
1

Storage Systems (StoSys)
XM_0092

Lecture 9: Distributed / Storage Systems - I

Animesh Trivedi
Autumn 2023, Period 1

Syllabus outline
1. Welcome and introduction to NVM (today)
2. Host interfacing and software implications
3. Flash Translation Layer (FTL) and Garbage Collection (GC)
4. NVM Block Storage File systems
5. NVM Block Storage Key-Value Stores
6. Emerging Byte-addressable Storage
7. Networked NVM Storage
8. Programmable Storage
9. Distributed Storage / Systems - I

10. Distributed Storage / Systems - II
11. Emerging Topics

2

Today’s Agenda

3

1. We are going to learn about managing temporary/ephemeral data - a
new class of data type

2. Building a distributed store with high-performance networking and
storage devices

3. Data formats? JSON, Parquet, ORC, are they good enough?

What is Temporary/Ephemeral Data?
Any guesses?

4

Distributed data processing frameworks
● Apache Spark
● Apache Hadoop (MapReduce)
● GraphLab
● Naiad (Dataflow)
● TensorFlow
● PyTorch
● … Input datasets Output datasets

What is Temporary/Ephemeral Data?
Any guesses?

5

Input datasets Output datasets

Apache Spark

What is Temporary/Ephemeral Data?

6

Input datasets Output datasets

Apache Spark

map

map

map

map

reduce

reduce

reduce

reduce

TensorFlow

What is Temporary/Ephemeral Data?

7

Input datasets Output datasets

map

map

map

map

reduce

reduce

reduce

reduce

1. Read images, transform 2. Feature extraction 3. Training 4. Saving the model

Between the initial dataset read, and the final dataset saved - there are many
in-flight data objects which are temporary and ephemeral datasets

Challenges with Temporary Data Storage
1. Temporary data is performance critical - new network (100 Gbps) and

storage (NVMe) can help

8

Zhang et al., Riffle: optimized shuffle service for large-scale data analytics. In EuroSys 2018
Ousterhout et al., Making sense of performance in data analytics frameworks. NSDI 2015.
Trivedi et al., On the [ir]relevance of network performance for data processing. HotCloud 2016.

Challenges with Temporary Data Storage
1. Temporary data is performance critical - new network (100 Gbps) and

storage (NVMe) can help

2. Temporary data have different needs
a. No need to persist and provide fault tolerance
b. Fault tolerance is often baked in compute framework used - Spark or TensorFlow

3. Complex integration into the compute framework
a. Spark, TensorFlow, GraphLab, PyTorch -- all have their own way of processing data (RPCs)
b. New technologies are here - NAND Flash, Optane storage, PMEM, and mix of these
c. New deployment models: DAS vs Disaggregated
d. Programmable storage?

9

Temporary Data Management Spaghetti

10

Input datasets Output datasets

map

map

map

map

reduce

reduce

reduce

reduce

Temporary Data Management Spaghetti

11

Input datasets Output datasets

map

map

map

map

reduce

reduce

reduce

reduce

Build a temporary data
storage framework

Can Existing Solutions Work?

12

Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML

Can Existing Solutions Work?

13

Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML

Typically
small values
can be stored
in KV Stores
(latency
driven)

Typically large
values are
stored in file
systems
(bandwidth
driven)

Can Existing Solutions Work?

14

Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML

Typically
small values
can be stored
in KV Stores
(latency
driven)

client

KV
server

KV
server

KV
server

Can Existing Solutions Work?

15

Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML

Typically
small values
can be stored
in KV Stores
(latency
driven)

Typically large
values are
stored in file
systems
(bandwidth
driven)

client

FS
server

FS
server

FS
server

FS mdata
server

Unification of Temporary Storage in the NodeKernel Architecture
(2019)

16

The NodeKernel Architecture (2019)
A fused KV + File system distributed storage designed for temporary data storage,
basic ideas

1. With fast network - FS and KV semantics can be provided in a single system
a. Key Value Store = contact a single server + data transfer
b. File Systems = contact metadata server + data servers + data transfer
c. Nodes can be specialized : Tables, Directories, Files, workload specific files, Append-only, etc.

