
Towards Benchmarking IaaS
and PaaS Clouds for Graph Analytics

Alexandru Iosup1(B), Mihai Capotă1, Tim Hegeman1, Yong Guo1,
Wing Lung Ngai1, Ana Lucia Varbanescu2, and Merijn Verstraaten2

1 Delft University of Technology, Delft, The Netherlands
A.Iosup@tudelft.nl

2 University of Amsterdam, Amsterdam, The Netherlands
A.L.Varbanescu@uva.nl

Abstract. Cloud computing is a new paradigm for using ICT services—
only when needed and for as long as needed, and paying only for service
actually consumed. Benchmarking the increasingly many cloud services
is crucial for market growth and perceived fairness, and for service design
and tuning. In this work, we propose a generic architecture for bench-
marking cloud services. Motivated by recent demand for data-intensive
ICT services, and in particular by processing of large graphs, we adapt
the generic architecture to Graphalytics, a benchmark for distributed
and GPU-based graph analytics platforms. Graphalytics focuses on the
dependence of performance on the input dataset, on the analytics algo-
rithm, and on the provisioned infrastructure. The benchmark provides
components for platform configuration, deployment, and monitoring, and
has been tested for a variety of platforms. We also propose a new chal-
lenge for the process of benchmarking data-intensive services, namely
the inclusion of the data-processing algorithm in the system under test;
this increases significantly the relevance of benchmarking results, albeit,
at the cost of increased benchmarking duration.

1 Introduction

Cloud services are an important branch of commercial ICT services. Cloud users
can provision from Infrastructure-as-a-Service (IaaS) clouds “processing, storage,
networks, and other fundamental resources” [43] and from Platform-as-a-Service
(PaaS) clouds “programming languages, libraries, [programmable] services, and
tools supported by the provider” [43]. These services are provisioned on-demand,
that is, when needed, and used for as long as needed and paid only to the
extent to which they are actually used. For the past five years, commercial
cloud services provided by Amazon, Microsoft, Google, etc., have gained an
increasing user base, which includes small and medium businesses [5], scientific
HPC users [16,35], and many others. Convenient and in some cases cheap cloud
services have enabled many new ICT applications. As the market is growing
and diversifying, benchmarking and comparing cloud services, especially from
commercial cloud providers, is becoming increasingly more important. In this
c© Springer International Publishing Switzerland 2015
T. Rabl et al. (Eds.): WBDB 2014, LNCS 8991, pp. 109–131, 2015.
DOI: 10.1007/978-3-319-20233-4 11



110 A. Iosup et al.

work, we study the process of benchmarking IaaS and PaaS clouds and, among
the services provided by such clouds for new ICT applications, we focus on graph
analytics, that is, the processing of large amounts of linked data.

Benchmarking is a traditional approach to verify that the performance of
a system meets the requirements. When benchmarking results are published,
for example through mixed consumer-provider organizations such as SPEC and
TPC, the consumers can easily compare products and put pressure on the
providers to use best-practices and perhaps lower costs. For clouds, the new
use for benchmarking results is to convince customers about the performance,
the elasticity, the stability, and the resilience of offered services, and thus to con-
vince customers to rely on cloud services for the operation of their businesses.

Because of its many uses, benchmarking has been the focus of decades of sci-
entific and practical studies. There are many successful efforts on benchmarking
middleware [7,8], on benchmarking databases [24], on the performance evalua-
tion of grid and parallel-system schedulers [12,17,20,31], and on benchmarking
systems in general [4,36].

To benchmark IaaS and PaaS clouds, older benchmarking techniques need
to be adapted and extended. As an example of adaptation, cloud benchmarks
need to adapt traditional techniques to the new cloud-workloads. We conjecture
that the probable characteristics of current and near-future workloads can be
derived from three major trends emerging from the last decade of grid and large-
scale computing. First, individual jobs are now predominantly split into smaller
compute or data-intensive tasks (many tasks [51]); there are almost no tightly
coupled parallel jobs. Second, the duration of individual tasks is diminishing with
every year; few tasks are still running for longer than one hour and a majority
require only a few minutes to complete. Third, compute-intensive jobs are split
either into bags-of-tasks (BoTs) or DAG-based workflows, but data-intensive
jobs may use a variety of programming models, from MapReduce to general
dataflow.

As an example of extension, cloud benchmarks need to extend traditional
techniques to accommodate the new application domains supported by clouds.
Currently, the use of clouds is fragmented across many different application
areas, including hosting applications, media, games, and web sites, E-commerce,
On-Demand Workforce and CRM, high-performance computing, search, and raw
resources for various usage. Each application area has its own (de facto) perfor-
mance standards that have to be met by commercial clouds, and some have even
developed benchmarks (e.g., BioBench [3] for Bioinformatics and RUBiS [57] for
online business). More importantly, many of these applications have rely upon
unique, deep, and distributed software stacks, which pose many unresolved chal-
lenges to traditional benchmarking approaches—even the definition of the system
under test becomes complicated.

We discuss in this article a generic approach to IaaS and PaaS cloud bench-
marking. We propose a generic architecture for IaaS and PaaS cloud benchmark-
ing. We have designed the architecture so that it is already familiar to existing
practitioners, yet provide new, cloud-specific functionality. For example, current
IaaS cloud operators lease resources to their customers, but leave the selection



Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics 111

of resource types and the selection of the lease/release moments as a customer
task; because such selection can impact significantly the performance of the sys-
tem built to use the leased resources, the generic benchmarking architecture
must include policies for provisioning and allocation of resources. Similarly, the
current platforms may require the configuration of deep stacks of software (mid-
dleware), so the generic benchmarking architecture much include policies for
advanced platform configuration and management.

Although we have designed the architecture to be generic, we have not yet
proven that it can be used to benchmark the vast diversity of existing cloud usage
scenarios. Authors of this article have already used it, in practice, to benchmark
a variety of IaaS cloud usage scenarios [32,59,61]. Motivated by the increasingly
important fraction of application data, in some cases over three-quarters (IHS
and Cisco studies in April 2014) or even higher (IDC Health Insights report in
December 2014), that is already or will soon reside in the cloud, we propose in
this work an application of the generic architecture for data-intensive applica-
tions, in the graph-processing application domain. We focus on graph analytics,
which is a data-intensive process that is increasingly used to provide insight
into social networks, personalized healthcare, natural language processing, and
many other fields of science, engineering, retail, and e-government. As a conse-
quence, several well established graph analytics platforms, such as GraphLab,
Giraph, and GraphX, are competing with many graph analytics platforms that
are currently in operation or under development. Due to the high diversity
of workloads encountered in practice, both in terms of algorithm and of dataset,
and to the influence of these workloads on performance, it is increasingly
difficult for users to identify the graph analytics platform best suited for their
needs. We propose in this work Graphalytics, a benchmarking approach that
focuses on graph analytics and is derived from the generic architecture. Grapha-
lytics focuses on understanding how the performance of graph analytics platforms
depends on the input dataset, on the analytics algorithm, and on the provisioned
infrastructure. It provides components for platform configuration, deployment,
and monitoring. It also manages the benchmarking process, from configuration to
reporting.

