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Abstract— Modeling and understanding an expensive next-
generation data center operating at a sustainable exascale 
performance remains a challenge yet to solve. The paper 
presents the approach taken by the Graph-Massivizer project, 
funded by the European Union, towards a sustainable data 
center, targeting a massive graph representation and analysis of 
its digital twin. We introduce five interoperable open-source 
tools that support this undertaking, creating an automated, 
sustainable loop of graph creation, analytics, optimization, 
sustainable resource management, and operation, emphasizing 
state-of-the-art progress. We plan to employ the tools for 
designing a massive data center graph, representing a digital 
twin describing spatial, semantic, and temporal relationships 
between the monitoring metrics, hardware nodes, cooling 
equipment, and jobs. The project aims to strengthen Bologna 
Technopole as a leading European supercomputing and big data 
hub offering sustainable green computing for improved 
societally relevant science throughput. 

Keywords—Data center, digital twin, green computing, 
sustainability, massive graph, graph processing, graph neural 
network, anomaly detection. 

I. INTRODUCTION 

Supercomputers are the backbone of high-performance 
computing (HPC), supporting computational science 
discoveries and massive engineering analyses. They 
maximize societal and economic impact through high 
computation and scientific throughput per investment. As the 
community focuses on peak performance in its race towards 
exascale machines, two critical factors limit HPC 
sustainability. Firstly, energy consumption is a vital factor in 
data centers’ total cost of ownership (TCO) and a de-facto 
barrier to their peak performance. While data-driven heat 
dissipation models exist in digital devices, they do not capture 
complex spatiotemporal dependencies between the cooling 
equipment, computing nodes, and computational workloads. 
Secondly, system utilization is critical and directly impacts a 
supercomputer’s productivity, quantified by the science, 
research, and innovation throughput. However, system 
utilization is hard to maximize while preserving fairness and 
fulfilling the requirements of jobs and workloads. 

Modeling and understanding an expensive next-generation 
data center operating at a sustainable exascale performance 

before constructing it requires a comprehensive massive 
graph (MG) representation and analysis of its digital twin, 
describing spatial, semantic, and temporal relationships 
between the monitoring metrics, hardware nodes, cooling 
equipment, and jobs. Such MGs are universal abstractions that 
capture, combine, model, analyze, and process knowledge 
about real and digital worlds into actionable insights through 
digital twin representations. For societally relevant problems, 
such as exascale supercomputers, graphs are extreme data that 
require further technological innovations to meet the needs of 
the European data economy. 

The Graph-Massivizer project [2], funded by the Horizon 
Europe research and innovation program of the European 
Union, targets the development of a high-performance and 
sustainable platform for information processing and reasoning 
based on the MG representation of extreme data in the form 
of general graphs, knowledge graphs, and property graphs. 
Graph-Massivizer addresses the any-volume graph challenge 
by supporting up to billions of vertices and trillions of edges 
and the velocity graph challenge of dynamically changing 
topologies. Finally, it proposes a novel viridescence graph 
challenge for sustainable processing at exascale speed.  

Graph-Massivizer targets sustainable science throughput 
through scalable energy-aware, exascale operation and total 
traceable cost of ownership understanding, including 
sustainability indicators and their environmental effects (e.g., 
greenhouse gas emissions). The Graph-Massivizer tools will 
enable the creation of a novel, graph-based digital twin of a 
data center to further support the construction of sustainable 
exascale computing operational models for scientific 
discovery in the next decade. 

This paper reuses parts of the original Horizon Europe 
project proposal Graph-Massivizer. Some paragraphs overlap 
articles in IEEE Cloud Summit 2022 [2] and GraphSys ‘23 
workshop [3], aiming to connect with different audiences. 

The paper has six sections. Section II covers the ambition 
of the Graph-Massivizer toolkit covering the sustainable 
lifecycle of processing extreme data as MG using a 
comprehensive state-of-the-art analysis. Section III presents 
the use case of employing the Graph-Massivizer tools for 
designing a data center digital twin for sustainable exascale 
computing. Section III.B presents an anomaly detection use 
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case on the Marconi 100 (M100) digital twin. Section V 
elaborates on the expected impact of the proposed digital twin 
solution on European science, industry, and society, and 
Section VI concludes the paper. 

