Storage Systems (StoSys)
XM_0092

Lecture 8: Programmable Storage

Animesh Trivedi
Autumn 2023, Period 1

VRIJE
UNIVERSITEIT
AR° AMSTERDAM

The layered approach in the lectures

Distributed Systems L9-L10

L5 Applications (key-value store)
L4 File systems
4 ,
Software implication in the block layer Specialization
Programmability

L2 New host interfaces (NVMe protocol) L6
{ Byte-addressable,
L3 { persistent memories
L1 New devices (Flash)

Any Guesses?

Why would we need programmable storage? And what is it actually?

Jaeyoung Do, Sudipta Sengupta, and Steven Swanson. 2019. Programmable solid-state storage in future cloud datacenters. Commun. ACM
62, 6 (June 2019), 54-62.

Conventional Data Processing (simplified)

2. Data processing

]
—]
]
]
CPU *j:tﬁ O oram

O
3. Write results back 1. Read data in memory for processing
[] (can be local - PCle -- or networked over NVMeoF)

Vo

Storage Device

LIAOCLOAC

A basic model of how storage and data processing is organized typically
What are the challenges here?

Key Challenge - Data Movement Wall

CPU

Storage Device

LIAOCLOAC

$ '

The network (local or external) is a
bottleneck.

Why now? Emergence of Flash and
internal device parallelism creates
a data movement bottleneck!

The amount of data generated and
processed is increasing significantly
Recall: 200 Zettabytes by 2025

Also see Clemens Lutz, Sebastian Brel3, Steffen Zeuch, Tilmann Rabl, and Volker Markl. Pump Up the Volume: Processing Large Data on GPUs
with Fast Interconnects. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (SIGMOD '20).

Recall: Flash Internal Structure

Flash SSD o .
> Theoretical BW (MB/s) v Number of Die (SLC, MLC)
[Flash Storage Media \ 1.200
o Embedded Flash Flash Channel 1,000 ==SLC BW (0/100, 50/50, 75/25) MB/s
8 Diteee —| SRAM | |_ Controller m % &
3 : | : o 7 —<MLC BW (50/50) MB/s
23 SSD DRAM I_ Flash Flash Channel it ==MLC BW (25/75) MB/s
T Controller Controller Controller . ! T :
| [Fiash JRRRN Fiash | —=-MLC BW (0/100) MB/s

DRAM / 21 Jil

I 1 . Presumes 8 die per bus
16 32 48 64 80 96 112 128 144 160 176 192 &4 CS per bus

T T

-

Flash devices consist of multiple independent packages, die, or planes
These components can work in parallel, giving a large amount of bandwidth
A single server can host multiple PCle connected flash devices

https://www.snia.org/sites/default/education/tutorials/2009/spring/solid/lonathanThatcher NandFlash SSS PerformanceV10-nc.pdf

https://www.snia.org/sites/default/education/tutorials/2009/spring/solid/JonathanThatcher_NandFlash_SSS_PerformanceV10-nc.pdf

Recall: Flash Internal Structure
Samsung 980 Pro (met heatsink) 2TB

Flash SSD

(Snelheden

@ Embed SAMSUNG

&5 Proces Lezen (sequentieel) @ 7.000MB/s

2 cgnstlee Schrijven (sequentieel) @ 5.000MB/s
\ Lezen (random 4K, QD32) @ 1.000.000I10PS

e We have these in our servers!
Schrijven (random 4K, (i) 1.000.00010PS

QD32)

Flash devi

These con https://tweakers.net/pricewatch/1761712/samsung-980-pro-met-heatsink-2tb/specificaties

A single se

'MLC)

)/100,50/50, 75/25) MB/s
(50/50) MB/s
(25/75) MBJs

(0/100) MB/s

umes 8 die per bus
CS per bus

https://www.snia.org/sites/default/education/tutorials/2009/spring/solid/lonathanThatcher NandFlash SSS PerformanceV10-nc.pdf

https://www.snia.org/sites/default/education/tutorials/2009/spring/solid/JonathanThatcher_NandFlash_SSS_PerformanceV10-nc.pdf
https://tweakers.net/pricewatch/1761712/samsung-980-pro-met-heatsink-2tb/specificaties/

Data Movement Bottlenecks Inside a Single System

SSD Storage System
1 e 1
1 1
1
B @ Flash SSD |
Switch
S gt okl
1
1 Flash SSD | H
; -
| I I
| & CQEmh ey
i
= 1 1
= : = I §
= CPU —— 8 I . 1
a ; - I 0 [!
i -2 : Flash SSD : ﬂm
1
! L) ! '
i ! Flash SSD _,_e'
1 ! i
! PCIe ! !
! Switch : 2] FlashSSD | ; :
: © ' |
1] |
: : FlashSSD | —@, m
(a) 1 (b) : : (c) (d)
I
I
[}
]
1
1

1
L 64 SSDs X ~2 GB/s
! Throughput gap of 8x =-128 GB/s
16 lanes of PCIe
=-16 GB/s
64 SSDs X ~16 GB/s 32 channels X -500 MB/s
Throughput gap of 66x =~1TB/s =~16 GB/s

A rack-level SSDs deployment
64 SSDs connected in a system

Internally each SSD can have 32 flash
packages in parallel

At the green line you have 1TB/s

It drops to 128GB/s at the PCle
switches

It further drops to 16 GB/s at the CPU

Yes, PCle is improving, but not as fast!

Jaeyoung Do, Sudipta Sengupta, and Steven Swanson. 2019. Programmable solid-state storage in future cloud datacenters. Commun. ACM 8

62,6 (June 2019), 54-62.

Latency Pressure

—~ 140 MosUbiat drive latency PCleRTT fn find _in tree(n: &Node, key: u64)
(2} .
T 150 120 ; -> Option<Value>
Q
é 100 Application] if n.key == key { // Found correct value
O 80 Some(n.value)
g - } else { _
= // Traverse left or right
§ 40 let next = if key < n.key { n.left }
o 20 else { n.right };
s, get()/put() § if let Some(next) = next {
5607 // Fetch each node from storage
find_in tree(get(next), key)
} else {
None // Break if dead end
Crossing PCle bus (v3.0, v4.0) can take time ~1 useconds Storage } }
}
Over the years the drive latencies have been improving Kulkarni, Splinter: bare-metal extensions for multi-tenant
e See ULL and 3D-NAND flash low-latency storage, OSDI 2018.

e (Can do ~5 usec latencies

PCle latency has become a bottleneck for pointer chasing, latency-sensitive applications
What about over an external network?

? Server Client Server Client
Over the Network: -k -

\ \

1 TB data with 8 bytes keys (237 values), — |

RTT of 40 usec (on 10 Gbps) >

\
Remote bsearch: fetch each node on

demand and pointer chasing left/right, 2000
~37 round trips

Binary search on 1TiB

1,761

1500
Offloaded bsearch: send code to the % -

remote, disaggregated storage server for %

execution, get the result, 1 round trip ~ 500 T
Shows up in performance difference 0 R

Remote bsearch Offloaded bsearch

Kornilios Kourtis, Animesh Trivedi, Nikolas loannou, Safe and Efficient Remote Application Code Execution on Disaggregated NVM Storage with
eBPF, https://arxiv.org/abs/2002.11528 (2020).

10

https://arxiv.org/abs/2002.11528

Enter: Programmable Storage

3. CPU can read the results

CPU lu
™~

1. Offload data processing to

storage device

DRAM

Fz. Transfer the result back to the host

\

Programmable layer

Storage Device
EHACLA O

A high-level idea of programmable storage

Ship computation to the storage device

o Over PCle or Ethernet
Gather results
Reduce unnecessary data movement
Deliver performance, low latency operations
Saves energy!

11

Why is Programmable Storage Useful?

1. Data processing is often reductive (not always!)
a. grep, filter, aggregate — results are often smaller than the original data

colo coll col2
B 1 [6

|
| T 2 1 7 | select (col® == RED)
N | N TN [|
| 4][9 | N - [5]
| Il 5 [1e] 2 X 3 =6 Bytes
project coll, where col2 > 8
All columns =1 bytbs

=15 bytes table | > —4 2 Bytes

L/< average (coll) =
max(col2) = 10

Why is Programmable Storage Useful?

1. Data processing is often reductive (not always!)
a. grep, filter, aggregate — results are often smaller than the original data

2. SSDs already are complex

a. FTLimplementation, GC logic
b. SSDs already have some “logic” implementation capabilities and spare cycles

3. Additional support from the devices have been helpful
a. Expose SSD internals to optimize for applications (SDF, OCSSDs, ZNS)

b. Flash virtualization (DFS file system)
c. Further capabilities: caching, atomic updates and appends, transactions, KV-SSDs

Why not make programmable SSDs a standard feature where a user can offload
computation to the SSD? (if yes, then how can we do it?)

13

The Idea Itself is Not New ...

