
POSUM: A Portfolio Scheduler for
MapReduce Workloads

Maria A. Voinea
Technische Universiteit Delft
m.voinea@student.tudelft.nl

Alexandru Uta
Vrije Universiteit Amsterdam

a.uta@vu.nl

Alexandru Iosup
Vrije Universiteit Amsterdam

a.iosup@vu.nl

Abstract—MapReduce ecosystems are (still) widely popular
for big data processing in data centers. To address the diverse
non-functional requirements arising from many and increasingly
more sophisticated users, the community has developed many
scheduling policies for MapReduce workloads. Although some
individual policies can dynamically optimize for single and stable
performance objectives, such as minimizing runtime or cost,
or meeting deadlines for realtime-jobs, it seems unlikely that
individual policies will remain competitive for increasingly more
dynamic workloads and objectives. In contrast, in this work we
investigate the ability to dynamically balance performance and
cost of a portfolio scheduler for MapReduce workloads. To this
end, we design and implement a portfolio scheduling technique,
that is, a system capable of adapting to the current workload
characteristics and target objectives by periodically evaluating
its set of potential policies, and of switching to ”the best”
policy that targets the current system state. We implement and
evaluate our system with real-world experiments on a workload
containing a mixture of real-time and batch jobs, with the
purpose of minimizing deadline violations, while keeping batch
job slowdown in check. Our results show that POSUM is a
promising alternative: it can out-perform the individual policies
of its portfolio for the combined optimization goal, even without
precise predictions.

I. INTRODUCTION

Although not a universal panaceum for big data problems,
MapReduce [1] systems are widely used in industry, gov-
ernance, and academia [2]. Scheduling MapReduce work-
loads is thus important, and, as literature indicates [3], [4],
[5], extremely challenging. Various schedulers and resource
managers have already been proposed to address MapReduce
stragglers [6], resource utilization [7], and job deadlines [8].
However, designing only one scheduler to optimize for multi-
ple performance goals is difficult, error-prone, and ephemeral
in that a change of goals can render the scheduler ineffective.
In contrast, we propose a system that dynamically switches
between a set of scheduling policies, to achieve the desired
(and possibly changing) goals. This concept, of portfolio
scheduling [9], [10], has never been investigated for big
data workloads, and in particular has never been used for
MapReduce.

Companies are increasingly relying on big data and busi-
ness analytics to make their products and services customer-
centric, improve operational performance, and even identify
new business opportunities. Between 2015 and 2017, big data
adoption in the industry has increased by 17%, and 53% of
the companies that participated in an interview [11] declared

that they used big data techniques. Moreover, concurrently,
governments and municipalities [12], [13] are also investing
in big data analytics for improving public health and safety,
and sustainability.

MapReduce ecosystems [14], through many representa-
tives [15], [16], [17], provide a widely-used and adopted pro-
gramming model for big data processing, developed to achieve
abstraction and scalability with reasonable drawbacks [1].
Already highly versatile, MapReduce clusters are used to
run varied workloads: from batch jobs, to latency-sensitive
and deadline-constrained jobs, spanning many application do-
mains: analytics, business intelligence, ETL, and warehousing.

Such abundance of use cases has given rise to an abundance
of scheduling policies built for reaching the respective oper-
ational and performance goals of individual usage scenarios.
Most straightforward and common policies try to reduce the
runtime of workloads. For MapReduce applications that are
part of a more elaborate business pipeline, the scheduling
policy needs to manage deadlines [5]. Other schedulers may
focus on the financial cost of allocating resources [18], on
reducing slowdown variability [19], on achieving resource
fairness [20], on managing long delay tails [21], or on energy
efficiency [22].

However, user needs are increasingly more sophisticated.
And usage patterns are becoming more complex. Similarly,
scheduling policies can be conceived to work at different
levels and may have various effects depending on workload
composition [23]. But to allocate data center resources and
balance achieving functional and performance goals, current
MapReduce frameworks, such as Hadoop YARN, select and
then rely on a single scheduling policy, often based on simple
heuristics. Once selected (by the system administrator or user),
only one such policy is in use until the resources are de-
allocated.

We argue that leveraging a single scheduling policy in
a complex, multi-user MapReduce system is ill-suited for
catering to the needs of all its users, leading to poor (overall)
performance. Moreover, designing and maintaining one such
policy is difficult to achieve, given the highly dynamic and
transient nature of data center workloads.

