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Abstract—Graph-processing platforms are increasingly used
in a variety of domains. Although both industry and academia
are developing and tuning graph-processing algorithms and
platforms, the performance of graph-processing platforms has
never been explored or compared in-depth. Thus, users face the
daunting challenge of selecting an appropriate platform for their
specific application. To alleviate this challenge, we propose an
empirical method for benchmarking graph-processing platforms.
We define a comprehensive process, and a selection of represen-
tative metrics, datasets, and algorithmic classes. We implement a
benchmarking suite of five classes of algorithms and seven diverse
graphs. Our suite reports on basic (user-lever) performance,
resource utilization, scalability, and various overhead. We use
our benchmarking suite to analyze and compare six platforms.
We gain valuable insights for each platform and present the first
comprehensive comparison of graph-processing platforms.

I. INTRODUCTION

Large-scale graphs are increasingly used in a variety of

revenue-generating applications, such as social applications,

online retail, business intelligence and logistics, and bioin-

formatics [1], [2]. By analyzing the graph structure and

characteristics, analysts are able to predict the behavior of

the customer, and tune and develop new applications and

services. However, the diversity of the available graphs, of the

processing algorithms, and of the graph-processing platforms

currently available to analysts makes the selection of a plat-

form an important challenge. Although performance studies

of individual platforms exist [3], [4], they have been so far

restricted in scope and size. In this work, we propose a step

forward: a comprehensive experimental method for analyzing

and comparing graph-processing platforms. We further im-

plement this method as a benchmarking suite and we apply

it on six popular platforms. Our initial target is to provide

benchmarking functionality for Small and Medium Enterprises

(SMEs), who have access to clusters of a few tens of machines.

For both system developers and graph analysts (system

users), a thorough understanding of the performance of these

platforms (which we define as the combined hardware, soft-
ware, and programming system that is being used to complete

a graph processing task), under different input graphs and

for different algorithms, is important—it enables informed

choices, system and application tuning, and best-practices

sharing. However, the execution time, the resource consump-

tion, and other performance and non-functional characteristics

of graph-processing systems depend to a large extent on the

dataset, the algorithm, and the graph-processing platform.

Thus, gaining a thorough understanding of graph-processing

performance is impeded by three dimensions of diversity.

Dataset diversity: We are witnessing a significant increase
in the availability and collectability of datasets represented as

graphs, from road to social networks, and from bioinformatics

material to citation databases.

Algorithm diversity: A large number of graph algorithms

have been implemented to mine graphs for calculating basic

graph metrics [5], for partitioning graphs [6], [7], for travers-

ing graphs [8]–[10], for detecting communities [11], [12],

for searching for important vertices [13], [14], for sampling

graphs [15], [16], for predicting graph evolution [1], etc.

Platform diversity: Many types of platforms are being

used for different communities of developers and analysts.

Addressing a variety of functional and non-functional require-

ments, a large number of processing platforms are becoming

available. Neo4j [17], HyperGraphDB [18], and GraphChi [19]

are examples of efficient single-node platforms with limited

scalability. To scale-up, distributed systems with more com-

puting and memory resources are used to process large-scale

graphs, but they can even be less efficient than single-node

platforms. For example, generic data processing systems such

as Hadoop [20], YARN [21], Dryad [22], Stratosphere [23],

and HaLoop [24] can scale out on multiple nodes, but may

exhibit low performance due to distribution and overheads.

Graph-specific platforms such as Pregel [4], Giraph [25],

PEGASUS [26], GraphLab [27], and Trinity [28] are designed

to provide feasible alternatives, but are not yet thoroughly

evaluated for non-trivial algorithms and large datasets.

New performance evaluation and benchmarking suites are

needed to respond to the three sources of diversity, that is, to

provide comparative information about different performance

metrics of different platforms, through the use of empirical

methods and processes. However, the state-of-the-art in com-

parative graph-processing platform evaluation relies nowadays

on Graph500 [29], the de-facto standard for comparing the

performance of the hardware infrastructure related to graph

processing. By choosing BFS as the single representative

application and a single class of synthetic datasets, Graph500

has triggered a race in which winners use heavily optimized,

low-level, hardware-specific code [30], which is rarely found
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or reproduced by common graph processing deployments and

thus rarely reaches SMEs. Moreover, even the few existing

platform-centric comparative studies are usually performed

to prove the superiority of a given system over its direct

competitors, so they only address a limited set of metrics and

do not provide sufficient detail regarding the causes that lead

to performance gaps.

Addressing the lack of a comprehensive evaluation method

and set of results for graph processing platforms, this work

addresses a key research question: How well do graph process-
ing platforms perform? To answer this question, we propose
an empirical performance-evaluation method for (large-scale)

graph-processing platforms. Our method relies on defining

a comprehensive evaluation process, and on selecting rep-

resentative datasets, algorithms, and metrics for evaluating

important aspects of graph-processing platforms—execution

time, resource utilization, vertical and horizontal scalability,

and overhead. Using this method, we create the equivalent of

a benchmarking suite by selecting and implementing five algo-

rithms and seven datasets from different application domains.

We implement this benchmarking suite on six popular plat-

forms currently used for graph processing—Hadoop, YARN,

Stratosphere, Giraph, GraphLab, and Neo4j—and conduct a

comprehensive performance study. This demonstrates that our

benchmarking suite can be applied for many existing plat-

forms, and also provides a first and detailed performance com-

parison of the six selected platforms. Our approach exceeds

previous performance evaluation and benchmarking studies in

both breadth and depth: we implement and measure multiple

algorithms, use different types of datasets, and provide a

detailed analysis of the results. Scale-wise, our study aligns

well with SMEs cluster sizes and matches state-of-the-art

studies (Section VI). Our work also aligns with the goals and

ongoing activity of the SPEC Research Group and its Cloud

Working Group1, of which some of the authors are members.

