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Syllabus outline 
1. Welcome and introduction to NVM (today) 
2. Host interfacing and software implications 
3. Flash Translation Layer (FTL) and Garbage Collection (GC) 
4. NVM Block Storage File systems 
5. NVM Block Storage Key-Value Stores 
6. Emerging Byte-addressable Storage
7. Networked NVM Storage 
8. Programmable Storage 
9. Distributed Storage / Systems - I 

10. Distributed Storage / Systems - II 
11. Emerging Topics
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Today’s Agenda 
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1. We are going to learn about managing temporary/ephemeral data - a 
new class of data type 

2. Building a distributed store with high-performance networking and 
storage devices 

3. Data formats? JSON, Parquet, ORC, are they good enough? 



What is Temporary/Ephemeral Data?
Any guesses? 
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Distributed data processing frameworks 
● Apache Spark 
● Apache Hadoop (MapReduce) 
● GraphLab 
● Naiad (Dataflow) 
● TensorFlow 
● PyTorch 
● … Input datasets Output datasets



What is Temporary/Ephemeral Data?
Any guesses? 
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Input datasets Output datasets

Apache Spark



What is Temporary/Ephemeral Data?
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Input datasets Output datasets

Apache Spark

map

map

map

map

reduce

reduce

reduce

reduce

TensorFlow 



What is Temporary/Ephemeral Data?
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Input datasets Output datasets

map

map

map

map

reduce

reduce

reduce

reduce

1. Read images, transform         2. Feature extraction               3. Training                   4. Saving the model 

Between the initial dataset read, and the final dataset saved - there are many 
in-flight data objects which are temporary and ephemeral datasets



Challenges with Temporary Data Storage 
1. Temporary data is performance critical - new network (100 Gbps) and 

storage (NVMe) can help
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Zhang et al., Riffle: optimized shuffle service for large-scale data analytics. In EuroSys 2018
Ousterhout et al., Making sense of performance in data analytics frameworks. NSDI 2015. 
Trivedi et al., On the [ir]relevance of network performance for data processing. HotCloud 2016. 



Challenges with Temporary Data Storage 
1. Temporary data is performance critical - new network (100 Gbps) and 

storage (NVMe) can help

2. Temporary data have different needs 
a. No need to persist and provide fault tolerance 
b. Fault tolerance is often baked in compute framework used - Spark or TensorFlow 

3. Complex integration into the compute framework 
a. Spark, TensorFlow, GraphLab, PyTorch -- all have their own way of processing data (RPCs) 
b. New technologies are here - NAND Flash, Optane storage, PMEM, and mix of these 
c. New deployment models: DAS vs Disaggregated 
d. Programmable storage? 
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Temporary Data Management Spaghetti 
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Input datasets Output datasets
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Temporary Data Management Spaghetti 

11

Input datasets Output datasets

map

map

map

map

reduce

reduce

reduce

reduce

Build a temporary data 
storage framework 



Can Existing Solutions Work? 
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Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML 



Can Existing Solutions Work? 
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Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML 

Typically 
small values 
can be stored 
in KV Stores 
(latency 
driven)

Typically large 
values are 
stored in file 
systems 
(bandwidth 
driven)



Can Existing Solutions Work? 
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Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML 

Typically 
small values 
can be stored 
in KV Stores 
(latency 
driven)

client

KV 
server

KV 
server

KV 
server



Can Existing Solutions Work? 
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Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML 

Typically 
small values 
can be stored 
in KV Stores 
(latency 
driven)

Typically large 
values are 
stored in file 
systems 
(bandwidth 
driven)

client

FS 
server

FS 
server

FS 
server

FS mdata
server



Unification of Temporary Storage in the NodeKernel Architecture 
(2019)
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The NodeKernel Architecture (2019) 
A fused KV + File system distributed storage designed for temporary data storage, 
basic ideas 

1. With fast network - FS and KV semantics can be provided in a single system 
a. Key Value Store = contact a single server + data transfer 
b. File Systems       = contact metadata server + data servers + data transfer 
c. Nodes can be specialized : Tables, Directories, Files, workload specific files, Append-only, etc. 