II. GRAPH-MASSIVIZER: STATE-OF-THE-ART AND AMBITION 

Current graph processing platforms do not support diverse 
workloads, models, languages, and algebraic frameworks [1]. 
Existing specialized platforms are difficult to use by non-
experts and suffer from limited portability and 
interoperability, leading to redundant efforts and inefficient 
resource and energy consumption due to vendor and even 
platform lock-in. While synthetic data emerged as an 
invaluable resource overshadowing actual data for developing 
robust machine learning (ML) analytics, graph generation 
remains a challenge due to extreme dimensionality and 
complexity. On the European scale, this state of practice is 
unsustainable and, thus, threatens the possibility of creating a 
climate-neutral and sustainable economy based on graph data. 
Making graph processing sustainable is essential but needs 
credible evidence [2]. 

 

Figure 1: Graph-Massivizer architecture. 

Graph-Massivizer proposes to research and develop a 
toolkit consisting of five interoperable open-source tools to 
support this need, creating an automated, sustainable loop of 
graph creation, analytics, optimization, sustainable resource 
management, and operation with unprecedented capabilities 
and quality (see Figure 1). This section introduces the tools 
but summarizes the state-of-the-art in the field and then 
concludes with each tool’s novelty. 

A. Graph-Inceptor: Extreme Data Ingestion, Massive 
Graph Creation and Storage 

a) State-of-the-art: Many ETL (extract, transform, and 
load) products, such as Airbyte, Stitch, Fivetran, Matillion, 
Pipelinewise, Airflow, Singer, Meltano, and Hevo Data, 
provide multiple generic connectors to load and persist data. 
Nevertheless, they target only tabular data and do not support 
extreme-scale data. Furthermore, their data persistence 
connectors do not natively support graph storage, and 
possible integrations require generic interfaces. The dbt 
framework captures the best data practices, requiring 
versioning, testing, and deploying data transformations 
following a continuous delivery pipeline. However, it uses 

SQL for data transformations. At the same time, there is a 
need for a generic framework to support scripting languages 
and native connectors for graph storage, leveraging ML to 
enhance graph creation. Existing database solutions need 
extensions to help graph storage, such as the Titan [6] 
distributed graph database supporting labeled property 
graphs. In contrast, BlazeGraph and Amazon Neptune 
comply with the RDF/SPARQL paradigm and the Apache 
TinkerPop [7] graph stack but lack distributed storage and 
processing capabilities. None leverages ML to optimize 
distributed storage, processing, and querying. 

b) Ambition: Graph-Massivizer develops a smart ETL 
component, learning from data content and load to drive 
further optimizations. It also proposes a graph-first ETL 
framework, providing connectors to specific graph storages 
and enhancing them with ML models to improve persistence 
and query execution. Finally, it researches streaming ML 
models and approximate online reasoning methods to avoid 
expensive batch model training over MG. 

B. Graph-Scrutinizer: Massive Graph Analytics and 
Reasoning 

a) State-of-the-art: Distributed frameworks, like 
Pregel [8] and Apache GraphX [9], provide limited-scale 
graph analytics; stand-alone sampling algorithms are only 
available as academic prototypes, while commercially 
distributed graph sampling implementations (e.g., AliGraph 
[10]) are not open source. Existing ML-based graph 
reasoning libraries are proprietary or work within a single 
node, lacking distributed processing. Relevant libraries such 
as GraphSAGE [11] create graph embeddings, while 
PyTorch Geometric [12] implements graph neural networks. 
Most graph storage solutions leverage the Gremlin language 
for provider-agnostic querying capabilities based on the 
Apache TinkerPop [13] graph stack.GQE [14] foundational 
work on multi-hop reasoning supports a limited set of 
operators, while its Query2Box [15] and BetaE extensions 
allow disjunctions and negations. EmQL improves on 
Query2Box with general entailment and count-min sketches. 
MPQE [16] enables graph representation of queries for 
reasoning, BiQE [17] solves multiple simultaneous reasoning 
tasks, and CQD [18] answers complex queries without 
explicit representations. 

b) Ambition: Graph-Massivizer researches a 
distributed library combining multiple graph sampling 
strategies and graph storage connectors. It also investigates 
streaming ML and online probabilistic reasoning methods 
that provide advanced analytics and reasoning while avoiding 
regular model retraining over the MG. Graph-Scrutinizer 
decomposes reasoning tasks into sequences of smaller 
primitives trained without end-to-end learning. 

