Storage Systems (StoSys)
XM_0092

Lecture 9: Distributed / Storage Systems - |

Animesh Trivedi
Autumn 2023, Period 1

VRIJE
UNIVERSITEIT
R° AMSTERDAM

Syllabus outline

9. Distributed Storage / Systems - | <:
10. Distributed Storage / Systems - I

11. Emerging Topics

Today’'s Agenda

1. We are going to learn about managing temporary/ephemeral data - a
new class of data type

2. Building a distributed store with high-performance networking and
storage devices

3. Data formats? JSON, Parquet, ORC, are they good enough?

What is Temporary/Ephemeral Data?

Any guesses?

—) Distributed data processing frameworks —)
e Apache Spark

Apache Hadoop (MapReduce)

GraphLab

Naiad (Dataflow)

TensorFlow

PyTorch

Input datasets Output datasets

What is Temporary/Ephemeral Data?

Any guesses?

Apache Spark

—

=

@Eﬂ—-{@}—iﬁlmr
B -{neo

iy -

join,
groupBy

4{ ﬁlter| @

Input datasets

=

Output datasets

What is Temporary/Ephemeral Data?

Input datasets

Apache Spark

map

map

map

TensorFlow

iw: omp M oan

Output datasets

What is Temporary/Ephemeral Data?

1. Read images, transform

—

Input datasets

2. Feature extraction

3. Training 4. Saving the model
— =
W
K.
D @5 o Output datasets

Between the initial dataset read, and the final dataset saved - there are many
in-flight data objects which are temporary and ephemeral datasets

Challenges with Temporary Data Storage

1. Temporary data is performance critical - new network (100 Gbps) and
storage (NVMe) can help

—o— Shuffle Time =4 - [/O Request

— O
S 4000 2
o I ~ —_
" 3000 e 5 100 : ; ; ; ;
= A = o) : : : : :
E oo G || B BO — e e I
:2000 b B 60 oo {eeeeeenes Hardware Jimit----...-.......i......
£ 10001 40 Q S 40 SRRttt SEISRISSITRRSS RS
= g =) AU SN SRR SO SO, S
@ g . —0 o ; ? ‘ : |

0 5000 10000 £ 0 AW RFSEUSE LTV WS W VST VAP,V

Number of Tasks 0 100 200 300 400 500

Zhang et al., Riffle: optimized shuffle service for large-scale data analytics. In EuroSys 2018
Ousterhout et al., Making sense of performance in data analytics frameworks. NSDI 2015.
Trivedi et al., On the [ir]relevance of network performance for data processing. HotCloud 2016.

Challenges with Temporary Data Storage

1. Temporary data is performance critical - new network (100 Gbps) and
storage (NVMe) can help

2. Temporary data have different needs
a. No need to persist and provide fault tolerance
b. Fault tolerance is often baked in compute framework used - Spark or TensorFlow

3. Complex integration into the compute framework

Spark, TensorFlow, GraphLab, PyTorch -- all have their own way of processing data (RPCs)
New technologies are here - NAND Flash, Optane storage, PMEM, and mix of these

New deployment models: DAS vs Disaggregated

Programmable storage?

e n T o

Temporary Data Management Spaghetti

map reduce
map reduce .
map reduce
LLLLLLLLL Q‘E@a
map reduce >
I d szv
nput adatasets e Output datasets

= EXPRESS D n EXPRESSDD

NVM Express™ o

10

Temporary Data Management Spaghetti

: map L reduce
map reduce
map reduce
map reduce
Input datasets
Build a temporary data @&
storage framework | ** ...

n/ EXPRESS) n/%s)

ress™ over Fabrics

Can Existing Solutions Work?

100
90
80
70
60
50
40
30
20
10

CDF

data size

Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML

12

Can Existing Solutions Work?