The idea itself is not now (as with many ideas in Computer Science)

e Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. 1998. A case for intelligent
disks (IDISKs). SIGMOD Rec. 27, 3 (Sept. 1, 1998), 42-52.

e Erik Riedel, Garth A. Gibson, and Christos Faloutsos. 1998. Active Storage for Large-Scale Data
Mining and Multimedia. In Proceedings of the 24th International Conference on Very Large
Data Bases (VLDB '1998).

e And many more ... T i o

Integrated 200 MHz &
Strong ARM

(a) Seagate Barracuda
Electronics (3.5”x 6.5”)

Corne Lukken, Animesh Trivedi: 14
Past, Present and Future of Computational Storage: A Survey. CoRR abs/2112.09691 (2021), https://arxiv.org/abs/2112.09691

https://dblp.org/pid/86/11040.html
https://dblp.org/db/journals/corr/corr2112.html#abs-2112-09691
https://arxiv.org/abs/2112.09691

The Idea Itself is Not New ...

The idea itself is not now (as with many ideas in Computer Science)

e Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. 1998. A case for intelligent
disks (IDISKs). SIGMOD Rec. 27, 3 (Sept. 1, 1998), 42-52.

e Erik Riedel, Garth A. Gibson, and Christos Faloutsos. 1998. Active Storage for Large-Scale Data
Mining and Multimedia. In Proceedings of the 24th International Conference on Very Large
Data Bases (VLDB '1998).

e And many more ...

However, they did not become popular because

1. Too expensive technology

2. @Gains from such disk-based setup were low. Disk performance was bottleneck, and
a. host/drive/link speeds were improving
b. DRAM caching size was getting bigger too

15

What are the Challenges in Programmable Storage?

1. How to provide programmability?

a. Inthe hardware or software, or some combination of these?
b. ASIC, embedded CPUs, FGPA, languages, toolchain

2. What is the programming API?
a. What is a useful programing abstraction to perform any computation
b. How do you transfer computation logic to a remote end point (storage)
c. Integrate other known storage abstractions: files, key-value stores, etc.

3. How do you provide?
a. Multi-tenancy
b. Quality of service, isolation
c. Security and privacy

16

Willow: A User-Programmable SSD (2014)

Willow: A User-Programmable SSD

Sudharsan Seshadri Mark Gahagan Sundaram Bhaskaran Trevor Bunker
Arup De YanginJin YangLiu Steven Swanson
Computer Science & Engineering, UC San Diego

Abstract

We explore the potential of making programmability a
central feature of the SSD interface. Our prototype sys-
tem, called Willow, allows programmers to augment and
extend the semantics of an SSD with application-specific
fe without promising file system protections.
The SSD Apps running on Willow give applications low-
latency. high-bandwidth access to the SSD’s contents
while reducing the load that 10 processing places on the
host processor. The programming model for SSD Apps
provides great flexibility. supports the concurrent execu-
tion of multiple SSD Apps in Willow. and supports the
execution of trusted code in Willow.

We demonstrate the effectiveness and flexibility of
Willow by implementing six SSD Apps and measuring
their performance. We find that defining SSD semantics
in software is easy and beneficial, and that Willow makes
it feasible for a wide range of 10-intensive applications
to benefit from a customized SSD interface.

1 Introduction

For decades, computer systems have relied on the same
block-based interface to storage devices: reading and
writing data from and to fixed-sized sectors. It is no ac-
cident that this interface is a perfect fit for hard disks.
nor is it an accident that the interface has changed little
since its creation. As other system components have got-
ten faster and more flexible, their interfaces have evolved
to become more sophisticated and. in many cases, pro-
grammable. However. hard disk performance has re-

mously broad and includes both general-purpose and
application-specific approaches. Recent work has illus-
trated some of the possibilities and their potential ben-
efits. For instance. an SSD can support complex atomic
operations [10, 32, 35]. native caching operations [5, 38].
a large, sparse storage address space [16]. delegating
storage allocation decisions to the SSD [47]. and offload-
ing file system permission checks to hardware [8]. These
new interfaces allow applications to leverage SSDs” low
latency. ample internal bandwidth, and on-board compu-
tational resources, and they can lead to huge improve-
ments in performance.

Although these features are useful. the current one-at-
a-time approach to implementing them suffers from sev-
eral limitations. First, adding features is complex and
requires access to SSD internals, so only the SSD manu-
facturer can add them. Second. the code must be trusted.
since it can access or destroy any of the data in the SSD.
Third. to be cost-effective for manufacturers to develop.
market, and maintain, the new features must be useful
to many users and/or across many applications. Select-
ing widely applicable interfaces for complex use cases is
very difficult. For example, editable atomic writes [10]
were designed to support ARIES-style write-ahead log-
ging. but not all databases take that approach.

To overcome these limitations, we propose to make
programmability a central feature of the SSD interface.
so ordinary programmers can safely extend their SSDs’
functionality. The resulting system, called Willow. will
allow application, file system, and operating system
to install ized (and potentially un-

PIOE

17

Key Challenge

5 OS 5 sy
[zhang’12] | o5 Offload Bypass [Caulfield’12]

How to build a usable abstraction
to build these multiple specialized
applications?

[Caulfield’12] [Bhaskaran’13]
[Saxena’12]
Virtualization Cachmg

(Specialized SSDs

J
Transaction Query [Do’13]
[Kang’13] Support Processing [Kang’13]

Why specalization?

[Coburn’13]
[Prabhakaran’08]

[Balakrishnan’12]

{\éve:r::i]lll] Key Value Novel 10 [Huang’12]
. :
Store Abstractions [Josephson’10]

https://www.usenix.org/sites/default/files/conference/protected-files/osdi14 slides seshadri.pdf 18

https://www.usenix.org/sites/default/files/conference/protected-files/osdi14_slides_seshadri.pdf

Willow Architecture

u————LI Host
_____) _o ft_uaer;gi‘c; 5 HE: Sl URISIA0N
Conventional SSDs (figure (a)), Willow (figure (b)) B'°°k¢DF:Z:;0,W,iteO e D";g’,e'
NVMe Interface @:E
e Contains Storage Processor Unit (SPUs) TGPU 11CPUIICPU
o that process requests for their IC‘F{J‘|| C}g‘., C‘P{,'.
attached NVM storage [NV Memory |
PCle SSD Willow SSD

(a) (b)

_— _—

Normal NVMe SSD Willow SSD (uses own PCle protocol)

19

Willow Architecture

u—-——L] Host
_____) _O ft_“ie’;:fﬁc;_ B Ei RE_ e e _“SE’:Ea‘fI
. . . . Block Driver | Willow Driver |
Conventional SSDs (figure (a)), Willow (figure (b)) $ReadMmrite() ¥ Pcle
NVMe Interface E:E
e Contains Storage Processor Unit (SPUs) rSPUTTGPUITGPU
o that process requests for their FSPUITGPU 1 CPU T
attached NVM storage . [Wiemory | '
e The host does not do conventional r/w PCle SSD Willow SSD
but uses Host RPC Endpoints (HREs) L L
o Why RPCs? The most flexible way of establishing a Remots procedure call
Client Server
command/response protocol
HREs communicate with SPUs @l
What to communicate, how to communicate - Callng™ e -, Called

PC thread] remote

-, rocedure
o} I_’Y’i
Call thread

code

the application/user decide <

Client
application
thread

So how do these HREs, SPUs work together to offer a programmable SSD?

https://networkencyclopedia.com/remote-procedure-call-rpc/

20

https://networkencyclopedia.com/remote-procedure-call-rpc/

Willow: An SSD-Application View

Each SSD application Application inter-SPU RPCs .
. libDi 10
1. Provides RPC handlers to the Ll et | | ——
.) . . HRE - I
Willow driver to be installed inSSD | | B——Twm | oot |
Q & -
2. Auser-space library to access SSD AL SPU0 I
. = DirectlO 1 H
dlref:tly DirectlO |_SsDApp_ 111]
3. [optional] Kernel module to get Driver . 3‘4 spu-os |1 (|1
support for kernel routines - filesystem o | cartem) RS | ¥ i
e Perm. Table |

Here in the figure (example): Design for a Direct-Access Storage

1. Ask the Willow driver to install direct-lO RPC handlers and request an Host RPC Endpoint (HRE)

2. Atthe open of a file for direct I/O, the application asks the kernel driver to check file
permissions and install them in the SSD

3. Do adirect read/write using RPCs from HREs to SPUs

The customization with kernel module, user library and SPU RPC handler — Programming ! 21

What is Inside SPUs?

e 125 MHz MIPS processor

e 32 KB of Data and Instruction Memory

e Connected to a bank of NVM (here:
PCM)

e Network interface (PCle)

The SPU runs a simple operating system
(SPU-0S)

e Gives simple multi-threading

e Memory is managed by the host driver
o Statically allocated

SPU

uliedid SdIIN

Interface

:

Interconnect

Streamer <__/

lawealis

Emulated PCM

22

Protection and Sharing Features

1. How to track which user application is executing code on a shared SSDs?

a. Each HRE has an id which is always propagated with all RPC request and
responses to keep track of which process is responsible for computation

2. How to check if an SSD-Application has rights to modify and update data?
a. Each application has permissions associated with the HRE and data touched
b. In case not all permissions can be stored inside the SSD, a permission miss will
happen and the SPU will contact the kernel model to get updated permissions

