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Abstract—Due to its many applications across various fields
of research, engineering, and daily life, deep learning has seen a
surge in popularity. Therefore, larger and more expressive models
have been proposed, with examples like Turing-NLG using as
many as 17 billion parameters. Training these very large models
becomes increasingly difficult due to the high computational costs
and large memory footprint. Therefore, several approaches for
distributed training based on data parallelism (e.g., Horovod)
and model/pipeline parallelism (e.g., GPipe, PipeDream) have
emerged. In this work, we focus on an in-depth comparison of
three different parallelism models that address these needs: data,
model and pipeline parallelism. To this end, we provide an analyt-
ical comparison of the three, both in terms of computation time
and memory usage, and introduce DDLBench, a comprehensive
(open-source1, ready-to-use) benchmark suite to quantify these
differences in practice. Through in-depth performance analysis
and experimentation with various models, datasets, distribution
models and hardware systems, we demonstrate that DDLBench
can accurately quantify the capability of a given system to
perform distributed deep learning (DDL). By comparing our
analytical models with the benchmarking results, we show how
the performance of real-life implementations diverges from these
analytical models, thus requiring benchmarking to capture the
in-depth complexity of the frameworks themselves.

I. INTRODUCTION

Deep learning (DL) has seen rapid progress in recent years,
reaching milestones such as AlphaGo beating the Go world
champion [1], and the emergence of deep fakes [2] in 2016.
This growth can be attributed to four factors: firstly, the
creation of more complex and efficient deep neural networks
(DNNs), which can be used for diverse fields of research such
as image classification [3] and natural language processing
[4]. Secondly, the availability of large and diverse datasets
which can be used to train neural networks on, such as both
ImageNet [5] and MNIST [6]. Thirdly, the introduction of
user-friendly deep learning frameworks such as TensorFlow
[7], Keras [8] and PyTorch [9] which opens up the field to
researchers without a deep learning background. Finally, the
increase in compute power of both CPUs and GPUs has made
it possible to train larger models, on more data, in a smaller
amount of time [10].

On the one hand, these developments have simplified the
field, as deep learning applications can be created in minutes.
On the other hand, creating a well-performing application,

1https://github.com/sara-nl/DDLBench

both in terms of accuracy and training time, is more chal-
lenging than ever, due to the abundance of options to choose
from in terms of frameworks, neural networks, and hardware.
It is often not possible to make an optimal choice for all these
parameters without prior information, because the algorithms
and techniques involved are of high complexity, especially in
a distributed setting. Moreover, with the size-explosion of the
models, there are virtually no single-node machines that can
efficiently train such models. Instead, models are trained on
distributed machines, where the combined memory capacity
and computation capability of multiple nodes can be leveraged
for efficient training. This adds a new layer of complexity to
the already-challenging choices that need to be made.

There are two basic ways towards making a more informed
choice: theoretical or empirical. The former, based on the
theoretical analysis of models, is captured in frameworks like
[11] [12] [13] [14] [15]. These analytical approaches are quick
to evaluate, but cannot capture many of the implementation
details that often have a significant performance impact (as we
can see in Section IV); moreover, they are difficult to expand
(without in-depth literature analysis). Empirical approaches,
based on benchmarking, provide the most accurate informa-
tion, as they execute the actual applications on real hardware.
Although the benchmarks are more expensive to run, with
clever parameterization and generalization, they can be quickly
extended to support different models and architectures.

In this work, we propose DDLBench, a generalizable,
ready-to-use benchmark suite for distributed deep learning
(DDL), that can be used to gain insight into the training
speed of deep learning applications. DDLBench is designed
to support diverse models, datasets, distribution models, and
hardware configurations. To demonstrate what the benchmark
suite is capable of, we use image classification as an exam-
ple use case. Our current implementation includes datasets
of varying sizes and dimensions: MNIST [6], CIFAR-10
[16], ImageNet [5] and a high-dimensional synthetic dataset.
Models-wise, we include MobileNetV2 [17], along with sev-
eral ResNet [18] and VGG [19] models, thus supporting
both compute- or communication-focused networks. Finally,
as distribution models, we include Horovod [20] to represent
data parallelism, along with GPipe [21] and PipeDream [22]
for model and pipeline parallelism. DDLBench is accompanied
by an analytical framework to analyze the difference between



the expected performance of the distribution models and the
performance of the benchmark suite.