Last, starting from the experience we have accumulated designing and using
Graphalytics in practice, we identify an important new challenge for benchmark-
ing in clouds: the need to understand the platform-specific and data-dependent
performance of algorithms used for graph analytics. For clouds, it is currently
not possible for customers to have access to the low-level technical specifications
of the service design, deloyment, and tuning, and thus also not possible to eas-
ily select a particular algorithm to implement and deploy on the provisioned
platform. Instead, either the cloud customers or the cloud operators need to
determine an appropriate algorithm, for example through benchmarking. Thus,
for clouds we see the need to include the algorithm in the system under test.
We show preliminary results that give strong evidence for this need, and discuss
steps towards algorithm-aware benchmarking processes.

This article has evolved from several regular articles [19,25,27], a book
chapter [33], and a series of invited talks given by the authors between



112 A. Iosup et al.

2012 and 2014, including talks at MTAGS 2012 [34], HotTopiCS 2013 [29],
etc1. This work has also benefited from valuable discussion in the SPEC Research
Group’s Cloud Working Group and Big Data Working Group. The new material
in this article focuses on the application of the general architecture for IaaS cloud
benchmarking to graph analytics, and on a new challenge for benchmarking big
data processes, related to the inclusion of processing-algorithm alternatives in
the evaluation process.

The remainder of this article is structured as follows. In Sect. 2, we present a
primer on benchmarking computer systems. Then, we introduce a generic app-
roach for IaaS cloud benchmarking, in Sect. 3. We apply the generic architecture
to graph analytics, and propose the resulting benchmarking framework Grapha-
lytics, in Sect. 4. We introduce a new challenge for cloud benchmarking, related
to the inclusion of the algorithm in the system under test, in Sect. 5. Last, we
conclude in Sect. 6.

2 A Primer on Benchmarking Computer Systems

We review in this section the main elements of the typical benchmarking process,
which are basically unchanged since the early 1990s. For more detail, we refer to
canonical texts on benchmarking [24] and performance evaluation [36] of com-
puter systems. We also discuss the main reasons for benchmarking.

2.1 Elements of Benchmarking

Inspired by canonical texts [24,36], we review here the main elements of a bench-
marking process. The main requirements of a benchmark—relevance, portability,
scalability, and simplicity—have been discussed extensively in related literature,
for example in [24, Chap. 1].

The System Under Test (SUT) is the system that is being evaluated. A white
box system exposes its full operation, whereas a black box system does not expose
operational details and is evaluated only through its outputs.

The workload is the operational load to which the SUT is subjected. Start-
ing from the empirical observation that “20 % of the code consumes 80 % of the
resources”, simple microbenchmarks (kernel benchmarks [24, Chap. 9]) are simpli-
fied or reduced-size codes designed to stress potential system bottlenecks. Using
the methodology of Saavedra et al. [53] and later refinements such as Sharkawi
et al. [55], the results of microbenchmarks can be combined with application
profiles to provide credible performance predictions for any platform. Synthetic
1 In inverse chronological order: Lecture at the Fifth Workshop on Big Data Bench-

marking (WBDB), Potsdam, Germany, August 2014. Lecture at the Linked Data
Benchmark Council’s Fourth TUC Meeting 2014, Amsterdam, May 2014. Lecture
at Intel, Haifa, Israel, June 2013. Lecture at IBM Research Labs, Haifa, Israel, May
2013. Lecture at IBM T.J. Watson, Yorktown Heights, NY, USA, May 2013. Lecture
at Technion, Haifa, Israel, May 2013. Online lecture for the SPEC Research Group,
2012.



Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics 113

and even real-world (complex) applications are also used for benchmarking pur-
poses, as a response to system improvements that make microbenchmarks run
fast but do not affect the performance of much larger codes. For distributed
and large-scale systems such as IaaS clouds, simple workloads comprised of a
single application and a (realistic) job arrival process represent better the typi-
cal system load and have been used for benchmarking [30]. Complex workloads,
that is, the combined simple workloads of multiple users, possibly with different
applications and job characteristics, have started to be used in the evaluation of
distributed systems [30,59]; we see an important role for them in benchmarking.

The Benchmarking Process consists of the set of rules, prior knowledge
(invariants), and procedures used to subject the SUT to the benchmark work-
load, and to collect and report the results.

2.2 Why Benchmarking?

Benchmarking computer systems is the process of evaluating their performance
and other non-functional characteristics with the purpose of comparing them
with other systems or with industry-agreed standards. Traditionally, the main
use of benchmarking has been to facilitate the informed procurement of computer
systems through the publication of verifiable results by system vendors and third-
parties. However, benchmarking has grown as a support process for several other
situations, which we review in the following.

Use in System Design, Tuning, and Operation: Benchmarking has been shown to
increase pressure on vendors to design better systems, as has been for example
the experience of the TPC-D benchmark [24, Chap. 3, Sect. IV]. For this bench-
mark, insisting on the use of SQL has driven the wide acceptance of the ANSI
SQL-92; furthermore, the complexity of a majority of the queries has lead to the
stress of various system bottlenecks, and ultimately to numerous improvements
in the design of aggregate functions and support for them. This benchmark
also led to a wide adoption of the geometric mean for aggregating normalized
results [4]. The tuning of the DAS multi-cluster system has benefited from the
benchmarking activity of some of the authors of this chapter, developed in the
mid-2000s [30]; then, our distributed computing benchmarks exposed various
(fixable) problems of the in-operation system.

Use in System Procurement: Benchmarks such as HPCC, the SPEC suites, the
TPC benchmarks, etc. have long been used in system procurement—the sys-
tems tested with these benchmarks can be readily compared, so a procurement
decision can be informed. Benchmarks can be also very useful tools for system
procurement, even when the customer’s workloads are not ideally matched by
the workloads represented in the benchmark, or when the representativeness of
the benchmark for an application domain can be questioned. In such situa-
tion, the customer gains trust in the operation of the system, rather than focus
on the actual results.

Use in Training: One of the important impediments in the adoption of a new
technology is the lack of expertise of potential users. Market shortages of quali-
fied personnel in computer science are a major cause of concern for the European



114 A. Iosup et al.

Union and the US. Benchmarks, through their open-source nature and represen-
tation of industry-accepted standards, can represent best-practices and thus be
valuable training material.