3. Code and data protection inside SPU
a. Use SPU's memory segmentation support (segmentation registers)

23

Code Complexity

Description Name LOC Devel. Time
(C) | (Person-months)

Simple 10 operations [7] Base-IO 1500 1

Virtualized SSD interface with OS bypass and permission check- | Direct-IO 1524 1.2

ing [8]

Atomic writes tailored for scalable database systems based | Atomic-Write | 901 1

on [10]

Direct-access caching device with hardware support for dirty data | Caching 728 1

tracking [5]

SSD acceleration for MemcacheDB [9] Key—-Value 834 1

Offload file appends to the SSD Append 1588 1

Many ideas only take a 100s of lines of code to implement in Willow

4-6 weeks of development time (reasonable)

24

Performance

18
16
14
12
10

Time (us)

o N A OO

B HwbMACMD
0 . HostlssueCMD

Il

UL [T

| i

8‘96‘@ OI}‘-’o
~ /O

“

iBE OS(FS+SysCall)
|:| PermCheck

[l spuapp

[_] NVMLatency
E Hostsw

[HostMemcpy
HWDMAData

Throughput (in Million ops/s)

o
[od

o
o

©
o

o
o

l BDB-BaselO
Bl BDB-DirectlO
B Key-Value

Willow SSD app as a KV-SSD

e Direct /0 helps to reduce FS + syscall overheads

e Key-value on Willow (RPC) can improve performance from 8% - 4.8x

25

This RPC-based Design - Flexibility

Flash Media
Controller

Ll

(a) Regular
Storage Access

HOST Newport CSD
Operating System In-storage Processing
Operating System
- _9_5_|_ M‘_’del User space Kernel space
Application
Application Application < 2
Presentation 2
........................ S
Standard task | % Standard task o
Sesson distributor | & distributor
"""""""""""" o g
Transport 2 g TCP s
Network 0 P 5
e 80 [
i H 57
Al G [~
Sy s

<

/

NAND
Flash
Memory

Local SSD as an
Network-attached
Server with RPC
(over PCle)

Goldstein, Leandro Santiago, Min Soo Kim, Priscila M. V. Lima, Felipe M. G. Franca, and Vladimir Alves. 2020. Cost-effective,
Energy-efficient, and Scalable Storage Computing for Large-scale Al Applications. ACM Trans. Storage 16, 4, Article 21 (November 2020),

37 pages. https://doi.org/10.1145/3415580

26

https://doi.org/10.1145/3415580

Query Processing on Smart SSDs: Opportunities and Challenges

Jaeyoung Do™, Yang-Suk Kee*, Jignesh M. Patel’,
Chanik Park®, Kwanghyun Park”, David J. DeWitt'

*Uni y of Wi g ol ey

El ics Corp.; *Microsoft Corp.

ABQTRACT

vices are getting “smarter.” Smart Flash st

CPU processing and DRAM storage inside a Smart SSD, and
make that available to run user programs inside a Smart SSD. The
focus of this paper is on exploring the opportunities and

with is of Smart
SSDs for rlational amlytic query procesing. We have
implemented an initial prototype of Microsoft SQL Server
running on a Samsung Smart SSD. Our results demonstrate that
significant performance and energy gains can be achieved by
pushing selected query processing components inside the Smart
SSDs. We also identify various changes that SSD device
manufacturers can make to increase the benefits of using Smart
SSDs for data processing applications, and also subbﬁl possible
research for the database

Categories and Subject Descriptors
H.24 [Database Management]: Systems — Query Processing

General Terms
Design, Performance, Experimentation.

Keywords
Smart SSD.

1. INTRODUCTION

It has generally been recognized that for data intensive
applmuom moving code to data is far more efficient than
moving data to code. Thus, data proc g systems try to push
code as far below in the query processing pipeline as passible by
using techniques such as carly selection pushdown and early
(pre-)aggregation, and parallel/distributed data processing systems
run as much of the query close to the node that holds the data.
Traditionally these
implemented in
largely stayed static

“code pushdown" techniques have been
s with rigid hardware boundaries that have
e the start of the computing era. Data is

caches). Various aras of computer science have focused on
making this data flow efficient using techniques such as
prefetching, prioritizing sequential access (for both fetching data
to the main memory, andor to the processor caches), and
pipelined query exccution.

However, the boundary between persistent storage, volatile
storage, and processing is increasingly getting blumier. For
example, mobile devices today integrate many of these features
into a single chip (the SoC trend). We are now on the cusp of this
hardware trend sweeping over into the server world. The focus of
this project is the integration of; power and latil

storage in a new class of storage products known as Smart SSDs.
Smart SSDs are flash storage devices (like regular SSDs), but
ones that incorporate memory and computing inside the SSD
device. While SSD devices have always contained these resources
for managing the device for many years (.g., for nunning the FTL
logic), with Smart SSDs some of the computing resources inside
the SSD could be made available to run general user-defined
progrms.

The focus of this paper is to explore the opportunities and
challenges associated with running selected database operations
inside a Smart SSD. The potential opportunities here are
threefold.

First, SSDs generally have a far larger aggregate internal
bandwidth than the bandwidth supported by common host /O
interfaces (typically SAS or SATA). Today, the internal aggregate
1/O bandwidth of high-end Samsung SSDs is about 5X that of the
fastest SAS or SATA interface, and this gap is likely to grow to
maore than 10X (see Figure 1) in the near future. Thus, pushing
operations, especially highly selective ones that return few result
rows, could allow the query to run at the speed at which data is
getting pulled from the intemal (NAND) flash chips. We note that
similar techniques have been used in IBM Netezza and Oracle
Exadata appliances, but these approaches use additional or
specialized hardware that is added right into or next to the IO
subsystem (FPGA for Netezza [12], and Intel Xean processars in
Exadata [1]). In contrast, Smart SSDs have this processing in-built

Relational Data Processing Frameworks (why?

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

Biscuit: A Framework for Near-Data Processing of Big Data Workloads

Boncheol Gu. Andre S. Yoon, Duck-Ho Bae. Insoon Jo. Jinyoung Lee, Jonghyun Yoon,
Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jacheon Jeong, Duckhyun Chang
Memory Business, Samsung Electronics Co., Ltd.

Abstract—Dat

queries are in
intelligence, data housing and Iyt li cati Typ-

data-intensive applications proliferate, the concept of user-

ically, processing a query involves full inspection of large in-
storage data sets by CPUs. An intuitive way to speed up such
queries is to reduce the volume of data transferred over the
storage network to a host system. This can be achieved by filter-
ing out extraneous d.uhl within the storage, motivating a form
of dat. This work p Biscuit, a novel
dats ing [designed for modem sulld-
state dri\'cs. It allows p to write a data-i
application to run on the host system and the storage system in
adistributed, yet seamless manner: In order to offer a high-level
programming model, Biscuit builds on the concept of data flow.
Data processing tasks communicate through typed and data-
ordered ports. Biscuit does not distinguish tasks that run on
the host system and the sbragc sysu'm. As the result, Biscuit
has desil traits like y and i while
promoting code reuse and naturally expmmg concurrency.
We implement Biscuit on a host system that runs the Linux
OS and a hlgh-pcrﬁ)rmxmcc snlld state drive. We demonstrate
the effe of o ch and i ion with
expcnmen(nl results, \\'hen da(u filtering is done by hardware
in the solid-state drive, the average speed-up obtained for the
top five queries of TPC-H is over 15x.

Keywords-near-data pi ing: in-storage ing: SSD;

1. INTRODUCTION

Increasingly more applications deal with sizable data sets
collected through large-scale interactions [1. 2]. from web
page ranking to log analysis to customer data mining to

i 3-6]. Common data processin;

progi ble active disk becomes even more compelling:
energy efficiency and performance gains of two to ten were
reported [12-15].!

Most prior related work aims to quantify the benefits
of NDP with prototyping and analytical modeling. For
example, Do et al. [12] run a few DB queries on their “Smart
SSD” prototype to measure performance and energy gains.
Kang et al. [20] evaluate the performance of relatively simple
log analysis tasks. Cho et al. [13] and Tiwari et al. [14]
use analytical performance models to study a set of data-
intensive benchmarks. While these studies lay a foundation
and make a case for SSD-based NDP. they remain limitations
and areas for further investigation. First, prior work focuses
primarily on proving the concept of NDP and pays little
attention to designing and realizing a practical framework on
which a full data processing system can be built. Common to
prior prototypes, critical functionalities like dynamic loading
and unloading of user tasks, standard libraries and support
for a high-level language. have not been pursued. As a result,
realistic large application studies were omitted. Second. the
hardware used in some prior work is already outdated (e.g..
3Gbps SATA SSDs) and the corresponding results may not
hold for future systems. Indeed. we were unable to reproduce
reported performance advantages of in-storage data scanning
in software on a state-of-the-art SSD. We feel that there is a
strong need in the technical community for realistic system
design examples and solid application level results.