Our main contributions are:

1) We propose a method for the comprehensive evaluation

of graph processing platforms (Section II), which defines

an evaluation process, and addresses multiple perfor-

mance aspects such as raw performance, scalability,

and resource utilization. When selecting the algorithms

and datasets, the proposed method is equivalent to a

benchmarking suite for graph-processing platforms; we

select in this work five algorithms and seven datasets.

We discuss the limitations of the coverage and represen-

tativeness of our comprehensive evaluation (Section V).

2) We demonstrate how our benchmarking suite can be

implemented for six different graph processing platforms

(Section III).

3) We provide a first performance comparison of six graph-

processing platforms, quantifying their strong points and

identifying their limitations (Sections IV).

1http://research.spec.org/working-groups/rg-cloud-working-group.html

II. METHOD AND BENCHMARKING SUITE FOR

GRAPH-PROCESSING PLATFORMS

In this section we present an empirical method for eval-

uating the performance of graph-processing platforms. Our

method includes four stages: identifying the performance

aspects and metrics of interest; defining and selecting repre-

sentative datasets and algorithms; implementing, configuring,

and executing the tests; and analyzing the results.

A. Performance Aspects, Metrics, Process

To be able to reason about performance behavior, we

first need to identify the performance requirements of graph-

processing platforms, the system parameters to be monitored,

the metrics that can be used to characterize platform perfor-

mance, and an overall process how performance is evaluated.

In this study, we focus on four performance aspects:

1) Raw processing power: the ability of a platform to

(quickly) process large-scale graphs. Ideally, platforms

should combine deep analysis and short job runtimes.

For SMEs, the latter could mean several minutes.

2) Resource utilization: the ability of a platform to effi-

ciently utilize the resources it has. SMEs, who cannot

afford inefficient use of their scarce resources, want plat-

forms to waste as little compute and memory resources

as possible.

3) Scalability: the ability of a platform to maintain its

performance behavior when resources are added to

its infrastructure. In our method, we test the strong

scalability of platforms in both horizontal scale (by

adding computing nodes distributedly) and vertical scale

(by adding computing cores per node, thus ignoring

network effects). Ideally, we want platforms to be able

to automatically improve their performance linearly with

the amount of added resources, but in practice this gain

(or loss) depends both on the number and type of these

resources, and on the algorithm and dataset.

4) Overhead: the part of wall-clock time the platform

does not spend on true data processing. The overhead

includes reading and partitioning the data, setting up the

processing nodes, and eventually cleaning up after the

results have been obtained. Ideally, the overhead should

be constant and small relative to the overall processing

time, but in practice the overhead may be related to

algorithms and datasets.

Although we already use a more comprehensive set of

workloads and metrics than the state-of-the-art (Section VI),

there are still numerous limitations to our method, which we

discuss in Section V.

The performance aspects can be observed by monitoring

traditional system parameters (e.g., the important moments in

the lifetime of each processing job, the CPU and network

load, the OS memory consumption, and the disk I/O) and be

quantified through various performance metrics. We summa-

rize in Table I the performance metrics used in this work; our

technical report [31] defines them more thoroughly.
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TABLE I
SUMMARY OF PERFORMANCE METRICS.

Metric How measured? Derived Relevant aspect (use)
job execution Time the full - Raw processing power

time (� ) execution (Figure 1, 3, 4)

Edges per - ���� Raw processing power

second (EPS) (Figure 2)

Vertices per - ���� Raw processing power

second (VPS) (Figure 2)

CPU, memory, Monitoring - Resource utilization

network sampled each second (Technical report [31])

Horizontal � of different - Scalability

scalability cluster size (� ) (Figure 5)

Vertical � of different - Scalability

scalability cores per node (Figure 6)

Normalized edges - ������ Scalability

per second (NEPS) (Figure 5, 6)

Computation Time actual - Raw processing power

time (��) for calculating (Figure 7)

Overhead - � � �� Overhead

time (��) (Figure 7)

�� and �� are the number of vertices and the number of edges of
graphs, respectively.

B. Selection of graphs and algorithms

This section presents a selection of graphs and algorithms,

which is akin to identifying some of the main functional

requirements of graph-processing systems. We further discuss

the representativeness of our selection in Section V.

1) Graph selection: The main goal of the graph selection
step is to select graphs with different characteristics but with

comparable representation. We use the classic graph formal-

ism [32]: a graph is a collection of vertices � (also called

nodes) and edges � (also called arcs or links) which connect

the vertices. A single edge is described by the two vertices it

connects: � � ��� ��. A graph is represented by � � �����.
We consider both directed and undirected graphs. We do not

use other graph models (e.g., hypergraphs).

Regarding the graph characteristics, we select graphs with a

variety of values for the number of nodes and edges, and with

different structures (see Table II). We store the graphs in plain

text with a processing-friendly format but without indexes.

In our format, vertices have integers as identifiers. Each

vertex is stored in an individual line, which for undirected

graphs, includes the identifier of the vertex and a comma-

separated list of neighbors; for directed graphs, each vertex

line includes the vertex identifier and two comma-separated

lists of neighbors, corresponding to the incoming and to the

outgoing edges. Thus, we do not consider other data models

proposed for exchanging and using graphs such as complex

plain-text representations, universal data formats (e.g. XML),

relational databases, relationship formalisms (e.g., RDF), etc.

