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Abstract—Serverless applications are composed of functions
triggered by events. Data stores are a common source of
event triggers in the cloud, even beyond serverless, such as
in Kubernetes. We find trigger latency, the time from event
generation to function invocation, to take up to 62% of exe-
cution time for common serverless applications. Even though
event triggers play a crucial role in serverless performance,
the mechanisms driving these triggers are ill-understood. In
this paper, we analyze data store trigger mechanisms, define
the features that make up these mechanisms, and characterize
their performance with TriggerPerf, a benchmarking tool for
data store triggers. We implement TriggerPerf on three AWS
data stores with built-in trigger support: S3, DynamoDB, and
AuroraDB. With TriggerPerf, we demonstrate significant latency,
scalability, and elasticity bottlenecks across these data stores.
We observe that the trigger latency of AWS data stores is
up to 100x higher compared to a reference etcd data store.
Moreover, the median tail latency of S3 and AuroraDB is 10x
higher when under high load, unlike DynamoDB. The observed
variability in performance patterns significantly impacts the
reliability of serverless and distributed systems that depend on
them, highlighting the critical need for further research into the
underlying mechanisms. The tool is open-sourced and is available
at https://github.com/atlarge-research/trigger-perf.

Index Terms—serverless, triggers, data store, performance

I. INTRODUCTION

Serverless computing is ubiquitous in the cloud computing
landscape, driven by the rise of Function-as-a-Service (FaaS)
platforms [1]. These platforms abstract server management
entirely, enabling developers to compose applications from
stateless functions triggered by external events such as HTTP
requests, timers, or updates to cloud data stores. Data store
events play a pivotal role among these triggers, as they enable
seamless integration between cloud storage and compute.
For example, when a data object is created or updated, the
corresponding event can invoke serverless functions to process
the changes (Figure 1). Such triggers account for 6.8% of all
events in the Azure Functions workload trace [2], underscor-
ing their importance. The latency of data store triggers can
significantly impact the overall responsiveness of serverless
applications. As serverless functions achieve millisecond level
execution times [2], the delay introduced by event triggers
becomes a critical bottleneck. To demonstrate this impact,
we gather serverless applications with data store triggers [3],
[4] and infer the trigger latency’s share in event response
time (Figure 2). We define Trigger latency as the time delay
between the occurrence of an event in a data store and
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Fig. 1. Data store trigger execution flow.
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Fig. 2. Share of data store trigger latency in total execution time for serverless
applications.

the invocation of a corresponding serverless function. We
observed that trigger latency accounts for anywhere from 2%
to 62% of total execution time between use cases, showing the
data store trigger’s profound impact on serverless application
performance.

Despite their critical role in serverless ecosystems, the
mechanisms and performance of data store triggers remain
poorly understood. While prior work has benchmarked server-
less platforms [5], [6], studied workflow platforms [7], and
compared trigger types [8], these efforts have largely over-
looked the detailed analysis of data store trigger mechanisms.
Furthermore, cloud data stores have limited documentation,
limiting research to black-box evaluations. Cloud data store
triggers also have limited configurability: The AWS Dy-
namoDB data store [9], for example, polls for trigger events
only four times per second, which burdens dependent server-
less applications with an unavoidable and significant overhead.

This lack of transparency and configurability motivates the
need for a deeper analysis of data store triggers.

In this work, we analyze data store event trigger mecha-
nisms and characterize the performance of serverless datastore
triggers in the AWS ecosystem. We select three widely used
serverless-compatible data stores: S3, DynamoDB, and Au-
roraDB. To broaden our analysis, we include etcd, a widely
used, non-serverless distributed key-value store to serve as
a baseline. Based on this implementation, we expand our
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TABLE I
DATA STORE TRIGGER MECHANISMS OVERVIEW.

Data Store Built-in Trigger Data Model Trigger Event Contents Supported Trigger Events

Etcd Watch Key Value Store Updated Key-Value, Event type, Key version Put, Update, Delete
S3 Event Notifications Object Storage Updated Key, Event type, Source name Put, Update, Delete
DynamoDB DynamoDB Streams NoSQL DB Old & Updated key-values, Key Version PUD, TTL, Table Create/Delete
AuroraDB SQL UDF Relational DB Modifiable within UDF SQL Filters

analysis of trigger mechanisms to include scalability (what is
the latency of concurrent triggers?) and elasticity (how does
scalability change with varying concurrency levels?).These
evaluations are essential to ensure that triggers maintain low
latency and adapt efficiently under real-world workloads.

We make the following contributions:
1) Qualitative Analysis: We analyze the data store trigger

mechanisms of AWS S3, DynamoDB, and AuroraDB,
characterizing them across five key dimensions. We also
compare them to etcd to highlight differences between
serverless and non-serverless systems (Section II).

