

index for each edge. In MapGraph, a graph is represented in

both the CSR format and the CSC format in-memory. The

usage of CSC doubles the memory consumption.

In Figure 1, the two modes of Totem have longer run times

than either Medusa or MapGraph. An important reason for
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this is the different parallelism granularities of the kernel. In

Totem, the number of threads is the same as the number of

vertices and each thread processes one vertex [4]. This map-

ping can result in workload imbalance because every thread’s

workload is skewed by the degree of its assigned vertex. The

performance of Totem worsens when the vertex degrees are

highly skewed, as seen for example, for running T-G on the

WikiTalk dataset (the degrees of most vertices in WikiTalk are

smaller than 10K, but there is one vertex with more than 100K

neighbours). This imbalance can be alleviated by assigning

these higher-degree vertices to the CPU, as shown by the

result of T-H on Wikitalk. In Medusa, the whole workload

is divided into three phases which target individual vertices,

edges, and messages. Medusa uses a fixed amount of blocks

and threads per block to process all vertices and all edges. The

workloads of threads are well balanced by assigning vertices

and edges to threads in turn. MapGraph adapts complex

dynamic scheduling and two-phase decomposition to balance

the workload of threads.

For the BFS algorithm (Figure 1), MapGraph performs best

for all the graphs it can handle. We attribute this advantage to

the design of a frontier which maintains active vertices for each

superstep. For the BFS algorithm, the active vertices in each

superstep can be significantly less than the full set of vertices.

Thus, for each iteration of BFS on MapGraph, only a part

of vertices are accessed and computed. Although Medusa and

Totem do not compute non-active vertices, both systems have

to access all vertices. The impact of the frontier is significant

when the set of active vertices is small. For example, the

algorithm run time of Citation (BFS traverse coverage is 0.1%)

is much shorter than other datasets (BFS traverse coverages

are greater than 98.5%). However, the implementation of a

frontier may have negligible impact for other algorithms, and

may even cause crashes of the system due to lack of memory.

For PageRank (see Figure 2), MapGraph cannot outperform

Medusa with any dataset because all vertices are active in each

superstep (according to our implementation of this algorithm,

see Section II-B2). This is in contrast to our findings for BFS

(Figure 1) regarding the impact of the frontier. Furthermore,

MapGraph cannot process KGS because it doest not have

enough memory for maintaining such a larger frontier.

The comparison of the algorithm run time of WCC on three

systems is shown in Figure 3. Unlike the results of BFS and

PageRank, the performance of Totem is not always worse than

Medusa and MapGraph; Totem exhibits better performance

in both hybrid mode and GPU-only mode on AmazonWCC,

KGS, and CitationWCC. There are three main reasons that

lead to this result. Firstly, a large amount of updated infor-

mation needs to be send between supersteps of WCC. Totem

aggregates the updated information sent to the same vertex that

can reduce the inter-superstep communication time. Secondly,

the distribution of vertex degrees of AmazonWCC, KGS, and

CitationWCC is not highly skewed. Thirdly, the computation

of the algorithm is not intensive. The second and third reasons

result in a relatively balanced workload for each thread.

TABLE VI
THE BREAKDOWN OF RUNNING THE BFS ALGORITHM ON THE AMAZON

DATASET AND THE WCC ALGORITHM ON THE AMAZONWCC DATASET.
(ALL TIME VALUES IN MILLISECONDS.)

BFS on Amazon WCC on AmazonWCC
M MG T-H T-G M MG T-H T-G

����
1278.1

1064.9 339.1 316.6
1787.1

1519.0 477.8 452.4

���� 0.7 0.5 0.3 0.2 1099.9 1062.0

���� 8.1 3.3 1.1 1.8 10.3 4.3 1.5 2.3

�� 29.3 8.2 148.0 51.9 20.6 59.2 49.9 18.5

���� 1.5 0.6 0.6 0.4 1.5 0.4 0.7 0.8

�	 723.7 18.2 3.7 46.5 739.5 18.0 4.1 46.4

�� 2032.5 1092.7 491.9 415.7 2548.8 1596.9 1632.5 1580.2

From Figures 1, 2, and 3, we also find that the structure of

graphs have consistent impact on the algorithm run time of

all three algorithms in two modes of Totem. For instance, the

algorithm run time of T-H is always more than that of T-G on

Amazon, while the algorithm run time of T-H is always less

on WikiTalk, no matter which algorithm runs.