100 T T T T T T T 1 H | Typically large
Typically 90 [~ TPC-DD s s s A e Ny v)c;Fl)uesc)i/re :
small values 80 - PR-Twitter = B st e+ s | it stored in file
ganbestorem\— ML-COCOg === kS systems
in KV Stores S e S e Mt s s B g 3 | (bandwidth
(latency 5 so | S 1 3 /| | | driven)
driven) a0 |

30 f--be e e R

20 |-

10 |-

0 |
1

data size

Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML

Can Existing Solutions Work?

=0 T T T T T T T T client
Typically 90 THE-DE wem—; comens e =
small values ‘ S|

bo ot N\.- PR-Twitter == et i oo o T o
can be store -
in KV Stores ;0 ML.-Cocoa _— / server || server || server

(latency i
driven) -

CDF

data size

Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML

Can Existing Solutions Work?

100 Mk | client !

_ | server] : . Typically large
Typlila//y/ 90 ‘/\v N (. values are
small values 80 ol in fi

T | ‘ : stored in file
canbestorem\-— ks | FS | S | B | B it T | systemsf
in KV Stores 60 — - SEIVer SETVEr 2ETVEr e SRR e 4 (bandwidth
(latency 5 so - S . \ /| | o driven)
driven) w0 L | .

L B s e s R e e F- A =
20 |- 7
10 — 7
0 | Il | |

1 1kB 1MB 1GB

data size

Temporary data size distribution for three workloads (i) analytics; (ii) graph processing; (iii) ML

Unification of Temporary Storage in the NodeKernel Architecture

(2019)

Unification of Temporary Storage in the NodeKernel Architecture

Patrick Stuedi Animesh Trivedi*
Adrian Schuepbach®

Jonas Pfefferle’ Ana Klimovic®

Bernard Metzler

TIBM Research #Vrije Universiteit SStanford University

Abstract
Efficiently exchanging temporary data between tasks is criti-
cal to the end-to-end per of many data p ing

frameworks and applications. Unfortunately, the diverse na-
ture of temporary data creates storage demands that often fall
between the sweet spots of traditional storage platforms, such
as file systems or key-value stores.

We present NodeKernel, a novel distributed storage archi-
tecture that offers a convenient new point in the design space
by fusing file system and key-value semantics in a common
storage kernel while leveraging modern networking and stor-
age hardware to achieve high performance and cost-efficiency.
NodeKernel provides hierarchical naming, high scalability,
and close to bare-metal performance for a wide range of data
sizes and access patterns that are characteristic of temporary
data. We show that storing temporary data in Crail, our con-
crete implementation of the NodeKernel architecture which
uses RDMA networking with tiered DRAM/NVMe-Flash
storage, improves NoSQL workload performance by up to
4.8x and Spark application performance by up to 3.4x. Fur-
thermore, by storing data across NVMe Flash and DRAM
storage tiers, Crail reduces storage cost by up to 8 x compared
to DRAM-only storage systems.

1 Introduction

may consist of a large number of files which are organized
hierarchically, vary widely in size, are written randomly, and
read sequentially. While file systems (e.g., HDFS) offer a

i i i pace and y store large
datasets for sequential access, distri key-value stores are
optimized for scalable access to a large number of small ob-
jects. Similarly, DRAM-based key-value stores (e.g., Redis)
offer the required low latency, but persistent storage platforms
(e.g, S3) are more suitable for high capacity at low cost. Over-
all, we find that existing storage platforms are not able to
satisfy all the diverse requirements for temporary data storage
and sharing in distributed data processing workloads.

In this paper we present NodeKernel, a new distributed
storage architecture designed from the ground up to support
fast and efficient storage of temporary data. As its most dis-
tinguishing property, the NodeKernel architecture fuses file
system and key-val ics while I ging modern net-
working and storage hardware to achieve high performance.
NodeKernel is based on two key observations. First, many
features offered by long-term storage platforms, such as dura-
bility and fault-tolerance, are not critical when storing tem-
porary data. We observe that under such circumstances, the
software architectures of file systems and key-value stores
begin to look surprisingly similar. The fundamental differ-
ence is that file systems require an extra level of indirection
to map offsets in file streams to distributed storage resources,
while key-value stores map entire key-value pairs to stor-

Managing temporary data iently is key to the per

of cluster computing workloads. For example, application

frameworks often cache input data or share intermediate data,

both both within a job (e.g., shuffle data in a map-reduce job)

and between jobs (e.g., pre-processed images in a machine

learning training workflow). Temporary data storage is also in-
ingly imp in serverless puting for exchangi

age The second observation is that low-latency
networking hardware and multi-CPU many-core servers dra-
matically reduce the cost of this indirection in a distributed
setting by enabling scalable RPC communication at latencies
of a few microseconds.