2) Microbenchmarking tool: We design and implement
TriggerPerf, a specialized benchmarking framework de-
signed to evaluate the performance of data store trig-
gers across latency, scalability and elasticity dimensions
(Section III and Section IV). The tool is open-sourced
and is available at https://github.com/atlarge-research/
trigger-perf.

3) Performance Characterization: Using TriggerPerf, we
systematically evaluate the latency, scalability, and elas-
ticity of data store triggers. Our results reveal key
bottlenecks and trade-offs in the design of serverless-
compatible data stores and highlight the performance
gaps relative to non-serverless systems like etcd (Sec-
tion VI).

II. QUALITATIVE ANALYSIS OF DATA STORE TRIGGER
SYSTEMS

To understand and compare data store trigger mechanisms,
we perform a qualitative analysis of triggers in the AWS data
stores S3, DynamoDB and AuroraDB. To guide our compar-
ison, we define five key feature categories and organise them
into two distinct phases: setup (configuring when and how
triggers are launched) and activation (managing how triggered
events are delivered and consumed). For context To reason
about data store trigger mechanisms and compare existing
implementations, we qualitatively analyze data store triggers
in the AWS data stores S3, DynamoDB, and AuroraDB and
define five feature categories to compare them in. We present
our qualitative comparison of these data stores with the non-
serverless trigger providing data store etcd in Table I.

a) Setup:: The setup phase focuses on the configurations
that determine when a trigger should launch and how the
associated trigger mechanism operates. We categorize the
setup phase configurations into the following categories:

1) Event selection: This category defines the granularity
of events that can initiate a trigger. Common events

include the creation, update, or deletion of data objects.
AuroraDB offers a high degree of flexibility by sup-
porting custom trigger rules defined using User-Defined
Functions (UDFs) in SQL, enabling fine-grained event
selection. In contrast, S3 supports only basic events,
such as create, update, and delete, with no options for
further customization.

2) Filtering: Filtering allows users to apply triggers se-
lectively to specific data objects or groups of objects.
For instance, S3 and etcd support filtering based on key
prefix or suffix rules, enabling targeted triggers. This
feature is particularly useful for reducing unnecessary
trigger invocations and improving system efficiency.

3) Execution model: Most data stores offer asynchronous
triggers to optimise for low latency. This helps reduce
latency but introduces complex error handling to prevent
cascading downstream failures.

b) Activation:: The activation phase governs how trig-
gers are activated and how their events are sent to downstream
systems. We categorize the activation phase characteristics into
the following categories.

4) Event content: The payload sent to the destination
varies significantly between data stores. For example,
S3 provides the updated key and event type, while
DynamoDB Streams include detailed snapshots of both
old and new key-value pairs. These differences directly
affect how downstream applications can process and
respond to events. We list these contents in Table I.

5) Destination: The options for routing triggered events to
downstream services are often constrained by the data
store. AuroraDB’s triggers, for example, can only route
events to AWS Lambda functions, limiting integration
flexibility. In contrast, S3 and DynamoDB offer broader
destination support, enabling integration with multiple
serverless frameworks and external services.

A. DynamoDB Streams Feature Mapping

To verify our qualitative analysis, we examine DynamoDB’s
trigger mechanism (DynamoDB Streams) and map it to our
five feature categories. DynamoDB Streams captures a time-
ordered sequence of item-level modifications in any Dy-
namoDB table and stores them as records in its logs.

In the setup phase, it supports a wide range of event
types, including item creation, updates, deletions, Time-to-
Live (TTL) expirations, and table-level events such as table
creation or deletion. Filtering is supported at the payload level,
allowing triggers to act on specific attributes or conditions
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TABLE II
MAPPING OF DYNAMODB STREAMS TO FEATURE CATEGORIES

Category DynamoDB Streams Characteristics

Event Selection Supports creation, updates, deletions, TTL expira-
tions, and table-level events.

Filtering Allows payload-based filtering for fine-grained con-
trol.

Execution Model Asynchronous, responding to writes before firing
triggers.

Event Content Customizable payloads with old/new item snapshots.
Destination Routes events to AWS Lambda and other consumers.

within the event data, thereby reducing unnecessary event
handling and improving efficiency. The execution model is
asynchronous by default, ensuring that triggers respond to the
originating write operation with minimal latency before firing
the event.

In the activation phase, DynamoDB Streams offers cus-
tomizable payloads, allowing developers to include snapshots
of both the old and new values of modified items. This
adaptability ensures that triggers can be tailored to specific use
cases. Triggered events can be routed to various consumers, in-
cluding AWS Lambda functions, enabling seamless integration
with serverless frameworks. This flexibility supports diverse
processing patterns, from real-time event handling to batch-
oriented workflows. Table II shows this mapping.