C. Graph-Optimizer: Graph Processing Workload 
Modelling with Performance and Energy Guarantees 

a) State-of-the-art: Graph and hardware-specific 
optimizations lead to orders of magnitude improvements in 
performance, energy, and cost over conventional graph 
processing methods [19][20][21]. Typical big data platforms, 
such as Apache MapReduce and Apache Spark, rely on 
generic primitives, exhibiting poor performance and high 
financial and environmental costs [19][22]. Even optimized 
basic graph operations (BGO) lack tools to combine them 
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with real-world applications. Furthermore, graph topology 
and dynamics (i.e., changing the number and content of 
vertices and edges) lead to high variability in computational 
needs [23]. Primitive predictive models demonstrate they can 
enable algorithm selection and advanced auto-scaling 
techniques to ensure better performance [24], but no such 
models exist for energy. 

b) Ambition: Graph-Massivizer develops a BGO 
repository optimized for different heterogeneous platforms 
(i.e., CPU, accelerators) and defines a methodology to design 
and accurately model BGO-based workloads. It further 
develops Graph-Optimizer, the first tool to provide accurate 
predictions and guarantees of performance and energy 
efficiency for graph processing workloads on heterogeneous 
systems. Its forecasts enable informed decisions for high-
performance, sustainable graph processing. 

D. Graph-Greenifier: Sustainable and Energy-Aware 
Massive Graph Processing 

a) State-of-the-art: Energy consumption is a primary 
component of a data center’s TCO, while power consumption 
and thermal dissipation limit the achievable peak 
performance [25]. The cooling system is central to reducing 
energy consumption costs and increasing peak performance 
but suffers from limited thermal design power. Hot water and 
free and chillerless cooling reduce the energy cost at the 
expense of increased complexity of the room thermal control 
[26]. Existing works predict and optimize the cooling 
efficiency based on operational and environmental 
parameters [27] but fail to capture spatiotemporal 
dependencies related to conduction and convection heat 
dissipation. Finally, they optimize energy based on simple 
metrics, such as resource utilization or dissipated heat. 
Similarly, computational benchmarks consider Watt 
consumption (e.g., in Green500) but not electricity 
production. Sustainability models do not capture complex 
prevalent operational phenomena, such as performance 
interference and failures, leading to limited predictive power 
and decision-making evidence [2]. 

b) Ambition: Graph-Massivizer defines accurate 
metrics, benchmarks, and green labeling techniques for 
sustainability and performance analysis of MG processing 
workloads. Graph-Massivizer enables energy-aware graph 
execution on large-scale infrastructure and codesigned 
hardware and produces evidence [2] for green graph 
processing by providing facts and model-based performance 
and sustainability analysis. 

E. Graph-Choreographer: Scalable Serverless Graph 
Analytics over a Codesigned Continuum Infrastructure 

a) State-of-the-art: Current serverless platforms, such 
as Apache OpenWhisk [28], rely on deployment frameworks 
like Kubernetes and Docker Swarm, which utilize greedy 
decision-making techniques, such as filtering nodes, and are 
incapable of hosting a given function and establishing a rating 
among the rest. Graphless [29] allows graph processing 
function deployment using push or pull operations on 
predefined worker resources using static and super-step 
schedulers. Related works employ resource partitioning [30] 
and centralized cluster-level heuristics to schedule latency 
and throughput-sensitive serverless applications but do not 
consider graph processing operations explicitly. 

b) Ambition: Graph-Massivizer enables scalable 
energy-aware serverless execution of MG processing over 
extreme data, combining sustainability analysis and 
performance metrics, such as GHG emissions and 
throughput. It allows transparent provisioning over vast 
heterogeneous resources across the computing continuum, 
comprising HPC, Cloud, Edge, and specialized hardware. 