Why these datasets? We select seven graphs which could
match, in scale and diversity, the datasets used by SMEs. Ta-

ble II shows the characteristics of the selected graph datasets.

The graphs have diverse sources (e-business, social network,

online gaming, citation links, and synthetic graph), and a

wide range of different sizes and graph metrics (e.g., high vs.

low degree, 1,663 vs. 2, respectively, directed and undirected

graphs, etc.). The largest dataset (Friendster) in this work

TABLE II
SUMMARY OF DATASETS.

Graphs #V #E d �D Directivity
G1 Amazon 262,111 1,234,877 1.8 5 directed

G2 WikiTalk 2,388,953 5,018,445 0.1 2 directed

G3 KGS 293,290 16,558,839 38.5 113 undirected

G4 Citation 3,764,117 16,511,742 0.1 4 directed

G5 DotaLeague 61,171 50,870,316 2,719.0 1,663 undirected

G6 Synth 2,394,536 64,152,015 2.2 54 undirected

G7 Friendster 65,608,366 1,806,067,135 0.1 55 undirected

d is the link density of the graphs (�����). �D is the average vertex degree of undirected
graphs and the average vertex in-degree (or average vertex out-degree) of directed
graphs.

TABLE III
SUMMARY OF ALGORITHMS.

Algorithm Main features Use
A1 STATS single step, low processing decision-making

A2 BFS iterative, low processing building block

A3 CONN iterative, medium processing building block

A4 CD iterative, medium or high processing social network

A5 EVO iterative (multi-level), high processing prediction

is larger but of the same order of magnitude in size as the

median per-job dataset sizes observed in the workloads of

Microsoft, Yahoo, and Facebook [33]. The synthetic graph

(“Synth” in Table II) is produced by the generator described

in Graph500 [29]. The other graphs have been extracted from

real-world use, and have been shared through the Stanford

Network Analysis Project (SNAP) [34]) and the Game Trace

Archive (GTA) [35].

2) Algorithm selection: Why these algorithms? We have

conducted a comprehensive survey of graph-processing articles

published in 10 representative conferences, in recent years; in

total, over 100 articles (see technical report [31]). We found

that a large variety of graph processing algorithms exist in

practice and are likely used by SMEs. The algorithms can be

categorized into several groups by functionality, consumption

of resources, etc. We focus on algorithm functionality and

select one exemplar of each of the following five algorithmic

classes, which are common in our survey: general statistics,

graph traversal (used in Graph500), connected components,

community detection, and graph evolution. We describe in the

following the five selected algorithms and summarize their

characteristics in Table III.

The General statistics (STATS) algorithm computes the

number of vertices and edges, and the average of the local

clustering coefficient of all vertices. The results obtained with

STATS can provide the graph analyst with an overview of the

structure of the graph.

Breadth-first search (BFS) is a widely used algorithm in

graph processing, which is often a building block for more

complex algorithms, such as item search, distance calculation,

diameter calculation, shortest path, longest path, etc. BFS

allows us to understand how the tested platforms cope with

lightweight iterative jobs.

Connected component (CONN) is an algorithm for extract-

ing groups of vertices that can reach each other via graph

edges. This algorithm produces a large amount of output, as

in many graphs the largest connected component includes a
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majority of the vertices.

Community detection (CD) is important for social network

applications, as users of these networks tends to form com-

munities, that is, groups whose constituent nodes form more

relationships within the group than with nodes outside the

group. Communities are also important in the gaming industry,

as the market has an increasingly larger share of social games

or of games for which the social component is important.

Graph evolution (EVO): an accurate EVO algorithm not

only can predict how a graph structure will evolve over time,

but can also help to prepare for these changes (for example

data size increase). Thus, graph evolution is an important topic

in the field of large-scale graph processing.

STATS and BFS are textbook algorithms. For CONN, CD

and EVO, there are a number of variations. Considering the

reported performance and accuracy of these algorithms, we se-

lect a cloud-based connected component algorithm created by

Wu and Du [9], the real-time community detection algorithm

proposed by Leung et al. [12], and the the Forest Fire Model

for graph evolution designed by Leskovec et al. [1].

III. EXPERIMENTAL SETUP

The method introduced in Section II defines a benchmarking

skeleton. In this section we create a full benchmarking suite

(bar the issues explained in Section V) by implementing the

graph-processing algorithms of a selected set of test platforms,

and by configuring and tuning these platforms.

A. Platform selection

We use a simple taxonomy of platforms for graph process-

ing. By their use of computing machines, we identify two main

classes of platforms: non-distributed platforms and distributed

platforms; distributed platforms use multiple computers when

processing graphs. Orthogonally to the issue of distributed

machine use, we divide platforms into graph-specific platforms

and generic platforms; graph specific platforms are designed

and tuned only for processing graph data. Importantly, we

omit in our taxonomy parallel platforms; for the scale in our

real-world experiments, we see the performance of distributed

systems as being a conservative estimate of what a similarly

sized but parallel system can achieve.

Why these platforms? We select for this study a graph-

specific non-distributed platform, and both graph-specific and

generic distributed platforms. Because of what we see that

relatively little interest in the community, we do not select

for this study any generic and non-distributed platform. Ta-

ble IV summarizes our selected platforms: Hadoop, YARN,

Stratosphere, Giraph, GraphLab, and Neo4j. These six selected

platforms are popular and may be used for graph processing.

We introduce each platform in the following, in turn.

Hadoop [20] is an open-source, generic platform for big

data analytics. It is based on the MapReduce programming

model. Hadoop has been widely used in many areas and

applications, such as log analysis, search engine optimiza-

tion, user interests prediction, advertisement, etc. Hadoop is

becoming the de-facto platform for batch data processing.