To address this problem, in this work we propose POSUM, a
POrtfolio SchedUler for Mapreduce, as an alternative for tack-
ling compound objectives for dynamic MapReduce workloads.
At its core, POSUM relies on online simulation to evaluate,

given the current state of the system, which policy will perform
best, before switching to it for a given time period. This allows
each policy to remain manageable in terms of complexity
and hold true to its target use case, while still leaving room
for the system to adapt at runtime and achieve the necessary
performance objectives. In this work, our contribution is four-
fold:

1) We design a generic portfolio scheduler architecture
for MapReduce systems (Section III). We implement
POSUM as a modular open-source addition to Hadoop
YARN, which serves as a platform for practitioners and
researchers to further investigate and extend portfolio
scheduling for MapReduce ecosystems.

2) We propose an easily extensible set of scheduling poli-
cies, the portfolio of POSUM (Section IV). Our policies
of choice represent state-of-the-art scheduling techniques
for MapReduce systems.

3) We design and open-source a generic simulator for the
online prediction of MapReduce task behavior (Sec-
tion V).

4) We implement POSUM and evaluate it through real-world
experiments (Section VI). Our workload is a mixture of
real-time and batch jobs, with the purpose of minimizing
deadline violations, while keeping batch job slowdown in
check.

II. MAPREDUCE AND PORTFOLIO SCHEDULING

In this section we introduce the core-concepts and tech-
niques used in state-of-the art MapReduce scheduling.

Job scheduling is a well-developed subject in the data center
context. For MapReduce specifically, multiple scheduling poli-
cies have been devised to prioritize and optimize job execution,
considering the particular characteristics of these workloads.
The first MapReduce schedulers operated on First-In-First-Out
(FIFO) order. Later, Fair Scheduling [24] was introduced for
using max-min fairness to share resources between pools of
jobs or users.

Within the same job, tasks have always had higher priority
on nodes holding their data. However, delay scheduling ap-
proaches [25] [3], relax inter-job priority even more to achieve
better data locality. Cheriere et al. [26] argue that considering
data locality when choosing which job should run on a given
free slot leads to long wait times for small short jobs. Their
Shortest Remaining Time First (SRTF) scheduling policies give
higher priority to such jobs. Nguyen et al. [4] use a compound
metric with variable coefficients to control the extent to which
these short jobs are favored.

Meeting specific Service Level Objectives (SLOs) for jobs is
another direction of optimization for MapReduce schedulers.
Kc and Anyanwu [27], Polo et al. [28], Dong et al. [29],
and Verma et al. [8] use historical information to predict
future resource needs for achieving the required deadlines.
Lim et al. [5] attempt to address the issue using offline
constraint programming (CP). Other directions of research
include mitigating stragglers (hanging tasks that need to be
restarted), dynamic voltage scaling, virtualization, etc.

Fig. 1. The classic periodic portfolio scheduler for datacenters [9].

Our approach for achieving compound objectives under
variable workloads relies on portfolio scheduling. The tech-
nique was borrowed from economics and first introduced to
the field by Deng et al. [9]. As seen in Figure 1, the scheduler
contains a portfolio of policies which it evaluates periodically
using a simulator. The simulator predicts the behavior of each
policy under the current system load, given the queued jobs. It
returns a score as a combination of performance metrics. The
scheduler chooses the policy with the highest score to switch to
for the duration of the next period. The same concept has been
successfully applied in previous studies to schedule scientific
workloads on a compute cluster [30] and long-running virtual
machines in data centers [10].

III. DESIGN OF A GENERIC PORTFOLIO SCHEDULER FOR
DATACENTER-BASED MAPREDUCE

In this section, we introduce and discuss the architecture of
POSUM, and motivate the design decisions behind our pro-
posed architecture. We start by presenting our requirements,
and introduce the architecture that augments the MapReduce
system with portfolio scheduling capabilities.

We start the design process of the portfolio scheduler with
the following requirements. In short, POSUM should:

1) Include necessary conceptual elements of portfolio
scheduling found in previous work;

2) Take into account the characteristics of MapReduce pro-
cessing;

3) Adapt the resulting scheduler architecture to an actual,
widely used MapReduce framework;

4) Keep the design flexible so as to explore and compare
different approaches;

5) Follow or compare to state-of-the-art techniques wherever
possible.