On Alternatives to Benchmarking: Several alternative methods have been used
for the purposes described earlier in this section, among them empirical perfor-
mance evaluation, simulation, and even mathematical analysis. We view bench-
marking as an empirical evaluation of performance that follows a set of accepted
procedures and best-practices. Thus, the use of empirical performance evaluation
is valuable, but perhaps without the representativeness of a (de facto) standard
benchmark. We see a role for (statistical) simulation [18,21,47] and mathemat-
ical analysis when the behavior of the system is well-understood and for long-
running evaluations that would be impractical otherwise. However, simulating
new technology, such as cloud computing, requires careful (and time-consuming)
validation of assumptions and models.

3 A Generic Architecture for IaaS and PaaS
Cloud Benchmarking

We propose in this section a generic architecture for IaaS and PaaS cloud
benchmarking. Our architecture focuses on conducting benchmarks as sets of
(real-world) experiments that lead to results with high statistical confidence, on
considering and evaluating IaaS clouds as evolving black-box systems, on employ-
ing complex workloads that represent multi-tenancy scenarios, on domain-
specific scenarios, and on a combination of traditional and cloud-specific metrics.

3.1 Overview

Our main design principle is to adapt the proven designs for benchmarking to
IaaS clouds. Thus, we design an architecture starting from our generic archi-
tecture for IaaS cloud benchmarking [29,33,34], which in turn builds on our
GrenchMark framework for grid benchmarking [30,61]. The result, a generic

Fig. 1. Overview of our generic architecture for benchmarking IaaS and Paas clouds.



Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics 115

architecture for benchmarking IaaS and PaaS clouds, is depicted in Fig. 1.
The main differences between the architecture proposed in this work, and the
generic architecture for IaaS benchmarking we have proposed in our previous
work, is the focus of the current architecture on both IaaS and PaaS cloud ele-
ments. The most important conceptual change occurs for component 10, which
the current architecture is making aware of the service to be provided, and in par-
ticular of the platform configuration and management policies. In Sect. 4, where
we adapt this architecture for graph analytics PaaS, we show more practical
distinctions.

The Benchmarking Process consists of the set of rules, prior knowledge
(invariants), and procedures used to subject the SUT to the benchmark work-
load, and to collect and report the results. In our architecture, the process begins
with the user (e.g., a prospective cloud user) defining the benchmark configu-
ration, that is, the complex workloads that define the user’s preferred scenario
(component 1 in Fig. 1). The scenario may focus on processing as much of the
workload as possible during a fixed test period or on processing a fixed-size
workload as quickly or cheaply as possible. The benchmarking system converts
(component 2) the scenario into a set of workload descriptions, one per (repeated)
execution. The workload may be defined before the benchmarking process, or
change (in particular, increase) during the benchmarking process. To increase
the statistical confidence in obtained results, subjecting the SUT to a workload
may be repeated or the workload may be long-running. The definition of the
workload should avoid common pitfalls that could make the workload unrepre-
sentative [20,36].

After the preparation of the workload, the SUT (component 3 in Fig. 1) is
subjected to the workload through the job and resource management services
provided by the testing system (component 4, which includes components 5–10).
In our benchmarking architecture, the SUT can be comprised of one or several
self-owned infrastructures, and public and private IaaS clouds; the SUT can also
be comprised of self-managed or cloud-provisioned PaaS, which provide services
used by the application developed by the customer. For both IaaS and PaaS
usage scenarios, the SUT provides resources for the execution of the workload;
these resources are grouped into a Virtual Resource Pool. The results produced
during the operation of the system may be used to provide a feedback loop from
the Virtual Resource Pool back into the Workload Generator and Submitter
(component 5); thus, our architecture can implement open and closed feedback
loops [54].

As a last important sequence of process steps, per-experiment results are
combined into higher-level aggregates, first aggregates per workload execution
(component 11 in Fig. 1), then aggregates per benchmark (component 12). The
reporting of metrics should try to avoid the common pitfalls of performance
evaluation; see for example [4,22]. For large-scale distributed systems, it is par-
ticularly important to report not only the basic statistics, but also some of the
outliers, and full distributions or at least the higher percentiles of the distribu-
tion (95-th, 99-th, etc.). We also envision the creation of a general database of
results collected by the entire community and shared freely. The organization
and operation of such a database is within the scope of future work.



116 A. Iosup et al.

3.2 Distinguishing Design Features

We present in the remainder of this section several of the distinguishing features
of this architecture.

Commercial clouds may not provide (comprehensive) services for manag-
ing the incoming stream of requests (components 5, 6, and 8 in Fig. 1) or the
resources leased from the cloud (components 7 and 8). Our architecture sup-
ports various policies for provisioning and allocation of resources (components 6
and 7, respectively). Our generic cloud-benchmarking architecture also includes
support for evolving black-box systems (components 9, 11, and 12), complex
workloads and multi-tenancy scenarios (components 1, 2, and 5), domain-specific
components (component 10), etc.

Experiments conducted on large-scale infrastructure should be designed to
minimize the time spent effectively using resources. The interplay between com-
ponents 1, 2, and 5 in Fig. 1 can play a non-trivial role in resolving this challenge,
through automatic selection and refinement of complex test workloads that bal-
ance the trade-off between accuracy of results and benchmark cost; the main ele-
ment in a dynamic tuning of this trade-off is the policy present in component 5.
The same interplay enables multi-tenancy benchmarks.

Several of the possible SUTs expose complete or partial operational informa-
tion, acting as white or partially white boxes. Our architecture allows exploiting
this information, and combining results from black-box and white-box testing.
Moreover, the presence of the increasingly higher-level aggregations (components
11 and 12 in Fig. 1) permits both the long-term evaluation of the system, and
the combination of short-term and long-term results. The policy for monitoring
and logging in component 8 allows the user to customize which information is
collected, processed, and stored in the results database, and may result in signif-
icantly lower overhead and, for cloud settings, cost. In this way, our architecture
goes far beyond simple black-box testing.

Supports domain-specific benchmarks is twofold in our architecture. First,
components 5–7 support complex workloads and feedback loops, and policy-
based resource and job management. Second, we include in our architecture a
domain-specific component (component 10) that can be useful in supporting
cloud programming models such as the compute-intensive workflows and bags-
of-tasks, and the data-intensive MapReduce and Pregel. The policy element in
component 10 allows this component to play a dynamic, intelligent role in the
benchmarking process.

4 Graphalytics: A Graph Analytics Benchmark

In this section, we introduce Graphalytics, a benchmark for graph analytics plat-
forms. Graphalytics is derived from the generic architecture, by adapting and
extending several of its key components. Graphalytics includes in the bench-
marking process the input dataset, the analytics algorithm, and the provisioned
infrastructure. It provides components for platform configuration, deployment,
and monitoring, and already provides reference implementations for several



Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics 117

popular platforms, such as Giraph and Hadoop/YARN. The Graphalytics API
offers a unified execution environment for all platforms, and consistent report-
ing that facilitates comparisons between all possible combinations of platforms,
datasets, and algorithms. The Graphalytics API also permits developers to inte-
grate new graph analytics platforms into the benchmark.