2. Split control and data planes
a. Control plane = fast asynchronous RPCs
b. Data plane = One-sided RDMA operations and NVMeF for I/O from DRAM and Flash storage

Trick: prepare and allocate all resources (carefully manage the NVM runtime) and
do not intervene in offloaded I/O access operations

17

client

KV
server

KV
server

KV
server

client

FS
server

FS
server

FS
server

FS mdata
server

1
1

2

The NodeKernel Architecture (2019)
A fused KV + File system distributed storage designed for temporary data storage,
basic ideas

1. With fast network - FS and KV semantics can be provided in a single system
a. Key Value Store = contact a single server + data transfer
b. File Systems = contact metadata server + data servers + data transfer
c. Nodes can be specialized : Tables, Directories, Files, workload specific files, Append-only, etc.

2. Split control and data planes
a. Control plane = fast asynchronous RPCs
b. Data plane = One-sided RDMA operations and NVMeF for I/O from DRAM and Flash storage

Trick: prepare and allocate all resources (carefully manage the NVM runtime) and
do not intervene in offloaded I/O access operations

18

clientResolve the data locaton Access to the data
Control operation Data Access - read/write
(alloc mem, scheduling, placement, name resolution)

The NodeKernel Architecture (2019)
A fused KV + File system distributed storage designed for temporary data
storage, basic ideas

1. With fast network - FS and KV semantics can be provided in a single
system
a. Key Value Store = contact a single server + data transfer
b. File Systems = contact metadata server + data servers + data transfer
c. Nodes can be specialized : Tables, Directories, Files, workload specific files, Append-only,

etc.

2. Split control and data planes
a. Control plane = fast asynchronous RPCs
b. Data plane = One-sided RDMA operations for I/O from DRAM and Flash storage

19

● Data Plane - code path or calls where the actual work is done
○ Data r/w, make it straight forward, no blocking calls, everything is ready to go

● Control Plane - code path or call where resources are managed
○ Slow(er), resourced need to be allocated and managed, can block

● Fast path - common case execution (typically few branches, decision
making, very simple code)

○ Read a file from start to finish, all blocks arrive in order
● Slow path - more sanity checks (more branches, hence poor(er)

performance)
○ Read a file in fragments with random accesses in between, error handling

The NodeKernel Architecture (2019)
A fused KV + File system distributed storage designed for temporary data storage,
basic ideas

1. With fast network - FS and KV semantics can be provided in a single system
a. Key Value Store = contact a single server + data transfer
b. File Systems = contact metadata server + data servers + data transfer
c. Nodes can be specialized : Tables, Directories, Files, workload specific files, Append-only, etc.

2. Split control and data planes
a. Control plane = fast asynchronous RPCs
b. Data plane = One-sided RDMA operations and NVMeF for I/O from DRAM and Flash storage

Trick: prepare and allocate all resources (carefully manage the NVM runtime) and
do not intervene in offloaded I/O access operations

20

NodeKernel: A High-Level Idea

21

Root
0

Node
1

Node
2

Node
7

Node
5

Node
6

Node
11

Node
16

Node
20

A node is an abstract type that
supports

● Creating a node
● Inserting into the tree
● Removing from the tree
● Read
● Append
● Update
● ...

NodeKernel: A High-Level Idea

22

/

MyTab

KV1 KV2

shuffle

srv1

part1 part2 part3

● Directory
○ Enumerate
○ Add/remove files

● Tables
○ Collection of KVs
○ Add, remove KV files

● Files and KV files
○ Last winner vs error on

concurrent creator
● Bags of directories

○ Fast data reading over
multiple directories and files

NodeKernel: A High-Level Idea

23

/

MyTab

KV1 KV2

shuffle

srv1

part1 part2 part3

With this setup in Spark
● Broadcast variables can be stored as a fast

KV entries to fast lookups
○ val bcVar = sc.broadcast(“10”) //put

○ val rdVal = bcVar.value.get() //get

● Shuffle (all-to-all) can be (path enumeration)
○ /from_w1/to_w2/file1

○ /from_w1/to_w3/file1

○ …
○ /from_w10/to_w1/file

Implementation in Apache Crail

24

Metadata
server

Storage
server

Storage
server

Storage
server

Storage
server

NVMe flash / Optane
DRAM

Client

Control Path:
Open, lookup, create, delete

Response:
which servers to talk to

RDMA NVMoF

Fast data path

Heavily Pipelined Architecture

25

Performance

Small data sets (in KV mode): low latency with high IOPS
Large data sets (~10s GB, in FS mode): deliver high bandwidth 26