2. Split control and data planes 
a. Control plane  = fast asynchronous RPCs 
b. Data plane       = One-sided RDMA operations and NVMeF for I/O from DRAM and Flash storage 

Trick: prepare and allocate all resources (carefully manage the NVM runtime) and 
do not intervene in offloaded I/O access operations 
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The NodeKernel Architecture (2019) 
A fused KV + File system distributed storage designed for temporary data storage, 
basic ideas 

1. With fast network - FS and KV semantics can be provided in a single system 
a. Key Value Store = contact a single server + data transfer 
b. File Systems       = contact metadata server + data servers + data transfer 
c. Nodes can be specialized : Tables, Directories, Files, workload specific files, Append-only, etc. 

2. Split control and data planes 
a. Control plane  = fast asynchronous RPCs 
b. Data plane       = One-sided RDMA operations and NVMeF for I/O from DRAM and Flash storage 

Trick: prepare and allocate all resources (carefully manage the NVM runtime) and 
do not intervene in offloaded I/O access operations 
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clientResolve the data locaton Access to the data 
Control operation                                                                                      Data Access - read/write 
(alloc mem, scheduling, placement, name resolution) 



The NodeKernel Architecture (2019) 
A fused KV + File system distributed storage designed for temporary data 
storage, basic ideas 

1. With fast network - FS and KV semantics can be provided in a single 
system 
a. Key Value Store = contact a single server + data transfer 
b. File Systems       = contact metadata server + data servers + data transfer 
c. Nodes can be specialized : Tables, Directories, Files, workload specific files, Append-only, 

etc. 

2. Split control and data planes 
a. Control plane  = fast asynchronous RPCs 
b. Data plane       = One-sided RDMA operations for I/O from DRAM and Flash storage 
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● Data Plane - code path or calls where the actual work is done 
○ Data r/w, make it straight forward, no blocking calls, everything is ready to go 

● Control Plane - code path or call where resources are managed 
○ Slow(er), resourced need to be allocated and managed, can block

● Fast path - common case execution (typically few branches, decision 
making, very simple code) 

○ Read a file from start to finish, all blocks arrive in order  
● Slow path - more sanity checks (more branches, hence poor(er) 

performance) 
○ Read a file in fragments with random accesses in between, error handling  



The NodeKernel Architecture (2019) 
A fused KV + File system distributed storage designed for temporary data storage, 
basic ideas 

1. With fast network - FS and KV semantics can be provided in a single system 
a. Key Value Store = contact a single server + data transfer 
b. File Systems       = contact metadata server + data servers + data transfer 
c. Nodes can be specialized : Tables, Directories, Files, workload specific files, Append-only, etc. 

2. Split control and data planes 
a. Control plane  = fast asynchronous RPCs 
b. Data plane       = One-sided RDMA operations and NVMeF for I/O from DRAM and Flash storage 

Trick: prepare and allocate all resources (carefully manage the NVM runtime) and 
do not intervene in offloaded I/O access operations 
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NodeKernel: A High-Level Idea 
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A node is an abstract type that 
supports 

● Creating a node 
● Inserting into the tree
● Removing from the tree 
● Read 
● Append 
● Update
● ...