TABLE IV
SELECTED PLATFORMS.

Platform Version Type Release date
Hadoop hadoop-0.20.203.0 Generic, Distributed 2011-05

YARN hadoop-2.0.3-alpha Generic, Distributed 2013-02

Stratosphere Stratosphere-0.2 Generic, Distributed 2012-08

Giraph Giraph 0.2 (revision 1336743) Graph, Distributed 2012-05

GraphLab GraphLab version 2.1.4434 Graph, Distributed 2012-10

Neo4j Neo4j version 1.5 Graph, Non-distributed 2011-10

Hadoop’s programming model may have low performance

and high resource consumption for iterative graph algorithms,

as a consequence of the structure of its map-reduce cycle.

For example, for iterative graph traversal algorithms Hadoop

would often need to store and load the entire graph structure

during each iteration, to transfer data between the map and

reduce processes through the disk-intensive HDFS, and to

run an convergence-checking iteration as an additional job.

However, comprehensive results regarding graph-processing

using Hadoop have not yet been reported.

YARN [21] is the next generation of Hadoop. YARN can

seamlessly support old MapReduce jobs, but was designed

to facilitate multiple programming models, rather than just

MapReduce. A major contribution of YARN is to separate

functionally resource management and job management; the

latter is done in YARN by a per-application manager. For

example, the original Apache Hadoop MapReduce framework

has been modified to run MapReduce jobs as an YARN

application manager. YARN is still under development. We

select YARN because our hypothesis is that even for the same

programming model (YARN and Hadoop), the architecture of

the execution engine matters.

Stratosphere [23] is an open-source platform for large-scale

data processing. Stratosphere consists of two key components:

Nephele and PACT. Nephele is the scalable parallel engine for

the execution of data flows. In Nephele, jobs are represented

as directed acyclic graphs (DAG), a job model similar for

example to that of the generic distributed platform Dryad [22].

For each edge (from task to task) of the DAG, Nephele offers

three different types of channels for transporting data, through

the network, in-memory, and through files. PACT is a data-

intensive programming model that extends the MapReduce

model with three more second-order functions (Match, Cross,

and CogGroup, in addition to Map and Reduce). PACT sup-

ports several user code annotations, which can inform the

PACT compiler of the expected behavior of the second-order

functions. By analyzing this information, the PACT compiler

can produce execution plans that avoid high cost operations

such as data shipping and sorting, and data spilling to the disk.

Compiled PACT programs are converted into Nephele DAGs

and executed by the Nephele data flow engine. HDFS is used

for Stratosphere as the storage engine.

Giraph [25] is an open-source, graph-specific distributed
platform. Giraph uses the Pregel programming model, which

is a vertex-centric programming abstraction that adapts the

Bulk Synchronous Parallel (BSP) model. An BSP computa-

tion proceeds in a series of global supersteps. Within each

superstep, active vertices execute the same user-defined com-
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putation, and create and deliver inter-vertex messages. Barriers

ensure synchronization between vertex computation: for the

current superstep, all vertices complete their computation and

all messages are sent before the next superstep can start.

Giraph utilizes the design of Hadoop, from which it leverages

only the Map phase. For fault-tolerance, Giraph uses peri-

odic checkpoints; to coordinate superstep execution, it uses

ZooKeeper. Giraph is executed in-memory, which can speed-

up job execution, but, for large amounts of messages or big

datasets, can also lead to crashes due to lack of memory.

GraphLab [27] is an open-source, graph-specific dis-

tributed computation platform implemented in C++. Besides

graph processing, it also supports various machine learning

algorithms. GraphLab stores the entire graph and all program

state in memory. To further improve performance, GraphLab

implements several mechanisms such as: supporting asyn-

chronous graph computation to alleviate the waiting time for

barrier synchronization, using prioritized scheduling for quick

convergence of iterative algorithms, and efficient graph data

structures and data placement. To match the execution mode

of the other platforms, we run all our GraphLab experiments

in a synchronized mode.

Neo4j [17] is one of the popular open-source graph

databases. Neo4j stores data in graphs rather than in tables. Ev-

ery stored graph in Neo4j consists of relationships and vertices

annotated with properties. Neo4j can execute graph-processing

algorithms efficiently on just a single machine, because of its

optimization techniques that favor response time. Neo4j uses

a two-level, main-memory caching mechanism to improve its

performance. The file buffer caches the storage file data in

the same format as it is stored on the durable storage media.

The object buffer caches vertices and relationships (and their

properties) in a format that is optimized for high traversal

speeds and transactional writes.

B. Platform and experiment configuration

Platform tuning: The performance of these systems de-
pends on tuning. Several of the platforms tested in this work

have tens to hundreds of configuration parameters, whose

actual value can potentially change the performance of the

platform. We use common best-practices for tuning each of

the platforms, as explained in our technical report [31].

Hardware: We deploy the distributed platforms on

DAS4 [36], which is to provide a common computational

infrastructure for researchers within Advanced School for

Computing and Imaging in the Netherlands. Each machine we

used in the experiments from DAS4 consists of a Intel Xeon

E5620 2.4 GHz CPU (dual quad-core, 12 MB cache) and a

total memory of 24 GB. All the machines are connected by

1 Gbit/s Ethernet network. NFS is used as the file system

in DAS4. The operation system installed on each machine is

CentOS release 6.3 with the kernel version 2.6.32. We use a

single machine with one single enterprise SATA disk (SATA

3 Gbit/s, 7200 rpm, 32 MB cache) for the Neo4j experiments.

Platform configuration, number of nodes: We deploy the
distributed platforms on 20 up to 50 computing machines of

DAS4. We set the Neo4j on a single DAS4 machine with

regular configuration. For all the experiments of Hadoop,

YARN, Stratosphere, and GraphLab, besides the computing

machines, we allocate an additional node to take charge of

all master services. For Giraph, we use one more node for

running ZooKeeper.