Integration with Spark: Shuffle and Broadcast

27

https://craillabs.github.io/blog/2017/08/crail-memory.html

● 2-5x performance improvement in
shuffle

● More than 10x gains for broadcast

https://craillabs.github.io/blog/2017/08/crail-memory.html

Putting Everything Together: TeraSort
● 128 nodes x 100 Gbps RoCE cluster, total dataset 12.8 TB

28https://craillabs.github.io/blog/2017/01/sorting.html

https://craillabs.github.io/blog/2017/01/sorting.html

Storage Disaggregation

29

Storage disaggregation and moving all data from memory to flash for storage
● Flash is cheaper, more energy efficient, and denser than the DRAM

The whole in-flash shuffle storage is still faster than vanilla Spark in DRAM

So Far …

30

Input datasets Output datasets

map

map

map

map

reduce

reduce

reduce

reduce

Accelerated via Crail

We have seen that we can shuffle data very close to the hardware limits.
Can we actually feed data at that speed too?

Relational Data Processing Stacks in the Cloud

31

Relational
Engines

File
Formats

Distribute
d
Storage

One of the most popular data processing paradigms

- Data organized in tables

- Analyzed using DSL like SQL

- Integrity protected using variants

But unlike classical RDBMs systems, they don’t manage their own storage

Relational Data Processing Stack in the Cloud

32

Relational
Engines

File
Formats

Distributed
Storage

Back to the Future - It is 2010

33

Relational
Engines

File
Formats

Hardware

Disks connected over 1/10 Gbps network

Back to the Future - It is 2010

34

Relational
Engines

File
Formats

Hardware

Disks connected over 1/10 Gbps network

Albis File Format (2018)

35

The I/O Revolution

36

2-3 orders of magnitude performance improvements
- latency : from msecs to μsecs
- bandwidth : from MBps to GBps
- IOPS : from 100s to 100K

The Impact of the Revolution

37

Hadoop
NameNode

Hadoop DataNode

Benchmark100 Gbps

3.1 GB/s x 4 = 12.4 GB/s

Micro-benchmark*

16 cores in parallel, reading
TPC-DS data set.
What is the bandwidth?

Why micro-benchmark?
Decouple from the SQL engine

*https://github.com/animeshtrivedi/fileformat-benchmarks

File format
...

https://github.com/animeshtrivedi/fileformat-benchmarks

The Impact of the Revolution

38

The Impact of the Revolution

39

None of the modern file formats delivered performance close to the hardware

100 Gbps

74.9 Gbps: HDFS/NVMe

The Outdated Assumptions and Impact

40

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

The Outdated Assumptions and Impact

41

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

1. CPU is fast, I/O is slow
- trade CPU for I/O
- compression, encoding

But why now? CPU core speed is stalled, but …

1 Gbps HDD 100 Gbps Flash

Bandwidth 117 MB/s 140 MB/s 12.5 GB/s 3.1 GB/s

cycle/unit 38,400 10,957 360 495

The Outdated Assumptions and Impact

42

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

2. Avoid slow, random small I/O
- preference for large block scans

But leads to bad CPU cache performance

C0
C1
C2
C3 C7

C6
C5
C4

128 MB 1 GB cache size?

Bounded by the
poor cache/IPC
performance

Bounded by the
number of

instructions/row

The Outdated Assumptions and Impact

43

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

3. Remote I/O is slow
- pack data/metadata together

- schedule tasks on local blocks

But now network/storage is super fast? then
why still pack all data in a single block and
try to co-schedule tasks?

data

compute

data

compute

The Outdated Assumptions and Impact

44

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

4. Metadata lookups are slow
- decrease number of lookups by decreasing

number of files/directories

RAMCloud, Crail can do 10 millions of
lookups/sec. Does this design still make sense?