 



NodeKernel: A High-Level Idea 
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/

MyTab

KV1 KV2

shuffle

srv1

part1 part2 part3

● Directory 
○ Enumerate 
○ Add/remove files 

● Tables 
○ Collection of KVs 
○ Add, remove KV files 

● Files and KV files 
○ Last winner vs error on 

concurrent creator 
● Bags of directories 

○ Fast data reading over 
multiple directories and files 



NodeKernel: A High-Level Idea 
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/

MyTab

KV1 KV2

shuffle

srv1

part1 part2 part3

With this setup in Spark 
● Broadcast variables can be stored as a fast 

KV entries to fast lookups 
○ val bcVar = sc.broadcast(“10”) //put 

○ val rdVal = bcVar.value.get() //get 

● Shuffle (all-to-all) can be (path enumeration) 
○ /from_w1/to_w2/file1

○ /from_w1/to_w3/file1

○ …
○ /from_w10/to_w1/file 



Implementation in Apache Crail 
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Metadata 
server

Storage  
server

Storage  
server

Storage  
server

Storage  
server

NVMe flash / Optane
DRAM

Client

Control Path:
Open, lookup, create, delete

Response: 
which servers to talk to

RDMA NVMoF

Fast data path



Heavily Pipelined Architecture 
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Performance

Small data sets (in KV mode): low latency with high IOPS 
Large data sets (~10s GB, in FS mode): deliver high bandwidth 26



Integration with Spark: Shuffle and Broadcast
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https://craillabs.github.io/blog/2017/08/crail-memory.html 

● 2-5x performance improvement in 
shuffle 

● More than 10x gains for broadcast 

https://craillabs.github.io/blog/2017/08/crail-memory.html


Putting Everything Together: TeraSort
● 128 nodes x 100 Gbps RoCE cluster, total dataset 12.8 TB 

28https://craillabs.github.io/blog/2017/01/sorting.html 

https://craillabs.github.io/blog/2017/01/sorting.html


Storage Disaggregation 
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Storage disaggregation and moving all data from memory to flash for storage 
● Flash is cheaper, more energy efficient, and denser than the DRAM 

The whole in-flash shuffle storage is still faster than vanilla Spark in DRAM 



So Far … 
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Input datasets Output datasets

map

map

map

map

reduce

reduce

reduce

reduce

Accelerated via Crail

We have seen that we can shuffle data very close to the hardware limits. 
Can we actually feed data at that speed too?



Relational Data Processing Stacks in the Cloud
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Relational 
Engines

File 
Formats

Distribute
d
Storage

One of the most popular data processing paradigms

- Data organized in tables 

- Analyzed using DSL like SQL 

- Integrity protected using variants 

But unlike classical RDBMs systems, they don’t manage their own storage



Relational Data Processing Stack in the Cloud
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Relational 
Engines

File 
Formats

Distributed
Storage



Back to the Future - It is 2010
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Relational 
Engines

File 
Formats

Hardware

Disks connected over 1/10 Gbps network



Back to the Future - It is 2010
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Relational 
Engines

File 
Formats

Hardware

Disks connected over 1/10 Gbps network



Albis File Format (2018) 
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The I/O Revolution
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2-3 orders of magnitude performance improvements
- latency        : from msecs to μsecs 
- bandwidth  : from MBps to GBps 
- IOPS            : from 100s to 100K



The Impact of the Revolution
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Hadoop 
NameNode

Hadoop DataNode

Benchmark100 Gbps

3.1 GB/s x 4 = 12.4 GB/s

Micro-benchmark*

16 cores in parallel, reading 
TPC-DS data set. 
What is the bandwidth?

Why micro-benchmark?
Decouple from the SQL engine

*https://github.com/animeshtrivedi/fileformat-benchmarks 

File format
...

https://github.com/animeshtrivedi/fileformat-benchmarks


The Impact of the Revolution
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The Impact of the Revolution
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None of the modern file formats delivered performance close to the hardware

100 Gbps 

74.9 Gbps: HDFS/NVMe



The Outdated Assumptions and Impact
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End-host 
assumptions

Distributed systems 
assumptions

Language/runtimes 
assumptions



The Outdated Assumptions and Impact
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End-host 
assumptions