Addressing these goals, we design POSUM, an online meta-
scheduler that can switch scheduling policies at runtime, based
on real-time policy performance evaluations. POSUM is meant
to be self-contained and exist alongside a MapReduce cluster,
only interacting with it when gathering runtime information
and for switching scheduling policies. This makes it possible to
easily integrate it with any MapReduce runtime framework. To
test compliance with the third design goal, our implementation
is integrated with the Hadoop (YARN) stack.

A. POSUM Architecture

The POSUM system follows the high-level architecture
illustrated in Figure 2. It is comprised of three main processes

which interact during runtime: (i) the Data Master, (ii) the
Simulator, and (iii) the Orchestrator.

The Data Master is responsible for monitoring the sys-
tem and providing a coherent view of the stored statistics
to the other processes. Two monitoring processes operate
on a configurable heartbeat. First, the Cluster Monitor gets
real-time information about applications and tasks that are
running from the MapReduce framework. Second, the POSUM
Monitor, gathers and interprets data on the operation of
POSUM itself: simulation durations, the discrepancy between
simulation scores and actual policy performance, etc.

The information gathered by the Data Master is used most
intensively by the Simulator Master, a loosely coupled
component that can simulate the outcome of a scheduling
policy, given a certain queue composition, cluster state, and
previous runtime statistics (see Section V).

All decisions regarding POSUM’s operations are made
by the Orchestrator. It triggers or stops policy scoring
simulations, it handles the application of policies, and makes
decisions based on the feedback gathered by the system mon-
itor. It is also responsible for applying provisioning decisions,
by reconfiguring the cluster to make use of or free recently
added nodes.

However, actual policy application is done via the
Portfolio Meta Scheduler, which is not an indepen-
dent process, but a placeholder that extends the standard re-
source scheduler interface of the target framework (i.e., in our
case, Hadoop). It delegates all its public and protected methods
to the current policy that is being applied. It keeps evidence
of the available scheduling policies and uses the logic of the
currently plugged-in policy to reach each scheduling decision.
This abstraction ensures that the transition between policies
is seamless and does not disrupt the framework’s operation.
We have found that this component also needs access to the
statistics on application progress, when policies need more
information about the running jobs to take decisions.

Keeping the architecture modular achieves separation of
concerns and enables both flexibility in approach exploration
(demanded by the fourth goal) and runtime performance
tweaking. Each process can be deployed to a separate machine,
can have different JVM characteristics, and can be restarted
independently on failure.

IV. PORTFOLIO OF SCHEDULING POLICIES

In this section we propose a portfolio of four scheduling
policies to be used by POSUM during runtime. Our proposed
set of policies is not exhaustive, but the POSUM implementa-
tion permits researchers and practitioners to easily implement
their policy of choice. We start by motivating our choice of the
four policies chosen and describe their functionality. Table I
summarizes the policies implemented in POSUM.

The policies contained in the portfolio should be repre-
sentative and capable of performing on different workload
patterns and application types. However, their number should
be relatively restricted, so as to minimize the exploration
step during the selection and application phases. Seeing as

Fig. 2. POSUM modular architecture overview.

this is the first exploratory study of portfolio scheduling on
MapReduce, and the operational model is not confined to a
particular domain, the set of policies is inspired by a survey
of the field. The following two performance dimensions are
kept in mind: respecting deadlines and lowering batch job
runtime (see Section VI for the system model details). For
deadline constrained (DC) jobs, the baseline policy is usually
Earliest-Deadline-First (EDF) in the literature [27], [28], [29].
Following the same reasoning, for the second performance
dimension, jobs with larger slowdown should have higher
priority. Thus, for batch jobs (BC), the Largest-Slowdown-
First (LSF) heuristic [30] is a good candidate. However, a
form of prioritization needs to be established between the two
categories as well.

Two solutions are adopted for this, resulting in the pair of
policies EDLS-Sh and EDLS-Pr. The δ parameter is config-
urable in the system (between 0 and 1) and represents the
importance of DC jobs for the cluster owner. The two policies
optimize by tailoring to the types of jobs in the workload. It is
to be noted that although they derive conceptually from general
cluster scheduling techniques, it is not entire jobs that are
scheduled using the heuristics, but their constituent tasks. This
results in constant reshuffling of the jobs in the priority queues
even while they are running, a characteristic of MapReduce
processing.