Based on these insights we develop the NodeKernel archi-
tecture by implementing file system and key-value semantics

16

The NodeKernel Architecture (2019)

A fused KV + File system distributed storage designed for temporary data storage,

basic ideas

1. With fast network - FS and KV semantics can be provided in a single system

1

FS mdata
server

client

— 2

1 .
/////_““\\~ client
KV KV KV
server server server

FS |
server

FS |
server

FS ||
server

17

The NodeKernel Architecture (2019)

A fused KV + File system distributed storage designed for temporary data storage,
basic ideas

1. With fast network - FS and KV semantics can be provided in a single system

a. Key Value Store = contact a single server + data transfer
b. File Systems = contact metadata server + data servers + data transfer
c. Nodes can be specialized : Tables, Directories, Files, workload specific files, Append-only, etc.

2. Split control and data planes

Resolve the data locaton client /\T Access to the data

Control operation Data Access - read/write
(alloc mem, scheduling, placement, name resolution)

18

The NodeKernel Architecture (2019)

e Data Plane - code path or calls where the actual work is done
o Data r/w, make it straight forward, no blocking calls, everything is ready to go

e Control Plane - code path or call where resources are managed

e Fast path - common case execution (typically few branches, decision
making, very simple code)
o Read a file from start to finish, all blocks arrive in order
e Slow path - more sanity checks (more branches, hence poor(er)
performance)

19

The NodeKernel Architecture (2019)

A fused KV + File system distributed storage designed for temporary data storage,
basic ideas

1. With fast network - FS and KV semantics can be provided in a single system

a. Key Value Store = contact a single server + data transfer
b. File Systems = contact metadata server + data servers + data transfer
c. Nodes can be specialized : Tables, Directories, Files, workload specific files, Append-only, etc.

2. Split control and data planes

a. Control plane = fast asynchronous RPCs
b. Dataplane = One-sided RDMA operations and NVMeF for I/0 from DRAM and Flash storage

Trick: prepare and allocate all resources (carefully manage the NVM runtime) and

do not intervene in offloaded I/0O access operations
20

NodeKernel: A High-Level Idea

A node is an abstract type that
supports

Creating a node
Inserting into the tree
Removing from the tree
Read

Append

Update

21

NodeKernel: A High-Level Idea

e Directory
o Enumerate
o Add/remove files
e Tables
o Collection of KVs
o Add, remove KV files
e Files and KV files
o Lastwinner vs error on
concurrent creator
e Bags of directories
o Fast data reading over

22

NodeKernel: A High-Level Idea

With this setup in Spark
e Broadcast variables can be stored as a fast
KV entries to fast lookups

o val bcVar = sc.broadcast(“10”) //put
o val rdval = bcVar.value.get() //get

e Shuffle (all-to-all) can be (path enumeration)
o /from_wl/to_w2/filel
/from wl/to w3/filel

@]
@]
o /from wle/to wl/file

23

Implementation in Apache Crail

Control Path:
Open, lookup, create

Response:
which servers xo talk’

O

Client

Fast data path
NVMoF

-

Metadata . Storage Storage Storage Storage
server server server server server
I NVMe flash / Optane