Distributed systems 
assumptions

Language/runtimes 
assumptions

1. CPU is fast, I/O is slow 
- trade CPU for I/O 
- compression, encoding 

But why now? CPU core speed is stalled, but … 

1 Gbps  HDD 100 Gbps Flash

Bandwidth 117 MB/s 140 MB/s 12.5 GB/s 3.1 GB/s

cycle/unit 38,400 10,957 360 495



The Outdated Assumptions and Impact
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End-host 
assumptions

Distributed systems 
assumptions

Language/runtimes 
assumptions

2. Avoid slow, random small I/O 
- preference for large block scans

But leads to bad CPU cache performance

C0
C1
C2
C3 C7

C6
C5
C4

128 MB 1 GB cache size?

Bounded by the 
poor cache/IPC 
performance

Bounded by the 
number of 

instructions/row



The Outdated Assumptions and Impact
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End-host 
assumptions

Distributed systems 
assumptions

Language/runtimes 
assumptions

3. Remote I/O is slow 
- pack data/metadata together

- schedule tasks on local blocks

But now network/storage is super fast? then 
why still pack all data in a single block and 
try to co-schedule tasks?

data

compute

data

compute



The Outdated Assumptions and Impact
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End-host 
assumptions

Distributed systems 
assumptions

Language/runtimes 
assumptions

4. Metadata lookups are slow 
- decrease number of lookups by decreasing 

number of files/directories

RAMCloud, Crail can do 10 millions of 
lookups/sec. Does this design still make sense?

Metadata 
Server

Client

Data

Where is data?
Data access



The Outdated Assumptions and Impact
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End-host 
assumptions

Distributed systems 
assumptions

Language/runtimes 
assumptions

5. Disregard for the runtime environment: 
- group encoded/decoded
- heavy object pressure
- independent layers, no shared object
- materialize all objects

Binary / raw data

Runtime row binary data



Albis
● Albis - A file format to store relational tables for read-heavy analytics 

workloads

● Supports all basic primitive types with data and schema

○ nested schemas are flattened and data is stored in the leaves

● Three fundamental design decisions:

1. avoid CPU pressure, i.e., no encoding, compression, etc.

2. simple data/metadata management on the distributed storage

3. carefully managed runtime - simple row/column storage with a 

binary API 
46



Table Storage Logic

47

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44

Int    double byte[ ] char  float[ ]



Table Storage Logic
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Table Storage Logic
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Table Storage Logic
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03 04

13 14

23 24

33 34

43 44

02

12

22

32

42

Ro
w
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ro

up
s

Column groups

RG0
CG0

RG0
CG1

RG0
CG2

RG1
CG2

RG1
CG1

RG1
CG0

If there is only 1 column group  : Row store 
If there are ‘n’ column groups    : Columns store 



Table Storage Logic
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Row Storage Format
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table0

RG0 RG1

CG0 CG1 CG2 CG0 CG1 CG2

schema How is a single row of data stored 
in these files?



Row Storage Format
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Null bitmap

Marking null columns values 



Row Storage Format
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Null bitmap

complete row size



Row Storage Format
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Null bitmap

complete row size fixed-field area variable-field area



Row Storage Format
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ptr ptr byte [ ] ... float [ ] ...

Null bitmap

complete row size fixed-field area variable-field area

Schema of { int, double, byte[ ], char, float[ ] } :  



Row Storage Format
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ptr ptr byte [ ] ... float [ ] ...

Null bitmap

complete row size fixed-field area variable-field area

Schema of { int, double, byte[ ], char, float[ ] } :  
+ 1 byte bitmap (because there are 5 columns)
+ 4 byte size 
+ 4 byte (int) + 8 byte (double) + 8 byte (offset + size, ptr) + 1 byte (char) + 8 byte (offset + size, ptr) 
   = 34 bytes + variable area.



segment buffer (e.g., 1 MB)

Writing Rows
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writer object Min, max, 
distribution 
statistics 