Parameters of Algorithms: We try to configure each

algorithm with default parameter values. STATS and CONN

do not need any parameters. For BFS, we randomly pick a

vertex to be the source for each graph. We use only out-edges

to propagate for directed graph, thus the directed graphs are

not entirely traversed. We set the parameters of algorithms

identically on all platforms.

Further experiment configuration: Unless otherwise

stated, we repeat each experiment 10 times, and we report

the average results from these runs. (An example where 10

repetitions would take too long is presented in Section IV-C).

IV. EXPERIMENTAL RESULTS

In this section we present a selection of the experimental re-

sults. We evaluate the six graph processing platforms selected

in Section III, using the process and metrics, and the datasets

and algorithms introduced in Section II. The complete results

are available through our technical report [31]. Compared with

the previous work (Section VI), our experiments show more

comprehensive and quantitative results in diverse metrics.

The experiments we have performed are:

� Basic performance (Section IV-A): we have measured

the job execution time on a fixed infrastructure. Based

on these execution times, we further report throughput

numbers, using the edges per second (EPS) and vertices

per second (VPS) metrics.

� Resource utilization (only in technical report [31]): we

have investigated the CPU utilization, memory usage, and

network traffic.

� Scalability (Section IV-B): we have measured the hori-

zontal and vertical scalability of the platforms; we report

the execution time and the normalized edges per second

(NEPS) for interesting datasets.

� Overhead (Section IV-C): we have analyzed the execution

time in detail, and report important findings related to the

platform overhead.

A. Basic performance: job execution time

The fixed infrastructure we use for our basic performance

measurements is a cluster of 20 homogeneous computing

nodes provisioned from DAS4. With the configuration in [31],

each node is restricted at using a single core for computing.

We configure the cluster as follows. For the experiments on

Hadoop and YARN, we run 20 map tasks and 20 reduce

tasks on the 20 computing nodes. Due to the settings used for

Hadoop [31], the map phase will be completed in one wave;

all the reduce tasks can also be finished in one wave, without

any overlap with the map phase [37]. In Giraph, Stratosphere,

and GraphLab, we set the parallelization degree to 20 tasks,

also equal to the total number of computing nodes.
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TABLE V
STATISTICS OF BFS.

G1 G2 G3 G4 G5 G6 G7
Coverage [%] 99.9 98.5 100 0.1 100 100 100

Iterations 68 8 9 11 6 8 23
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Fig. 1. The execution time of algorithm BFS of all datasets of all platforms.

With these settings, we run the complete set of experiments

(6 platforms, 5 different applications, and 7 datasets) and

measure the execution time for each combination. In the

remainder of this section, we present a selection of our results.

Key findings:
� There is no overall winner, but Hadoop is the worst

performer in all cases.

� Multi-iteration algorithms suffer for additional perfor-

mance penalties in Hadoop and YARN.

� EPS and VPS are suitable metrics for comparing the

platforms throughput.

� The performance of all the platforms is stable, with the

largest variance around 10%.

� Several of the platforms are unable to process all datasets

for all algorithms, and crash.

1) Results for one selected algorithm: We present here

the results obtained for one selected algorithm, BFS (see

Section II-B2).

Because the starting node for the BFS traversal will impact

performance by limiting the coverage and number of itera-

tions of the algorithm, we summarize in Table V the vertex

coverage and iteration count observed for the BFS experiments

presented in this section. Overall, BFS covers over 98% of the

vertices, with the exception of the Citation (G4) dataset. The

iteration count depends on the structure of each graph and

varies between 6 and 68; we expect higher values to impact

negatively the performance of Hadoop.

We depict the performance of the BFS graph traversal in

Figure 1 and discuss in the following the main findings.

Similarly to most figures in this section, Figure 1 has a

logarithmic vertical scale.

Hadoop always performs worse than the other platforms,

mainly because Hadoop has a significant I/O between two

continuous iterations (see Section III). In these experiments,

Hadoop does not use spills, so it has no significant I/O within

the iteration. As expected, the I/O overhead of Hadoop is

worse when the number of BFS iterations increases. For exam-

ple, although Amazon is the smallest graph in our study, it has
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Fig. 2. The EPS and VPS of executing BFS.

the largest iteration count, which leads to a very long execution

time. YARN performs only slightly better than Hadoop—it has

not been altered to support iterative applications. Although

Stratosphere is also a generic data-processing platform, it

performs much better than Hadoop and YARN (up to an

order of magnitude lower execution time). We attribute this

to Stratosphere’s ability to optimize the execution plan based

on code annotations regarding data sizes and flows, and to the

much more efficient use of the network channel.

In contrast to the generic platforms, for Giraph and

GraphLab the input graphs are read only once, and then

stored and processed in-memory. Both Giraph and GraphLab

realize a dynamic computation mechanism, by which only

selected vertices will be processed in each iteration. This

mechanism reduces the actual computing time for BFS, in

comparison with the other platforms (more details are dis-

cussed in Section IV-C). In addition, GraphLab also addresses

the problem of smart dataset partitioning, by limiting the

cut-edges between machines when splitting the graph. These

systemic improvements make the performance of both Giraph

and GraphLab less affected by large BFS iteration counts than

the performance of other distributed platforms.