B. Performance breakdown

In this section, we report, for each algorithm, the total

execution time and its breakdown.

Key findings:
� The time for reading the graph and for constructing the

graph in-memory dominates the total execution time.

� The initialization time of the systems should be reduced.

Because the performance breakdown of PageRank is very

similar to that of BFS, we show the breakdown of the total

execution time on Amazon for just BFS and WCC in Table VI.

Note that the input file of WCC is AmazonWCC, making the

graph initialization time ���� for all systems longer than that

of BFS on Amazon.

Overall, we notice that for all algorithms, the initialization

time (including ���� and ���	 ) is the major part of the total

execution. Thus, the performance of initialization is essen-

tial for improving the overall performance of such systems.

Compared with Totem and MapGraph, Medusa needs more

time for initialization because it reads the input file by words,

not by lines, and even if a graph is not partitioned, the data

structures for building partitions are created and calculated.

Medusa also shows longer overhead, mainly caused by the

initialization of system, such as configuring the L1 cache

and shared memory of the GPU. The graph initialization and

algorithm configuration in Medusa are aggregated. MapGraph

uses a two-step procedure to build CSR and CSC formats in-

memory. A graph input file is read into the Coordinate (COO)

format [21], the tuples in COO are then sorted and the CSR

and CSC formats are constructed from COO. However, when

algorithms do not need the CSC format for execution, the time

for building the CSC format is wasted.

For the WCC algorithm, each vertex is assigned an initial

value using its vertex ID. However, in the hybrid mode of

Totem, input graphs are partitioned and all vertices are re-

assigned to new IDs in each partitions. Each partition keeps a

map for mapping new IDs in this partition to original IDs in the

input graph. Thus, for the configuration of WCC, Totem needs
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to access the map once for initializing the value of each vertex.

Totem does not support special mechanism for initializing one

partition graph, thus the configuration time of the GPU-only

mode is as high as that of the hybrid mode. Medusa faces the

same long configuration problem when it uses multiple GPUs.

C. Evaluation of scalability

In this section, we evaluate the scalability of Totem and

Medusa with using multiple GPUs.

Key findings:
� Totem and Medusa show reasonable strong and weak

scaling with the increase of the number of GPUs.

� Increasing the number of GPUs may not always lead to

performance improvement.

All experiments in this section are executed on a machine

with 8 Nvidia GTX 580 3GB GPUs. We assign vertices

randomly to GPUs. Our scalability tests are using PageRank

because it is the most compute-intensive algorithm in this

work as shown in Section IV-A. We test both strong scaling

and weak scaling. For strong scaling, we use the Scale-22

graph which is the largest graph that can be handled by Totem

with only one GPU. We increase the number of GPUs from

1 to 8. The strong scaling results for T-H include both the

CPU workload (constant) and the GPUs workload (scaled).

For weak scaling, we use four generated graphs from Scale-

22 to Scale-25, and test them on 1, 2, 4, and 8 GPUs.

For strong scaling, we observe that Medusa exhibits better

scalability than Totem (Figure 4). The algorithm run time of

Medusa keeps decreasing by adding more GPUs. For Totem,

in both T-H and T-G, the algorithm run time does not change

too much after a certain number of GPUs. However, due to

the random placement of vertices, the workload per GPU

may not be balanced. Combined with the increasing time

for communication, the decreasing trend of the algorithm run

time is not obvious with adding GPUs. As we discussed in

Section IV-A, the workload of each thread on a GPU is not

well balanced for Totem, which may cause the bad scaling

after using 4 GPUs in T-G. As for T-H, because the algorithm

run time is dominated by the CPU computation, when using

2 GPUs or more, the performance remains almost constant.

This can be proved by the longest algorithm run time of all

GPUs (represent as T-H-GPU). We also notice that T-H shows

more unstable behavior (note the error bars), which indicates

that the algorithm execution on the GPUs is more stable than

on the CPU.

We show in Figure 5 the normalized edges per second

(NEPS) for Medusa and Totem. To compute NEPS, we first

calculate EPS by dividing the algorithm run time by the

number of edges accessed by PageRank, then we normalize

EPS by the number of GPUs. For the hybrid mode of Totem,

we only consider the scaled workload on GPUs, see T-H-

GPU in Figure 5. We compute the EPS of T-H-GPU using

the longest algorithm run time of all GPUs and the number

of edges placed on GPUs (according to the configuration in

Section III, about two thirds of edges are processed on GPUs).