Another pair of policies is added to optimize for the size
of the jobs in the workload: hSRTF and LOCF. The former
should give preference to jobs that have smaller input and
shorter execution times, while the latter favors the ones with
large input sizes. This happens because a larger input would
be distributed on a larger portion of the cluster, increasing the
probability of at least one task being local on the target node
(at least in the beginning of the job’s execution).

The resulting set of four policies thus achieves a balance

TABLE I
THE PORTFOLIO OF POLICIES USED BY POSUM.

Name Type Description

EDLS-Sh allocation
Share-based scheduler. DC jobs are ordered by EDF and get a share of the cluster equal to δ. BC
jobs are ordered by LSF and get (1− δ) of the cluster.

EDLS-Pr allocation
Order-based scheduler. DC jobs are ordered by EDF in one queue. The BC jobs are in LSF order in
another queue. When resources become available, the DC queue has a chance equal to δ of receiving
them. Otherwise, the BC queue does.

hSRTF allocation Share-based version of the Shortest-Remaining-Time-First scheduler [26].
LOCF allocation FIFO scheduler that enforces locality along the lines of [25] and [3].

between both types of priority enforcement, while tailoring to
specific workload characteristics. Moreover, they enrich tra-
ditional job scheduling approaches with MapReduce-specific
dimensions like task performance and data locality (in line
with the second design goal). The full spectrum of policies
is explored on each simulation. Once a decision is made, the
sub-policy is plugged into the system as the main scheduler.

V. DESIGN OF A GENERIC SIMULATOR FOR
DATACENTER-BASED MAPREDUCE

In this section we introduce the design of the POSUM
simulator component. POSUM uses a discrete-event simulator
which mimics the same message-based event handling mech-
anism that enables MapReduce frameworks, like Hadoop, to
operate. Resources are not modeled explicitly so as to reduce
simulation time as much as possible (since the decisions need
to be real-time). For further simplification, failure events are
not considered in this version of POSUM. The simulator
hypothesizes about the behavior of jobs as they come into
the system, by looking at their configuration, their current
behavior (if they are already running), and historical data
gathered from jobs that have already run on the system, that
may or may not have had similar characteristics.

The heart of the simulator is the Predictor, a component
responsible for estimating how long each task will take. It
calculates task runtimes by looking at similar tasks that have
been run on the system, using a technique adapted from
literature [28] [27]. We consider tasks similar if they run the
same map/reduce function, are submitted by the same user, or
at least have the same type (map or reduce). Task durations
are considered directly dependent on the data they have to
process. So to obtain the duration of a map task, we calculate
the average input processing rate from the past map tasks and
multiply it by the size of the input split of that specific task.
For reduce tasks, we try to do the same, but we can only
estimate the size of their input, by calculating the average
selectivity (ratio of output size to input size) of map tasks
that are similar to those of the current job. If no history is
available at all, but some map tasks have already completed,
the processing rate of reduces is considered equal to the map
processing rate. The result is close to what describe, without
differentiating between the reduce steps.

VI. POSUM EXPERIMENTAL EVALUATION

In this section we present our experimental evaluation
of POSUM. The scope of our empirical analysis is three-

fold. First, we perform an analysis of the simulator. Second,
we present a qualitative performance comparison between
dynamic policy application (i.e., portfolio scheduling) and
running each policy of the portfolio policies separately. Finally,
we present evidence for the resource utilization of the POSUM
components. The main findings of our empirical analysis are:
MF1 The simulator is roughly accurate when forecasting

tasks which do not exhibit variability (e.g., maps), but the
quality of the simulation degrades for reduce tasks which
exhibit variability. Also, simulations and policy changes
add little overhead to the system’s functioning.

MF2 Portfolio scheduling cannot outperform policies that
target single performance objectives. However, it balances
mixed performance goals well, even in the absence of
accurate task runtime predictions.

Implementation and experimentation effort: POSUM is im-
plemented in Java in 70,000 LoC during 12 person-months.
Another 3 person-months have been used for testing, validation
and the experimental analysis described in this section.

A. Hardware and Software Environment

POSUM is integrated into the Hadoop (YARN) 2.7.1 stack.
Our implementation is open-source and can be accessed online
in our Hadoop repository fork1. All the components are
started as separate processes that communicate via the same
RPC mechanism that Hadoop uses internally. Experiments are
carried out using 10 nodes (8 worker nodes, 1 Hadoop master,
and 1 node running the POSUM processes) in the TU Delft
site of the DAS-52. Each machine is equipped with two 8-
core Intel E5-2630v3 CPUs, 64 GB memory, and 4 TB HDD.
The nodes are interconnected with two networks: a 54-Gbps
FDR InfiniBand, and a 1 Gbit Ethernet. The cluster nodes are
running CentOS 7.2, Linux Kernel 3.10, and the JVM used to
run Hadoop is OpenJDK 1.8.