27

Query Processing on Smart SSDs

One of the earliest attempt to revisit the idea of programmable storage for
relational query processing R i g gty

Advantages with relational query processing

e Structured operators and query plans

e Defined I/0 access patterns

e Opportunities for “code-pushdown”,
early filtering, selection, and aggregation

Proposed: implemented the simple selection and aggregation operat‘;ors into
the device FTL and integrated with SQL Server query plans

28

Architecture

1. Open and close to maintain session
2. Getto getresults

User defined program is executed on
an event (open, close) or arrival of
a data page from flash

e Data pages can be staged in parallel

Host
Interface

Host Machine

Communication
Protocol
~

y

&

Proprietary SSD Firmware
Application Programing Interfaces

Command (Thread Data Memory
APls . APls APls APls

User-Defined Programs
- 4

Flash SSD

Basic thread scheduling (a master and worker threads), and memory

management (static, per-thread)

— Focus on a single workload, no multi tenancy, no file system here!

Performance

Time (second)

400

300

200

100

1

(a) Elapsed Time

D .

SAS SSD
—©@— Smart SSD (NSM)
--—9--- Smart SSD (PAX)

] o P < ¢ o
- ’. ______________ ",
0.1 10 100

Fraction of tuples that match the predicate (%)

SELECT SecondColumn
FROM SyntheticTable
WHERE FirstColumn < [VALUE]

Time (second)

250

200
150
100

50

(a) Elapsed Time

8- - SAS SSD
—O0— Smart SSD (NSM)
--—--- Smart SSD (PAX)

a (] O O
| /.
| el
. ____________ "’
0.1 10 100

Fraction of tuples that match the predicate (%)

SELECT AVG (SecondColumn)

FROM SyntheticTable

WHERE FirstColumn < [VALUE]

30

Energy Efficiency

sasHpp @ Compared to HDDs, SSDs are

more energy efficient

100 === " Smart SSDs further allow

faster, more energy efficient
SAS SSD [execution
Smart SSD (NSM) A
Smart SSD (PAX) N-ary Storage Model (NSM)
and Partition Attributes Across
(PAX) data layouts - how data is
stored on the device

Total Energy (kJ), log scale

10 .
10 100 1000

Elapse Time(second), log scale R

31

Biscuit: A Framework for Near-Data Processing of
Big Data Workloads

Flow-based programming model : build a graph of computation steps (very much like
SQL DAGS)

Application

r /
| 4
/’ \‘
7
/, \‘
, \
3 \

Support (almost) full C++ 11/14 semantics

Split coordination and computation models libsisc | Host-side program
(coordinator)
A typical application (SSD-sidemodulj
computation units
SSDlet out
e Host side : libsisc e 3
omputation
e SSDside : libslet, S 5
libslet

with IN/OUT coordination

32

SSDlets and Applications

class Filter : public SSDLet<IN_TYPE<int32_t>, input port

s output port
OUT_TYPE<int32_t, bool>, ARG_TYPE<double>> { —
public:) : :
void run() override { ';‘:z;f:l’: e)[f] ssDlet éﬂ ssplet [J---
auto in = getlnputPort<0>(); ' - - v :
auto out0 = getOutputPort<0>(); 2 PP- ()
auto out1 = getOutputPort<1>(); <b)§ , !
double& value = getArgument<O>(); e e # SSDlet I‘
App.2 K
// do some computation PP
}} Biscuit runtime |

a. Inter-SSDlet (same application)
b. Host-device ports
Inter application ports

0

Important for coordination and staging of data
33

Word Count Application

Mapper
rd <words”l Reducer
filename /"g
; Mapper —49%y Shuffler xw{’\
i d,
}‘4 vec>

x Flow-based Prog.

Reducer

host-side 12 Mapper
program

wordcount modu

class Mapper : public SSDLet<OUT_TYPE<std::pair<std::string, uint32_t>>,
ARG_TYPE<FilesS {

public:
void run() {
auto& file = getArgument<0>();
FileStream fs(std::move(file));
auto output = getOutputPort<0>();

while (true) { Read, split, count

if (Ireadline(fs, line)) break;

line.tokenize();

while ((word = line.next_token()) != line.cend()) {
// put output (i.e., each word) to the output port
if (loutput.put({std::string(word), 1})) return;

W

RegisterSSDLet(idMapper, Mapper) // register class in its container module

int main(int argc, char »argv[]) {

SSD ssd("/dev/invmeOn1");
auto mid = ssd.loadModule(File(ssd, "/var/isc/slets/wordcount.slet"));

// create an Application instance and proxy SSDLet instances
Application wc(ssd);

SSDLet mapper1(wc, mid, "idMapper", make_tuple(File(ssd, filename)));
SSDLet shuffler(we, mid, "idShuffler");
SSDLet reducert ieidReducer");

// make connections between SSDlets and from Reducers back to the host
wc.connect(mapperi.out(0), shuffler.in(0));

wc.connect(shuffler.out(0), reducer1.in(0));

auto port1 = we.connectTo<pair<string, uint32_t>>(reduceri.out(0));

// start application so that all SSDlets would begin execution

wec.start();

pair<string, uint32_t> value;

while (port1.get(value) || port2.get(value)) // print out <word,freq> pairs
cout << value.first << "\t" << value.second << endl;

// wait until all SSDlets stop execution and unload the wordcount module
we.wait();

ssd.unloadModule(mid);

return 0;

34

Performance

SSD Prototype has: Two ARM Cortex R7 cores @750MHz, L1$, no cache
coherence, and Key-based pattern matcher per channel (filtering)

Power [Watts]

1 I < 4 0] e T T

—a— Conv
—e— Biscuit

100 200 300 400
Time [sec]

TPC-H Q1, base system energy 103 Watts

I/0 Ratio

Speed-up

400

300
200
100

0

315.4x

160}

120+

80|

a0t

0
Q14 Q2 Q10 Q8

166.8x

n LA6x _28x 16x _12x _11x S|
Q9 Q17 Q12 Q5 GM

35

In Summary

Fast NVMs put pressure on network/link and performance demands

Modern SSDs are already software-defined, why restrict their use to a block-storage
protocol like NVMe

Willow : a user programmable RPC-based SSD design (with limited memory and

multi-tenancy management) - uses SPUs
Smart Query and Biscuit: query processing designs, with operator offloading and flow

based programming - uses ARM

e C(lean, flexible, and powerful
e Block /0, direct I/0, Append, Transactions, Caching, and KV Store

Is running a general purpose MIPS/ARM processor a right choice? Are there alternative
hardware options for programmability?

36

INSIDER: Designing In-Storage Computing System for Emerging
High-Performance Drive

Zhenyuan Ruan* Tong He Jason Cong
University of California, Los Angeles

Abstract

We present INSIDER. a full-stack redesigned storage sys-
tem to help users fully utilize the performance of emerging
storage drives with moderate programming efforts. On the
hardware side. INSIDER introduces an FPGA-based recon-

ble drive ller as the in-storage puting (ISC)
unit: it is able to saturate the high drive performance while
ing enough pr bility. On the software side. IN-

SIDER integrates with the existing system stack and provides
effective abstractions. For the host programmer, we introduce
virtual file abstraction to abstract ISC as file operations: this
hides the existence of the drive processing unit and minimizes
the host code modification to leverage the drive computing
apability. By separating out the drive pi ing unit to the
data plane, we expose a clear drive-side interface so that drive
programmers can focus on describing the computation logic:
the details of data movement between different system com-
ponents are hidden. With the software/hardware co-design.
INSIDER runtime provides crucial system support. It not only
transparently enforces the isolation and scheduling among
offloaded programs, but it also protects the drive data from
being accessed by unwarranted programs.
We build an INSIDER drive prototype and implement its

c ding softy stack. The evaluation shows that IN-
SIDER achieves an average 12X performance improvement
and 31X 1 cost effici when pared to the ex-

isting ARM-based ISC system. Ad’diliomlly‘ it requires much
less effort when implementing applications. INSIDER is open-
sourced [5]. and we have adapted it to the AWS F1 instance
for public access.

1 Introduction

In_the era of his data L SVslems are exneriencing an

ment of storage technology has been continuously pushing
forward the drive speed. The two-level hierarchy (i.e.. chan-
nel and bank) of the modern storage drive provides a scal-
able way to increase the drive bandwidth [41]. Recently. we
witnessed great progress in emerging byte-addressable non-
volatile memory technologies which have the potential to
achieve near-memory performance. However, along with the

d in storage technologies. the system bottleneck
is shifting from the storage drive to the host/drive intercon-
nection [34] and host I/O stacks [31.32]. The advent of such
a "data movement wall" prevents the high performance of the
emerging storage from being delivered to end users—which
puts forward a new challenge to system designers.