The NEPS of T-H-GPU remains relatively constant at around

450 million. Because the higher-degree vertices are mainly

assigned to the CPU, the degrees of the vertices placed on the

GPUs are not vary, leading to a relatively balanced workload

for each GPU and for each thread on a same GPU.

The weak scaling of T-G is presented in Figure 6. We do not

have results for Medusa because the experiments using Scale-

22 to Scale-25 crashed due to the high memory consumption.

T-H is only shown as a reference to T-G: due to the use of

both a single CPU (workload is not scaled) and multiple GPUs

(workload is scaled). The efficiency of weak scaling of T-G is

84%, 61%, and 38%, for using 2, 4, and 8 GPUs, respectively.

The efficiency decreases because the total workload does not

grow linearly with the increase of the graph scale, and this

may also because the vertex degrees of larger graphs are more

skewed (Table II).

D. Evaluation of system-specific optimization techniques

Many optimization techniques can be used to change the

performance of the graph-processing systems studied in this

work. In this section, we evaluate the performance of Medusa
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when storing the graph in-memory using different represen-

tations, the performance of Totem when using the different

configurations for the virtual warp-centric technique [25], and

the performance of MapGraph when using different thresholds

for choosing its scheduling strategies.

Key findings:
� Performance improvements depend significantly on

system-specific optimization techniques.

� Advanced techniques may not always have a positive

impact of the performance on systems.

We choose PageRank because it is the most compute-

intensive algorithm in our study. To focus on the performance

of the GPU, we do not report result from T-H.

Medusa can support several graph representations, CSR,

ESL, hybrid (HY) format of CSR and ESL, and MEG. HY

requires a threshold value to calculate the proportion of CSR

and ESL. Figure 7 shows the speedup of building graphs in

the MEG format (M-MEG) and the HY format (with the

threshold of 4 and of 16, represented as M-HY-4 and M-

HY-16, respectively). The threshold values for M-HY are the

default value (16) and representative for the average vertex

degree (4). We set the performance of Medusa using the CSR

format as the baseline. It is very surprising that all MEG and

HY experiments have worse performance than the CSR format.

This result is different from the result of [13] with running

PageRank on a RMAT dataset on Medusa, in which MEG

and HY are better. We cannot directly compare our results

because as we shown in our previous work [5], results can be

very sensitive to datasets. M-HY-4 significantly outperforms

M-HY-16 on Amazon, WikiTalk, and Citation because the

threshold is closer to their average vertex degrees, which is

similar to the result of [13].

TABLE VII
SUMMARY OF THE GPU GENERATIONS USED IN THIS STUDY. SP/DP

DENOTE SINGLE/DOUBLE PRECISION OPERATIONS.

GTX 480 GTX 580 K20m
Frequency (GHz) 1.40 1.57 0.71

# Cores 480 512 2496

Peak GFLOPS (SP/DP) 1344.0/672.0 1603.6/801.8 3519.3/1173.1

Memory capacity (GB) 1.5 3 5

Peak Memory Bandwidth (GB/s) 177.4 193.0 208.0

To improve the performance of Totem, we use the virtual

warp-centric technique to balance the workload of threads in

the algorithm kernel. Figure 8 illustrates the speedup of the

algorithm run time by using virtual warp (with virtual warp

size of 8 and of 32, represented as T-G-VWarp-8 and T-G-

VWarp-32, respectively ). The warp size values are the default

value (32) and representative for the graph properties (8). We

set the performance of T-G as the baseline. From Figure 8, we

notice that both T-G-VWarp-8 and T-G-VWarp-32 can obtain

significant improvement, with the highest speedup of around

7. T-G-VWarp-8 has better performance than T-G-VWarp-32

on Amazon and Citation, whose average degrees are closer to

8. This finding matches to the result of the work of [25] with

running BFS on several datasets.

We have also investigated the performance of tuning Map-

Graph. In the scatter phase, dynamic scheduling and two-phase

decomposition can be used to create the frontier of the next

superstep. MapGraph uses a threshold on the frontier size of

the current superstep to determine which strategy would be

executed. We tune the threshold for running PageRank on all

datasets with various values (from 1 to 20000, default value

1000). The algorithm run time is not sensitive to the threshold,

with a variance within 2% for different thresholds on the same

dataset and algorithm. We further check the threshold influence

on BFS and WCC, and we get the same result as PageRank.