Because of the two-level main-memory cache of Neo4j, we

differentiate two types of executions: cold-cache (first execu-

tion) and hot-cache (follow-up executions). Figure 1 depicts

the average results obtained for hot-cache executions. The

two-level cache allows Neo4j to achieve excellent hot-cache

execution times, especially when the graph data accessed by

the algorithms fits in the cache. However, the cold-cache

execution can be very long: for example, the ratios between

the cold-cache and hot-cache BFS executions for Citation

and DotaLeague are 45 and 5, respectively. Even for cold-

cache execution, Neo4j reads from the database only the graph

data needed by the algorithm. This “lazy read” mechanism

minimizes the I/O overhead and accelerates traversal on the

graphs where the BFS coverage of the graph is limited, e.g.,

for Citation. However, limited by the resources of a single

machine, the performance of Neo4j becomes significantly

worse when the graph exceeds the memory capacity. For

example, the hot-cache value of Synth is about 17 hours,

exceeding the scale of Figure 1.

We now report on the achieved throughput for the BFS
algorithm, in both EPS and VPS, for all platforms and datasets
(Figure 2). We note that throughput is a metric that takes

into account the dataset structure and provides an indication

of the platforms performance per data item—be it an edge

or a vertex. For example, KGS and Citation, which have
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Fig. 3. The execution time of all algorithms for all datasets running on
Giraph, and for CONN running on GraphLab (right-most bars).

similar numbers of edges, file sizes, and BFS iteration counts,

achieve similar EPS values on most platforms. The exception

is GraphLab, in which the EPS of Citation is about two times

larger than that of KGS. This is due to the restriction of

GraphLab to process only directed graphs, which has required

the conversion of the undirected KGS to a directed version.

This operation lead to a doubling in the number of edges,

resulting in a proportional increase of the execution time.

2) Results for two selected platforms: We focus in this

section on the graph-specific platforms (Giraph and GraphLab)

and discuss their performance for all the algorithms and

datasets, as depicted in Figure 3.

As Giraph is an in-memory-only platform, its performance

is not affected by the large penalties of I/O operations. Figure

3 shows that the execution time for most of the experiments is

below 100 seconds. However, when the amount of messages

between computing nodes becomes extremely large (tens of

gigabytes), Giraph crashes. For example, Giraph crashes for

the STATS algorithm running on the WikiTalk dataset; for

Friendster, the largest of our datasets, Giraph completes only

the EVO algorithm, for which our graph evolution algorithm

generates relatively few messages. From the selected results,

GraphLab performs better than Giraph for the CONN algo-

rithm for most graphs. Moreover, GraphLab is able to process

even the largest graph in this study.

3) Results for two selected datasets: Finally, to understand
the impact of algorithm complexity on each platform, we focus

now on two interesting datasets—DotaLeague and Citation.

We depict their performance, for all algorithms running on all

platforms, in Figure 4.

Because Friendster is too large for some platforms, we

present here the results for graphs that all platforms can pro-

cess: the second-largest real graph, DotaLeague, and the small

Citation graph. Even for the second-largest graph, Giraph,

Hadoop and YARN crashed when running STATS; we also

had to terminate Stratosphere after running STATS for nearly

4 hours without success; similarly, STATS and CD run for

more than 20 hours in Neo4j and are not shown in Figure 4.

For the other algorithms, BFS, CONN, CD, and EVO, the

number of iterations is between 4 and 6. From Figure 4, the

execution time of BFS is lower than the execution time of

CONN and CD, on all platforms. In each iteration of CONN

and CD, many more vertices will be active, in comparison to
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Fig. 4. The execution time for all platforms, running all algorithms for the
DotaLeague dataset, and CONN for the Citation dataset (right-most bars).

BFS. Furthermore, in CONN, the number of active vertices

stays relatively constant in each iteration, while CD is more

compute-intensive and variable. For EVO, Stratosphere takes

advantage of its programming model, as it can represent one

EVO iteration by a single map-reduce-reduce procedure; in

contrast, Hadoop and YARN need to run two MapReduce jobs

per iteration and thus their execution time increases.

Citation is much smaller and sparser than DotaLeague. The

CONN of Citation takes 20 iterations. The execution time

of CONN of Citation on Hadoop, YARN, and Stratosphere

increases compared with 6-iteration CONN of DotaLeague.

As we explained for the analysis of BFS (Section IV-A1),

more iterations result in higher I/O and other overheads.

B. Evaluation of scalability

In this section, we evaluate the horizontal and vertical scal-

ability of the distributed platforms. Besides the job execution

time, we also report the NEPS for comparing the performance

per computing unit.

To allow a comparison with the previous experiments, we

use BFS results. To test scalability, we use the two largest real

graphs in our study, Friendster and DotaLeague (the results

of DotaLeague are in our technical report [31] ). For testing

horizontal scalability, we increase the number of machines

from 20 to 50 by a step of 5, and keep using a single computing

core per machine. For testing vertical scalability, we keep the

cluster size at 20 computing machines and increase the number

of computing cores per machines from 1 to 7. We step up

the number of map (reduce) tasks and parallelization degree

equally to the available computing cores.

Key findings:
� Some platforms can scale up reasonably with cluster size

(horizontally) or number of cores (vertically).

� Increasing the number of computing cores may lead to

worse performance, especially for small graphs.

� The normalized performance per computing unit mostly

decreases with the increase of cluster size and with the

number of computing cores per node.