B. etcd as a Reference

We use etcd, a widely used non-serverless data store with
trigger mechanisms, as a reference system to compare against
AWS’ serverless data stores. etcd, along with its trigger capa-
bilities, is used by complex software such as Kubernetes [10],
Vitess [11], and OpenStack [12]. etcd is a distributed key-value
store for coordination and state management in distributed
systems. It is an integral component of Kubernetes, as it
stores critical cluster configuration data [13]. The Watch
mechanism in etcd provides its trigger functionality, enabling
applications to monitor changes to specific keys or key prefixes
dynamically. This capability supports responsive and adaptive
behavior in systems that depend on etcd for real-time config-
uration and state updates. As a non-serverless trigger system,
etcd establishes a latency baseline for serverless alternatives,
setting the lower bound they must achieve to compete with
traditional, performance-optimized solutions.

III. TRIGGERPERF: HIGH-LEVEL DESIGN

To experimentally characterize the performance of data
store trigger systems, we design and implement TriggerPerf,
a custom benchmarking tool tailored for serverless envi-
ronments. The core objective of TriggerPerf is to provide
precise, reproducible, and scalable evaluations of data store
trigger latency and performance. By establishing a controlled
sandbox environment, TriggerPerf facilitates interactions with
selected data stores as the system under test (SUT), enabling
the measurement of critical performance metrics. TriggerPerf
focuses on three major performance metrics:

1) Unloaded Latency: Measures trigger latency under min-
imal load, providing a baseline for comparison.

2) Latency Under Load: Evaluates trigger behavior during
high-throughput scenarios, identifying bottlenecks and
tail latency (e.g., p90).

3) Latency on Elastic Scaling: Assesses the system’s ability
to maintain performance when scaling dynamically to
handle increased workloads.

These metrics are evaluated across three AWS serverless
data stores, S3, DynamoDB, and AuroraDB and compared to
etcd, a non-serverless distributed key-value store, which serves
as a baseline reference.

A. Design Principles

TriggerPerf is guided by the following key principles:
1) Modularity [P1]: TriggerPerf’s architecture is designed

to be modular, with independent components handling
setup, event generation, and trigger handling. This mod-
ularity allows developers to integrate new data stores or
modify configurations with minimal effort. This modular
design is critical in the rapidly evolving landscape of
cloud computing, where trigger mechanisms are contin-
ually advancing.

2) Reproducibility [P2]: Reproducibility is fundamental to
TriggerPerf’s design, ensuring consistent results across
multiple experiment runs. TriggerPerf introduces unique
identifiers, including a run ID and event ID, to precisely
track individual events and mitigate issues caused by
imprecise log filtering in AWS CloudWatch. These iden-
tifiers enable accurate mapping of event creation and
receipt timestamps, even under high-concurrency con-
ditions. This includes consistent use of AWS resources
(e.g., Lambda memory and EC2 instance types)

3) Flexibility [P3]: Recognizing the diversity of workloads
and system configurations in serverless environments,
TriggerPerf offers extensive configurability across mul-
tiple parameters, including throughput, batch size, and
event filtering. This flexibility allows users to simulate a
wide range of scenarios, from low-latency single-event
triggers to high-throughput workloads that stress data
store scalability.

B. Architecture Overview

The core architecture of TriggerPerf is built around a
modular chain of AWS Lambda functions designed to orches-
trate the setup, event generation, and trigger handling in the
system under test (SUT). This chain includes three key lambda
functions: the setup lambda (λi), the write lambda (λw), and
the receive lambda (λr). Each function plays a distinct role,
with (λi) initializing the experimental environment and con-
figuring the system under test (SUT), (λw) generating events
(e.g., create or update) at timestamp (t2), ensuring isolation
between event generation and subsequent processing. Finally,
the receive lambda acts as the trigger destination, capturing
the receipt timestamp (t4) and collecting metadata specific
to the SUT for post-experiment analysis. The benchmarking
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Fig. 3. TriggerPerf system design.

process is carefully instrumented to capture timestamps at
key phases of the trigger lifecycle, including event creation
(t2), processing within the SUT (t3), and event receipt (t4).
These timestamps are recorded in Unix epoch time, ensuring
high precision (P2) and enabling detailed analysis of trigger
latency. Alongside the timestamps, metadata such as batch
size and event filters are logged in AWS CloudWatch. After
the experiment completes, TriggerPerf extracts these logs to
compute latencies and evaluates performance metrics.

These functions collectively orchestrate the benchmarking
process while maintaining separation of responsibilities, ensur-
ing the architecture can adapt to evolving trigger mechanisms
and data store technologies (P1). Additionally, TriggerPerf
supports extensive configurability (P3), including parameters
such as throughput, batch size, and event filtering. This flexi-
bility allows users to simulate a wide range of scenarios, from
single low-latency triggers to high-throughput workloads that
stress scalability.