A. Related Work

Measuring and analysing the complexity, training time, and
memory usage of SGD and several parallelization methods
for deep learning have been popular research topics [12] [23]
[24]. However, there is little performance data for the relatively
new pipeline parallelism methods, as implemented in GPipe
and PipeDream, which are included in our analysis.

Benchmark suites and infrastructures such as DAWNBench
[25], MLPerf [26], Deep500 [27] and HPC AI500 [28] aim for
standardization and generalizability, with the goal of providing
a fair comparison between deep learning algorithms, frame-
works, and applications. They include a variety of benchmarks
and metrics focusing not only on GPU performance, but
also on CPU, interconnects, and more. However, none of
these benchmarks include or compare data parallelism, model
parallelism, and state-of-the-art pipeline parallelism. As these
pipeline parallelism distribution models have proven to be an
improvement on traditional model parallelism [21] [22], the
inclusion of these techniques is vital for any generalizable
distributed deep learning benchmark suite.

B. Contributions

This work makes the following contributions to the field of
distributed deep learning:

• We define a simple analytical framework to theoretically
compare the computational performance of distribution
models for deep learning (Section II-D).

• We present the design and implementation of DDLBench,
a comprehensive benchmark suite for the evaluation of
distributed DNNs (Section III).

• We provide an example of in-depth empirical analysis,
facilitated by DDLBench, on 3 distributed models, 6 net-
works, 4 datasets, and two different clusters (Section IV).

• By comparing our analytical models with the benchmark-
ing results, we show how the performance of real-life
implementations diverges from these analytical models,
thus requiring benchmarking to capture the in-depth
complexity of the frameworks themselves.

Our results indicate data parallelism with Horovod per-
forms as expected, with speedups of up to 4.2 on 4 workers
on a single node over a sequential baseline, while pipeline
parallelism frameworks unexpectedly underperform: GPipe
reaches only up to 3.0 speedup, and PipeDream reaches a
modest 1.4 speedup. Both frameworks suffer from inefficient
implementations. Our analysis ultimately shows that DDL-
Bench can accurately uncover the complex relation between
model training and communication overhead introduced by
distribution models together with the changing dynamics when
increasing the number of workers.

II. DISTRIBUTED DEEP LEARNING

A DNN typically consists of multiple layers: one input layer,
one output layer, and one or more hidden layers in between.

These layers come in different sizes, shapes and types, such as
fully-connected, convolutional, or recurrent. The most popular
algorithm to train these models is stochastic gradient descend
(SGD) [29], which we use for all benchmarks.

Parallelizing DNN training is complex because the compu-
tational workload of training a model has to be divided over
multiple workers, thus introducing non-trivial communication
patterns. There exist three methods to implement parallel DNN
training: data-, model-, and pipeline-parallelism.

A. Data Parallelism

With data parallelism, each worker has a local copy of
the full model and trains on a part of the data, either by
partitioning or random sampling, thereby reducing the total
training time. After a period of local training, the workers
exchange their local gradients to calculate the global gradients,
which approximate the gradients computed using a sequential
approach. The performance of the communication phase is
critical in achieving good training time scalability with multi-
ple workers, as the compute workload is equally divided over
all workers.

B. Model Parallelism

The opposite of data parallelism is model parallelism, which
partitions the model over all workers, so all workers participate
in the forward and backward pass of each data element (see
Figure 1). The worker processing the first layers uses the input
batch of data to train its part of the model on, and then sends
the activations of its final layer to the next worker. This process
is repeated until the activations have been propagated through
the whole model, and is then reversed for the backward
pass. As there is a data dependency between workers for
both the forward and the backward pass, model parallelism
leads to sequential training. The communication overhead of
sending activations and gradients is added to this, resulting in
a slowdown with an increasing number of workers. However,
model parallelism supports much larger models compared to
data parallelism, because the memory usage per worker is
reduced by partitioning over all workers [23]; this reduction
allows for larger batch sizes per worker.

C. Pipeline Parallelism

The problem with model parallelism is that, on average, at
a given time, less than one worker performs a compute task
(Figure 1). Pipeline parallelism provides a direct improvement
on model parallelism by introducing more inter- and intra-
batch concurrency via data parallelism. The most prominent
pipeline distribution models for deep learning models are
GPipe [21] and PipeDream [22], both using input pipelining.