1) Horizontal scalability: Figure 5 shows the horizontal

scalability of BFS for Friendster (G7). Most of the plat-

forms presents significant horizontal scalability, except for

GraphLab, which exhibits little scalability. The horizontal

scalability of GraphLab is constrained by the graph loading
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Fig. 6. The vertical scalability (left) and NEPS (right) of processing G7.

phase using one single file. We thus explore tuning GraphLab:

for GraphLab(mp) we split the input file into multiple sepa-
rate pieces, as many as the MPI processes. GraphLab(mp)

has much lower execution time than GraphLab. Moreover,

GraphLab(mp) is scalable, as its execution time decrease from

about 480 seconds to 250 seconds when resources are added.

We further investigate the performance per computing unit

(computing node) to check if they also be improved. We

calculate the EPS from the execution time and normalize it

by the number of computing nodes to get the NEPS. The

maximum value of NEPS can be reached at different sizes

of the cluster, for different platforms. For example, the NEPS

of Hadoop and Giraph peaks at 30 and 40 computing nodes of

Friendster, respectively. However, the general trend of NEPS

is to decrease with the increase of cluster size. We have

obtained similar results for the vertex-centric equivalent of

NEPS, NVPS.

2) Vertical scalability: Figure 6 shows the vertical scala-
bility of running BFS for Friendster (G7). There is no result

of Giraph and YARN of Friendster, because both YARN and

Giraph crashed on 20 computing machines. For Friendster,

both Hadoop and Startosphere can benefit from using more

computing cores. However, after 3 cores, the improvement

become negligible. By using more cores, graphs can be

processed with higher parallelism, but may also incur latency,

for example, due to concurrent accesses to the disk. For

GraphLab(mp), for which we split the Friendster file into more

pieces with the increase of the number MPI processes, the job

execution time does not decrease correspondingly. The reason

is that each MPI instance (or machine) has a just single loader

for input files, thus in one machine, the MPI processes cannot

load graph pieces in parallel.

We check the performance per computing unit (computing

core) by NEPS in vertical scalability. We can find similar

results to that of horizontal scalability, all NEPS drops for all

platforms. The competition between computing cores makes

the reduce of execution time not significant enough to improve

the average performance of computing cores.

TABLE VI
DATA INGESTION TIME.

G1 G2 G3 G4 G5 G6 G7
HDFS [s] 1.2 1.8 3.0 3.9 7.0 10.9 312.0

Neo4j [h] 2.0 17.2 2.6 28.8 3.7 24.7 N/A
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Fig. 7. The execution time breakdown of platforms for BFS.

C. Evaluation of overhead

In this section, we evaluate two elements of overhead: data

ingestion time and execution time overhead.

Key findings:
� The data ingestion time of Neo4j matches closely the

characteristics of the graph. Overall, data ingestion takes

much longer for Neo4j than for HDFS.

� The data ingestion time of HDFS increases nearly linearly

with the graph size.

� The percentage of overhead time in execution time is

diverse across the platforms, algorithms, and graphs.

For Neo4j, data ingestion process converts input graphs to

the format used by the Neo4j graph database. In contrast, the

distributed platforms evaluated in this work use HDFS, which

means for them data ingestion consists of data transfers from

the local file system to HDFS. GraphLab even does not need

data ingestion if using the local file system (i.e., NFS). Only

for Neo4j, because data ingestion takes long (up to days),

we only evaluate the data ingestion for Neo4j through one

experiment repetition.

Table VI summarizes the data ingestion results. The data

ingestion time of Neo4j is up to several orders of magnitude

longer than that of HDFS. In our experimental environment,

which uses enterprise-grade magnetic disks, the data ingestion

time of HDFS increases by about 1 second for every 100 MB

of graph data. In contrast, the data ingestion time of Neo4j

depends on the structure and scale of graphs, so it changes

irregularly across the datasets in this study. Dominguez-Sal et

al. [3] report similar results about data ingestion time in their

survey of graph database performance.

We define computation time as the time used for making

progress with the graph algorithms. The overhead time is the

remainder from subtracting the computation time from the

job execution time. Thus, the overheads include the time for

read and write, and for communication. The fraction of time

spent with overheads varies across the platforms (Figure 7).

Although BFS is not a compute-intensive algorithm, Hadoop

and Stratosphere need to traverse all vertices, which increases
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their computation time. In GraphLab, most of the time is

spent on loading the graph into memory and on finalizing

the results. The percentage of overhead time on each platform

is closely related to the complexity of the algorithm and the

characteristics of graph. For example, we also found that for

Citation, the percentage of overhead time is 98% and 70% for

BFS and CONN, respectively (see technical report [31]).

V. DISCUSSION: TOWARDS A BENCHMARK

The method proposed in Section II raises several method-

ological and practical issues that prevent it from being a bench-

mark. We argue that our method can result in meaningful,

comprehensive performance evaluation of graph-processing

platforms, but the path towards an industry-accepted bench-

mark still raises sufficient challenges. Outside the scope of

this work, we continue to pursue resolving these issues via

the SPEC Cloud Working Group.

Methodologically, our method has limitations in its pro-

cess, workload design, and metrics design. Specifically, our

method does not offer a detailed, infrastructure- and platform-
independent process; for example, it does not limit mean-

ingfully the amount of tuning done to a system prior to

benchmarking and it does not precisely specify the acceptable

components of a platform (should a cloud-based platform

include the Internet linking its users to the data center?).

The workload design, although it covers varied datasets and
algorithms, does not feature an industry-accepted process of

selection for them, and does not select datasets and algorithms

that can stress a specific bottleneck in the system under test.

Proving algorithmic coverage is currently not feasible, due to
field fragmentation and lack of public workload traces; solving

this ”chicken-and-egg” problem cannot be properly addressed

without collecting workload traces for several years and from

several major operators.