C. Trigger Latency vs. End-to-end Trigger Latency

We define trigger latency as the time elapsed between an
event occurring in the data store (t3) and the receive lambda
being invoked (t4). However, the data stores we investigate
are black-box services provided by the cloud provider whose
internals we do not have access to. Therefore, we cannot
measure t3. We investigate trigger latency by measuring the
time elapsed between event generation in the write lambda
(t2) and the receive lambda being invoked (t4). We term this
measurement end-to-end trigger latency.

The end-to-end trigger latency includes the latency of the
writing to the data store. We measure the write round-trip-
time (RTT) latency of data stores and find it to be much lower
than the trigger latency. For example, writing 1 KB objects to
AWS S3, we find a median write latency of 32 ms, which
is much lower than the 1,300 ms median end-to-end trigger
latency.

Therefore, we conjecture that the write part is only a small
fraction of the end-to-end trigger latency that we measure. The
rest of the latency is due to the trigger itself. In subsequent
sections, we use trigger latency to mean end-to-end trigger
latency.

IV. TRIGGERPERF: DETAILED DESIGN

This section details the core components of TriggerPerf. We
first outline the Lambda function chain that orchestrates setup,
event generation, and logging (§IV-A). Next, we describe
TriggerPerf’s configurability and logging capabilities, which
enable precise measurement and dynamic experimentation
(§IV-B). Finally, we discuss TriggerPerf’s modular architec-
ture, which facilitates extensibility and adaptability across
diverse data store environments (§IV-C).

A. Lambda Function Chain.
TriggerPerf employs a chain of AWS Lambda functions

(depicted in Figure 3) to orchestrate trigger setup, event
generation, and latency measurement. This design ensures
minimal operational overhead and allows precise timestamping
of key trigger phases. The functions are described below:

• Setup Lambda (λi): Configures the trigger mechanism
in the SUT. This includes setting the destination Lambda
(λr) to handle events and generating unique identifiers
(run ID and event ID) for tracking logs.

• Write Lambda (λw): Generates an event (e.g., create
or update) in the SUT at timestamp t2. By isolating the
event generation into a dedicated function, TriggerPerf
minimizes interference between event creation and pro-
cessing, ensuring accurate latency measurements.

• Receive Lambda (λr): Acts as the trigger destination.
Upon receiving the event, it logs the receipt timestamp
(t2) and extracts metadata specific to the SUT. This func-
tion ensures consistent data collection for all experiments,
regardless of the underlying data store.

B. Configurability and Logging.
TriggerPerf is designed to support diverse experimental se-

tups by providing extensive configurability and robust logging
mechanisms. Users can adjust key parameters, such as:

• Throughput: Defines the number of events per second,
enabling stress-testing across a wide range of workload
intensities.

• Batch Size: Controls the number of events processed per
trigger, allowing users to evaluate the trade-offs between
latency and resource efficiency.

• Event Filtering: Applies custom filters to the workload,
enabling the simulation of real-world scenarios where
only specific events trigger downstream processing.

These configurable parameters make TriggerPerf adaptable to
test various scenarios, from low-latency single-event triggers to
high-throughput batch workloads that stress scalability limits.

Precise timestamping and logging is central to TriggerPerf’s
design, with logs capturing key phases of the trigger lifecycle:

• Event creation (t2): Recorded by the Write Lambda after
write/update event.

• Event receipt (t4): Logged by the Receive Lambda upon
trigger execution.

These timestamps are supplemented with metadata, such
as trigger processing time (t3, where available) and system-
specific details. All data is recorded in AWS CloudWatch

4



and associated with unique run and event IDs. This ensures
reproducibility and traceability, even under high-concurrency
conditions. TriggerPerf extracts the logs from CloudWatch to
local after completion of the run for further analysis.

C. Modular Design.

TriggerPerf’s modular architecture is a key design feature,
enabling extensibility and adaptability to a wide range of
systems. Each component in the Lambda function chain oper-
ates independently, ensuring that new data stores or trigger
mechanisms can be integrated without disrupting the core
benchmarking framework. For example, integrating a new sys-
tem under test (SUT) requires modifications only to the Setup
Lambda, where the trigger mechanism is configured, while
the Write Lambda and Receive Lambda remain unchanged.
Additionally, system-specific workload parameters such as
throughput, batch size, and event filtering can be dynamically
adjusted without altering the underlying logic of the Lambda
chain. This flexibility ensures that TriggerPerf can easily adapt
to different benchmarking requirements. To add a new trigger
mechanism for testing, users need to implement the following
in a driver file:

1) A function to configure the trigger mechanism in the
SUT.

2) Functions to perform CRUD operations on the SUT.
3) Configuration to set the Receive Lambda as the trigger

destination.
This structured approach simplifies the process of extending
TriggerPerf, enabling researchers and developers to efficiently
benchmark a wide range of systems and trigger mechanisms
with minimal effort.