GPipe: The input pipelining that GPipe deploys is vi-
sualised in Figure 2. GPipe splits each batch into micro-
batches, that can not only be processed in parallel, but can
also be used to overlap communication with compute tasks
such as gradient checkpointing. Gradient checkpointing is
implemented in torchgpipe [30], a a GPipe implementation
in PyTorch [9], to reduce memory usage and so allowing
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Fig. 1: Execution pipeline of model parallelism.
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Fig. 2: Execution pipeline of GPipe with 3 micro-batches at a time.
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Fig. 3: Execution pipeline of PipeDream with 4 micro-batches at a time where the backward passes takes double the amount of time of the
forward pass. The communication overhead is not displayed as it can be overlapped with computations after the first set of micro-batches.

for even larger neural networks to be used. Only a small
part of the activations are stored during the forward pass,
with the remaining activations being recomputed during the
backpropagation while the worker waits for communication
to complete. Although the effectiveness of the overlapping
depends on how long the communication takes compared to
the compute tasks, it still results in much better scaling of
the training time with the number of workers compared to
model parallelism. This method does not decrease the model’s
accuracy as long as the micro-batch size does not change,
and a synchronization phase is added after the forward and
backward pass of each set of micro-batches to update the
weights of the model. Only the communication that can not
be overlapped with computation is shown in Figure 2.

PipeDream: Where GPipe only uses intra-batch paral-
lelism, PipeDream adds inter-batch parallelism for even faster
training. This is achieved by removing the synchronization
phase of GPipe after the processing of a set of micro-
batches, thereby filling up the execution pipeline of each
GPU completely after a startup phase (Figure 3). Removing
the synchronization phase does introduce staleness, as micro-
batches are trained on old weights. However, the overall time-
to-accuracy does not suffer compared to GPipe, because the
inter-batch parallelism makes training significantly faster.

Furthermore, PipeDream uses hybrid parallelism [31] [32]
[22]: While model partitions interact with one another us-
ing pipeline parallelism, each partition can be trained on
by multiple workers in parallel using data parallelism. This
allows for complex partition configurations which can min-
imize the communication between workers and so maximise
compute efficiency, resulting in lower training times compared
to regular pipeline parallelism. As PipeDream does not use
gradient recomputation, the number of in-flight micro-batches
is quickly limited by the memory capacity of the workers as
all activations of all micro-batches needs to be stored.

D. Analytical Modeling

To formalize the differences between these distribution
models, we define analytical models for their training time per
batch, as the training time per batch is relatively constant over
the training process, and therefore can be used to estimate the
total training time. The models are presented in Equations 1, 2
and 3 for Horovod, GPipe and PipeDream, respectively. These
models are based on previous work on Horovod [20], GPipe
[21] [30] and PipeDream [33] [22]. The models will be
compared to the empirical benchmark results in Section IV to
reason about the predictability of the empirical results, and so
the usefulness of the benchmark suite over analytical models.

For all our models, Tseq is the training time in sequential
execution, W is the number of workers, b is the batch size,
and A and G are the sizes of the entire model activation and
gradient memory, respectively. The time needed to send data
from worker i to worker j is measured in terms of latency Li,j

and bandwidth BWi,j . For pipeline parallelism, each worker
has a copy of a different part of the neural network, and so a
different activation and gradient memory, hence the notation
Ai and Gi. Finally, #mb represents the number of micro-
batches used per batch.

Horovod: Horovod uses the allreduce operation to ex-
change the gradients of the loss between workers. It is
very difficult to determine beforehand what type of allreduce
operation is going to be used at runtime as it depends on
the communication backend (NCCL, GLOO, MPI) and the
hardware topology. Following [20], we model a ring-allreduce
algorithm as an example (Equation 1), although the model can
be adapted to any other algorithm as well.