Metadata
Server

Client

Data

Where is data?
Data access

The Outdated Assumptions and Impact

45

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

5. Disregard for the runtime environment:
- group encoded/decoded
- heavy object pressure
- independent layers, no shared object
- materialize all objects

Binary / raw data

Runtime row binary data

Albis
● Albis - A file format to store relational tables for read-heavy analytics

workloads

● Supports all basic primitive types with data and schema

○ nested schemas are flattened and data is stored in the leaves

● Three fundamental design decisions:

1. avoid CPU pressure, i.e., no encoding, compression, etc.

2. simple data/metadata management on the distributed storage

3. carefully managed runtime - simple row/column storage with a

binary API
46

Table Storage Logic

47

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44

Int double byte[] char float[]

Table Storage Logic

48

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44

00 01

10 11

03 04

13 14

20 21

30 31

40 41

23 24

33 34

43 44

02

12

22

32

42
Ro

w
 g

ro
up

s

Column groups

Int double byte[] char float[]

Table Storage Logic

49

00 01

10 11

03 04

13 14

20 21

30 31

40 41

23 24

33 34

43 44

02

12

22

32

42

Ro
w

 g
ro

up
s

Column groups

Table Storage Logic

50

03 04

13 14

23 24

33 34

43 44

02

12

22

32

42

Ro
w

 g
ro

up
s

Column groups

RG0
CG0

RG0
CG1

RG0
CG2

RG1
CG2

RG1
CG1

RG1
CG0

If there is only 1 column group : Row store
If there are ‘n’ column groups : Columns store

Table Storage Logic

51

03 04

13 14

23 24

33 34

43 44

02

12

22

32

42

Ro
w

 g
ro

up
s

Column groups

RG0
CG0

RG0
CG1

RG0
CG2

RG1
CG2

RG1
CG1

RG1
CG0

table0

RG0 RG1

CG0 CG1 CG2 CG0 CG1 CG2

schema

Row Storage Format

52

table0

RG0 RG1

CG0 CG1 CG2 CG0 CG1 CG2

schema How is a single row of data stored
in these files?

Row Storage Format

53

Null bitmap

Marking null columns values

Row Storage Format

54

Null bitmap

complete row size

Row Storage Format

55

Null bitmap

complete row size fixed-field area variable-field area

Row Storage Format

56

ptr ptr byte [] ... float [] ...

Null bitmap

complete row size fixed-field area variable-field area

Schema of { int, double, byte[], char, float[] } :

Row Storage Format

57

ptr ptr byte [] ... float [] ...

Null bitmap

complete row size fixed-field area variable-field area

Schema of { int, double, byte[], char, float[] } :
+ 1 byte bitmap (because there are 5 columns)
+ 4 byte size
+ 4 byte (int) + 8 byte (double) + 8 byte (offset + size, ptr) + 1 byte (char) + 8 byte (offset + size, ptr)
 = 34 bytes + variable area.

segment buffer (e.g., 1 MB)

Writing Rows

58

writer object Min, max,
distribution
statistics

HDFS data file HDFS metadata file

Use to implement
filters

Reading Rows

59

table0

RG0 RG1

CG0 CG1 CG2 CG0 CG1 CG2

schema

1. Read schema file

2. Check projection to figure out which

files to read

a. Complete CGs

b. Partial CGs

3. Evaluate filters to skip segments

4. Materialize values

a. Skip value materialization in

partial CG reads1 2 3 4 5
Row data

Evaluation
All experiments on a 4-node cluster with 100 Gbps network and flash devices

Dataset is TPC-DS tables with the scale factor of 100 (~100 GB of data)

Three fundamental questions

● Does Albis deliver better performance for micro-benchmarks?

● Does micro-benchmark performance translate to better workload

performance?

● What is the performance and space trade-off in Albis?