B. Workload Generation

Our workloads are a mixture of real-time and batch jobs,
with the purpose of minimizing deadline violations, while
keeping batch job slowdown in check. As production trace
data is often lacking in runtime system information, we run
real-world experiments using the micro-benchmarking tool
called BigDataBench3 [31] (inspired by HiBench [32]). The

1https://atlarge.ewi.tudelft.nl/gitlab/m.voinea/hadoop
2http://www.cs.vu.nl/das5/
3http://prof.ict.ac.cn/BigDataBench/

TABLE II
WORKLOAD APPLICATION TYPES.

Application CPU
Utilization

I/O
Utilization Data Sizes

Sort Low High 8 - 56 GB
WordCount High Low 2 - 35 GB

Nutch Indexing High Medium 50K - 2M websites,
300 MB - 12 GB

Naive Bayes
Classification Low High 2 - 18 GB

workloads are synthetic, created as a mix of four job types:
Sort, WordCount, Naive Bayes classification, and Nutch page
indexing. The input data for each job is generated with sizes
drawn from an exponential distribution of predominantly small
values, as per the findings by Chen et al. [23]). In the case
of the real-time applications, deadlines are generated using
a technique from literature [28], [5], i.e. the time it takes
to run an application with the same data size alone on the
cluster, multiplied by the a relaxation factor. The jobs arrive on
average every minute for the duration of one hour. Using such
techniques we randomly generate different workloads (i.e., the
sequence of the jobs, and their count are different) to evaluate
our portfolio scheduler. The specific application types within
workloads and their descriptions can be found in Table II.

C. Simulator

Validating the accuracy of the simulator is not straight-
forward. The simulator needs to hypothesize about task-to-
node allocation given a large number of tasks, fluctuating
prediction accuracy, and a continuously evolving internal state
of the simulated scheduling policy. While all this is hard to
capture with a single evaluation function, we can, however
create a basic visualization of the state of the cluster over
time, comparing reality to the periodic simulations. For this
we use a small workload of 7 mixed jobs arriving all at once,
configure POSUM to run and simulate only the SRTF policy,
and train the predictor on the trace of a previous run of the
same workload on the real cluster.

Figure 3 shows the evolution of the number of running
tasks on the cluster, grouped by job. We notice that the
first simulation starts only a few seconds into the run. The
distribution of tasks in the beginning of the simulation follow
roughly the same pattern as on the real cluster, however, the
predictor underestimates the total time it would take Job 2 to
finish, giving it priority over the rest of the jobs. In the second
simulation (roughly ten minutes into the run), prediction is
more accurate for Job 2, sending it to the end of the job queue,
but Job 1 is expected to finish much earlier than in reality.
This causes Job 6 to take over the clusters slots 2 minutes
before this happens in the real cluster, and all following jobs
to start earlier. Also, the final reduce tasks of Job 2 are
greatly underestimated for the entire run of the workload,
creating a large discrepancy between simulations and reality,
with respect to the finish time of the workload. Upon a more
detailed analysis, we can attribute this to the fact that most
reduces suffer from significant performance variability that is

not dependent on input size. For example, sort reduce tasks
can take anywhere from 30 seconds to 15 minutes to process
13.6 GB of data.

Even though this analysis gives no quantitative evidence of
the performance of the simulator, we believe that our visual-
ization supports MF1. It shows that the allocation decisions
of the simulated policy will be similar to reality, as long as
task runtime predictions are accurate enough. We consider
this result to be sufficient for carrying out the performance
experiments that follow.

Next, we looked at the overhead of simulations and policy
application. Simulations last for an average of 14 seconds on
the hour-long workloads that we experimented with. After the
policy decision is made, it takes the meta-scheduler around 2
seconds to transfer state to the next policy. These values are
not significant with respect to the average runtime of a job in
the cluster (6.5 minutes).

Fig. 3. Visualization of two simulation outcomes in comparison to the real-
world execution.