Thorovod =
Tseq

W
+ 2(W − 1)·

W
max
i=1

(Li,i+1 +
min(G, th)

W ·BWi,i+1
)

(1)



The backpropagation is performed on the neural network
layer by layer, so one allreduce operation can be performed
per layer as well. Using this technique, communication is over-
lapped with computation as much as possible; however, due
to the large amount of allreduce operations being performed,
it may be slower than using a single allreduce operation
after the backpropagation has finished. Horovod uses Tensor
Fusion, performing an allreduce operation once either th MB
of gradients (the threshold) have been accumulated during the
backpropagation, or x milliseconds have passed. This results
in an ordering of allreduce operations at runtime, which cannot
be determined beforehand; thus, we assume all allreduce
operations can be overlapped with computation, except for the
final one, which contains th MB of gradients. This is reflected
in Equation 1.

GPipe: GPipe relies on the overlapping of communi-
cation with computation for good performance, similar to
Horovod (Figure 2). The behaviour of GPipe is modelled in
Equation 2. For model parallelism based approaches, typically
a much smaller amount of activations and gradients are
communicated between workers compared to data parallelism
based approaches, although this depends on the type of model
used and how the model is divided over the workers. Thus, we
assume all communication after the first micro-batch can be
overlapped with computation. Model parallelism is implicitly
modeled in Equation 2 with one micro-batch.

Tgpipe =Tseq ·
W +#mb− 1

W ∗#mb
+

W−1∑
i=1

(Li,i+1 +
Ai

BWi,i+1
)+

W∑
i=2

(Li,i−1 +
Gi

BWi,i−1
)

(2)

PipeDream: PipeDream is able to fill the execution
pipeline of all workers after a startup phase, and can overlap
communication with computation just like GPipe. This re-
quires an optimal partition configuration to be used, which can
be obtained using PipeDream’s built-in profiler. PipeDream’s
performance is modeled in Equation 3. We assume the time
spent in the startup phase is negligible, which is true given
enough batches in the dataset.

Tpipedream =
Tseq

W
(3)

In practice, the performance of deep learning applications
non-trivially depends on many factors such as the choice
of neural network, dataset, distribution model and hardware;
factors that are all covered in DDLBench. So, the only way
to further increase the accuracy of the analytical models is
to perform more benchmarking to calibrate the models [34].
Despite benchmarking being expensive in terms of time and
resources, it can also lead to deeper insight into the actual
execution of the DL training, thus allowing us to improve on
these simplified models.

The analytical models of training time can be used as a basis
for memory usage prediction as memory usage depends on the
size of the activation and gradient memory per worker. This in
turn depends on the number of model partitions, so with the
same neural network, data parallelism has the highest memory
usage as each worker has a copy of the full model while
model parallelism and GPipe have the lowest memory usage
as the model is evenly divided over all workers. As PipeDream
uses hybrid parallelism, the number of model partitions may
very between one and the number of workers, causing the
memory usage to fluctuate as well. Besides the number of
model partitions, factors such as batch size also influence the
memory usage (Section IV-A).

III. BENCHMARK DESIGN AND IMPLEMENTATION

A. Requirements

Benchmarking Dimensions: The creation, execution, and
performance of a distributed deep learning application comes
with five degrees of freedom: dataset, neural network ar-
chitecture, distribution model, deep learning framework and
hardware system.

The main goal of DDLBench is to analyze the performance
of all state-of-the-art distribution models (i.e., data, model,
and pipeline parallelism), for neural networks with dif-
ferent characteristics (i.e., communication- or computation-
intensive), and for various datasets (i.e., with different sizes
and resolutions). The performance analysis has to be possible
for different hardware architectures, ranging from single to
multiple nodes, using several GPUs per node.

Metrics: Three of the most important performance met-
rics for deep learning training are accuracy, training time and
memory usage. In this work, we focus specifically on training
time and memory usage, because accuracy not only depends
on the quality of the data and the type of model, but also
on hyperparameters like learning rate, momentum and weight
decay, making it an application-specific optimization instead of
a generalizable optimization which is the case for training time
and memory usage. However, DDLBench can be extended to
cover more metrics if needed, as discussed in Section V.

B. Design and Implementation

To design a benchmark that meets the requirements pre-
sented in Section III-A, we must further select representative
points in the four dimensions of interest: distribution models,
frameworks, neural networks, and datasets.

Distribution Models: The benchmarking suite should
include at least one distribution model of each type (i.e., data,
model, and pipeline parallelism), to allow us investigate which
parallelization method is preferred for different applications.