Rather than moving data from drive to host. one natural
idea is to move computation from host to drive. thereby avoid-
ing the aforementioned bottlenecks. Guided by this, existing
work tries to leverage drive-embedded ARM cores [33,57.63]
or ASIC [38,40.47] for task offloading. However, these ap-
proaches face several system challenges which make them
less usable: 1) Limited performance or flexibility. Drive-

bedded cores are originally d d to execute the drive

i they are g lly too weak for in-st comput-
ing (ISC). ASIC. brings high performance due to hardware
customization: however, it only targets the specific workload.
Thus. itis not flexible enough for general ISC. 2) High pro-
gramming efforts. First. on the host side. existing systems
develop their own customized API for ISC., which is not com-
patible with an existing system interface like POSIX. This
requires considerable host code modification to leverage the
drive ISC capability. Second, on the drive side. in order to
access the drive file data, the offloaded drive program has to
understand the in-drive file system metadata. Even worse. the
daval Licitl intain gk i

has 1 "

~

Insider : Designing In-Storage Computing System for
Emerging High-Performance Drive (2019)

APl and Abstractions

Runtime

Hardware

37

Programmability needs Support from the Whole Stack

Hardware
1. ASIC: fast but not-programmable
2. CPU: programmable but not fast

Runtime
1. How to ensure correct access from a code
2. How to ensure multi-tenancy with codes

APl and Abstractions
1. New APIs leads to less familiarity with developers
2. Might lead to significant code modifications

APl and Abstractions

Runtime

Hardware

38

How to make Programmable Hardware?

Hardware?

Candidates: ASIC, FPGA, GPU, ARM, x86
Need to support

©)

©)

©)

General programmability
Massive parallelism (all flash chips)
High energy efficiency

Do you know what FPGA is?

APl and Abstractions

Runtime

Hardware

39

Field Programmable Gate Array (FPGA)

DIY hardware, programs can be compiled

to be synthesized for FPGA
Very active area of research

- Performance
- Energy efficiency
- Domain-specific architectures

Flexibility Performance
Software FPGA ASIC

L LLLLLLLLLL.

| -4 »
| 3 - g
| 3 = 5
ol - g
H $ie
ol i
[3 = "
H Tl
[3 i : 1 | s "
" T EE EEEEEREEE"
IC?ulzr?:tp;lto/ck) f:iicsmf;‘ —— EM":::;“ B DSPBlock

Image credit: B. Ronak et al, Mapping for Maximum
Performance on FPGA DSP Blocks,
https://ieeexplore.ieee.org/document/7229289

https://ieeexplore.ieee.org/document/7229289

What is special about FPGA?

instructions Input
SRAM
BRERE
CPU Memory
EEENEN
results
\ }
|

- Distance to memory - Layout logic in the circuit Out\;)ut
- Instruction dependencies - Reconfigurable
- Programming control units in CPUs - Close and fast memory access

- Heavily pipelined

e Further reading: https://blog.esciencecenter.nl/why-use-an-fpga-instead-of-a-cpu-or-gpu-b234cd4f309¢
e ZsoltIstvan, Building Distributed Storage with Specialized Hardware,
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/266096/1/zistvan-phd-dissert-rev.pdf

41

https://blog.esciencecenter.nl/why-use-an-fpga-instead-of-a-cpu-or-gpu-b234cd4f309c
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/266096/1/zistvan-phd-dissert-rev.pdf

Sources of Performance Gains

1. Hardware-software co-design Input

a. Trade easy operations in hardware
with difficult ones

SRAM

2. Specialized operations
a. Use FPGA and specialized operations

3. Leverage parallelism
a. Processing elements (PEs) and space

4. Local memories

~~

a. Leverage SRAM - Layout logic in the circuit Output
- Reconfigurable

- Close and fast memory access

- Heavily pipelined

5. Maximize off-chip DRAM access
a. Large sequential accesses

6. Reduce programming overheads

a. Heavy pipelining See Darwin: A Genomics Co-processor Provides up to 15,000X Acceleration

on Long Read Assembly. ASPLOS 2018. 42

How to make Programmable Hardware?

Hardware?

e (andidates: ASIC, FPGA, GPU, ARM, X86
e Need to support
o General programmability
o Massive parallelism (all flash chips)
o High energy efficiency

T loeu aRw |xe6 |asic FoA |

Programmability Good Good Good No
Data- Good Poor Fair Best
) Level
Parallelism
Pipeline- No No No Best
Level

Energy Efficiency Fair Fair Poor Best

Good
Good

Good

Good

APl and Abstractions

Runtime

Hardware

43

Programmability needs Support from the Whole Stack

Hardware :> Use FPGA

Runtime
1. How to ensure correct access from a code
2. How to ensure multi-tenancy with codes

APl and Abstractions
1. New APIs leads to less familiarity with developers
2. Might lead to significant code modifications

APl and Abstractions

Runtime

Hardware

44

INSIDER Architecture

Host Program

Conventional SSD

a

Storage Chips

N

[

DMA

Firmware FTL

45

INSIDER Architecture

Host Program

6. Result

1. Send code, offload

INSIDER SSD

a

HT Storage Chips

DMA

3. Read PBAs T

Firmware FTL

T 2. Read LBAs

FPGA Unit

N

4. Do
PGA

-
5. Processing in FPGA /

ta for

46

INSIDER Architecture

Host Program

6. Result

1. Send code, offload

How to make sure a rogue FPGA program is not able to read any arbitrary storage location

INSIDER SSD

a

HT Storage Chips

DMA

3. Read PBAs T

Firmware FTL

T 2. Read LBAs

FPGA Unit

N

5. Processing in FPGA

or write to any location?

4. Do
PGA

ta for

47

INSIDER Architecture

Host Program

1. Send code, offload

INSIDER SSD

a

Storage Chips

N

[

DMA

Firmware FTL

FPGA Unit

5. Processing in FPGA

/

Idea 1: Make FPGA program “Compute-Only”, hence the program itself cannot issue any r/w ops.

Then how to get data from flash chips for processing?

48

INSIDER Architecture

Host Program

File paths (use file as the basic
abstraction)

File System

LBA ranges 2. Read LBAs

INSIDER SSD

a

HT Storage Chips

3. Read PBAs T

Firmware FTL

Insider Runtime

1. Send code, offload

DMA

FPGA Unit

5. Processing in FPGA

4. Do
PGA

Idea 1: Make FPGA program “Compute-Only”, hence the program itself cannot issue any r/w ops.

Idea 2: Make a separate “control plane” which issues read operations for data which FPGA processes

ta for

49

INSIDER Architecture

Host Program

INSIDER SSD

a

N

HT Storage Chips

3. Read PBAs T

4. Do
FPGA

Firmware FTL

Insider Runtime
\

\

o) File paths (use file as the basic

3 abstraction)

=

(@) .

< File System

IS

v LBA ranges 2. Read LBAs
©

= ¥ DMA
(Vp)]

-

Rate management

1(a) code offloading

0000

5. Processing in FPGA

scheduler/

Idea 1: Make FPGA program “Compute-Only”, hence the program itself cannot issue any r/w ops.
Idea 2: Make a separate “control plane” which issues read operations for data which FPGA processes
Idea 3: Partition the FPGA into independent processing spaces for parallelism + scheduler

ta for

50

Programmability needs Support from the Whole Stack

Hardware :> Use FPGA

:> Compute-only programs with

Runtime FPGA partitioning
1. How to ensure correct access from a code

2. How to ensure multi-tenancy with codes

APl and Abstractions
1. New APIs leads to less familiarity with developers
2. Might lead to significant code modifications

APl and Abstractions

Runtime

Hardware

51

Files, File, and Files everywhere!

Everything is a file - The UNIX philosophy :)

Tells INSIDER which files to prep

// get a virtual file L —

vfile = reg virt file (real file, accelerator id);
int fd = vopen(vfile, flags); 4,—f~”’””””~’f/”/

send_params(fd, void * argc, int argv); —

int sz
int sz

vread (fd, buf, buf size);., ——]
vwrite (fd, buf, buf_size);

// vsync - if written

. — for reading, reserve id

Check file systems permissions, and hold
— the file for processing

. Send FPGA program parameters
— These reads and writes move data from

flash to FPGA for processing. Hence, the
virtual. Only the final result is returned!

vclose(fd);)

Synchronize and close the file to release
resources

52

Files, File, and Files everywhere!

Everything is a file - The UNIX philosophy :) Tells INSIDER which files to prep

/ for reading, reserve id
// get A virtual £ila

viile = You can see the basic compute-only idea here that the s permissions, and hold
user program needs to issue vread/vwrites to trigger 8

int fd |
data movements from the flash chips to FPGA. om parameters

send_pal|

int sz | FPGA itself cannot issue a read or write request! \rites move data from

int sz | processing. Hence, the
~nal result is returned!

// vsync - if written

- Synchronize and close the file to release
vclose(fd); r)e/sources /

53

How Does FPGA Code Look Like?