D. Performance Objectives

Throughout the experiments, the performance objective
comprises two aspects: the root mean square average of SLO
violations (V) and total batch job bounded slowdown (S).
Violations are calculated as the time in milliseconds between
the finish time of a job and its deadline (or zero if no
violation occurred). Bounded slowdown is the ratio between
the time spent by a job in the system and the cumulated
execution time of its tasks, with a minimum of 10 seconds).
We use normalization factors, α and β, to compensate both the
value range differences, and the relative importance of each
metric to our hypothetical data center customer. Thus, the total
performance score for a workload run (either real or simulated)
is: P = αV + βS. We note that it is difficult to find optimal
values for the α and β parameters, and, furthermore, these

TABLE III
THE TYPES OF SCORE FUNCTIONS AND THEIR NORMALIZATION FACTORS.

Score Function
Slowdown
Normalization
Factor (α)

Deadline Violation
Normalization
Factor (β)

Meta-Scheduler
Mode

BC Optimization 1000 1E-6 DYN BC
DC Optimization 1E-6 1000 DYN DC
Mixed Optimization 100 1 DYN MID

parameters could vary depending on the user’s requirements.
Thus, an in-depth study into the choice of such parameters, or
a sensitivity study is out of the scope of this paper.

E. Portfolio Scheduler

The second type of experiments is focused on system per-
formance. Two workloads are run with each of the allocation
policies mentioned in Table I, and the resulting compound
scores are compared with those of obtained when enabling
dynamic policy switching. Three different sets of values are
chosen for the α and β normalization factors of the compound
score formula to measure the sensitivity of the system to
administrator tuning, as seen in Table III. The first favors batch
jobs (BC Optimization), the second deadline constrained jobs
(DC Optimization), and the third targets a mixture of the two
(Mixed Optimization).

Figure 4 plots the results for one of the workloads generated
as described in Section VI-B. The lower the score, the better
the performance. The chart has been cut off at 2500 for
better visualization. The SRTF policy gives the best results
when optimizing for batch job slowdown, followed by the
batch-favoring DYN BC mode of the meta-scheduler and then
LOCF. The deadline-aware policies, EDLS-Sh and EDLS-Pr
give less importance to slowdown in favor of meeting job
deadlines, resulting in much higher values for this type of
score. As EDLS-Sh reserves an entire section of the cluster for
deadline-constrained jobs that remains idle while only batch
jobs are running in the system, its results are particularly
poor in this respect. When prioritizing for deadline-constrained
jobs, however, EDLS Sh has the best results of all, followed
closely by EDLS-Pr. All three dynamic scheduling modes also
perform better on this goal than SRTF and LOCF, but there
is no clear distinction between the modes. For the mixed
optimization goal, DYN BC seems to perform best, even
over DYN MID. SRTF is again a strong contender, but the
deadline-aware policies suffer from the same skew.

In general, our results show that the meta-scheduler can-
not out-perform SRTF in slowdown optimization or EDLS-
Sh in reducing deadline violations, but it does come close.
Interesting to note is that DYN BC and DYN MID meta-
scheduler modes seem to sometimes perform better for each
other’s optimization goals, as was the case in the workload
presented above. Our findings support MF2.

VII. RELATED WORK

While the concept of portfolio scheduling has been used
before, previous work is not directly compatibile with the
described MapReduce cluster. The approach of van Beek et

352
423

1,351

 399.88

626

457
378

442

132 160
270 280 290

731

865

1,511

669

907

748

SRTF LOCF EDLS_SH EDLS_PR DYN_BC DYN_DC DYN_MID
0

500

1000

1500

2000

2500

BC Score DC Score Mixed Score

Scheduler

S
co

re

5,892 6,024

Fig. 4. Performance objective evaluation of POSUM on one workload.

al. [10] took into consideration only the provisioning of long-
running VMs, not the scheduling of individual jobs. Closer to
the current model is the work of Deng et al. [30]. However,
it differs in both workload type and operation. MapReduce
workloads are generally data-intensive, as opposed to scientific
computing, which are generally more concerned with CPU-
RAM interaction. Furthermore, where in the model of Deng
et al., jobs were considered independent and were assigned
VMs from the pool, the current model divides each job into
several tasks that have dependencies and communication needs
between them.