HDFS data file HDFS metadata file

Use to implement 
filters



Reading Rows
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table0

RG0 RG1

CG0 CG1 CG2 CG0 CG1 CG2

schema

1. Read schema file

2. Check projection to figure out which 

files to read

a. Complete CGs

b. Partial CGs

3. Evaluate filters to skip segments

4. Materialize values

a. Skip value materialization in 

partial CG reads1 2 3 4 5
Row data



Evaluation
All experiments on a 4-node cluster with 100 Gbps network and flash devices

Dataset is TPC-DS tables with the scale factor of 100 (~100 GB of data)

Three fundamental questions

● Does Albis deliver better performance for micro-benchmarks?

● Does micro-benchmark performance translate to better workload 

performance?

● What is the performance and space trade-off in Albis? 
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Microbenchmark Performance - Revised
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100 Gbps 

74.9 Gbps: HDFS/NVMe

Albis delivers 1.9 - 21.3x performance improvements over other formats



Spark/SQL TPC-DS Performance
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TPC-DS dataset, scale factor = 100
Y axis : CDF of queries 
X axis : percentage performance gains



Spark/SQL TPC-DS Performance

63Albis delivers up to 3x performance gains for TPC-DS queries



Space vs. Performance Trade-off
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None Snappy Gzip zlib

Parquet 58.6 GB
12.5 Gbps

44.3 GB
9.4 Gbps

33.8 GB 
8.3 Gbps N/A

ORC 72.0 GB
19.1 Gbps

47.6 GB
17.8 Gbps N/A 36.8 GB 

13.0 Gbps

Albis 94.5 GB 
59.9 Gbps N/A N/A N/A

Albis inflates data by 1.3 - 2.7x, but gives 3.4 - 7.2x performance gains



Microbenchmark Performance - Revised
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100 Gbps 

74.9 Gbps: HDFS/NVMe

What would it take to 
deliver 100 Gbps?



Microbenchmark Performance - Revised
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100 Gbps 

74.9 Gbps: HDFS/NVMe

JVM object 
overheads

Apache Crail (Incubating) - A High-Performance Distributed Data Store, http://crail.incubator.apache.org/

Al
bi

s 
+ 

Cr
ai

l

byte [] raw_data = data[4];

// In C/C++ , pointing to the same memory location 
int val = (int*) data;

// in Java/Scala
int val = ByteBuffer.wrap(data).getInt();
// val and data pointer to different memory 
// locations 

http://crail.incubator.apache.org/


Microbenchmark Performance - Revised

67Albis can deliver performance within 10% of hardware

100 Gbps 

74.9 Gbps: HDFS/NVMe

Al
bi

s 
+ 

Cr
ai

l

Al
bi

s 
+ 

Cr
ai

l +
 N

oO
bj

s



Think about 
When does Albis-type data storage format does not make sense? 

1. CPU is fast enough to compute (compress, encode, materialize objects) 
faster than I/O device bandwidth 
a. Is CPU getting faster? Are I/O devices getting faster? 

2. Is space vs. performance trade-off acceptable? 
a. Not all data is equally performance sensitive 
b. Not all data is hot - cold data needs to be compressed and stored efficiently 

3. Anything else? Albis is only evaluated in the Cloud/HDFS/Crail 
a. Building Albis on OCSSDs would be an interesting exercise 
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From this Lecture You Should Know 
1. What is temporary data 
2. Why does temporary data needs special treatment 

a. In the critical path 
b. Large size distribution 
c. No fault tolerance (can be supported by the framework itself) 

3. How does modern networking (RDMA) and storage (NVMe/NVMeF) help to 
build fast Crail-type system 
a. What does control and data path split means 
b. What does unification of abstractions in the NodeKernel model mean 

4. What is Albis and how does its design leverage modern networking and 
storage hardware 
a. Reduce CPU involvement - simple format and easy layout on file system 
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https://www.alluxio.io/
https://ramcloud.atlassian.net/wiki/spaces/RAM/overview