V. EXPERIMENTAL SETUP

We conducted all experiments on Amazon Web Services
(AWS) in the ’us-east-1’ region using TriggerPerf, our custom
benchmarking tool. TriggerPerf leverages the AWS Boto3
and Go-v2 SDKs to interact with AWS services and facil-
itate the benchmarking process. For experiments involving
latency measurements, we used AWS Lambda configured with
1024MB of memory and i4i.2xlarge instances from Amazon
EC2 to ensure sufficient compute resources and consistent
performance.

TriggerPerf executes experiments through a chain of
Lambda functions: Setup Lambda (λi), Write Lambda (λw),
the System Under Test (SUT), and Receive Lambda (λr), as
shown in Figure 3. Each data store benchmarked is supported
by a dedicated driver program that sets up the trigger mech-
anism, configures λr as the destination, and performs CRUD
operations on the data store. The lambda functions log the
timestamps to AWS Cloudwatch along with unique identifiers
(RunID & EventID) and some datastore specific metadata.

To establish a baseline for comparison, we used etcd, a non-
serverless distributed key-value store, as a reference system.
We set up an etcd-backed Kubernetes cluster with a single
worker node and deployed a containerized workload designed
to perform periodic updates. Each container was configured
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Fig. 4. AWS clock synchronization validation.

to idle for one minute before terminating. To ensure the
experiments reflected realistic usage patterns, we instrumented
the etcd data store and analyzed the distribution of key and
value sizes stored in the cluster. This analysis helped align our
experiments with the characteristics of Kubernetes workloads.
For consistency, we used a median key size of 59 bytes and
a median value size of 889 bytes across all experiments.

A. AWS Clock Synchronization Validation

We measure the trigger start and end times on different
lambda functions and define their difference as the trigger
latency. Any drift between the clocks of the two lambda
functions threatens the validity of our measurements. AWS
claims clocks across lambda functions are synchronized using
NTP (Network Time Protocol) and across EC2 instances with
the Amazon Time Sync Service.

To ensure the validity of our experiments, we assess the time
drift in AWS and ensure that it is within bounds. We set up an
experiment such that the lambda that receives the trigger event
is the same lambda that initiated the write. This is possible
because AWS keeps functions warm after they are invoked.
We ensure only the trigger event invokes the lambda after a
write [14]. We evaluate the trigger latency in this setup for
200 iterations. We compare the obtained latency distribution
to the latency distribution when the write and trigger target
are different lambdas (TriggerPerf Setup). We use DynamoDB
Streams configured with 100 Write Capacity Units as our data
store trigger mechanism for this experiment.

Our results are depicted in Figure 4. We observe that the
distributions for the same lambda case and the TriggerPerf
setup are approximately the same. However, we observe a few
outliers in the different lambda case. We consider these results
evidence that time is synchronized across different lambda
functions. Additionally, we perform the Kolmogorov-Smirnov
test on the distributions and get a value of 0.14; this confirms
the distributions are similar [15].

VI. EXPERIMENTAL CHARACTERIZATION OF DATA STORE
TRIGGER SYSTEMS

Data store triggers are a critical component of severless
applications, yet their performance under different conditions

5



remains underexplored. Understanding how these triggers
behave under varying workloads is essential for designing
responsive and efficient serverless systems. In this section, we
systematically evaluate the latency, scalability and elasticity
of data store triggers using TriggerPerf, a specialized bench-
marking tool.

TriggerPerf provides a controlled benchmarking environ-
ment, allowing us to systematically evaluate trigger latency
and performance across different operational conditions. Using
this framework, we focus on three key performance metrics:

1) Unloaded latency: What is the baseline (unloaded)
latency of different data store triggers?

2) Latency under load: How do these triggers perform
under high load?

3) Latency during elastic scaling: How do they respond
to dynamic scaling events?

We benchmark these metrics across three AWS serverless
data stores, S3 Standard, DynamoDB, and Aurora Postgres and
compare them to etcd, a widely used non-serverless distributed
key-value store, as a reference system. Table III summarizes
the experimental setup for each scenario, detailing the constant
and varying parameters. Our experiments yielded the following
key observations:

O-1: High Tail Latencies Under Load: Except for Dy-
namoDB Streams, all evaluated trigger mechanisms
exhibit significant tail latency (p90) under load, with
values up to 10x higher than the median latency.
This indicates challenges in maintaining consistent
performance as throughput increases.

O-2: Resilience of DynamoDB Stream: DynamoDB
Streams demonstrated robust performance, showing
resilience under both high load and elastic scaling
scenarios. Unlike other SUTs, its tail latencies re-
mained within acceptable bounds even as workload
intensity increased.

O-3: S3 Event Notification Stabilization: While S3
Event Notification initially exhibited elevated laten-
cies during scaling, its performance stabilized at a
higher steady-state latency after the scaling event.
This behavior highlights S3’s scaling mechanism but
also indicates potential limitations in achieving low-
latency triggers post-scaling.