I DRAM

24

Heavily Pipelined Architecture

Metadata Storage _
Servers Servers Client
<name:”n_dat”,0ffset:0> ____________________________ A
Mo T metadata - lookup()
<nid=1,offset=512> ———— -
4--::::::::::::::::::::::-B.-é ------ metadata : d
DRAMT oo rea
block RDMA/read v i 0
<nid‘—‘1,0ﬁ39t:1024> __________________________ <
e I metadata
--------------------------------------- | % read()
UM , NVMf/read [r _
e R RRIPST
block client

buffer

25

Performance

KeyVaIue GET (2568) File read (10GB)
80 2L 100 T T T TrrIr
DRAM —i—
e | Optane ——) § 80
2 O
s 40 = — O
C . —
& = 40
© =
=420 |- - ©
o 20 Crail- DRAM e]
Crail - NVMf il
O L 1 3 a3l TN | I T O vl b vl AR EEET
10000 100000 1x10° 1x10’ 1 10 100 1000
IOPS buffer size in KB

Small data sets (in KV mode): low latency with high IOPS
Large data sets (~10s GB, in FS mode): deliver high bandwidth 26

Throughput (Gbit/s)

Integration with Spark: Shuffle and Broadcast

Groupby Vanilla Spark

100 : -
@ 1 core
B8O e L4 cores
8 8 cores =
e |1]| SETTERS IR W ORPRE SOPNN FTIS SIIS SAFITE SIRY SOTI SRS O SO
2.
g 40
3
E 20 b N
= : :
0 \ N 1] 1 L
0 10 20 30 40 50 60 70 80 90 100 110 120
Elapsed time (seconds)
Groupby Spark/Crail
100 ‘
: 1 core
... Lot 4 cores mmm—
: 8 cores mes
l]] | l]] l |
30 40 50 60 70 80 90 100 110 120

Elapsed time (seconds)

100 T 1 1
80 L ’ -
. 60 -
a
© a0} .
20 A R Y I S Sk crail =
: : : vanilla =
0 1 & 1 1 1
lus 10us 100us 1ms 10ms 100ms
read 128b broadcast latency
e 2-5x performance improvement in
shuffle
e More than 10x gains for broadcast
https://craillabs.github.io/blog/2017/08/crail-memory.html
27

https://craillabs.github.io/blog/2017/08/crail-memory.html

Putting Everything Together: TeraSort

600 -

500 -

Runtime (secs)

100

N
o
o

300

200 -

128 nodes x 100 Gbps RoCE cluster, total dataset 12.8 TB

Spark

m shuffle+sort.

B classify

Spark/Crail

https://craillabs.github.io/blog/2017/01/sorting.html

Throughput [Gbit/s]

Throughput [Gbit/s]

100
80
60
40
20

100
80
60
40
20

0

0 100 200 300 400 500
Elapsed time (seconds)

!M* 223 "%, '! '*I’..!»"yvva“‘- NG b :\.,h-"v»-.‘*»..\ .lf.i.,'-.!. - '!e.l'g l’?v.”kq 6 ‘;)w
| 1 1 | 1 |
1000 2000 3000 4000 5000 6000

Reduce task ID

28

https://craillabs.github.io/blog/2017/01/sorting.html

Storage Disaggregation

120 | | | l T T T .
Map 20
» 100 1 Reduce 00
2 __—Vanilla Spark
§ 80 R -- (100% MemOTry)----------------rsrrrr s =
L 60k -
:
g
LRI - B H B
0 I | L] L1 ! | .1
100/0 100/0 80/20 60/40 40/60 20/80 0/100

Memory to Flash Ratio

Storage disaggregation and moving all data from memory to flash for storage
e Flash is cheaper, more energy efficient, and denser than the DRAM

The whole in-flash shuffle storage is still faster than vanilla Spark in DRAM

29

So Far ...

Input datasets I

We have seen that we can shuffle data very close to the hardware limits.
Can we actually feed data at that speed too?