Like a simple C++ code ... (INSIDER provides a compiler)

struct app_data {
char bytes[64];
int length;

bool eop;

}

void filter(Queue<app_data> input, Queue<app_data>
output, void *argv, int argc)
{
// use argv, argv to setup the environment
item to process = input.read();
result = process(item_to process);
output.append(result);

}

// Essentially a record-by-record processing

54

Programmability needs Support from the Whole Stack

Hardware :> Use FPGA
1. ASIC: fast but not-programmable

2. CPU: programmable but not fast

. |:f> Compute-only programs with APl and Abstractions
Runtime FPGA partitioning
1. How to ensure correct access from a code
2. How to ensure multi-tenancy with codes Runtime
API and Abstractions [Virtual files e

1. New APIs leads to less familiarity with developers
2. Might lead to significant code modifications

Is It Simple? Compared to Moneta

Description Name LOC Devel. Time
(C) | (Person-months)
Simple 10 operations [7] Base-IO 1500 1
Virtualized SSD interface with OS bypass and permission check- | Direct-IO 1524 1.2
ing [8]
Atomic writes tailored for scalable database systems based | Atomic-Write (| 901 1
on [10]
Direct-access caching device with hardware support for dirty data | Caching 728 1
tracking [5]
SSD acceleration for MemcacheDB [9] Key-Value 834 1
Offload file appends to the SSD Append II 1588 ﬂ 1
Application Devel.Time
(Person-Day)
Grep 3
KNN 2 77 72
Statistics 3 65 170
SQL Query 5 97 256
Data Integration 5 41 307
Feature Selection 9 50 632
Bitmap file decompression 5 94 213

File based interface does offer
tangible benefits in terms of

DL developer’s familiarity
51 193

56

INSIDER: Performance

[customized 10 stack B3 pipeline & offload £X1 data reduction

Speedup
ON P~ OOOOON

GreP \k“w\ S‘a{\s\'\c's SQ\;“\eg‘aﬁ\i\ea’““e e\ B'\KmaQ

Baseline : implementation on POSIX files on host

Customized 1I/0 Stack: Host-bypass, and use vread of INSIDER to bypass the host fs/block overheads
Pipeline and offload : Overlap compute and data movement, and offload code to INSIDER drive
Data Reduction: Gains from reducing the amount of data movement from the drive to the host

Almost an order of magnitude performance gains
57

Is FPGA the only way to provide Programmability?

No - programmability is a large concept with multiple independent ideas

e Programmability in storage device
o Integrated : ASIC, FPGA, or embedded CPU
o Side-by-side: FGPA, GPUs, ASICs, co-processor (DSPs) etc.

e How to ensure multi tenancy and isolation?

58

Scheduling, Multi-Tenancy and Isolation

User 1 Installing and running user-provided extensions
safely
User 3
Scheduling, which extension to pick next
User 2

Would it yield? Preemption?

How to ensure isolation : security and
performance for multi-tenancy

Parallel themes in the OS/Kernel development,
fault isolation, static and dynamic verifications,
etc.

Programmable Storage * Architecture

e Systems software

e Language and runtimes

Is FPGA the only way to provide Programmability?

No - programmability is a large concept with multiple independent ideas

e Programmability in storage device
o Integrated : ASIC, FPGA, or embedded CPU
o Side-by-side: FGPA, GPUs, ASICs, co-processor (DSPs) etc.

e How to ensure multi tenancy and isolation?

o Hardware
m (INSIDER) FPGA: partition the FPGA
m (Willow/Biscuit): Use SPU-OS/ARM process scheduling
o Software, use programming languages to provide isolation and correctness
e Rust, Java script, eBPF (< we are working on it, see further reading)

e Whatis the new programming abstraction?
o RPCs, Virtual Files, ?7??

MSc thesis als

[CMakeLists.txt Start off presentation
O UCENSE Add MIT license and notice about exceptions.
O README.md Final thesis link in readme
O doxygen.cnf Large of conversion of previous project templates
= README.md
¥ Fton ot 253

Publications

17 months ago
4months ago
2years ago
last month

2years ago

« thesis, 26 August 2022 - OpenCSD: LFS enabled Computational Storage Device over Zoned Namespaces

(ZNS) SSDs

« ICT.OPEN, 7 April 2022 - OpenCSD: Unified Architecture for éBPF-powered Computational Storage Devices

(CSD) with Filesystem Support

« arXiv, 13 December 2021 - Past, Present and Future of Computational Storage: A Survey

« arXiv, 29 November 2021 - ZCSD: a Computational Storage Device over Zoned Namespaces (ZNS) SSDs

on-going / pending

= Investigation better publication locations for thesis and or availability through university portal.

OpenCSD

OpenCSD is an improved version of ZCSD achieving snapshot consistency log-structured filesystem (LFS)
(FluffleF'S) integration on Zoned Namespaces (ZNS) Computational Storage Devices (CSD). Below s a diagram of
the overall architecture as presented to the end user. However, the actual implementation differs due to the use of

emulation using technologies such as QEMU, uBPF and SPDK.

@4

Vrije Universiteit Amsterdam

Universiteit van Amsterdam

X

[t

Master Thesis

OpenCSD: Log-Structured Filesystem
Enabled Computational Storage Device
Platform

OpenCSD Platform:

https://github.com/Dantalion/OpenCSD

Author: Corne Lukken (2639319)

Ist supervisor:
daily supervisor:
2nd reader:

Dr. ir. Animesh]
Dr. ir. Animesh]
Prof. dr. ir. Alexandru losup

Vrije Universiteit Amsterdam Universiteit van Amsterdam

e’BPF: an Evaluation of

In-Kernel Data Processing with eBPF

Author: Giulia Frascaria (VU: 2608500, UvA: 11992069)

Ist supervisor: Animesh Trivedi
nd reader: Alexandru losup

A thesis submitted in i of the req Jor
the joint UvA-VU Master of Science degree in Computer Science

https://animeshtrivedi.github.io/team/

61

https://github.com/Dantali0n/OpenCSD
https://animeshtrivedi.github.io/team/

eBPF-based Kernel Programming

ARTIEACT
EVALUATED.

&

XRP: In-Kernel Storage Functions with eBPF

Yuhong Zhong', Haoyu Li', Yu Jian Wu', Toannis Zarkadas', Jeffrey Tao', Evan Mesterhazy',
Michael Makris', Junfeng Yang', Amy Tai?, Ryan Stutsman®, and Asaf Cidon'

!Columbia University, 2Google, *University of Utah

Abstract

With the emergence of microsecond-scale NVMe storage
devices, the Linux kernel storage stack overhead has become
significant, almost doubling access times. We present XRP,
a ork that allows applications to execute user-defined
storage functions, such as index lookups or aggregations, from
an eBPF hook in the NVMe driver, safely bypa
of the kernels storage stack. To preserve file system set
tics, XRP propagates a small amount of kernel state to its
NVMe driver hook where the user-registered eBPF functions
are called. We show how two key-value stores, BPF-KV, a
simple B*-tree key-value store, and WiredTiger, a popular
log-structured merge tree storage engine, can leverage XRP
o significantly improve throughput and latency.

1 Introduction

‘With the rise of new high performance memory technologies,
such as 3D XPoint and low latency NAND, new NVMe stor-
age devices can now achieve up to 7 GB/s bandwidth and
latencies as low as 3 ps [11,19,24,26]. At such high per-
formance, the kenel storage stack becomes a major source
of overhead impeding both application-observed latency and
10PS. For the latest 3D XPoint devices, the kernel’s storage
stack doubles the 1/O latency, and it incurs an even greater
overhead for throughput (§2.1). As storage devices become
even faster, the kemel's relative overhead is poised to worsen.

Existing approaches to tackle this problem tend to be
radical, requiring intrusive application-level changes or new
hardware. Complete kernel bypass through libraries such as
SPDK [82] allows applications to directly access underlying
devices, but such libraries also force applications to imple-
ment their own file systems, to forgo isolation and safety, and
0 poll for VO completion which wastes CPU cycles when 1O
utilization s low. Others have shown that applications using
SPDK suffer from high average and tail latencies and severely
reduced throughput when the schedulable thread count ex-
ceeds the number of available cores [54]; we confirm this in
§6, showing that in such cases applications indeed suffer a
3 throughput loss with SPDK.

In contrast to these approaches, we seek a.readily-
deployable mechanism that can provide fast access to emerg-
ing fast storage devices that requires no specialized hardware
and no significant changes to the application while working
with existing kernels and file systems. To this end, we rely on
BPF (Berkeley Packet Filter [67, 68]) which lets applications
offload simple functions to the Linux kernel [8]. Similar to
kernel bypass, by embedding application-logic deep in the
kemnel stack, BPF can eliminate overheads associated with
kernel-user crossings and the associated context switches. Un-
like kernel bypass, BPF is an OS-supported mechanism that
ensures isolation, does not lead to low utilization due to busy-
‘waiting, and allows a large number of threads or processes to
share the same core, leading to better overall utilization.

‘The support of BPF in the Linux kemel makes it an attrac-
tive interface for allowing applications to speed up storage
1/0. However, using BPF to speed up storage introduces sev-
eral unique challenges. Unlike existing packet filtering and
tracing use cases, where each BPF function can operate in a
self-contained manner on a particular packet or system trace
— for example, network packet headers specify which flow
they below to — a storage BPF function may need to syn-
chronize with other concurrent application-level operations or
require multiple function calls to traverse a large on-disk data
structure, a workload pattern we call “resubmission” of IOs
(§2.3). Unfortunately the state required for resubmission such
as access-control information or metadata on how individual
storage blocks fit in the larger data structure they belong to is
not available at lower layers.