For data parallelism, we select Horovod [20], which im-
plements data parallelism in a synchronous, decentralized
manner - shown to outperform alternative communication
solutions; Horovod also supports the majority of deep learning
frameworks, making it the preferred choice over framework-
specific solutions. For pipeline parallelism we use GPipe [21]
[30] and PipeDream [22], two advanced pipeline parallelism



TABLE I: Selected datasets for image classification.

Name #classes #images Color profile Resolution

MNIST 10 70000 Grayscale 28 x 28
CIFAR-10 10 60000 RGB 32 x 32

ImageNet-1000 1000 1280000 RGB 224 x 224
Highres 1000 60000 RGB 512 x 512

implementations. We also use these for pure model parallelism
by reducing the number of micro-batches processed in parallel
to one, so without the use of data parallelism techniques to
enhance performance [35] [36].

Frameworks: For implementation purposes, we select
PyTorch [9] as the first DL framework for our benchmark
suite, because it supports all three distribution models.

Datasets: In its current stage, DDLBench focuses on
image classification problems as an example. Thus, our bench-
mark suite must include datasets with diverse numbers of im-
ages and image dimensions. The number of images influences
the total training time, because the training process has to be
executed for more iterations. The image dimensions influence
the size of the input layer and can influence the activation
and gradient memory used throughout the network, and thus
impact both the compute and communication time: the size of
activations and gradients computed per layer and communi-
cated between layers grows with the image dimensions.

To this end, we select three popular [37] datasets for image
classification: MNIST [6], CIFAR-10 [16], and ImageNet [5].
We add a fourth, synthetic dataset with high-resolution images,
called Highres, to analyze the effect of models with a large
memory footprint on training time (Table I).

Neural Networks: Neural networks differ in the type and
amount of computation needed due to the total size of the
model and the type of layers included in the model and differ
in the amount of communication needed due to the number
of activations and gradients connecting each layer. We need a
selection of neural networks which display diverse amounts
of and ratios between computation and communication, to
profile all parts of the hardware system. As we have selected
datasets related to image classification, we must also select
image classification related neural networks, although any type
of use case could be used. We select the families of ResNet
and VGG models, as they are computation and communication
focused, respectively, in a distributed setting [38]. The families
contain networks only differing in the number of layers,
and so the size of the total network. The current version
of DDLBench includes ResNet-18, ResNet-50, ResNet-152,
VGG-11 and VGG-16. To this selection, we add MobileNetV2
[17], which uses different types of layers, resulting in different
computation and communication patterns.

IV. EVALUATION

In this section, we demonstrate how DDLBench can be
used for thorough evaluation and performance analysis of
distributed DL models, using our diverse combination of
networks and datasets.

TABLE II: Batch size configurations.

Dataset PyTorch Horovod GPipe (#mb) PipeDream

MNIST 128 128 3072 (24) 128
CIFAR-10 64 64 2048 (32) 64

ImageNet-1000 32 32 384 (12) 32
Highres 32 32 48 (12) 32

A. Experimental Setup

As we focus on training speed (and not on accuracy), the
main performance metric we use is seconds per epoch. We
also report speedup, for which we use PyTorch with 1 GPU
as baseline. The storage location of the training data is critical
for training speed, as storage in a central location could lead to
network contention, resulting in fluctuating training times [39].
Although it would be interesting to analyse how the different
distribution models perform when directly reading the data
from a central storage, it is not the focus of this research;
therefore, we write synthetic versions of the datasets (Table I)
to the local storage of each node. As there are no other factors
which can cause major fluctuations in the training time per
epoch, we limit the number of epochs to 32, and report the
average training time per epoch.

a) Batch Size: The increase in batch size affects memory
usage, as it leads to larger activation and gradient memory
sizes and more images are loaded into memory at once. This
makes choosing a batch size an application-specific optimiza-
tion rather than a generalizable one, so all our experiments use
one batch size per dataset per distribution model. It also affects
the convergence rate as larger batch sizes tend to result in
lower convergence rates, although this can be compensated by
increasing the learning rate [40]. The benchmark suite includes
tools to track memory usage per worker. These tools are used
to optimize the batch sizes for memory usage (Table II). For
Horovod, the batch size per worker is reported. For GPipe,
the batch size differs per application based on the number of
workers, as with more workers, each worker gets a smaller por-
tion of the model, resulting in less memory usage per worker.
We report the batch sizes for 4 workers as torchgpipe [30]
currently does not support multi-node setups. For PipeDream
the same batch sizes as for the sequential applications are
used because of limitations in PipeDream’s profiler, which
is used to automatically partition the neural network over all
workers. Furthermore, determining the optimal batch size for a
PipeDream application is extra difficult because a combination
of data and pipeline parallelism is used.