Accelerated via Crail

map

—

map reduce

reduce

Output datasets
reduce

30

Relational Data Processing Stacks in the Cloud

Relational o AcHE \(\} % APACHE %
Engines SPQI"’,(\Z Y DRILL \ 3

cloudera
IMPALA ~=SHIVE

One of the most popular data processing paradigms
- Data organized in tables
- Analyzed using DSL like SQL
- Integrity protected using variants
But unlike classical RDBMs systems, they don’t manage their own storage

31

Relational Data Processing Stack in the Cloud

Relational Amus<,\z s} N ASARCIFEL %
En gl nes Sp Qr K clolfgs‘ﬁ' é‘ bIVE

File
&
Formats //// Parquet >>>
D buted _____—________—_-__Tﬁ:i;k_?tf?:_
istribute .
. R
Storage &lﬁ h;% R

AmaZOn S3 @Cassandra . mongoDB

32

Back to the Future - It is 2010

Relational APACHEg’\Z s} ASARCIFEL %
En gl nes Sp Qr K clolfggg' é‘ BIVE

Forril]eats WA% ‘ OhrC {/,’/'/Parquet >>>

Hardware W

Disks connected over 1/10 Gbps network

33

Back to the Future - It is 2010

Relational
Engines

File
Formats

Hardware

\(} A APACHE
Spr",(\z y o DRILL Q,

cloudera

IMPALA t ~=HIVE

o XRe® Q) i % Parquet D))

W

Disks connected over 1/10 Gbps network

34

Albis File Format (2018)

Albis: High-Performance File Format for Big Data Systems

Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian Schuepbach, and Bernard Metzler
IBM Research, Zurich

Abstract

Over the last decade. a variety of external file formats
such as Parquet, ORC, Arrow, etc., have been developed
to store large volumes of relational data in the cloud.
As high-performance networking and storage devices are
used pervasively to process this data in frameworks like
Spark and Hadoop, we observe that none of the popular
file formats are capable of delivering data access rates
close to the hardware. Our analysis suggests that multi-
ple antiquated notions about the nature of /O in a dis-
tributed setting, and the preference for the “storage effi-
ciency” over performance is the key reason for this gap.

In this paper we present Albis. a high-perf file

relational queries {e.g., SQL)

ata Processing
(e.g.. Spark/! .Hlve Im ala)
[ata access
) it

Figure I: Relational data processing stack in the cloud.

RDPS systems typically do not manage their storage.

format for storing relational data on modern hardware.
Albis is built upon two key principles: (i) reduce the CPU
cost by keeping the data/metadata storage format simple;

They ige a variety of external file formats to store
and access data. Figure | shows a typical RDPS stack in
the cloud. This modularity enables RDPS systems to ac-
cess data from a variety of sources in a diverse set of de-

(ii) use a binary API for an efficient object
to avoid y object materialization. In our eval-
uation, we d that in micro-benchmarks Albis
delivers 1.9 —21.4x faster bandwidths than other for-
mats. At the workload-level, Albis in Spark/SQL reduces
the runtimes of TPC-DS queries up to a margin of 3x.

1 Introduction

Relational data management and analysis is one of the
most popular data processing paradigms. Over the last
decade, many distributed relational data processing sys-
tems (RDPS) have been pmposed [15, 53, 29, 38 35,
24]. These systems inely process vast of
(semi- 1 relati ‘dalato, luable in-
sights [33]. As the volume and velocity of the data in-
crease, these systems are under constant pressure to de-
liver ever higher performance. One key factor that de-
termines the performance is the data access rate. How-
ever, unlike the classic relational datab

systems (RDBMS) which are jointly designed for op-
timal data storage and processing, modern cloud-based

Examples of these formats are Parquet [10],
ORC 91, Avm [6]. Arrow [5]. etc. These formats are
now even supported by the RDBMS solutions which add
Hadoop support [49, 41, 31]. Inevitably, the performance
of a file format plays an important role.

Historically. file formats have put the top priority as
the “storage efficiency”, and aim to reduce the amount
of /O as much as possible because I/O operations are
considered slow. However, with the recent performance
advancements in storage and network devices, the fun-
damental notion of “a fast CPU and slow /O devices”
is now antiquated [44, 40, 54]. Consequently, many as-
sumptions about the nature of storage in a distributed
setting are in need of revision (see Table 1). Yet, file
formats continue to build upon these antiquated assump-
tions without a systematic consideration for the perfor-
mance. As a result, only a fraction of raw hardware per-

fi is reflected in the per of a file format.