III. GREEN DATA CENTER DIGITAL TWIN 

The complexity of modern pre-exascale supercomputers 
necessitates ML methodologies that support the work of the 
system administrators, built upon the large quantities of data 
collected by the sensors and monitoring systems of the HPC 
systems. Some ML-supported operational data analytics areas 
in HPC, such as anomaly detection, have matured and are 
operating in production systems. The transition to more 
complex tasks on the operational data analytics roadmap, 
however, necessitates the introduction of more sophisticated 
methodologies – specifically the processing of MGs. 

A. Dara Center Massive Graph 
The Graph-Massivizer tools leverage the holistic 

monitoring data of CINECA to produce a data center MG 
(DC-MG), representing a digital twin describing spatial, 
semantic, and temporal relationships between the monitoring 
metrics, hardware nodes, cooling equipment, and jobs (see 
Figure 2). The DC-MG supports the deployment of 
performance prediction and what-if analysis using ML 
methods to change its configuration to maximize utilization or 
sustainability requirements and observe the effects in 
simulation. For this purpose, the data center digital twin relies 
on a mathematical and visually connected DC-MG model to 
locate undesired effects like highly demanded racks with 
prohibitive energy consumption. Graph-Massivizer will use 
the CINECA HPC facilities to investigate different clustered 
partitions of the HPC facility tuned for incoming workloads 
with accurate processing and queuing time estimates to 
improve its operational model based on these DC-MG 
analyses. The data center digital twin representation targets a 
sustainable computing operation at exascale by optimizing 
two parameters. Firstly, it improves the data center’s power 
usage effectiveness (PUE) and GHG emissions by creating 
and training DC-MG to capture the spatiotemporal-
ontological dependencies among computation, computing 
nodes, and cooling equipment and predict the impact of the 
spatial power distribution on cooling efficiency and cost. 
Secondly, it improves global resource utilization based on 
predictive workload, resource consumption, and job queuing 
models, maximizing the science throughput. 

 

Figure 2. Data center digital twin. 

Graph-Massivizer uses M100 scaled to the EuroHPC 
Leonardo pre-exascale supercomputer to design and validate 
the data center digital twin. The holistic monitored data 
includes approximately one million sensors producing 21,000 
metrics per second on M100. The Leonardo supercomputer 
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overpasses the complexity of the graph by two orders of 
magnitude compared to the current deployment (see Table 1). 

Table 1. Extreme data characteristics of a data center digital twin at 
exascale. 

Data 
characteristic 

Big HPC data 
state-of-the-art 

Extreme HPC data 
dimension 

Volume 10 TB of 
monitoring data 

1 PB of monitoring 
data 

Velocity 21,000 metrics per 
second 

2 million metrics 
per second 

Variety 1 million metrics 10 million metrics 

Viridescence 
Unsustainable 

resource-intensive 
analytics 

Sustainable 
energy-accountable 

graph analytics 

B. Examon Monitoring Framework 
The proper functioning of HPC systems relies heavily on 

their monitoring and data collection infrastructure. This 
infrastructure gathers information from various sources, 
including hardware sensors, software logs, and performance 
metrics. CINECA’s M100 supercomputer uses the Examon 
monitoring framework developed in collaboration with the 
University of Bologna [31]. 

Examon [32] acquires many data inputs, including 
hardware sensors, which provide information on CPU load 
across all supercomputer node cores, metrics such as CPU 
clock speed, instructions executed per second, memory access 
frequency, and power consumption. Other sensor readings 
include fan speeds and temperature measurements for IT 
components and room conditions. Additionally, workload-
related data, such as job submissions and their specific 
characteristics, are collected. System administrators utilize 
warning messages or alarms generated by diagnostic software 
in performing their duties to determine the availability status 
of compute nodes. Previous research demonstrated that 
combining these diverse metric sources into comprehensive 
dashboards provides a complete overview of the 
supercomputer’s operation. 

 

Figure 3: M100 digital twin representation. 