To tackle these challenges, we design and implement XRP
(eXpress Resubmission Path), a high-performance storage
data path using Linux eBPF. XRP is inspired by XDP, the
recent efficient Linux eBPF networking hook [28]. In order
to maximize its performance benefit, XRP uses a hook in
the NVMe driver's interrupt handler, thereby bypassing the
kernel’s block, file system and system call layers. This allows
XRP to trigger BPF functions directly from the NVMe driver
as each /0 completes, enabling quick resubmission of /Os
that traverse other blocks on the storage device.

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 375

| Application
| Syscall Function
| File System
| Block Layer
NVMe Driver
Completion Completi Ci
Interrupt Handler Interrupt Handler Interrupt Handler
P q Context P Context Per-Request Context
bpf_func 0, bpf_func_ 1, bpf_func n,
scratch buff 0, scratch buff 1, scratch_buff n,
r_ﬁ
Prepare NVMe Prepare NVMe Prepare NVMe
command

i 1 1

Metadata Digest

i

Call BPF Call BPF Call BPF
Function Function Function

[|
\ /

Call Interrupt Handler

Resubmit for Each Irq
NVMe Core

N
—~ SIS NVMe Device
N -0 (X0
=) @,

I
Y
NVMe Queue 0

Command Completion
N,
I A
(oo [ea R

N nterrupt
NVMe Queue 1

Figure 4: XRP architecture.

Kernel
Software =
(48.6%)

User Space
Application

.Syscall Layer

Read Request

0.4ps (5.6%)
0.2ps (3.2%)

2.4 s (38.0%)

Read Request

0.1ps (1.8%)

Read Request

Storage Device

Read Response

e

3.2 ps (51.4%)

_/

62

Computation Storage: New Emerging Standard

SNIA.

ABOUT

Cloud Storage Technologies
Computational Storage
Data Governance & Security
Networked Storage
Persistent Memory
> Physical Storage
Compute, Memory, and Storage Initiative

Computational
Storage

Computational

Storage Technical

Work Group
Persistent Memory
Solid State Storage
Knowledge Center

Solid State Drive Form
Factors

Members

SFF

Solid State Drive Special Interest Group (SSD SIG)
Solid State Storage Technical Work Group

Solid State Storage System Technical Work Group
NVMe SSD Classification

Solid State Drive Form Factors

TECHNOLOGY FOCUS AREAS NEWS & EVENTS RESOURCES MEMBERSHIP

Computational Storage Technical Work Group

The SNIA Computational Storage Technical Work Group (TWG) has been formed to create to promote the i ility of { storage devices,
and to define interface for system and security. This will enable storage architectures and software to be integrated
with computation in its many forms.

The Computational Storage TWG:

« Acts as a primary technical entity for the SNIA to identify, develop, and coordinate computational features to be added to storage devices.

« Produces or extends interfaces to accommodate new features.

« Promotes interoperability (for example plugfests) among devices and systems implementing a new computational storage feature.

« Coordinates the submission of new feature proposals to standards groups (e.g., NVM Express, T10, and T13).

* Creates software to encourage adoption of these updated features.

* Will assist and cooperate with other SNIA Technical Work Groups, including the Security, Object Drive, and Scalable Storage Management TWGs, in their efforts to
incorporate or manage these features, and will consider leveraging other SNIA TWG and Alliance partner work

Current work in the Computational Storage TWG includes the Cc i Storage i and

Model v0.3 rev 1, currently in draft form for public

Computational Storage Architecture

Move Compute Closer to Storage

n— AP definitions here

88
R[S

50 50 csp D

CSD=ComputationalStorage Drive

i
SNIA.

Advancing storage &
information technology

Computational Storage
Architecture and Programming
Model

Version 1.0

Abstract: This SNIA document defines recommended behavior for hardware and software that
supports Computational Storage.

This document has been released and approved by the SNIA. The SNIA believes that the ideas,
methodologies and technologies descrbed i tis document accurately rpresent the SNIA goals
and are i for revisions should be directed to

https://www.. orﬂeedback/

SNIA Standard
August 30, 2022

° https://www.snia.org/computationaltwg (should know what SNIA is)

° https://www.snia.org/tech activities/publicreview

63

https://www.snia.org/computationaltwg
https://www.snia.org/tech_activities/publicreview

There are Various Settings Possible

Storage

Storage Storage

. “Offload” storage workloads . “Inline” storage services . Mostly Computational SSDs

. Memory bottleneck remains . Aggregation or End-Point " For Data-Intensive Workloads

Computational SSDs, Xilinx, https://www.snia.org/sites/default/files/SDCEMEA/2019/Presentations/Computational SSDs Final.pdf

https://www.snia.org/sites/default/files/SDCEMEA/2019/Presentations/Computational_SSDs_Final.pdf

So When Does Using CSD Makes Sense?

CSD: Computation Storage Device, or CS Computational Storage
When offloading computation to the device helps

e Large data transfer reduction is possible
e When data delivery or access does not need any CPU intervention

o Example, put a video compressor in the FPGA for storing video files, compression,

deduplication
When it might have limited gains?

e Compute heavy workloads with limited/small data transfers
e Little parallelism in the workload

65

Before We Conclude

A large field with different application domains, and names

e Near-Data Processing (NDP), In Storage Computation (ISC), Computational Storage (CS)
and many more

There are many flavors of programming...

1. Map/Reduce, Spark - also ship compute code to the data server for local execution

2. Thereis a big field of Database research on programmable storage where particular DB
operators or complete queries are offloaded in storage drives
a. Pushdown of filter predicates, aggregate operators from query plans

Programmability: custom untrusted code, protection, usability and expessibility

We are currently investigating how to design, build, and use programmable storage for
data processing - interested? 66

Whole lots of new work in the past 2 years

Accessible Near-Storage Computing with FPGAs

FVM: FPGA-assisted Virtual Device Emulation
for Fast, Scalable, and Flexible Storage Virtualization

Dongup Kwon'?

! Department of Electrical and Computer Engineering, Seoul National University

Robert Schmid Max Plauth Lukas Wenzel
Hasso Plattner Institute Hasso Plattner Institute Hasso Plattner Institute
University of Potsdam University of Potsdam University of Potsdam
Felix Eberhardt Andreas Polze
Hasso Plattner Institute Hasso Plattner Institute
University of Potsdam University of Potsdam
Abstrad
Data tran|
system ar] i .
R Computational Storage: Where Are We Today?
rally. The|
affects i
Py Antonio Barbalace Jaeyoung Do
developm| The University of Edinburgh Microsoft Research
question antonio.barbalace@ed.ac.uk jaedo@microsoft.com
users and|
We intj
accessibilj
we preser]
enables sd ABSTRACT While research on in-storage processing on HDDs [12, 34]
et Gtos s D tas (‘sm S s and SSDs [37, 31, 29, 42] has been carried on since the 1990's
on the gri Py m)LP rpose. andfor re, @0 2010, respectively, only recently CS platforms becore
an integrg configurable processing units, are now becoming commercially Commercially viable with a fow companies already selling
starts wil At T diffaant vantors: ST e éaphablo of v with CS capabilites — e, Samsung; (9], NGD [6], and Scale-
package software that usually runs on the host CPU — but on the stor. 110X [10]. Despite CSDs” market appearance, these devices are
2 age device, where the data reside. Thus, a server with one or CUmbersome 0 program and reason with, which may hinder
near-storg more CSDs may improve the overall pesformance and energy {1eir wide adoption. In fact, there i no software nor hardware
we integr consumption of software dealing with large amount of data. SUPPort for heterogencous resource management in CSD, nor
and repur] With the aim of fostering CSD's research and adoption, this ~ 5CUrity, consistency and general usability consideration.
e position paper argues that commercially available CSDs are Based on the authors experience working on several academic
primitive. still missing a wealth of functionalities that should be carefully ~ and industry CS prototypes in the latest years, this paper is
considered for their widespread deployment in production data an attempt at reviewing the state-of-the-art, listing the most
CCS Con| centers. De facto, existing CSDs ignore (heterogencous) resource pressing open research questions with CSD, and analyzing the
i s, ik fally e il . y of different programming models in answering such
t nor data consistency, nor usability. Herein, we discuss some of questions — without forgetting about the hardware/software
opnien the open research questions, and to what degree several well- interface that is still not CSD ready. This work focuses on a
Keyword known programuming models may help solving them - considering single direct-attached CSD, with storage and compute units
€y also the design of the hardware and software interfaces. resident on the same believe the same
ing, FPGA findings would apply widely, such as to smart disk array
1 Introduction trollers. Additionally. the work generically looks at CSD with
ACM Refd Computational Storage (CS) is a type of near data general-purpase CPUs, special-purpase CPUs, as well as CSD
RobertSch) ng 16] arcitetur that enabesdata 0 b procse itlin ith 1w Coubiuralig Hndvnce (PO Thocs; e tekito/all
dreas Polze] rage device in liew of being transported to the host central ~ Of those as “processing units” in the rest of the paper.
InFi A pn,(m.,,g it (CPU) [12]. ,g“m 1 generalizes several CS Briefly, our conclusion is that hardware and software for CSD
n Fifteent i et IA (1] is not ready yet, and more have to be done at the hardware and
JE— software level to fully leverage the technology at scale.
ing the host CPUs — thus, a cheaper CPU can be installed,
personal or] or the CPU can run other tasks; b) decreasing data transfers, 2 Background and Motivation
are not mad and increasing performance — only essential data need to be Cotipitati ’

oo putational storage reduces the input and outpul transaction
copies bear transferred from the storage to the CPU, general- or special it jeroonnect load through mitigating the volume of data that
for compon{ purpose processing elements or mwﬁtmrglilt units on the CS must be transferred between the storage and compute planes.
be honored) device(s) may process data instead of the CPU, even in parallel; As a result, it stands to better serve modern workloads, such
republs tg]) reueing energy consumption - a storage device on PCIe un high-oluma ig data sbalytios o Al tasks with st pacfor
o el mw&‘! 1], thus processing — mance [27], to improve data center infrastructure utilization [29],
Eurosys 20 units on computational storage devices (CSDs) consume just a together with many other benefits. We discuss several below.