4.1 Design Overview

The design of Graphalytics is based on the generic benchmarking architecture,
and on our previous work on benchmarking graph processing systems [25,27].

The components for benchmark and workload description (components 1 and 2
in Fig. 2, respectively) in the Graphalytics process are derived from our previ-
ous work [27] in benchmarking graph-processing platforms. For the benchmark

Fig. 2. The Graphalytics architecture for benchmarking graph analytics clouds. The
highlighted components indicate the parts of the generic architecture for cloud bench-
marking that Graphalytics adapts and extends.

Table 1. Survey of algorithms used in graph analytics. (Source: [27])

Class Typical algorithms Number Percentage [%]

General statistics Triangulation [60],
Diameter [37], BC [56]

24 16.1

Graph traversal BFS, DFS, Shortest Path
Search

69 46.3

Connected components MIS [9], BiCC [15],
Reachability [11]

20 13.4

Community detection Clustering, Nearest Neighbor
Search

8 5.4

Graph evolution Forest Fire Model [41],
Preferential Attachment
Model [6]

6 4.0

Other Sampling, Partitioning 22 14.8

Total 149 100



118 A. Iosup et al.

description (component 1), Graphalytics focuses, process-wise, on processing as
many edges or vertices per second, for a variety of input datasets and process-
ing algorithms. The cost of processing, when known, is also of interest for this
benchmarking process.

For the workload description (component 2), Graphalytics focuses on algo-
rithms and input datasets. Graphalytics includes already five classes of algo-
rithms, one for each major class of algorithms covered by research published in
major conferences by the distributed systems and the databases communities, as
indicated by Table 1. More classes of algorithms are currently added to Grapha-
lytics; to keep the number of tested algorithms manageable, we will define more
diverse benchmarking scenarios, such that each scenario can focus on a sub-set
of existing algorithms.

Component 5 focuses on generating and submitting workloads representa-
tive for graph analytics. Graphalytics defines here an archive of commonly used
datasets, such as the group considered in our previous work [25]. The archive can
grow in time during use, as datasets are either imported, or generated and saved
in the database. Currently, Graphalytics includes datasets from the SNAP and
GTA [26] collections, and recommends the use of synthetic datasets generated
with the Graph500 [23] or the LDBC Social Networking Benchmark [39]. We
envision here alternatives to the implementation of this component, especially
exploiting the trade-off between fast submission (reads from the database or
full-scale generation) and cost (of storage, of computation, etc.).

The service-specific component (component 10) ensures the graph analytics
service executes the correct, possibly platform-specific or tuned version of the
algorithm, on the input workload provided by the workload generator and sub-
mitter (component 5). Additionally, each platform can have specific configuration
parameters for the execution of an arbitrary algorithm. Last, the service-specific
component checks that the outcome of the execution fulfills the validity criteria
of the benchmark, such as output correctness, response time limits, etc.

The monitoring and logging component (component 8) records relevant infor-
mation about the SUT during the benchmark. Graphalytics supports monitoring
and logging for various graph analytics platforms, from the distributed Giraph
to the single-node, GPU-based Medusa.

Component 11 enables automated analysis and modeling of benchmarking
results. Upon completion of each benchmarking session, the results are aggre-
gated both in human-readable format for direct presentation to the user, and
in a standard machine-readable format for storage in the results database. The
machine-readable format enables automated analysis of individual platforms,
and comparison of results (via component 12). Graphalytics also exposes an API
to the platform to enable the platform to signal to the system monitor important
events during execution. These events can be superimposed on resource utiliza-
tion graphs in the benchmark report to enable users to identify bottlenecks and
better understand system performance.

Graphalytics includes a centralized repository of benchmark results (compo-
nent 12), which holds data for various platforms and deployments, and enables
comparison of operational data and performance results across many platforms.



Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics 119

The repository offers a comprehensive overview of performance results from the
graph analytics community.

4.1.1 Benchmarking with Graphalytics in Practice
We present now the practical steps for benchmarking with Graphalytics.

The benchmark reads the configuration files describing the datasets and plat-
forms to be benchmarked. For datasets, the configuration includes the path to
data, the format of the data (e.g., edge-based or vertex-based; directed or undi-
rected; etc.), and parameters to each algorithm (e.g., source vertex for BFS,
maximum number of iterations for CD, etc.). Graphalytics includes a compre-
hensive set of datasets for which configuration files are also provided, requiring
no further user input. To run a benchmark on a platform supported by Graph-
alytics, using a dataset included in Graphalytics, users only need to configure
the details of their platform setup, e.g., set the path of HADOOP HOME for bench-
marking Hadoop MapReduce2.

After reading the configuration, Graphalytics runs the platform-specific
implementation of each algorithm included in the configuration. For each com-
bination of dataset and algorithm, the graph analytics platform under test is
instructed to execute the platform-specific implementation of the algorithm. The
core is also responsible for by uploading the selected dataset to the platform.

The system monitor records relevant information about the graph analytics
platform under test during the benchmark. After the test, the output validator
checks the results to ensure their validity. The report generator gathers for every
dataset and algorithm pair the results from the system monitor and the results
validator. Users can export these results, and share them with the community
through the centralized repository.

Fig. 3. Resource utilization during a Giraph measurement.



120 A. Iosup et al.

The Graphalytics prototype already includes an implementation of extended
monitoring, for the Giraph platform. Figure 3 depicts in its top and middle sub-
plots two platform-specific performance metrics collected during a benchmark
run, messages sent and memory used, respectively. The bottom sub-plot of the
figure depicts the evolution of processing in terms of BSP synchronization super-
steps, which characterize the processing model used in Giraph (and Pregel). The
supersteps are aligned with the performance metrics and enable the user to asso-
ciate the metrics with the evolution of the processing algorithm. For example,
the memory usage varies in accordance with the succession of supersteps.

4.1.2 Extensibility of Graphalytics
The aim of the Graphalytics project is to include as many algorithms and plat-
forms possible. To accommodate this, the design of the Graphalytics is extensible
through simple APIs between components.

Developers can add new graph analytics platforms by providing the following:
(a) an implementation of each algorithm defined by the Graphalytics project;
(b) functions to upload datasets to the platform, and to download results from
the platform; (c) a function to execute a specific algorithm on a specific dataset.
Because datasets are managed by the Graphalytics benchmark, no platform-
specific changes are needed to support a new dataset; conversely, no new dataset
configuration is needed when a new platform is added.

The addition of new algorithms is also supported. Adding a new algorithm
requires change in both datasets and platforms. For each dataset, a new set of
algorithm-specific parameters needs to be added; a default is provided. For each
platform, an implementation of the algorithm must be provided to complete the
benchmark.