Furthermore, integrating fundamental metrics and 
sophisticated data derived from ML models acquire 
demonstrated enhanced insights into the system [33]. One 
notable example involves generating a virtual replica of the 
M100 supercomputer as a three-dimensional interface that 
displays comprehensive information about all computational 
nodes, utilizing various hues to indicate their statuses. In 
Figure 4, for example, green nodes indicate a low failure 
probability, and red nodes indicate a high failure probability. 

IV. ANOMALY PREDICTION 

Anomaly prediction is more advantageous in HPC than 
anomaly detection for proactive system management. Instead 
of solely relying on anomaly detection after their occurrence, 
implementing ML algorithms can enable a predictive analysis 
for potential anomalies before they occur, allowing system 
administrators to take preventive measures and effectively 
manage any negative impacts, ultimately leading to enhanced 
performance and reliability of the HPC systems. 

A. State-of-the-Art 
The state-of-the-art methodologies for anomaly detection 

train unsupervised per-node models [34] or use a semi-
supervised autoencoder approach [33], which is unsuitable for 
supervised anomaly prediction learning. Supervised training 
for a per-node model is inappropriate for anomaly prediction 
as the anomalies are rare. Supervised training of a large model 
combining the data of all nodes in a supercomputer allows 
leveraging the collective knowledge from all nodes. Still, it 
fails to capture the specifics of an individual node and 
produces suboptimal results [33]. 

B. Graph Neural Networks 
In Graph-Massivizer, the University of Bologna proposed 

a graph neural network (GNN) model for anomaly prediction 
[35]. GNNs are a deep learning algorithm well-suited for 
processing graph-structured data, common to HPC systems. 
Specifically, the method leverages the spatial proximity of 
compute nodes in an HPC room, uses GNNs to forecast 
anomalies, and conducts an experimental evaluation on a 
dataset collected from two M100 racks. 

 
Figure 4: Line graph representation of compute racks. 

Convolutional graph neural networks (GCN) refer to a 
distinct GNN for handling graph-structured information. 
GCNs perform convolution operations on the input graph data 
to gather knowledge from every node’s nearby neighborhood 
and incorporate this into updating its representation. This 
iterative process continually updates these representations, 
eventually capturing the entire graph’s global structure 
through several iterations. With this understanding, GCN 
algorithms apply to diverse applications such as node 
classification, trying to predict the probability of the anomaly 
(a label) for each compute node in a rack. Each rack is a line 
graph having nodes as vertices connected to those above and 
below the rack (see Figure 4). A node has the label 0 if no 
anomalies occur in a future window; otherwise, the label is 
anomalous. The graph representation of compute nodes takes 
advantage of the nodes’ physical layout and creates an 
individual model for each computing rack. As explored in 
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other approaches, the modular approach allows scalability 
with the future large exascale systems. 

C. Evaluation 
The anomaly prediction evaluated on M100 used a GNN 

trained and implemented using PyTorch on a single 
computing node comprising 32 IBM POWER9 cores, 256GB 
of memory, and four NVIDIA V100 GPUs with 16 GB of 
memory. The open dataset used for evaluation contains 
observations from two compute racks of M100 for 31 months, 
with 80% of data used for training and the remaining 20% 
reserved for testing. The GNN architecture underwent manual 
tuning by relying on background knowledge. It resulted in the 
following graph structure: graph convolution layer of shape 
(416,300), graph convolution layer of shape (300,100), graph 
convolution layer of shape (100,16), dense layer of shape 
(16,16), and dense layer of shape (16,1). 

a) Anomaly detection: The anomaly detection results 
indicate an area-under-the-curve (AUC) of 0.86 in pure 
anomaly detection compared to 0.77 AUC for Recurrent 
Unsupervised Anomaly Detection (RUAD) [33] while 
predicting the anomalies by several hours. The prediction 
accuracy maintains good results of around 0.84 AUC with 
eight hours lookahead windows, slightly decreasing for more 
extended time windows. GNN achieves comparable results to 
RUAD up to 24 hours ahead (i.e., 0.73 AUC). 

b) Anomaly prediction: Regarding prediction strength, 
GNN achieves comparable results with the last value 
anomaly predictor (in the absence of other more complex 
methods in the HPC literature), explained by the typical HPC 
anomaly duration of at least a few hours. The difference 
between the last value and GNN predictors becomes more 
significant for longer time intervals. In other words, anomaly 
prediction becomes more complex, and the last value 
predictor can explain anomalies. For longer prediction 
periods up to eight and 16 hours, the difference of AUC of 
the last value and GNN is around 0.1. 