E. Evaluation of the GPU generation

In this section, we run all experiments of Section IV-A on

two other GPUs: GeForce GTX 580 and Tesla K20m.

Key findings:
� Memory consumption is a key issue of Medusa and

MapGraph, when processing the largest graphs in our

study.

� Using a GPU with improved processing capability can

help, but not always.

The details of GPUs are introduced in Table VII. We

compare the performance of systems deployed on different

generations of GPUs. We present a representative selection of

results from the whole set of experiments. To focus on the

performance impact of the GPU generation, we do not report

results from the hybrid mode of Totem in this section.

Table VIII shows, for WCC, the change of processable

datasets of Medusa and MapGraph on GTX 480, GTX 580,

and K20m. We choose the WCC algorithm because on GTX

480, it has the most number of datasets that cannot be

processed on Medusa and MapGraph. We use “Y” to depict

a dataset that can be processed and “N” for crashes. For each

crash, we present the reason why it happens. “F” represents
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TABLE VIII
THE SUCCESS OF RUNNING THE WCC ALGORITHM ON MEDUSA (M) AND

MAPGRAPH (MG). (“Y” DENOTES SUCCESSFUL PROCESSING. ALL

OTHER VALUES DENOTE CRASHES, SEE TEXT FOR DETAILS.)

GTX 480 GTX 580 K20m

KGS
M Y Y Y

MG N (R: M) Y Y

CitationWCC
M Y Y Y

MG N (R: M) N (R: M) Y

DotaLeague
M N (F) N (R: E) N (R: E)

MG N (F) N (R: M) N (R: M)

Scale-22
M N (F) N (F) N(R: E)

MG N (F) N (F) N (R: M)
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Fig. 9. The speedup of running PageRank using different GPU generations.

a crash that occurs when the graph cannot Fit into the GPU

memory at the initialization time. “R” represents a crash that

happens during the Run time of WCC. For each R, we further

detail if it is caused by out of Memory or CUDA Error. From
Table VIII, we find that more datasets can be processed by

using GPUs with larger memory. For example, MapGraph can

handle KGS and CitationWCC on K20m. We also observe that

DotaLeague and Scale-22 still cannot be processed by Medusa

and MapGraph. For DotaLeague and Scale-22 on MapGraph,

all crashes are caused by out of memory, either in initializing

the graph or running the algorithm with large frontier. For

Medusa, although memory is not the bottleneck on K20m,

CUDA errors are reported by its library CUDPP 2.1 [23].

In Figure 9, we report the obtained speedup for every system

when using different GPU generations. We set the performance

on GTX 480 as a baseline and we pick the PageRank algorithm

because it has the longest algorithm run time in our study. For

the datasets, we choose Amazon (smallest dataset), Citation

(the largest dataset that can be processed by all systems on

GTX 480), DotaLeague (the largest real-world dataset), and

Scale-22 (synthetic graph). In most cases, the performance

we observed increases when using more powerful GPUs.

For Medusa and MapGraph, the performance improvement

is not significant. We even find performance degradation:

for instance, T-G’s performance on GTX 580 is worse than

that on GTX 480. Overall, we note that simply migrating

systems to more powerful GPUs may not be sufficient to obtain

much higher performance, as we would expect. To get better

performance, additional parameter tuning may be performed.

V. USER EXPERIENCE

Performance is a key issue for selecting systems. From the

perspective of an end user, the usability of the systems is also

important. In this section, we discuss our user-experience with

each of the selected system. We also compare the experience

of using GPU-enabled systems with our prior experience as

users of CPU-based systems.

For Medusa, as the designers of Medusa claim, we could

use the fewest lines of code, relative to the other systems

considered in this study, to implement the core part of the

algorithms. However, it takes more lines of code and more

effort to design the data structure for each of vertices, edges,

and messages. The graph representation and the design of

the message buffer are not memory-efficient, which limit

the scale of the graphs that can be processed by Medusa.

The errors reported by the third-party messaging library (see

Section IV-E) reveal that Medusa needs further validation with

this library. Learning how to use Medusa is not easy, because

the documentation is scarce.