60

Microbenchmark Performance - Revised

61

100 Gbps

74.9 Gbps: HDFS/NVMe

Albis delivers 1.9 - 21.3x performance improvements over other formats

Spark/SQL TPC-DS Performance

62

TPC-DS dataset, scale factor = 100
Y axis : CDF of queries
X axis : percentage performance gains

Spark/SQL TPC-DS Performance

63Albis delivers up to 3x performance gains for TPC-DS queries

Space vs. Performance Trade-off

64

None Snappy Gzip zlib

Parquet 58.6 GB
12.5 Gbps

44.3 GB
9.4 Gbps

33.8 GB
8.3 Gbps N/A

ORC 72.0 GB
19.1 Gbps

47.6 GB
17.8 Gbps N/A 36.8 GB

13.0 Gbps

Albis 94.5 GB
59.9 Gbps N/A N/A N/A

Albis inflates data by 1.3 - 2.7x, but gives 3.4 - 7.2x performance gains

Microbenchmark Performance - Revised

65

100 Gbps

74.9 Gbps: HDFS/NVMe

What would it take to
deliver 100 Gbps?

Microbenchmark Performance - Revised

66

100 Gbps

74.9 Gbps: HDFS/NVMe

JVM object
overheads

Apache Crail (Incubating) - A High-Performance Distributed Data Store, http://crail.incubator.apache.org/

Al
bi

s
+

Cr
ai

l

byte [] raw_data = data[4];

// In C/C++ , pointing to the same memory location
int val = (int*) data;

// in Java/Scala
int val = ByteBuffer.wrap(data).getInt();
// val and data pointer to different memory
// locations

http://crail.incubator.apache.org/

Microbenchmark Performance - Revised

67Albis can deliver performance within 10% of hardware

100 Gbps

74.9 Gbps: HDFS/NVMe

Al
bi

s
+

Cr
ai

l

Al
bi

s
+

Cr
ai

l +
 N

oO
bj

s

Think about
When does Albis-type data storage format does not make sense?

1. CPU is fast enough to compute (compress, encode, materialize objects)
faster than I/O device bandwidth
a. Is CPU getting faster? Are I/O devices getting faster?

2. Is space vs. performance trade-off acceptable?
a. Not all data is equally performance sensitive
b. Not all data is hot - cold data needs to be compressed and stored efficiently

3. Anything else? Albis is only evaluated in the Cloud/HDFS/Crail
a. Building Albis on OCSSDs would be an interesting exercise

68

From this Lecture You Should Know
1. What is temporary data
2. Why does temporary data needs special treatment

a. In the critical path
b. Large size distribution
c. No fault tolerance (can be supported by the framework itself)

3. How does modern networking (RDMA) and storage (NVMe/NVMeF) help to
build fast Crail-type system
a. What does control and data path split means
b. What does unification of abstractions in the NodeKernel model mean

4. What is Albis and how does its design leverage modern networking and
storage hardware
a. Reduce CPU involvement - simple format and easy layout on file system

69

Further Reading
1. Disaggregating Persistent Memory and Controlling Them Remotely: An Exploration of Passive Disaggregated Key-Value

Stores, USENIX ATC 2020.
2. Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an RDMA-enabled distributed persistent memory file

system. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX
Association, USA, 773–785.

3. Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian Schuepbach, and Bernard Metzler. 2018. Albis: high-performance
file format for big data systems. In Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC '18). USENIX Association, USA, 615–629.

4. Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana Klimovic, Adrian Schuepbach, and Bernard Metzler. 2019. Unification
of temporary storage in the nodekernel architecture. In Proceedings of the 2019 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC '19). USENIX Association, USA, 767–781.

5. https://www.alluxio.io/
6. RAMCloud Project, https://ramcloud.atlassian.net/wiki/spaces/RAM/overview
7. V. Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju, Andrew Gooding, Rajkumar Iyer, Ashish Shinde, and

Thomas Lopatic. Aerospike: Architecture of a real-time operational dbms.Proc. VLDB Endow.,9(13):1389–1400, September
2016.

8. Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu,Jamey Hicks, and Arvind. Bluecache: A scalable distributed flash-based
key-value store. Proc. VLDB Endow., 10(4):301–312, November 2016

70

https://www.alluxio.io/
https://ramcloud.atlassian.net/wiki/spaces/RAM/overview