4.2 Implementation Details

We have implemented a Graphalytics prototype in Java, using .properties files
for configuration. We include support for MapReduce2 and Giraph, running
on Apache Hadoop 2.4.1 or later. Our Giraph implementation of algorithms
uses the YARN resource manager introduced in Apache Hadoop 2, avoiding
the overhead of the MapReduce framework. We have also experimented, using
earlier prototypes of Graphalytics and a simplified benchmarking process, with
MapReduce/Hadoop 0.20, Stratosphere 0.2, GraphLab 2.1, and Neo4j 1.5.

In Listing 1, we show an example of a graph configuration file (lines starting
with a double back-slash, “\\”, are comments). Most elements are optional, e.g.,
there are no parameters for the connected components algorithm (CONN, lines
19 and 20 in the listing) because none are required.

The benchmarking scenario is graph.ldbc-30, which correspond to experi-
ments focusing on the generation and validation of LDBC data, scale 30. The
generated data is stored as a physical file on the local filesystem where the gener-
ator runs, with the file name specified in line 2 of Listing 1. The directedness and
the format of the generated dataset are specified in lines 5 and 6, respectively.



Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics 121

The benchmarking scenario runs five algorithms, specified on line 9 of
Listing 1. Except for the algorithm for connected components, all other algo-
rithms require one or several parameters. For example, the BFS graph-traversal
algorithm requires a source–the graph vertex where the traversal starts–, which
is specified on line 12.

4.3 Experimental Results

We have used the Graphalytics prototype for two broad types of platforms,
distributed and GPU-based. Exploring the performance of these platforms is
currently a hot topic, with interesting recent results [25,28,42].

We ran Graphalytics using the MapReduce2 and Giraph implementations of
BFS and CONN on the SNB 1000 dataset. We used, for benchmarking these dis-
tributed graph-analytics platforms, a 10-worker cluster with a separate manage-
ment node for the HDFS name node, YARN resource manager, and ZooKeeper.
The results are presented in Fig. 4. We have reported much more in-depth results



122 A. Iosup et al.

SNB 1000

1903

102
4956

137

100

1000

100

1000

B
F

S
C

O
N

N

Giraph MapReduce2
Platform

R
un

tim
e 

[s
]

Fig. 4. Algorithm runtimes obtained with Graphalytics.

for other scenarios, but obtained with much more difficulty in setup and execu-
tion of the benchmarks because of the lack of tool similar to Graphalytics, in
our previous work [25]. We conclude that Graphalytics is a useful benchmark for
distributed platforms.

We tested several popular GPU-based graph analytics platforms using the
LDBC SNB data generator, although the benchmarking code is not yet fully
integrated in Graphalytics. Figure 5 depicts the results for the platforms Medusa
(M in the figure); Totem (T-G for the Totem version using only the GPU as com-
puting resource, and T-H for the Totem version using both the GPU and the
CPU as a hybrid computing resource); and MapGraph (MG). The benchmarking
process runs for three GPU-based systems, with GPUs of three different gen-
erations and internal architectures. When the integration of this benchmarking
process will be complete, Graphalytics will also fully support a variety of graph
analytics platforms using GPUs or heterogeneous hardware.

100

101

102

103

104

sf1 sf3 sf10 sf30 sf100 sf300

A
lg

or
ith

m
 r

un
 ti

m
e 

[m
s]

Datasets

M
T-H

T-G
MG

(a) GTX480

100

101

102

103

104

sf1 sf3 sf10 sf30 sf100 sf300

A
lg

or
ith

m
 r

un
 ti

m
e 

[m
s]

Datasets

M
T-H

T-G
MG

(b) GTX580

100

101

102

103

104

sf1 sf3 sf10 sf30 sf100 sf300

A
lg

or
ith

m
 r

un
 ti

m
e 

[m
s]

Datasets

M
T-H

T-G
MG

(c) K20m

Fig. 5. Runtimes of GPU-based platforms executing PageRank on different GPUs and
LDBC SNB dataset scales.



Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics 123

5 Benchmarking Challenge: Including the Algorithm
in the SUT

Given the extreme scale of the datasets that need to be analyzed, as well as the
increasingly complex analysis that needs to be performed, graph analytics has
become a high-performance computing (HPC) concern. This trend is probably
best proven by the intense activity and fast changes happening in the Graph5002

ranking, as well as in the adoption of graph traversals as important bench-
marks [13] and drivers for irregular algorithms programming paradigms [49].

At the same time, the state-of-the-art in high performance computing is
massive parallel processing, backed up by a large variety of parallel plat-
forms ranging from graphical processing units (GPUs) to multi-core CPUs and
Xeon Phi. Because traditional graph processing algorithms are known for their
parallelism-unfriendly features - data-dependency, irregular processing, bad spa-
tial and temporal locality [1] - a lot of work has focused on developing GPU-
specific [10,38,46,52], multi-core CPU-specific [2], or even vendor-specific [14,50]
algorithms.

All this work proves an important point: most graph analytics applications
can be solved by multiple, different algorithms. These algorithms show very
different performance behavior on different platforms and on different datasets.
Therefore, we argue that not algorithms are the same just because they solve the
same problem! Therefore, the selection of the algorithm, which often dictates a
pre-selection of the data representation and a filtering of the hardware building
blocks, has a huge impact on the observed performance.

To illustrate the importance of the algorithm selection, we present in the
remainder of this section a comprehensive evaluation of a large set of 13 parallel
breadth-first search (BFS) algorithms built and optimized for GPU execution.
A similar study for multi-core CPUs, but not for GPUs, is available in [2]. We
point out that the number of algorithms and variations designed for massively
parallel architectures such as GPUs is significantly higher, making the results of
our GPU study even more interesting.

5.1 Parallel BFS Algorithms for GPU Execution

A BFS traversal explores a graph level by level. Given a graph G = (V,E), with
V its collection of vertices and E its collection of edges, and a source vertex s
(considered as the only vertex on level 0), BFS systematically explores edges
outgoing from vertices at level i and places all their destination vertices on level
i + 1, if these vertices have not been already discovered at prior levels (i.e.,
the algorithm has to distinguish discovered and undiscovered vertices to prevent
infinite loops).

2 http://www.graph500.org.

http://www.graph500.org


124 A. Iosup et al.

5.1.1 Näıve BFS
In a BFS that accepts an edge list as input, an iteration over the entire set
of edges is required for each iteration. By a simple check on the source vertex
of an edge, the algorithm can determine which edges to traverse, hence which
destination vertices to place in the next level of the resulting tree.

Our parallel BFS works by dividing the edge list into sub-lists, which are
processed in parallel: each thread will traverse its own sub-list in every iteration.
Synchronization between levels is mandatory to insure a full exploration of the
current level before starting the next one.

When mapping this parallel kernel to OpenCL, each thread is mapped to
an work-item. As global synchronization is necessary, we implement a two-layer
barrier structure: first at work-group level (provided by OpenCL), then between
work-groups (implemented in-house). This solution limits the synchronization
penalty - see [48], Chap. 3 for more details).