O-4: Aurora Serverless UDF Latency Spikes: Aurora
Serverless UDFs showcased significant performance
degradation during elastic scaling, with p90 latencies
increasing by up to 9x compared to baseline values.
This result highlights the challenges of maintaining
trigger performance in relational database environ-
ments with scaling events

A. Unloaded Latency: Baseline Performance Analysis

Unloaded latency serves as a critical baseline for measuring
system performance under minimal load. This metric provides
insights into the fundamental efficiency of the system without
the influence of workload-induced variability [4].

TABLE III
EXPERIMENTS OVERVIEW. SUT = SYSTEM UNDER TEST. FUNCTION =

TRIGGER TARGET FUNCTION.

Section Constant
parameters

Varying
parameters Metrics

§V-A Concurrency: 1, Iters: 200 Function Latency
§VI-A Concurrency: 1, Iters: 200 SUT Latency
§VI-B Throughput: 3000 req/s SUT Latency

§VI-C Throughput:
2,000 (before); 4,000 (after) SUT Latency

Setup. Using TriggerPerf, we evaluated the unloaded trigger
latencies of the selected systems. DynamoDB was tested with
autoscaling enabled, S3 with event versioning activated, and
Aurora PostgreSQL configured with engine version 15.4 on
a db.r6g.2xlarge (memory-optimized) instance type. For etcd,
we deployed a three-node cluster on EC2 instances, with the
experiments executed from another EC2 instance in the same
VPC. The etcd benchmark utilized the etcd/clientv3 Golang
API. To ensure stability, we initiated 200 warm-up put events
for all systems before performing the primary benchmark of
200 trigger events, each separated by a one-second interval.

Results. The results, visualised in Figure 5, reveal sub-
stantial differences in the unloaded latency performance of
the tested data stores. Among all systems, etcd exhibited the
lowest latency, with a median value of just 2.6ms. Its la-
tency distribution was tightly concentrated, indicating minimal
variability and highly efficient event propagation. AuroraDB
performed significantly worse than etcd, with a median latency
of 103ms. Despite the higher latency, its response times were
relatively consistent, as indicated by a steep ECDF curve with
low variance. DynamoDB Streams exhibited slightly higher
latency, with a median of 170ms. While its performance
was still better than S3, DynamoDB showed a somewhat
broader distribution, indicating occasional variations in trigger
responsiveness. This behavior may be attributed to internal
polling mechanisms and batching strategies used within the
DynamoDB Streams architecture. S3 Event Notifications per-
formed the worst, with a median latency of 1,157ms and a
tail latency (p90) exceeding 1,700ms. Unlike other systems,
S3 displayed high variability, with a gradual ECDF curve
indicating unpredictable delays in event propagation. This
inconsistency suggests that S3’s trigger mechanism is less
optimized for low-latency workloads.

The results demonstrate that serverless triggers introduce
significantly more latency than traditional event-driven mecha-
nisms such as etcd. Even in an unloaded state, AWS-managed
triggers show a 10-100× increase in latency compared to a
non-serverless alternative. This highlights the inherent over-
head associated with cloud-managed event propagation and
suggests that serverless architectures must account for these
delays when designing latency-sensitive applications.

B. Latency Under Load

While unloaded latency provides a baseline measurement,
real-world serverless applications often experience sustained
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Fig. 5. Unloaded trigger latency across systems.

workloads with high concurrency. Under such conditions, the
efficiency of data store triggers can degrade due to increased
contention, queuing delays, and resource limitations. This
experiment examines how trigger latency behaves under sus-
tained load

Setup. For this evaluation, we generated put/update events
at increasing request rates until each system reached approx-
imately 80% utilization of its key resources. For etcd and
Aurora PostgreSQL, this threshold was defined as 80% CPU
utilization across the cluster. For DynamoDB Streams, the
load was set to 80% of the provisioned write capacity units
(WCU) to simulate peak usage. S3, which lacks configurable
resource utilization parameters, was benchmarked under the
same request intensity. All experiments were conducted us-
ing a dedicated EC2 instance to ensure a consistent testing
environment.

The optimal requests per second (req/s) necessary to main-
tain stable 80% utilization was determined through iterative
trials for each system. Once the req/s was identified, the
systems were subjected to sustained load for 5 minutes, with
put/update events continuously dispatched at the determined
intensity. To ensure meaningful results, latency measurements
were collected exclusively during the third minute of the
experiment, discarding data from the warm-up and cool-down
phases.

Results. Figure 6 illustrates the impact of high load on
trigger performance across the tested data stores. Under load,
significant performance differences emerge, with some sys-
tems exhibiting severe latency spikes and others maintaining
relatively stable response times.