In this paper, we re-visit the basic question of stor-
age and file formats for modern, cloud-scale relational
data processing systems. We first start by quantifying
the impact of modern networking and storage hardware

USENIX Association

2018 USENIX Annual Technical Conference 615

35

The I/0 Revolution

SPEED
LIMIT

100

Gbps

2-3 orders of magnitude performance improvements
- latency : from msecs to psecs
- bandwidth : from MBps to GBps
- 10PS : from 100s to 100K

The Impact of the Revolution

Micro-benchmark*

16 cores in parallel, reading
TPC-DS data set.
What is the bandwidth?

100 Gbps Benchmark

File format

Hadoo
NameNorc):le Why micro-benchmark? |
Decouple from the SQL engine

Hadoop DataNode

31 GB/SX4= 124 GB/S éSD éSD éSD éSD *https://github.com/animeshtrivedi/fileformat-benchmarks
e B e B G B G 37

https://github.com/animeshtrivedi/fileformat-benchmarks

The Impact of the Revolution

120

100

@ 80
o)
(O]

= 60
3

e 40
(@]
(O]

20

0

JSON

Avro Parquet ORC

Arrow

38

The Impact of the Revolution

120
— 100 Gbps
@ 80
& e e e — == 74.9 Gbps: HDFS/NVMe
S 60
35
T 40 30.1
S 19.9

. 12.5
2.8 6.5

0
JSON Avro Parquet ORC Arrow

None of the modern file formats delivered performance close to the hardware
39

The Outdated Assumptions and Impact

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

40

The Outdated Assumptions and Impact

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

1. CPU is fast, I/0 is slow

- trade CPU for I/0
- compression, encoding

But why now? CPU core speed is stalled, but ...

1 Gbps HDD 100 Gbps Flash
Bandwidth | 117 MB/s | 140 MB/s | 12.5GB/s @ 3.1 GB/s
cycle/unit 38,400 10,957 360 495

41

The Outdated Assumptions and Impact

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

2. Avoid slow, random small 170

- preference for large block scans

But leads to bad CPU cache performance

CO | C4

AGE 128 MB == 1 GB cache size”

|
c3 | c7 |
|
|

Bounded by the Bounded by the
number of | poor cache/IPC
instructions/row performance

42

The Outdated Assumptions and Impact

Distributed systems
assumptions

Language/runtimes
assumptions

3. Remote I/0 is slow

- pack data/metadata together

- schedule tasks on local blocks

But now network/storage is super fast? then
why still pack all data in a single block and

try to co-schedule tasks?

compute

™~

data

\x\

compute

data

43

The Outdated Assumptions and Impact

Distributed systems
assumptions

Language/runtimes
assumptions

4. Metadata lookups are slow

- decrease number of lookups by decreasing
number of files/directories

RAMCloud, Crail can do 10 millions of
lookups/sec. Does this design still make sense?

Where is data?

Metadata
Server

Client

ﬂ Data access

Data

44

The Outdated Assumptions and Impact

Language/runtimes
assumptions

5. Disregard for the runtime environment:

group encoded/decoded
heavy object pressure

independent layers, no shared object
materialize all objects

Runtime row binary data

=

. O
O U O

Binary / raw data

45

Albis

e Albis - A file format to store relational tables for read-heavy analytics
workloads
e Supports all basic primitive types with data and schema
o nested schemas are flattened and data is stored in the leaves
e Three fundamental design decisions:
1. avoid CPU pressure, i.e., no encoding, compression, etc.
2. simple data/metadata management on the distributed storage
3. carefully managed runtime - simple row/column storage with a
binary API

46

Table Storage Logic

Int double byte[] char float]]

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 | 41 | 42 | 43 | 44

Table Storage Logic

Int double byte[] char float]]

o0 o Pl Vo3 o4
00 01 02 | 03 04 | |
% 0 M 112] 13 | 14
0 11 | 12 13 | 14)
9 ————— I———J —————
20 | 21 | 22 | 23 | 24 S} = | :
z
20 | 21
30 | 31 | 32 | 33 | 34 & : 22 : 23 | 24
— 30 | 31
40 41 42 | 43 44 [32 38 3
40 14T 1 42 | 43 44
)