Our results - presented below in Sect. 5.2 - show that this approach, although
naive, can outperform more optimized versions for specific datasets. Moreover,
when comparing it with the naive vertex-centric BFS version included in the
Rodinia benchmark [13], the results remain very interesting: in some cases, the
vertex-centric version performs better, while in others it is significantly worse
than our naive edge-based version [58].

5.1.2 BFS at Maximum Warp
The major performance penalty where running massively parallel traversals on
GPUs is work imbalance. This imbalance can appear due to the inability of the
programming model to express enough fine-tune options. In [52], the authors
present a way to systematically deal with this lack of fine-grain tuning and
demonstrate it on a new BFS solution. Specifically, they propose a warp-centric
solution, with different parallel stages. This approach enables load-balancing
at the finest granularity, thus limiting the penalty of coarser load imbalanced
solutions.

We have implemented this approach and varied its granularity. Our results
show that, for certain graphs, this algorithm delivers a significant performance
boost when compared with the alternatives, but for other datasets it is outper-
formed by more optimized versions.

5.1.3 The Lonestar Suite
The LonestarGPU collection3, presented in detail in [10], includes a set of com-
petitive BFS implementations specifically designed to use the processing power
of GPUs. The brief descriptions of these algorithms is presented in Table 2.

We point out that each of these algorithms uses different GPU constructs
to implement the same BFS traversal. However, depending on the dataset that
is being benchmarked, the performance impact of such optimizations varies,
showing better results for one or another variant.
3 http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu.

http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu


Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics 125

Table 2. Brief description of the LonestarGPU BFS algorithms.

lonestar A topology-driven, one node-per-thread version.

topology-atomic A topology-driven version, one node-per-thread version that uses

atomics.

merrill Merrill’s algorithm [45].

worklist-w A data-driven, one node-per-thread version.

worklist-a A flag-per-node version, one node-per-thread version.

worklist-c A data-driven, one edge-per-thread version using Merrill’s strategy.

5.2 Experiments and Results

We have run 13 different BFS solutions - our edge-based naive version, the
maximum warp version with varying warp size (1,2,4,8,16, and 32), and the 6
algorithms from LonestarGPU - on three different GPUs - a GTX480, a C2050,
and a K20 m. In this section, we only present our results from the newest GPU
architecture in this series, namely the K20 m Kepler-based machine. For the
full set of results, we redirect the reader to [44]. The datasets we have selected
(from the SNAP repository [40]) are presented in Table 3. We also note that for
the as-skitter and roadNet-CA graphs, we have used both the directed and
undirected versions of the graph.

Table 3. The datasets selected for our BFS exploration.

Graph Vertices Edges Diameter 90-percentile Diameter

as-skitter 1,696,415 11,095,298 25 6

facebook-combined 4,039 88,234 8 4.7

roadNet-CA 1,965,206 5,533,214 849 500

web-BerkStan 685,23 7,600,595 514 9.9

wiki-Talk 2,394,385 5,021,410 9 4

Our results on the K20m GPU are presented in Figs. 6 (for the relative per-
formance of the kernels only) and 7 (for the relative performance of the full BFS
run, including the data tranfers).

We make the following observations. First, the difference between the best
and worst version for each dataset can be as large as three orders of magnitude,
which means that the choice of algorithm for a given application must be care-
fully made by the user, prior to measuring and analyzing performance, or be
included in the SUT and measured as part of system.

Second, there is no best or worst performing algorithm across all datasets.
This indicates that the relative performance of the algorithms also varies with the
input data. This variation demonstrates that no single algorithm can be labeled



126 A. Iosup et al.

Fig. 6. Parallel BFS performance of the kernel for 13 different GPU implementations.
The presented speed-up is normalized to the naive edge-based version (reported as
reference, at 1).

Fig. 7. Parallel BFS performance of the full BFS run (including data transfers to and
from the GPU) for 13 different implementations. The presented speed-up is normalized
to the naive edge-based version (reported as reference, at 1).

“the best GPU BFS implementation”, and indicates that a complete benchmark
should include different BFS versions for a comprehensive evaluation.

Third, and final, taking the data transfer times into account levels the differ-
ences between different implementations: this special GPU-related overhead is
usually so much higher than the execution of the BFS kernel itself, that the small
differences between different algorithms become less visible. We argue that this
should be reported, for fairness, when comparing against other platforms (see the
OpenCL CPU version in Fig. 7), but should be eliminated when benchmarking
only GPU-based platforms.

5.3 Practical Guidelines

Our study on BFS running on GPUs demonstrates that the algorithms play an
essential role in the performance of the application. Given that the increasing



Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics 127

variety of modern parallel architectures leads to an increasing variety of
algorithms—some portable, some not—for the same application, the traditional
benchmarking approach where the application dictates the algorithm must be
deprecated. Much like sorting is a problem with many solutions, many graph
applications have many parallel and distributed algorithmic solutions. These
algorithms need to be first-class citizens in modern benchmarking.

The main challenge for algorithm-aware benchmarking is ensuring complete-
ness. In this context, complete coverage, that is, including all possible algorithms,
is not feasible in a reasonable time. Defining the most representative algorithms,
which is the typical approach in benchmarking, poses the same problems as
defining the most representative applications: it requires criteria that are dif-
ficult to define without years of practice and experience with each algorithms.
Finally, keeping up-to-date with all the new algorithm developments requires an
unprecedented level of implementation and engineering efforts.

Therefore, we believe that an algorithmic-aware benchmarking is neces-
sary, but must be a community-based effort. Without the expertise of different
researchers in domains ranging from algorithmics to benchmarking and from
single-node to cloud-level platforms, we cannot overcome the technical and com-
pleteness challenges that arise in graph processing. Without this effort, the
benchmarks we build will be constraint by design.

6 Conclusion and Ongoing Work

The success of cloud computing services has already affected the operation of
many, from small and medium businesses to scientific HPC users. Addressing
the lack of a generic approach for cloud service benchmarking, in this work
we propose a generic architecture for benchmarking IaaS and PaaS clouds. In
our generic architecture, resource and job management can be provided by the
testing infrastructure, there is support for black-box systems that change rapidly
and can evolve over time, tests are conducted with complex workloads, and
various multi-tenancy scenarios can be investigated.

We adapt the generic architecture to data-intensive platforms, and design
Graphalytics, a benchmark for graph analytics platforms. Graphalytics focuses
on the relationship between the input dataset, the analytics algorithm, and
the provisioned infrastructure, which it quantifies with diverse performance and
system-level metrics. Graphalytics also offers APIs for extending its components,
and for supporting more graph analytics platforms than available in our current
reference implementation. Experiments we conduct in real-world settings, and
with distributed and GPU-based graph analytics platforms, give strong evidence
that Graphalytics can provide a unified execution environment for all platforms,
and consistent reporting that facilitates comparisons between all possible com-
binations of platforms, datasets, and algorithms.