DynamoDB Streams demonstrated the most resilience un-
der high load, maintaining relatively stable latencies across
all percentiles (O-1). The system’s internal event processing
model appears to efficiently distribute workload pressure,
resulting in only a 10% increase in p90 latency compared
to unloaded conditions. This suggests that DynamoDB’s trig-
ger architecture effectively handles high-frequency updates
without substantial degradation in response time. AuroraDB
exhibited moderate performance degradation, with its p90
latency increasing by 3.5-4x compared to its unloaded state.
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Fig. 6. Trigger latency under load across systems.

While the system remained functional, the increased tail
latency indicates that contention within the database’s internal
event-handling mechanisms may introduce additional delays
under stress. S3 Event Notifications struggled the most under
load, experiencing severe degradation in both median and tail
latency. At peak stress levels, p90 latencies reached up to 10
times the median value, highlighting fundamental scalability
limitations in its event notification system.

The high tail latencies observed in etcd, Aurora, and S3
under load highlight limitations in their resource management
strategies when handling high request concurrency. In contrast,
DynamoDB Streams maintained tail latencies comparable to
its unloaded performance, indicating robust resource allocation
and effective workload handling. This consistency makes Dy-
namoDB Streams well-suited for latency-sensitive applications
where minimizing variability is critical.

C. Latency After Elastic Scaling

The bursty nature of serverless workloads [2] requires
that data stores and trigger mechanisms elastically scale in
response to sudden fluctuations in application demand. Elastic
scaling performance is critical for maintaining responsiveness
and preventing downstream processing bottlenecks [16]. To
evaluate the elasticity of trigger mechanisms, we measured
latency during and after scaling events.

Setup. For this experiment, we benchmarked Aurora Post-
greSQL Serverless v2 [17], DynamoDB with autoscaling,
and standard S3. The warm-up phase involved stabilizing
Aurora and DynamoDB at 2000 requests per second (req/s)
for 15 minutes, while S3 required a 40-minute warm-up due
to its longer initialization time. Following this, we executed
put/update events over a 6-minute period with the following
pattern: 2000 req/s for the first 3 minutes (stable phase),
followed by 4000 req/s for the next 3 minutes (scale-up phase).
Latency data from the third (pre-scale-up) and fourth (post-
scale-up) minutes were collected for analysis.

Results. Figure 6 presents the latencies observed during
these experiments. Across all systems, a notable increase
in latency was observed during the scale-up phase. For S3,
the median trigger latency surged by 30-40%, increasing
from 1,157 ms (pre-scale-up) to a new stabilized baseline of
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Fig. 7. Trigger latency on elastic scaling from 2000 req/s to 4000 req/s. The
greyscale region of the graph represents the duration after the scale-up event.

1,335 ms after the scale-up (O-3). This behavior highlights the
overhead associated with scaling its event notification pipeline.
DynamoDB Streams demonstrated the most consistent perfor-
mance, with minimal impact on latency and interquartile range
(IQR) after scaling (O-2). This resilience is indicative of effi-
cient resource allocation and autoscaling mechanisms designed
to handle bursty workloads without significant degradation.
In contrast, Aurora PostgreSQL exhibited a pronounced in-
crease in variability during the scale-up phase. Its IQR nearly
doubled, reflecting a broader spread of latencies during this
period. Although the median latency returned to pre-scale-up
levels, tail latencies reached as high as 9x the median at the
90th percentile (O-4). These elevated tail latencies highlight
challenges in managing resource contention and maintaining
performance during rapid scaling events.

The elevated tail latencies observed for both Aurora and
S3 during scale-up events underscore a fundamental limitation
in their design for handling rapid elasticity. Such behavior
underscores the need for serverless systems to better integrate
elastic scaling mechanisms that minimize latency spikes, even
under bursty and unpredictable workloads.

VII. DISCUSSION

We discuss the limitations of serverless trigger mechanisms
and our experiments in this section. We end with a call for
more configurability in serverless data store triggers.
Different experiment protocols for each service. Comparing
data store trigger mechanisms head-on presents challenges
due to varying service specific parameters and implemen-
tation opaqueness. This necessitates experimental protocols
specifically tailored for each service, complicating head-on
evaluations.

First, warm-up and cool-down times differ widely between
services, which affects their readiness to handle experimental
workloads. For example, DynamoDB retains historical load
data for limited and unspecified perios, allowing it to handle
load changes faster [18]. In contrast, S3 requires up to 30
minutes of warm-up to sustain the desired request rate without

rejecting writes. However, S3 also cools down rapidly after an
experiment, unlike Aurora and DynamoDB. These inconsis-
tencies make standardized benchmarking complex.

Second, database event complexity adds another layer of
variability. Our experiments focus exclusively on put/update
events for consistency across systems. However, data store
triggers often handle a variety of operations and queries
with differing complexities. Evaluating performance across
these broader scenarios would provide a more comprehensive
characterization of trigger mechanisms and their real-world
applicability.

Finally, distributed clock error bounds pose challenges in
accurately measuring trigger latencies across cloud environ-
ments. Clock synchronization in distributed systems is in-
herently difficult, leading to minor inaccuracies in latency
measurements. To address this, we designed experiments to
minimize synchronization issues and validated the impact of
these errors in Section 4. We show that these errors are
negligible and do not affect the validity of our analysis.