This work also draws inspiration from previous research
in the design of the simulator. However, none of the exist-
ing solutions fully match our simulation requirements. SLS4,
MRPerf [33] and MRSim [34] have very low-level resource
models that result in heavy time costs, while MRSG [35] and
YARNsim [36] are designed to run a specific job based on a
manually-constructed behavior configuration, and not an entire
workload. Mumak, SimMR and Starfish are not compatible
with the YARN architecture and require upgrading, but Mu-
mak is available for source modification. However, Mumak
is not capable of running a new workload: it only replays
previous traces with a given scheduler. In conclusion, we have
designed and implemented a new MapReduce simulator for
use with the portfolio scheduler, based on techniques and
results of previous work.

With regard to the body of existing work for scheduling
MapReduce applications (briefly described in Section II), the
focus of this work is not devising a single new and effective
scheduling policy, but rather adapting existing solutions to
work in a complementary fashion so as to cater to different
workload compositions and arrival patterns.

VIII. CONCLUSION AND FUTURE WORK

Designing one single scheduling policy to achieve com-
pound performance goals is complex and risky. Our system
uses the advantages of portfolio scheduling to cater to this
use case. We have found that it is best to decouple such a
system from the MapReduce framework itself and keep the
architecture modular and make processing statistics available

4https://hadoop.apache.org/docs/r2.4.1/hadoop-sls/
SchedulerLoadSimulator.html

at all times and in a consistent fashion. Also, current simulators
are not equipped for online prediction of task behavior on the
newer Hadoop stack. We, thus, offer our own implementation
of one.

An experimental assessment of the simulator shows that it
can follow the general trend of task distribution on the cluster,
but its accuracy suffers when reduce task runtimes exhibit
considerable variability, calling for a more complex prediction
model for this task type that takes this aspect into account.

When evaluating the system as a whole, we have concluded
that POSUM cannot out-perform policies that target a single
performance objective specifically. However, it does a good
job at balancing performance goals, even without flawless task
runtime predictions. Another observation is that the end score
of the workload run does not always reflect the exact balance
of BC job to DC job priority specified in the configuration.
Consequently, the evaluation function’s scaling factors should
be tuned periodically by a human administrator or an adaptive
algorithm that can account for changes in the order of mag-
nitude of the constituent evaluation metrics. This is left for
future work. As is the exploration of cluster resizing policies
in combination with the allocation policies to optimize for a
third performance objective: cumulated node lease cost.

ACKNOWLEDGMENTS

Work supported by the projects Vidi MagnaData and
COMMIT/.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and A. Douglas,
“Nobody ever got fired for using hadoop on a cluster,” in Proceedings of
the 1st International Workshop on Hot Topics in Cloud Data Processing,
ser. HotCDP ’12. New York, NY, USA: ACM, 2012, pp. 2:1–2:5.
[Online]. Available: http://doi.acm.org/10.1145/2169090.2169092

[3] C. He, Y. Lu, and D. Swanson, “Matchmaking: A new mapreduce
scheduling technique,” in CloudCom, 2011, pp. 40–47.

[4] P. Nguyen, T. A. Simon, M. Halem, D. Chapman, and Q. Le, “A
hybrid scheduling algorithm for data intensive workloads in a mapreduce
environment,” in UCC. IEEE Computer Society, 2012, pp. 161–167.

[5] N. Lim, S. Majumdar, and P. Ashwood-Smith, “A constraint pro-
gramming based hadoop scheduler for handling mapreduce jobs with
deadlines on clouds,” in ICPE, 2015, pp. 111–122.

[6] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri,” in OSDI, 2010, pp. 265–278.

[7] N. Yigitbasi, K. Datta, N. Jain, and T. Willke, “Energy efficient schedul-
ing of mapreduce workloads on heterogeneous clusters,” in GCM.
ACM, 2011, p. 1.

[8] A. Verma, L. Cherkasova, and R. H. Campbell, “Resource provisioning
framework for mapreduce jobs with performance goals,” in Middleware,
2011, pp. 165–186.

[9] K. Deng, R. Verboon, K. Ren, and A. Iosup, “A periodic portfolio
scheduler for scientific computing in the data center,” in JSSPP, 2013,
pp. 156–176.

[10] V. van Beek, J. Donkervliet, T. Hegeman, S. Hugtenburg, and A. Iosup,
“Self-expressive management of business-critical workloads in virtual-
ized datacenters,” IEEE Computer, vol. 48, no. 7, pp. 46–54, 2015.

[11] L. Columbus, “53% of companies are adopting big data ana-
lytics, 2017,” https://www.forbes.com/sites/louiscolumbus/2017/12/24/
53-of-companies-are-adopting-big-data-analytics/#1b06a86c39a1.