Derived from the experience we have accumulated evaluating graph ana-
lytics platforms, we identify an important new challenge for benchmarking in
clouds: including the algorithm in the system under test, to also benchmark the
platform-specific and data-dependent performance of the various algorithms.



128 A. Iosup et al.

We are currently implementing Graphalytics and refining its ability to cap-
ture algorithmic bottlenecks. However, to succeed Graphalytics cannot be a
single-team effort. We have initiated various community-wide efforts via our
work in the SPEC Research Group and its Cloud Working Group, and are cur-
rently looking to connect to the SPEC Big Data Working Group.

Acknowledgments. This work is supported by the Dutch STW/NOW Veni personal
grants @large (#11881) and Graphitti (#12480), by the EU FP7 project PEDCA, by
the Dutch national program COMMIT and its funded project COMMissioner, and by
the Dutch KIEM project KIESA. The authors wish to thank Hassan Chafi and the
Oracle Research Labs, Peter Boncz and the LDBC project, and Josep Larriba-Pey and
Arnau Prat Perez, whose support has made the Graphalytics benchmark possible; and
to Tilmann Rabl, for facilitating this material.

References

1. Lumsdaine, B.H.A., Gregor, D., Berry, J.W.: Challenges in parallel graph process-
ing. Parallel Process. Lett. 17, 5–20 (2007)

2. Agarwal, V., Petrini, F., Pasetto, D., Bader, D.A.: Scalable graph exploration on
multicore processors. In: SC, pp. 1–11 (2010)

3. Albayraktaroglu, K., Jaleel, A., Wu, X., Franklin, M., Jacob, B., Tseng, C.-W.,
Yeung, D.: Biobench: a benchmark suite of bioinformatics applications. In: ISPASS,
pp. 2–9. IEEE Computer Society (2005)

4. Amaral, J.N.: How did this get published? pitfalls in experimental evaluation
of computing systems. LTES talk (2012). http://webdocs.cs.ualberta.ca/amaral/
Amaral-LCTES2012.pptx. Accessed October 2012

5. Amazon Web Services. Case studies. Amazon web site, October 2012. http://aws.
amazon.com/solutions/case-studies/. Accessed October 2012

6. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286, 509–12 (1999)

7. Brebner, P., Cecchet, E., Marguerite, J., Tuma, P., Ciuhandu, O., Dufour, B.,
Eeckhout, L., Frénot, S., Krishna, A.S., Murphy, J., Verbrugge, C.: Middle-
ware benchmarking: approaches, results, experiences. Concurrency Comput. Pract.
Experience 17(15), 1799–1805 (2005)

8. Buble, A., Bulej, L., Tuma, P.: Corba benchmarking: a course with hidden obsta-
cles. In: IPDPS, p. 279 (2003)

9. Buluç, A., Duriakova, E., Fox, A., Gilbert, J.R., Kamil, S., Lugowski, A., Oliker, L.,
Williams, S.: High-productivity and high-performance analysis of filtered semantic
graphs. In: IPDPS (2013)

10. Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs
on GPUS. In: 2012 IEEE International Symposium on Workload Characterization
(IISWC), pp. 141–151. IEEE (2012)

11. Cai, J., Poon, C.K.: Path-hop: efficiently indexing large graphs for reachability
queries. In: CIKM (2010)

12. Chapin, S.J., Cirne, W., Feitelson, D.G., Jones, J.P., Leutenegger, S.T.,
Schwiegelshohn, U., Smith, W., Talby, D.: Benchmarks and standards for the eval-
uation of parallel job schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP
1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 67–90. Springer,
Heidelberg (1999)

http://webdocs.cs.ualberta.ca/amaral/Amaral-LCTES2012.pptx
http://webdocs.cs.ualberta.ca/amaral/Amaral-LCTES2012.pptx
http://aws.amazon.com/solutions/case-studies/
http://aws.amazon.com/solutions/case-studies/


Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics 129

13. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: The 2009 IEEE Inter-
national Symposium on Workload Characterization, IISWC 2009, pp. 44–54 (2009)

14. Checconi, F., Petrini, F.: Massive data analytics: the graph 500 on IBM blue
Gene/Q. IBM J. Res. Dev. 57(1/2), 10 (2013)

15. Cong, G., Makarychev, K.: Optimizing large-scale graph analysis on multithreaded,
multicore platforms. In: IPDPS (2012)

16. Deelman, E., Singh, G., Livny, M., Berriman, J.B., Good, J.: The cost of doing
science on the cloud: the montage example. In: SC, p. 50. IEEE/ACM (2008)

17. Downey, A.B., Feitelson, D.G.: The elusive goal of workload characterization. SIG-
METRICS Perform. Eval. Rev. 26(4), 14–29 (1999)

18. Eeckhout, L., Nussbaum, S., Smith, J.E., Bosschere, K.D.: Statistical simulation:
adding efficiency to the computer designer’s toolbox. IEEE Micro 23(5), 26–38
(2003)

19. Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl, V., Tosun, C.: Bench-
marking in the cloud: what it should, can, and cannot be. In: Nambiar, R., Poess,
M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 173–188. Springer, Heidelberg (2013)

20. Frachtenberg, E., Feitelson, D.G.: Pitfalls in parallel job scheduling evaluation. In:
Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2005. LNCS, vol. 3834, pp. 257–282. Springer, Heidelberg (2005)

21. Genbrugge, D., Eeckhout, L.: Chip multiprocessor design space exploration
through statistical simulation. IEEE Trans. Comput. 58(12), 1668–1681 (2009)

22. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance
evaluation. In: OOPSLA, pp. 57–76 (2007)

23. Graph500 consortium. Graph 500 benchmark specification. Graph500 documenta-
tion, September 2011. http://www.graph500.org/specifications

24. Gray, J. (ed.): The Benchmark Handbook for Database and Transasction Systems.
Mergan Kaufmann, San Mateo (1993)

25. Guo, Y., Biczak, M., Varbanescu, A.L., Iosup, A., Martella, C., Willke, T.L.: How
well do graph-processing platforms perform? an empirical performance evaluation
and analysis. In: IPDPS (2014)

26. Guo, Y., Iosup, A.: The game trace archive. In: NETGAMES, pp. 1–6 (2012)
27. Guo, Y., Varbanescu, A.L., Iosup, A., Martella, C., Willke, T.L.: Benchmarking

graph-processing platforms: a vision. In: ICPE, pp. 289–292 (2014)
28. Han, M., Daudjee, K., Ammar, K., Özsu, M.T., Wang, X., Jin, T.: An experimen-

tal comparison of pregel-like graph processing systems. PVLDB 7(12), 1047–1058
(2014)