,—
—
J—

| | |

Column groups

Row groups

Table Storage Logic

00 | 01 : 02 : 03 | 04
0 11 [| 12 | | 13 14
B L
B | |
20 027 1 22 |1 23 24
— 30 | 31 : 32 : 33 34
40 41 1 42 1| 43 44

‘_Y_/_Y_/\ Y}

Column groups

Row groups

Table Storage Logic

~ RGO : RGO : RGO
CGO0 || CG1 | | CG2
R e
- | |
| |
| RG1 |1| RG1 |I| RGT
CGO || CG1 || CG2
| |
_ —

Column groups

If there is only 1 column group : Row store

If there are 'n’ column groups

: Columns store

50

Row groups

Table Storage Logic

~ RGO : RGO : RGO
CGO0 || CG1 | | CG2
R e
- | |
| |
| RG1 |1| RG1 |I| RGT
CGO || CG1 || CG2
| |
T

Column groups

tableO

I

schema

/N/N

CGO CG1 CG2 CGO CGT CG2

51

Row Storage Format

tableO

I

schema

/N/N

CGO CG1 CG2 CGO CGT CG2

INRIN

How is a single row of data stored
in these files?

52

Row Storage Format

Null bitmap

Marking null columns values

53

Row Storage Format

Null bitmap

complete row size

54

Row Storage Format

Null bitmap

complete row size fixed-field area variable-field area

55

Row Storage Format

Null bitmap

©
—
—

©
—
—
O

<<
—
()
—h
O
QO
—

complete row size fixed-field area variable-field area

Schema of { int, double, bytel[], char, float[] }:

56

Row Storage Format

Null bitmap

©
—
—

©
—
—
O

<<
—
()
—h
O
QO
—

complete row size fixed-field area variable-field area

Schema of { int, double, byte[], char, float[] }:

+ 1 byte bitmap (because there are 5 columns)

+ 4 byte size

+ 4 byte (int) + 8 byte (double) + 8 byte (offset + size, ptr) + 1 byte (char) + 8 byte (offset + size, ptr)

= 34 bytes + variable area. -

Writing Rows

(@ D)

writer object

Min, max,
distribution
statistics

———

Use to implement
filters

HDFS data file

| HDFS metadata ﬂIeE E

58

Reading Rows

tableO
obe 1. Read schema file
/\\ 2. Check projection to figure out which
schema i
files to read

/’\ /’\ a. Complete CGs

CGO CG1T CG2 CGO CG1 CG2 '
b. Partial CGs

HHH H HH HH H HH 3. Evaluate filters to skip segments
4. Materialize values

Row data a. Skip value materialization in

QO Tl s Ja s T __ I} partial CG reads

59

Evaluation

All experiments on a 4-node cluster with 100 Gbps network and flash devices
Dataset is TPC-DS tables with the scale factor of 100 (~100 GB of data)

Three fundamental questions

e Does Albis deliver better performance for micro-benchmarks?
e Does micro-benchmark performance translate to better workload
performance?

e Whatis the performance and space trade-off in Albis?

60

Microbenchmark Performance - Revised

120

100 Gbps
100

80 74.9 Gbps: HDFS/NVMe

———————————————— 59.9
60

40 301

Goodput in Gbps

19.9
12.5

20
28 6.5

0
JSON Avro Parquet ORC Arrow Albis

Albis delivers 1.9 - 21.3x performance improvements over other formats [

Spark/SQL TPC-DS Performance

100
— 80
= TPC-DS dataset, scale factor = 100
¢ 60 Y axis : CDF of queries
g X axis : percentage performance gains
— 40
L
a
> 20