 

Figure 5: Anomaly prediction results. 

V. IMPACT 

The HPC market is central to European industrial 
development, with an average of €867 of increased revenues 

The European 
Commission has recognized the importance of HPC in the 
European data economy and expanded more than €8 billion in 
the forthcoming Multiannual Financial Framework (2021–
2027). The sustainable use of this investment becomes, 
therefore, a priority. 

A. Leading European Supercomputing and Big Data Hub 
CINECA is a founding member of the Bologna 

Technopole, aggregating the next-generation supercomputers 
of CINECA, INFN (Istituto Nazionale di Fisica Nucleare), 
and ECMWF (European Centre for Medium-Range Weather 
Forecasts) powered at 60 MW and hosting over 4,000 
scientific researchers. The green data center digital twin, 
researched by Graph-Massivizer, and demonstrated on the 
pre-exascale Leonardo system operating at approximately 
6 MW (10%), provides essential information for HPC 
facilities’ future engineering and sustainable operation. 
Critical to evidence-based TCO and green practices, capturing 
graph data of complicated topographical and temporal 
linkages between cooling equipment, compute nodes, and MG 
workloads (DC-MG). CINECA and the University of Bologna 
intend to apply their product in the codesign of the European 
pilot for exascale [36]. 

B. Sustainable Green Computing for Improved Societally 
Relevant “Science Throughput” 
CINECA’s primary goal is to maximize the societal and 

economic impact through high computation and scientific 
throughput per investment. Despite operating over 1,700 
million core yearly processor hours, CINECA strives to 
increase the “science throughput  towards socially relevant 
fields. Last year, CINECA partnered with national and 
international researchers to solve urgent societal problems 
such as COVID-19 drug discovery and energy production 
from fusion reactors. CINECA uses Graph-Massivizer tools to 
pursue this goal by modeling the new Leonardo 
supercomputer as a digital twin and gaining unique insights 
into its sustainable operation and TCO through 100% 
capturing of spatial interaction, 10% PUE reduction, 10% 
lower power use, and 20% improved utilization. 

C. Improved data center sustainability. 
The Graph-Greenifier tool based on the open-source 

OpenDC simulator [37] proposes an accurate sustainability-
performance analysis of extreme graph processing workloads 
on large-scale infrastructure, including a sustainability 
benchmark and green labeling of BGO. The tool aims to 
demonstrate the possibility of a two-fold improvement in data 
center energy efficiency and over 25% lower GHG emissions, 
considering Tier 1 and national suppliers’ and public energy 
data. The tool avoids ‘greenwashing’ and strengthens 
Europe’s ability to pursue real sustainability in practice by 
providing quantitative evidence. 

VI. CONCLUSIONS 

This paper presented the effort of the Graph-Massivizer 
project funded by the Horizon Europe research and innovation 
program of the European Union, with emphasis on a use case 
targeting a sustainable data center digital twin operating at 
exascale performance. The use case receives support from the 
Graph-Massivizer tools targeting the development of a high-
performance and sustainable platform for information 
processing and reasoning based on the MG representation of 
extreme data in the form of general graphs, knowledge graphs, 
and property graphs. Preliminary work on using GNN for 
prolonged anomaly prediction in HPC systems permits a 
holistic examination of spatial and temporal connections 
among system components. 

Future research concentrates on expanding the size of 
GNNs beyond a computing room and investigating diverse 
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forms of interconnections within such graphs to enhance the 
accuracy, efficiency, and sustainability of anomaly prediction. 
The Graph-Massivizer toolset accommodates the augmented 
complexity and magnitude fusing GNN applications on MGs 
with the ingestion of extreme data and processing analytics 
developed by the project. The study marks an essential stride 
towards establishing reliable methods for anticipating 
anomalies in HPC systems while highlighting the immense 
potential of massive GNNs in this arena. 
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