29. Iosup, A.: Iaas cloud benchmarking: approaches, challenges, and experience. In:
HotTopiCS, pp. 1–2 (2013)

30. Iosup, A., Epema, D.H.J.: GrenchMark: a framework for analyzing, testing, and
comparing grids. In: CCGrid, pp. 313–320 (2006)

31. Iosup, A., Epema, D.H.J., Franke, C., Papaspyrou, A., Schley, L., Song, B.,
Yahyapour, R.: On grid performance evaluation using synthetic workloads. In:
Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2006. LNCS, vol. 4376, pp.
232–255. Springer, Heidelberg (2007)

32. Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.H.J.:
Performance analysis of cloud computing services for many-tasks scientific comput-
ing. IEEE Trans. Par. Dist. Syst. 22(6), 931–945 (2011)

33. Iosup, A., Prodan, R., Epema, D.: Iaas cloud benchmarking: approaches, chal-
lenges, and experience. In: Li, X., Qiu, J. (eds.) Cloud Computing for Data-
Intensive Applications. Springer, New York (2015)

http://www.graph500.org/specifications


130 A. Iosup et al.

34. Iosup, A., Prodan, R., Epema, D.H.J.: Iaas cloud benchmarking: approaches, chal-
lenges, and experience. In: SC Companion/MTAGS (2012)

35. Jackson, K.R., Muriki, K., Ramakrishnan, L., Runge, K.J., Thomas, R.C.: Perfor-
mance and cost analysis of the supernova factory on the amazon aws cloud. Sci.
Program. 19(2–3), 107–119 (2011)

36. Jain, R. (ed.): The Art of Computer Systems Performance Analysis. Wiley, New
York (1991)

37. Jiang, W., Agrawal, G.: Ex-MATE: data intensive computing with large reduction
objects and its application to graph mining. In: CCGRID (2011)

38. Katz, G.J., Kider Jr., J.T.: All-pairs shortest-paths for large graphs on the GPU. In:
23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware,
pp. 47–55 (2008)

39. LDBC consortium. Social network benchmark: Data generator. LDBC Deliverable
2.2.2, September 2013. http://ldbc.eu/sites/default/files/D2.2.2 final.pdf

40. Leskovec, J.: Stanford Network Analysis Platform (SNAP). Stanford University,
California (2006)

41. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Chicago, Illinois, USA, pp. 177–187, 21–24 August 2005

42. Lu, Y., Cheng, J., Yan, D., Wu, H.: Large-scale distributed graph computing sys-
tems: an experimental evaluation. PVLDB 8(3), 281–292 (2014)

43. Mell, P., Grance, T.: The NIST definition of cloud computing. National
Institute of Standards and Technology (NIST) Special Publication 800–145,
September 2011. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.
pdf. Accessed October 2012

44. de Laat, C., Verstraaten, M., Varbanescu, A.L.: State-of-the-art in graph traversals
on modern arhictectures. Technical report, University of Amsterdam, August 2014

45. Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. SIGPLAN
Not. 47(8), 117–128 (2012)

46. Nasre, R., Burtscher, M., Pingali, K.: Data-driven versus topology-driven irregular
computations on GPUs. In: 2013 IEEE 27th International Symposium on Parallel
& Distributed Processing (IPDPS), pp. 463–474. IEEE (2013)

47. Oskin, M., Chong, F.T., Farrens, M.K.: Hls: combining statistical and symbolic
simulation to guide microprocessor designs. In: ISCA, pp. 71–82 (2000)

48. Penders, A.: Accelerating graph analysis with heterogeneous systems. Master’s
thesis, PDS, EWI, TUDelft, December 2012

49. Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem,
R., Lee, T.-H., Lenharth, A., Manevich, R., Méndez-Lojo, M., et al.: The tao of
parallelism in algorithms. ACM SIGPLAN Not. 46(6), 12–25 (2011)

50. Que, X., Checconi, F., Petrini, F.: Performance analysis of graph algorithms on
P7IH. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol.
8488, pp. 109–123. Springer, Heidelberg (2014)

51. Raicu, I., Zhang, Z., Wilde, M., Foster, I.T., Beckman, P.H., Iskra, K., Clifford, B.:
Toward loosely coupled programming on petascale systems. In: SC, p. 22. ACM
(2008)

52. Hong, T.O.S., Kim, S.K., Olukotun, K.: Accelerating CUDA graph algorithms at
maximum warp. In: Principles and Practice of Parallel Programming, PPoPP 2011
(2011)

53. Saavedra, R.H., Smith, A.J.: Analysis of benchmark characteristics and benchmark
performance prediction. ACM Trans. Comput. Syst. 14(4), 344–384 (1996)

http://ldbc.eu/sites/default/files/D2.2.2_final.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf


Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics 131

54. Schroeder, B., Wierman, A., Harchol-Balter, M.: Open versus closed: a cautionary
tale. In: NSDI (2006)

55. Sharkawi, S., DeSota, D., Panda, R., Indukuru, R., Stevens, S., Taylor, V.E., Wu,
X.: Performance projection of HPC applications using SPEC CFP2006 bench-
marks. In: IPDPS, pp. 1–12 (2009)

56. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared
memory. In: PPOPP (2013)

57. Spacco, J., Pugh, W.: Rubis revisited: why J2EE benchmarking is hard. Stud.
Inform. Univ. 4(1), 25–30 (2005)

58. Varbanescu, A.L., Verstraaten, M., de Laat, C., Penders, A., Iosup, A., Sips, H.:
Can portability improve performance? an empirical study of parallel graph analyt-
ics. In: ICPE (2015)

59. Villegas, D., Antoniou, A., Sadjadi, S.M., Iosup, A.: An analysis of provisioning
and allocation policies for infrastructure-as-a-service clouds. In: 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2012,
pp. 612–619, Ottawa, Canada, 13–16 May 2012

60. Wang, N., Zhang, J., Tan, K.-L., Tung, A.K.H.: On triangulation-based dense
neighborhood graphs discovery. VLDB 4(2), 58–68 (2010)

61. Yigitbasi, N., Iosup, A., Epema, D.H.J., Ostermann, S.: C-meter: a framework
for performance analysis of computing clouds. In: 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, CCGrid 2009, Shanghai, China,
pp. 472–477, 18–21 May 2009


	Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics
	1 Introduction
	2 A Primer on Benchmarking Computer Systems
	2.1 Elements of Benchmarking
	2.2 Why Benchmarking?

	3 A Generic Architecture for IaaS and PaaS Cloud Benchmarking
	3.1 Overview
	3.2 Distinguishing Design Features

	4 Graphalytics: A Graph Analytics Benchmark
	4.1 Design Overview
	4.2 Implementation Details
	4.3 Experimental Results

	5 Benchmarking Challenge: Including the Algorithm in the SUT
	5.1 Parallel BFS Algorithms for GPU Execution
	5.2 Experiments and Results
	5.3 Practical Guidelines

	6 Conclusion and Ongoing Work
	References