b) Hardware: We use two different clusters for our
experiments. Cluster-A uses NVIDIA Titan RTX GPUs with
24 GB of device memory. Each node has 4 GPUs, two pairs
connected with NVLink, and dual-socket Intel Xeon Gold
5118 CPUs with 192 GB of RAM. The nodes are connected
via 40 Gbps Ethernet. Cluster-B uses the NVIDIA GeForce

2In fact, this is a user-configurable parameter in DDLBench, but we find 3
to provide a good balance between quick experimentation and representative
timing information.
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Fig. 4: Training time speedup compared to PyTorch with 1 GPU using 4 GPUs on Cluster-A.

1080Ti with 11 GB of device memory. Each node has 4 GPUs
and dual-socket Intel Xeon Bronze 3104 CPUs with 256 GB of
RAM. The nodes are connected via 40 Gbps Ethernet as well.
Cluster-A has faster GPUs and higher intra-node bandwidth
due to NVLink, while both clusters have the same inter-
node capabilities for multi-node workloads. All nodes use
GCC 8.3.0, CUDA 10.1.243, cuDNN 7.6.5.32, OpenMPI 3.1.4
and NCCL 2.5.6. We use PyTorch 1.5.0 for all experiments
except those with PipeDream, which use PyTorch 1.1.0 (due to
changes made in the source code of PyTorch by PipeDream).
As the currently included distribution models rely on PyTorch
for the execution of the code, DDLBench supports any GPU
that can be used with PyTorch.

B. Single-Node Benchmarks

First, we perform benchmarks using a single node of
Cluster-A. All selected datasets, neural networks and distri-
bution models are being used, as shown in Figure 4. Some
experiments did not succeed for GPipe and PipeDream due
to unexpected behaviour. In our experience, this behavior
demonstrates the lack of maturity for pipeline parallelism
frameworks, when compared to established, data-parallel ones,
such as Horovod.

Horovod: Horovod performs very well, even achieving
a super-linear speedup with MNIST and ResNet-152 as each
GPU processes only a quarter of the data, and therefore can
cache more data. The results in Figure 4a are in line with
the performance model in Equation 1: Computation-intensive
networks such as ResNet perform better than communication-
intensive networks such as VGG due to a reduced com-
munication overhead. The high dimensional dataset Highres
performing the best out of all datasets is also as expected as
an increase in image resolution results in a more computation-
intensive application in this example.

GPipe: GPipe follows the same trends as Horovod: Good
scalability for computation-intensive networks and much less
performance increase for communication-intensive networks
(Figure 4b). The performance is similar to that of [30] and
[21]. However, the results are not in line with Equation 2, as
GPipe should have much less communication overhead com-
pared to Horovod due to the small amount of activations and
gradients being communicated between workers. Furthermore,
the average speedup gained by the GPipe benchmarks is much
less than that of Horovod (Figure 4). Detailed performance

analysis of torchgpipe has shown that the forward pass, as
implemented in torchgpipe, has been implemented very ineffi-
ciently compared to the backward pass, which is automatically
executed by PyTorch autograd, PyTorch’s backpropagation
engine [34]. For one, the computation and communication
is not overlapped during the forward pass, instead these
two phases are executed in sequence. This, together with
more inefficiencies, explains the gap between the expected
performance and the actual performance. For memory usage,
GPipe uses much larger batch sizes compared to Horovod,
and can train ResNet-152 on ImageNet where Horovod can
not due to memory limitations, showing that speedup is not
the only import metric to compare these distribution models
with.

PipeDream: The PipeDream benchmarks achieve a pos-
itive speedup compared to PyTorch with one worker in only a
single case. This is surprising, as PipeDream should in theory
perform the best out of the three distribution models as its
combination of pipeline and data parallelism, together with the
lack of synchronization compared to GPipe, should result in
an optimal reduction of communication overhead. One cause
could be the small batch size compared to GPipe, however this
is due to limitations in the PipeDream framework. Detailed
performance analysis in [34] shows that PipeDream uses
PyTorch’s DistributedDataParallel library for asynchronous
data parallelism [22]. However, PyTorch does not support
asynchronous data parallelism as implemented in PipeDream,
completely changing PipeDream’s execution pipeline.