0

-15% 0 15% 30% 45% 60% 75%

90%

62

Spark/SQL TPC-DS Performance
100

o T T —— "’,-"—_ queryz |

o N VA |'b'|"s;\)s;"”Pé'rdUéf"L'”_

wk | i of e~ AlbiS ¥5 ORC o

CDF (#queries)

ol L

—
15% 0 15% 30% 45% 60% 75% 90%

Albis delivers up to 3x performance gains for TPC-DS queries

63

Space vs. Performance Trade-off

None Shappy Gzip zlib

ParqUet 1) tens odobps | Bacops | VA
ORC 1;21'0(3%; 1471.786(3%8 N/A 12.608@%8

Albis 53.49'56(& N/A N/A N/A

Albis inflates data by 1.3 - 2.7x, but gives 3.4 - 7.2x performance gains

64

Microbenchmark Performance - Revised

120

100 Gbps
100

80 74.9 Gbps: HDFS/NVMe

What would it take to
deliver 100 Gbps?

60

40

Goodput in Gbps

20

JSON Avro Parquet ORC Arrow Albis

65

Microbenchmark Performance - Revised

120

100 Gbps

100

85.5

byte [] raw_data = data[4];

// In C/C++ , pointing to the same memory location

int val = (int*) data;

// in Java/Scala

int val = ByteBuffer.wrap(data).getInt();
// val and data pointer to different memory

// locations

JVM object
overheads

Albis + Cralil

JSON Avro Parquet ORC Arrow Albis Albis+

Apache Crail (Incubating) - A High-Performance Distributed Data Store, http://crail.incubator.apache.org/

66

http://crail.incubator.apache.org/

Microbenchmark Performance - Revised

120
100 Gbps T T 1

100 : -l
80

60

40

Goodput in Gbps

20

Albis can deliver performance within 10% of hardware

67

Think about

When does Albis-type data storage format does not make sense?

1. CPU is fast enough to compute (compress, encode, materialize objects)

faster than /O device bandwidth
a. Is CPU getting faster? Are I/O devices getting faster?

2. Isspace vs. performance trade-off acceptable?

a. Not all data is equally performance sensitive
b. Not all data is hot - cold data needs to be compressed and stored efficiently

3. Anything else? Albis is only evaluated in the Cloud/HDFS/Crail

a. Building Albis on OCSSDs would be an interesting exercise

68

From this Lecture You Should Know

1. What is temporary data

2. Why does temporary data needs special treatment
a. Inthe critical path
b. Large size distribution
c. No fault tolerance (can be supported by the framework itself)

3. How does modern networking (RDMA) and storage (NVMe/NVMeF) help to
build fast Crail-type system

a. What does control and data path split means
b. What does unification of abstractions in the NodeKernel model mean

4, What is Albis and how does its design leverage modern networking and

storage hardware
a. Reduce CPU involvement - simple format and easy layout on file system

69

Further Reading

Disaggregating Persistent Memory and Controlling Them Remotely: An Exploration of Passive Disaggregated Key-Value
Stores, USENIX ATC 2020.

Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an RDMA-enabled distributed persistent memory file
system. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX
Association, USA, 773-785.

Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian Schuepbach, and Bernard Metzler. 2018. Albis: high-performance
file format for big data systems. In Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC "18). USENIX Association, USA, 615-629.

Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana Klimovic, Adrian Schuepbach, and Bernard Metzler. 2019. Unification
of temporary storage in the nodekernel architecture. In Proceedings of the 2019 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC '19). USENIX Association, USA, 767-781.

https://www.alluxio.io/

RAMCloud Project, https://ramcloud.atlassian.net/wiki/spaces/RAM/overview

V. Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju, Andrew Gooding, Rajkumar lyer, Ashish Shinde, and
Thomas Lopatic. Aerospike: Architecture of a real-time operational dbms.Proc. VLDB Endow.,9(13):1389-1400, September
2016.

Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu,Jamey Hicks, and Arvind. Bluecache: A scalable distributed flash-based
key-value store. Proc. VLDB Endow., 10(4):301-312, November 2016

70

https://www.alluxio.io/
https://ramcloud.atlassian.net/wiki/spaces/RAM/overview