[12] G.-H. Kim, S. Trimi, and J.-H. Chung, “Big-data applications in the
government sector,” Communications of the ACM, vol. 57, no. 3, pp.
78–85, 2014.

[13] R. Munné, “Big data in the public sector,” in New Horizons for a Data-
Driven Economy. Springer, 2016, pp. 195–208.

[14] A. Iosup, A. Uta, L. Versluis, G. Andreadis, E. van Eyk, T. Hegeman,
S. Talluri, V. van Beek, and L. Toader, “Massivizing computer systems: a
vision to understand, design, and engineer computer ecosystems through
and beyond modern distributed systems,” in IEEE ICDCS, 2018.

[15] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in SIGMOD, 2015, pp. 1383–1394.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in MSST, 2010, pp. 1–10.

[17] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2,
pp. 1626–1629, 2009.

[18] Y. Wang and W. Shi, “Budget-driven scheduling algorithms for batches
of mapreduce jobs in heterogeneous clouds,” IEEE Transactions on
Cloud Computing, vol. 2, no. 3, pp. 306–319, 2014.

[19] B. Ghit and D. Epema, “Reducing job slowdown variability for data-
intensive workloads,” in MASCOTS. IEEE, 2015, pp. 61–70.

[20] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types.” in Nsdi, vol. 11, no. 2011, 2011, pp. 24–24.

[21] J. Tan, X. Meng, and L. Zhang, “Delay tails in mapreduce scheduling,”
ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 1, pp.
5–16, 2012.

[22] Í. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bianchini,
“Greenhadoop: leveraging green energy in data-processing frameworks,”
in EuroSys. ACM, 2012, pp. 57–70.

[23] Y. Chen, A. Ganapathi, R. Griffith, and R. H. Katz, “The case for eval-
uating mapreduce performance using workload suites,” in MASCOTS,
2011, pp. 390–399.

[24] Y. Tao, Q. Zhang, L. Shi, and P. Chen, “Job scheduling optimization for
multi-user mapreduce clusters,” in PAAP, 2011, pp. 213–217.

[25] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in EuroSys, 2010, pp. 265–278.

[26] N. Cheriere, P. Donat-Bouillud, S. Ibrahim, and M. Simonin, “On
the usability of shortest remaining time first policy in shared hadoop
clusters,” in SAC, S. Ossowski, Ed. ACM, 2016, pp. 426–431.

[27] K. Kc and K. Anyanwu, “Scheduling hadoop jobs to meet deadlines,”
in CloudCom, 2010, pp. 388–392.

[28] J. Polo, D. Carrera, Y. Becerra, M. Steinder, and I. Whalley,
“Performance-driven task co-scheduling for mapreduce environments,”
in NOMS, 2010, pp. 373–380.

[29] X. Dong, Y. Wang, and H. Liao, “Scheduling mixed real-time and non-
real-time applications in mapreduce environment,” in ICPADS, 2011, pp.
9–16.

[30] K. Deng, J. Song, K. Ren, and A. Iosup, “Exploring portfolio scheduling
for long-term execution of scientific workloads in iaas clouds,” in SC,
2013, pp. 55:1–55:12.

[31] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu, “Bigdatabench:
A big data benchmark suite from internet services,” in HPCA, 2014.

[32] S. Huang, J. Huang, Y. Liu, L. Yi, and J. Dai, “Hibench: A representative
and comprehensive hadoop benchmark suite,” in Proc. ICDE Workshops,
2010.

[33] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A simulation approach to
evaluating design decisions in mapreduce setups,” in MASCOTS. IEEE
Computer Society, 2009, pp. 1–11.

[34] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and Z. Liu, “Mrsim: A
discrete event based mapreduce simulator,” in FSKD, 2010, pp. 2993–
2997.

[35] W. Kolberg, P. de B. Marcos, J. C. S. dos Anjos, A. K. S. Miyazaki,
C. F. R. Geyer, and L. Arantes, “MRSG - A mapreduce simulator over
simgrid,” Parallel Computing, vol. 39, no. 4-5, pp. 233–244, 2013.

[36] N. Liu, X. Yang, X. Sun, J. Jenkins, and R. B. Ross, “Yarnsim:
Simulating hadoop YARN,” in CCGrid, 2015, pp. 637–646.