C. Performance Scaling

Data, model and pipeline parallelism all exhibit strong
scaling as either the training data or the model is divided over
all workers, reducing the computational workload per worker.
As such, the communication overhead eventually becomes the
bottleneck for all distribution models. However, because GPipe
and PipeDream have less communication between workers,
and can overlap it with computation, they should scale better.
We performed experiments up to 16 GPUs using the ImageNet
dataset and a selection of neural networks to find out if
these predictions apply here. GPipe has not been included
as it does not support multi-node configurations in PyTorch
[30]. We do however include model parallelism by using
PipeDream without hybrid parallelism and input pipelining,



Fig. 5: Training time speedup compared to PyTorch with 1 GPU
using 1, 2 and 4 nodes with 4 GPUs each on Cluster-A. Horovod is
used for data parallelism and PipeDream for both model and pipeline
parallelism.

Fig. 6: Training time speedup for Horovod (compared to PyTorch
with 1 GPU) using 1, 2 and 4 nodes with 4 GPUs each on Cluster-A
and Cluster-B.

to show the difference in performance between model and
pipeline parallelism.

Horovod: Horovod again performs very well, achieving a
speedup of 14.5 over PyTorch with one worker using ResNet-
50 (Figure 5). For VGG-16 and MobileNet v2 it achieves a
sub-linear, but constant speedup as well. The difference in
performance between ResNet-50 and VGG-16 confirms that
the total training time is indeed dominated by communication
overhead, as Horovod can no longer successfully overlap
communication with computation.

Figure 6 shows that the speedups achieved on Cluster-B
are between 5 and 20 percent slower than those achieved on
Cluster-A. This is not surprising as the GPUs in Cluster-B
are much slower than those in Cluster-A. This, coupled with
the fact that both clusters share the same interconnect, also
explains why on Cluster-B, the computation-intensive bench-
marks scale slightly worse than the communication-intensive
benchmarks compared to the same benchmarks on Cluster-A.

PipeDream: Figure 5 clearly shows that pipeline paral-
lelism is an improvement of model parallelism as it performs
better for all experiments. Moreover, the speedup of the model
parallelism benchmarks decreases when increasing the number
of workers, as this type of distribution model lacks concur-
rency. For this reason we have not performed experiments with
model parallelism using more than 8 workers.

Figure 5 also shows that pipeline parallelism does not scale
well with an increasing number of workers, if at all, in contrast
to what is predicted in Equation 3. Surprisingly, PipeDream
performs best with VGG-16. This unexpected behaviour is
most likely due to the earlier mentioned difference between
the PipeDream’s expected execution pipeline [33] [22] and
the actual execution pipeline [34]. Surprisingly, our results for
PipeDream differ greatly from those in [22], which reports
speedups of up to 1.0 for ResNet-50 and up to 5.28 for VGG-
16 compared to a data parallel approach, using ImageNet and
16 workers. This has been achieved by manually optimizing
the batch sizes and hybrid parallelism configurations, while we
used the automatic performance optimization tools from the
PipeDream framework due to the goal of DDLBench being
generalizability. Moreover, these experiments were performed
on a cluster with a much slower interconnect, which benefits
pipeline parallelism more than data parallelism due to its
reduced communication between workers.

V. BENCHMARK LIMITATIONS AND EXTENSIBILITY

The need for a distributed benchmark suite is clear: the per-
formance of deep learning applications depends on too many
factors and is too dynamic to predict using analytical methods.
To increase the accuracy of the current analytical models
(Equation 1, 2 and 3), benchmarking is mandatory to tweak
and correctly calibrate such analytical models. With enough
performance data, these models can be further enhanced using
statistical methods. These accurate performance models could
then be used as performance predictors, thus avoiding unnec-
essary, time- and resource-consuming benchmarking. Finally,
such predictors can enable the construction of a distributed
deep-learning recommender system [34], which can determine
the best distribution model for a given workload before exe-
cution.