ey :““’;f'l‘,“’“ ‘j""‘: L P"“‘l‘ “’Q"“":;P“"“ i A primary beneft of computational storage is faster and more
© 2020 Copyl oat. ;: which floata around 100/] Prosscving data-ceuter energy-efficient data processing. Computational storage architec-

without requiring investments i faster networks

Thie el ie rebliched mader & Cortive Commmons Atsilegion 1 icense

ek usually processed by host compute elements
CPU and eventual accelerators, to storage devices. Without CS,
for example in the data analytics context, a request made by the
host compute elements requires that all data from a storage de-
vice be transferred to it. ‘The host compute elements must then

. Junchyuk Boo', Dongryeong Kim', Jangwoo Kim'->

Flexible Hardware-based Virtualization Mechanism
for Computational Storage Devices

Dongryeong Kim, Junehyuk Boo, Wonsik Lee, and Jangwoo Kim
department of Electrical and Computer Engineering
Seoul National University

‘Memory Solutions Lab, Samsung Semiconductor Inc.

Abstract

Emerging big-data workloads with massive VO processing
Jrequire fast, v:l]ilhl: nm.l ﬁc:ublc storage virtualization sup-

Iport. Hardy can achieve
Jperformance for fast storage dcvu.ex but i it comes at the ex-
[pense of limited functionalities in a

e.g., migration, replication, caching). To restore the VM fea-
ures it minimal pesformance degradation,recent advances
[propose to i a new soft
layer by dedicating computing cores to virtual device emu-
lation. However, due to the dedication of expensive general-
[purpose cores and the nature of host-driven storage device
management, the schemes raise the eritical perfor-
jmance and scalability issues with the increasing number and
Iperformance of storage devices per server.

ln lhxs - paper. we propose FVM. a new hardware-assisted
to achieve hi;
und Kcahblllky while maintaining the flexibility to support

arious VM features. The key idea is to implement (1) a
storage virtualization layer on an FPGA card (FVM-engine)
decoupled from the host resources and (2) a device-control
Imethod to have the card directly manage the physical storage
[devices. In this way, a server equipped with FVM-engine can
[save the invaluable host-side resources CPU. memory
[bandwidth) from virtual and physical device management
Jand utilize the decoupled FPGA resources for virtual device

R
Cost-effective, Energy-efficient, and Scalable Storage :
Computing for Large-scale Al Applications | —

JAEYOUNG DO, Microsoft Research, USA

VICTOR C. FERREIRA, Federal University of Rio de Janeiro, Brazil

HOSSEIN BOBARSHAD and MAHDI TORABZADEHKASHI, NGD Systems, USA
SIAVASH REZAEI and ALl HEYDARIGOR]!, University of California, Irvine, USA

#nt on a paravirtual-

n unit and enable it
it without software

DIEGO SOUZA, Wespa Intelligent Systems Shelf computational

BRUNNO F. GOLDSTEIN and LEANDRO SANTIAGO, Federal University of Rio de Janciro | Rrerereto

MIN SOO KIM, University of California, Irvine, USA Easio ooty s
13,35].

PRISCILA M. V. LIMA and FELIPE M. G. FRANCA, Federal University of Rio de Janeiro, Brazil
VLADIMIR ALVES, NGD Systems, USA

Vare devices, recent
lerlay architectures
lity of modern com-
stream-based over-
prators (.., stream
etively through an
£ At the same time,
Action layers to hide
fplementations. For
fplementation takes

The growing volume of data produced continuously in the Cloud and at the Edge poses significant chal-
lenges for large-scale Al applications to extract and learn useful information from the data in a timely and
efficient way. The goal of this article is to explore the use of campu(shonal storage to address such ¢
lenges by distributed near-data processing. We describe Newport, a h and energy-efficient
computational storage developed for realizing the full potential o in- slorag: processing. To the best of our

Our WM—cngm: prototype existing
schemes while the same
ility as software i i

1 Introduction

Storage virtualization is one of the most important compo-
nents to determine the cost-effectiveness of modern datacen-
Jiers, which improves the utilization of the storage devices
fund makes resource management much easier. For example,

“Corresponding suthor.

USENIX Association 14th USENIX Sympog

ledge, Newport is the first commodity SSD that can be configured to run a server-like operating sys-
tem, breatly minimizing the effort for creating and maintaining applications running inside the storage. We
analyze the benefits of using Newport by running complex Al applications such as image slmllanl) scan.h
and obycct traclung on a large visual datasct. The results d that d; Al can

ons to allow users.
peessing [35].

tchanisms for com-
firlow performance

be d and offloaded, even to a small set ofNrwpun drives with signifi Ea m:(—
5 full advantage
gains and energy savings. In addition, we i of existing p By bypervisce ana

storage solutions together with a realistic cost analy sis lur hlg,h-volumc production, giving a good big picture lational storage de-
of the ibility of the ional storage tech B mechanisms via
CCS Concepts: « Information systems — Storage archi - Computer systems organization — 1= ehead ofpor
Distributed archi +C i hodologies — Artificial intell;

Additional Key Words and Phrases: C: | storage, ¢ lid-state drive, simil.

search, neural network, object tracking | Conference 729

—_—

67

From this Lecture You Should Know

1. What is programmable storage, and why and when this idea make sense
(and when it does not)

a. Datareduction, aggregation, filtering
b. Energy benefits

2. What are different flavor of programmability - hardware (CPUs, FPGAs,

languages), software (runtime, compiler, languages), abstractions (RPCs,
Flow-based programming, or virtual files)
3. The basic idea behind :

a. Willow

b. Smart Queries SSDs
c. Biscuit

d. INSIDER

68

[Optional] Further Reading

Jaeyoung Do, Sudipta Sengupta, and Steven Swanson. 2019. Programmable solid-state storage in future cloud datacenters. Commun. ACM 62, 6
(June 2019), 54-62.

Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park, and David J. DeWitt. Query Processing on Smart SSDs: Opportunities
and Challenges. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD '13, pages 1221-1230, New
York, NY, USA, 2013.

L. Woods, Z.Istvan, G.Alonso, Ibex: an intelligent storage engine with support for advanced SQL offloading, VLDB 2014.

M. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkelstein, J. LeFevre, C. Maltzahn, "Malacology: A Programmable Storage System", in EuroSys 2017
Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian Zhang, Robert Ricci, and Ryan Stutsman. 2018. Splinter: bare-metal extensions for multi-tenant
low-latency storage. In Proceedings of the 13th USENIX conference on Operating Systems Design and Implementation (OSDI'18). USENIX Association,
USA, 627-643.

Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu,Jamey Hicks, and Arvind. Bluecache: A scalable distributed flash-based key-value store. Proc. VLDB
Endow., 10(4):301-312, November 2016

Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho,
Jaeheon Jeong, and Duckhyun Chang. 2016. Biscuit: a framework for near-data processing of big data workloads. In Proceedings of the 43rd
International Symposium on Computer Architecture (ISCA '16).

Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun Cho, Daniel D. G. Lee, and Jaeheon Jeong. 2016. YourSQL: a high-performance
database system leveraging in-storage computing. Proc. VLDB Endow. 9, 12 (August 2016), 924-935.

D. Tiwari, S. Boboila, S. Vazhkudai, Y. Kim, X. Ma, P. Desnoyers, and Y. Solihin, “Active flash: Towards energy-efficient, in-situ data analytics on
extreme-scale machines,” USENIX FAST 2013.

Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eberhardt, and Andreas Polze. 2020. Accessible near-storage computing with FPGAs. In
<i>Proceedings of the Fifteenth European Conference on Computer Systems</i> (<i>EuroSys '20</i>).

Kornilios Kourtis, Animesh Trivedi, Nikolas loannou, Safe and Efficient Remote Application Code Execution on Disaggregated NVM Storage with eBPF,
https://arxiv.org/abs/2002.11528 (2020).

Corne Lukken, Giulia Frascaria, Animesh Trivedi, ZCSD: a Computational Storage Device over Zoned Namespaces (ZNS) SSDs, 2021.

https://arxiv.org/abs/2002