These factors highlight the intricacies of benchmarking data
store trigger mechanisms, underscoring the need for tailored
protocols to address the unique characteristics of each service
while ensuring meaningful comparisons.

Trigger customization limitations. Current data store trigger
mechanisms often lack the necessary level of customizability,
posing a significant challenge for systems designers. This
inflexibility restricts the ability to tailor triggers to the specific
needs of individual applications. Batch trigger requests are
absent in S3 Event notifications and AuroraSQL Lambda In-
voke UDFs, unlike DynamoDB Streams. This can result in the
excessive triggering of destinations(e.g., Lambda functions),
potentially cascading downstream and increasing costs. In the
activation phase of AuroraSQL UDFs, the only supported
destination is Lambda functions. Such constraints limit the
possible design space of serverless applications. The observed
latencies increase 10x under load compared to the unloaded
case. The increase is 100x if we consider the tail (p90). This
makes application performance highly variable.

Towards a data store trigger mechanism for serverless.
A good data store trigger solution for serverless architectures
should offer sufficient customization options to optimize per-
formance, cost-efficiency, and flexibility. This can be achieved
by enhancing customizability during both the setup and acti-
vation phases of triggers. In the setup phase, programmable
triggers with User-Defined Functions (UDFs) allow embed-
ding event selection, filtering, transformation, or validation
logic directly within the trigger. This potentially eliminates
separate serverless functions, simplifying workflows and re-
ducing overhead. For the activation phase, batching and polling
features will allow system designers to strike the required
balance between responsiveness (frequent polling/small batch
size) and cost-effectiveness (less frequent polling/large batch
size).
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VIII. RELATED WORK

Event Trigger Benchmarks and Systems. The most
closely related works to our study are TriggerBench, Unum,
and Triggerflow. Among these, TriggerBench [8] focuses
solely on evaluating unloaded latency (Section VI-A) across
a limited subset of serverless triggers. While it includes S3 in
its evaluation, it does not extend to DynamoDB or Aurora,
leaving significant gaps in coverage. Additionally, Trigger-
Bench lacks the configurability and modularity needed to fully
explore diverse workload patterns and trigger mechanisms,
limiting its applicability in broader benchmarking scenarios.
Unum [3] implements a polling-based trigger mechanism and
compares to AWS Step Functions across multiple serverless
workflows. Triggerflow [7] implements a trigger-based server-
less workflow coordinator and compares it with workflow co-
ordinators from cloud providers. With TriggerPerf, we provide
the first comprehensive benchmark of all three serverless data
stores offered by AWS (S3, Dynamo, Aurora). We are also the
first to characterize their performance in an unloaded, loaded,
and elastic scaling scenario.

Serverless Performance. Multiple works describe the
impact of trigger performance on total application exe-
cution time [2]–[4]. SONIC [19], WISEFuse [20], and
Pheromone [21] propose other mechanisms such as spec-
ulation and fusion to reduce function coordination over-
head. Serverless storage systems such as Pocket [22], Cloud-
burst [23], Boki [24], and PolarDB [25] are elastic, but do not
have built-in trigger mechanisms. State-of-the-practice event
trigger databases such as Google Cloud Firestore [26] and
Microsoft Azure SQL Database [27] have similar performance
characteristics to their AWS counterparts discussed in this
work, but their trigger performance still needs to be evaluated.
Storage functions [28], Durable functions [29], and Lambda
objects [30] are systems that run computation in the data store
itself. Although related, they are a different kind of system and
require a separate evaluation.

IX. CONCLUSION

Many modern data stores are equipped with trigger mech-
anisms to invoke serverless functions or connect distributed
components in systems such as Kubernetes following data
object create, update, or delete events. In this paper, we
demonstrate that data store triggers are essential in serverless
performance, but their underlying mechanisms are not well
understood. We are the first to present a qualitative analysis
of data store trigger mechanisms and present TriggerPerf,
our tool for benchmarking trigger mechanisms. Between the
AWS S3, DynamoDB, and AuroraDB data stores, we find a
92% difference in median trigger latency (latency), a 94%
difference for concurrent event triggers (scalability), and an
up to 40% increase in latency when abruptly doubling the
number of concurrent triggers (elasticity). Moreover, we find
limited trigger customizability and argue for the use of User-
Defined Functions, batching, and polling to meet serverless
system’s needs.
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Québec City, Canada, December 6 - 10, 2021. ACM, 2021, pp. 64–
78.

[6] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and
H. Chen, “Characterizing serverless platforms with serverlessbench,” in
SoCC ’20: ACM Symposium on Cloud Computing, Virtual Event, USA,
October 19-21, 2020. ACM, 2020, pp. 30–44.
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