Metrics-wise, our method does not provide only a single
result—which helps with the analysis of the causes of per-
formance gaps between platforms—; does not provide metrics

for a variety of interesting platform characteristics (e.g., power

consumption, cost, efficiency, and elasticity); and could do

more in terms of normalized metrics (i.e., by normalizing by
various types of resources provided by the system, such as

number of cores or size of memory). Using other metrics is

outside the scope of our work, as different communities are

interested in different operational aspects (SPEC identifies tens

of relevant metrics).

From a practical perspective, our method has limitations

in portability, time, and cost. The portability is limited by
the need to re-implement algorithms for each platform and to

re-configure platforms for each experiment. The time spent
in implementing our method is analyzed in our technical

report [31]. The cost of performing a benchmark, in particular
in tuning, is a non-trivial issue, for which few benchmarks

provide a solution. Another non-trivial practical aspect is

reporting (an outcome of the analysis stage), which our method

does not precisely specify. In contrast, SPEC benchmark users

can report results for baseline (not tuned) and peak (tuned)

TABLE VII
OVERVIEW OF RELATED WORK. LEGEND: V–VERTICES, E–EDGES,

C–COMPUTERS.

Platforms Algorithms Dataset type Largest dataset System
Neo4j, MySQL [39] 1 other synthetic 100 KV 1 C

Neo4j, etc. [3] 3 others synthetic 1 MV 1 C

Pregel [4] 1 other synthetic 50 BV 300 C

GPS, Giraph [40] CONN, 3 others real 39 MV, 1.5 BE 60 C

Trinity, etc. [28] BFS, 2 others synthetic 1 BV 16 C

PEGASUS [26] CONN,2 others synthetic, real 282 MV 90 C

CGMgraph [41] CONN, 4 others synthetic 10 MV 30 C

Hadoop, GraphLab, etc. [42] 1 other real 3 MV, 117 ME 32 C

PBGL, CGMgraph [43] CONN, 3 others synthetic 70 MV, 1 BE 128 C

HaLoop, Hadoop [24] 2 others synthetic, real 1.4 BV, 1.6 BE 90 C

Hadoop, PEGASUS [44] 1 other synthetic, real 1 BV, 20 BE 32 C

Our work 5 classes synthetic, real 66 MV, 1.8 BE 50 C

systems, and SPEC results include a full disclosure of the

parameters used in configuring the systems; however, SPEC

benchmarks are sophisticated products and the result of years

of development.

Experiments with larger environments and datasets, and

with new algorithms and metrics, can add to the bulk of the

results presented in this work. However, the need for such

experiments is not supported by existing published evidence:

as we show in Section VI, our work already extends and

complements previous work. Requiring experiments in larger

clusters, while relevant for companies such as Facebook (thou-

sands of nodes), does not match the needs of SMEs that want

efficient graph-processing, and the information we have about

state-of-the-art (Section VI).

These limitations also affect other benchmarks [38] and

performance evaluation studies included in the related work of

this study. As we indicated in the introduction of our article,

we point out that the de-facto standard in benchmarking graph-

processing platforms is Graph500 (one algorithm and one

graph type); in contrast, our work provides a significant im-

provement in both algorithms (processing patterns and scope)

and datasets (two public graph archives, several application

domains, and various graph structures).

VI. RELATED WORK

Many previous studies focus on performance evaluation of

graph-processing, for different platforms. Table VII summa-

rizes these studies and compares them with our work. Overall,

for the studies in our survey, most of the datasets included

in previous evaluation are synthetic graphs. Although some

of the synthetic graphs are extremely large, they may not

have the characteristics of real graphs. Our evaluation selects

6 real graphs and 1 synthetic graph with various charac-

teristics. Relative to our study, fewer classes of algorithms
are used to compare the performance of platforms. From
our observation, a very limited number of metrics have been

reported, with many of the previous studies focusing only on

the job execution time. Our work evaluates performance much
more in-depth, by considering more types of metrics. Finally,
previous research compares few platforms; in contrast, we in-
vestigate 6 popular platforms with different architectures. Our
environment is of similar scale with state-of-the-art studies in
distributed systems.
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VII. CONCLUSION

A quickly increasing number of platforms can process large-

scale graphs, and have thus become potentially interesting for

a variety of users and application domains. We focus in this

work on SMEs, which are businesses with little resources

to spare in their graph-processing clusters. To compare in-

depth the performance of graph-processing platforms, and thus

facilitate platform selection and tuning for SMEs, we have

proposed in this work an empirical method and applied it to

obtain a comprehensive performance study of six platforms.

Our method defines an empirical performance evaluation

process and selects metrics, datasets, and algorithms; thus,

it acts as a benchmarking suite despite not covering all the

methodological and practical aspects of a true benchmark.

Our method focuses on four performance aspects: raw per-

formance, resource utilization, scalability, and overhead. We

use both performance and throughput metrics, and we also

use normalized metrics to characterize scalability. We imple-

ment a benchmarking suite that uses five representative graph

algorithms—general statistics, breadth-first search, connected

component, community detection, and graph evolution—, and

seven graphs that represent graph structures for multiple

application domains, with sizes up to 1.8 billion edges and

tens of GB of stored data.

Using our benchmarking suite, we conduct a first detailed,

comprehensive, real-world performance evaluation of six pop-

ular platforms for graph-processing, namely, Hadoop, YARN,

Stratosphere, Giraph, GraphLab, and Neo4j. Our results show

quantitatively and comparatively the highlights and weak-

nesses of the tested platforms. The main lessons are listed

at the start of each experiment.
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