For Totem, we needed a majority of the lines of code for

the core part of algorithms, because no high-level API is

provided. We had to implement two different versions of every

algorithm, for the CPU and for the GPU. The performance of

Totem relies on the implementation of algorithms, as users

have to address the details for coding the kernel for the

GPU. Totem can process the largest datasets among the three

systems, because it has efficient memory usage, and because it

can use the storage resources of the host. The documentation

about Totem is also scarce, but the clear structure of the project

and a large number of algorithm examples can help users get

familiar with the system better than Medusa.

MapGraph provides a set of APIs for users. Similarly to

Medusa, users do not need to touch kernel-programming on

the GPU. MapGraph lacks the ability to handle large datasets,

as it is the most memory-consuming system in our study.

MapGraph has better documentation than Medusa and Totem,

but a comprehensive user tutorial is still needed. For the future,

MapGraph promises to evolve towards a distributed system

that can use GPU-clusters.

Compared with CPU-based systems [19], there are still

many aspects to be improved in GPU-enabled graph-

processing systems. We point out three main issues: the scale

of graphs could be processed is rather small, primarily due to

lack of memory; it is difficult to implement graph algorithms

with complex message delivery and with graph structure

mutation, because the GPU programming models may not be

suitable for these aspects; the developer and user community

is smaller and less active than for CPU-based systems.

VI. RELATED WORK

Motivated by the increasing practical need for graph-

processing systems, many studies have focused on the perfor-

mance evaluation of graph-processing systems in the past two

years. Combined, this body of work compares the performance

of many graph-processing systems, using many performance

aspects and metrics, tens of diverse datasets, and various

graph-processing algorithms and applications. However, in-

dividual studies rarely combine these desirable features of

a performance evaluation study. This work complements all
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these previous studies with a process that focuses on a new

class of systems (GPU-enabled instead of CPU-based) and

reports on a more diverse set of metrics.

Elser and Montresor [26] evaluate the performance of 5

distributed systems for graph processing but use only 1 graph

algorithms and only 1 performance metrics. Our previous

work [5] proposes an empirical method for benchmarking

CPU-based graph-processing systems and reports the per-

formance of the systems using more metrics and broader

workload concerns. Han et al. [6] use similar performance

metrics to [5] and focus on a family of Pregel-like systems. Lu

et al. [27] include the influence of algorithmic optimizations

and the characteristics of input graphs.

Most of the previous evaluation studies were proposed on

CPU-based systems. Relatively few performance evaluation

studies focus on GPU-enabled systems. Most of these studies

were proposed by system designers to exhibit their system,

and may lack the method or bias necessary for this kind of

studies. Specifically, the previous studies on the performance

of GPU-enabled systems lack representative workloads [28],

performance metrics [13], [14], and comparative systems [11],

[29]. Our study is the first in-depth performance evaluation

study of GPU-enabled graph-processing systems.

VII. CONCLUSION

Using the capability of GPUs to process graph applica-

tions is a new promising branch of graph-processing re-

search. A number of GPU-enabled graph-processing systems,

with different programming models and various optimization

strategies, have been developed, which raises the challenging

question of understanding their performance. We conduct in

this work the first comprehensive performance evaluation of

GPU-enabled graph-processing systems.

This method significantly extends our previous work on

the topic, by adapting performance aspects and introducing

performance metrics that focus on GPU-enabled systems, by

adding more datasets, and by focusing on important graph-

processing algorithms. We focus on the following performance

aspects: raw processing power, performance breakdown, scala-

bility, the impact on performance of system-specific optimiza-

tion techniques and of the GPU generation. We use at least

one performance metric to quantify each performance aspect,

such as total execution time and its breakdown to measure

detailed performance, normalized metric NEPS to characterize

scalability, etc. We select 9 datasets with diverse characteristics

from both real-world domains and popular synthetic graph

generators, up to scales of more than 1 billion directed edges.

We also select 3 graph algorithms that are commonly used by

the GPU graph-processing community.

We use the proposed method and report the first compre-

hensive performance evaluation and comparison of 3 GPU-

enabled graph-processing systems, Medusa, Totem, and Map-

Graph. We show the strengths and weaknesses of each system

and list key findings for each of our experiments. Overall, we

conclude that understanding the performance of these systems

can be very useful, but requires an in-depth experimental study.
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