The scope of the current instance of DDLBench is limited
to image classification. However, extending DDLBench to
other use cases such as natural language processing is easy
as most deep learning frameworks support a variety of use
cases. In this way, to make a new distributed application for
the benchmark suite, one only needs to create a sequential
application using a deep learning framework, and extend it
with a distribution model.

It is also possible to extend DDLBench to cover more
deep learning frameworks, beside PyTorch. In this way, new
distribution models that are only supported by a particular
framework can be used. Supporting a new framework requires
the user to create new sequential applications using that
framework’s functionalities, and extend it with a distribution
model supported by that framework.



To support more distribution models in the benchmark suite,
it is important to note that these models come in two types:
first, software library-based models like Horovod and GPipe,
which are to be used to extend the source code of sequential
applications to transform them into distributed applications.
Secondly, standalone frameworks like PipeDream, which can
be used using a command line interface. Possible new dis-
tribution models for DDLBench are Megatron-LM [35] and
Deepspeed [41], both based on model parallelism.

The metrics of choice for DDLBench are time per epoch
and memory usage. However, for in-depth analysis, more
metrics may be needed, such as accuracy, CPU usage, network
bandwidth or Valid FLOPS [28]. Most of these metrics are
already included in deep learning frameworks (i.e. PyTorch)
or hardware drivers (i.e. NVIDIA-smi), and can be easily
incorporated into the benchmarking infrastructure.

DDLBench can also be extended to perform automatic
performance optimization (which otherwise requires signifi-
cant manual effort). Distribution models such as GPipe and
PipeDream already include automatic model partitioning for
pipeline parallelism, but automatic tuning for batch size and
number of micro-batches is not yet possible. Such automated
optimization enables the benchmark suite to show the maxi-
mum performance a distribution model can achieve.

Instead of extending DDLBench, it is also possible to
integrate our benchmark suite into a more mature framework,
such as DAWNBench [25], MLPerf [26], Deep500 [27] or
HPC AI500 [28]. However, such integration poses many tech-
nical challenges, as different distribution models do not only
require different deep learning frameworks, but also different
versions of the same deep learning framework. Furthermore,
there are multiple popular deep learning benchmark suites, so
which benchmark suite to choose to build upon is unclear.
While we support the goal of creating a single benchmark
suite to support a large variety of state-of-the-art distribution
models, such a benchmark must start from in-depth analysis
of user requirements, a detailed blue print for its design, and
significant community effort for its implementation. Before
such agreements are reached, we believe the grass-roots devel-
opment of benchmarks for different, specific and novel aspects
of deep learning should and will continue.

VI. CONCLUSION

Deep neural networks grow larger and more complex,
especially with the emergence of new applications and massive
datasets. In this context, distributed training is a promising
avenue for sustainable scaling in terms of model complexity
and dataset size. However, understanding how to efficiently use
distributed training models is important not only for the time-
to-solution, but also for the resource allocation and utilization
during training.

To better understand the computational performance of
distributed training, we present DDLBench, the first general-
izable, ready-to-use benchmark suite, designed to gain insight
into the impact of the distribution model on the training speed
of deep learning applications. DDLBench is able to profile

the training speed and memory usage of DL applications, and
supports several datasets, neural networks, distribution mod-
els, frameworks and hardware systems. We formulate simple
theoretical models to capture the main performance factors in
distributed DL training, and use them as a coarse reference for
the expected performance. Further, through experimentation,
we show that DDLBench can accurately quantify the complex
relation between model training and communication overhead
introduced by distribution models, together with the changing
dynamics when increasing the number of workers. Overall,
our results indicate that performance models must capture
much better such complex behaviour, and this is not possible
with simple, theoretical analytical models. In fact, we advocate
benchmarking as a tool for improving analytical models, to the
point where their accuracy can be good enough to enable their
use as predictors in, for example, choosing the right model for
a given application.

The current implementation of DDLBench could be ex-
tended by adding automated tuning for batch size and number
of micro-batches, to further optimize the performance of
each benchmark individually, showing the maximum perfor-
mance the distribution models can achieve. Additionally, more
models, datasets, and networks can be added for increased
diversity, and more metrics can be added for in-depth analysis.
Finally, the integration with other benchmarks is possible,
as long as the novel design dimensions of DDLBench are
included, and the software engineering challenges of merging
multiple software technologies in one portable benchmark are
also solved.
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