
1

Storage Systems (StoSys)
XM_0092

Lecture 8: Programmable Storage

Animesh Trivedi
Autumn 2023, Period 1

The layered approach in the lectures

New devices (Flash)

New host interfaces (NVMe protocol)

Software implication in the block layer

File systems

Applications (key-value store)

2

Distributed Systems

L1

L2

L3

L4

L5

L6
Byte-addressable,
persistent memories

L7
Networked NVM

L8

Specialization
Programmability

L9-L10

Any Guesses?

3

Why would we need programmable storage? And what is it actually?

Jaeyoung Do, Sudipta Sengupta, and Steven Swanson. 2019. Programmable solid-state storage in future cloud datacenters. Commun. ACM
62, 6 (June 2019), 54–62.

Conventional Data Processing (simplified)

4

Storage Device

CPU
DRAMDRAMDRAMDRAMDRAM

1. Read data in memory for processing
(can be local - PCIe -- or networked over NVMeoF)

2. Data processing

3. Write results back

A basic model of how storage and data processing is organized typically
What are the challenges here?

Key Challenge - Data Movement Wall

5

Storage Device

CPU
DRAMDRAMDRAMDRAMDRAM

The amount of data generated and
processed is increasing significantly
Recall: 200 Zettabytes by 2025

The network (local or external) is a
bottleneck.

Why now? Emergence of Flash and
internal device parallelism creates
a data movement bottleneck!

Also see Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl. Pump Up the Volume: Processing Large Data on GPUs
with Fast Interconnects. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (SIGMOD '20).

Recall: Flash Internal Structure

Flash devices consist of multiple independent packages, die, or planes

These components can work in parallel, giving a large amount of bandwidth

A single server can host multiple PCIe connected flash devices

6https://www.snia.org/sites/default/education/tutorials/2009/spring/solid/JonathanThatcher_NandFlash_SSS_PerformanceV10-nc.pdf

https://www.snia.org/sites/default/education/tutorials/2009/spring/solid/JonathanThatcher_NandFlash_SSS_PerformanceV10-nc.pdf

Recall: Flash Internal Structure

Flash devices consist of multiple independent packages, die, or planes

These components can work in parallel, giving a large amount of bandwidth

A single server can host multiple PCIe connected flash devices

7https://www.snia.org/sites/default/education/tutorials/2009/spring/solid/JonathanThatcher_NandFlash_SSS_PerformanceV10-nc.pdf

https://tweakers.net/pricewatch/1761712/samsung-980-pro-met-heatsink-2tb/specificaties/

We have these in our servers!

https://www.snia.org/sites/default/education/tutorials/2009/spring/solid/JonathanThatcher_NandFlash_SSS_PerformanceV10-nc.pdf
https://tweakers.net/pricewatch/1761712/samsung-980-pro-met-heatsink-2tb/specificaties/

Data Movement Bottlenecks Inside a Single System

8

A rack-level SSDs deployment

64 SSDs connected in a system

Internally each SSD can have 32 flash
packages in parallel

At the green line you have 1TB/s

It drops to 128GB/s at the PCIe
switches

It further drops to 16 GB/s at the CPU

Yes, PCIe is improving, but not as fast!

Jaeyoung Do, Sudipta Sengupta, and Steven Swanson. 2019. Programmable solid-state storage in future cloud datacenters. Commun. ACM
62, 6 (June 2019), 54–62.

Latency Pressure

9

Crossing PCIe bus (v3.0, v4.0) can take time ~1 useconds

Over the years the drive latencies have been improving
● See ULL and 3D-NAND flash
● Can do ~5 usec latencies

PCIe latency has become a bottleneck for pointer chasing, latency-sensitive applications
What about over an external network?

Kulkarni, Splinter: bare-metal extensions for multi-tenant
low-latency storage, OSDI 2018.

Over the Network?
1 TB data with 8 bytes keys (237 values),
RTT of 40 usec (on 10 Gbps)

Remote bsearch: fetch each node on
demand and pointer chasing left/right,
~37 round trips

Offloaded bsearch: send code to the
remote, disaggregated storage server for
execution, get the result, 1 round trip

Shows up in performance difference

10
Kornilios Kourtis, Animesh Trivedi, Nikolas Ioannou, Safe and Efficient Remote Application Code Execution on Disaggregated NVM Storage with
eBPF, https://arxiv.org/abs/2002.11528 (2020).

Server Client Server Client

https://arxiv.org/abs/2002.11528

Enter: Programmable Storage

11

Storage Device

CPU
DRAMDRAMDRAMDRAMDRAM

Programmable layer

1. Offload data processing to
storage device

2. Transfer the result back to the host

3. CPU can read the results

A high-level idea of programmable storage
● Ship computation to the storage device

○ Over PCIe or Ethernet
● Gather results
● Reduce unnecessary data movement
● Deliver performance, low latency operations
● Saves energy!

Why is Programmable Storage Useful?
1. Data processing is often reductive (not always!)

a. grep, filter, aggregate → results are often smaller than the original data

12

1 6

2 7

3 8

4 9

5 10

select (col0 == RED)
1 6

3 8

project col1, where col2 > 8

4

5

average(col1) = 3
max(col2) = 10

col0 col1 col2

All columns = 1 bytes
= 15 bytes table

 2 x 3 = 6 Bytes

 2 Bytes

Why is Programmable Storage Useful?
1. Data processing is often reductive (not always!)

a. grep, filter, aggregate → results are often smaller than the original data

2. SSDs already are complex
a. FTL implementation, GC logic
b. SSDs already have some “logic” implementation capabilities and spare cycles

3. Additional support from the devices have been helpful
a. Expose SSD internals to optimize for applications (SDF, OCSSDs, ZNS)
b. Flash virtualization (DFS file system)
c. Further capabilities: caching, atomic updates and appends, transactions, KV-SSDs

Why not make programmable SSDs a standard feature where a user can offload
computation to the SSD? (if yes, then how can we do it?) 13

The Idea Itself is Not New …
The idea itself is not now (as with many ideas in Computer Science)

● Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. 1998. A case for intelligent
disks (IDISKs). SIGMOD Rec. 27, 3 (Sept. 1, 1998), 42–52.

● Erik Riedel, Garth A. Gibson, and Christos Faloutsos. 1998. Active Storage for Large-Scale Data
Mining and Multimedia. In Proceedings of the 24th International Conference on Very Large
Data Bases (VLDB '1998).

● And many more …

14Corne Lukken, Animesh Trivedi:
Past, Present and Future of Computational Storage: A Survey. CoRR abs/2112.09691 (2021), https://arxiv.org/abs/2112.09691

https://dblp.org/pid/86/11040.html
https://dblp.org/db/journals/corr/corr2112.html#abs-2112-09691
https://arxiv.org/abs/2112.09691

The Idea Itself is Not New …
The idea itself is not now (as with many ideas in Computer Science)

● Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. 1998. A case for intelligent
disks (IDISKs). SIGMOD Rec. 27, 3 (Sept. 1, 1998), 42–52.

● Erik Riedel, Garth A. Gibson, and Christos Faloutsos. 1998. Active Storage for Large-Scale Data
Mining and Multimedia. In Proceedings of the 24th International Conference on Very Large
Data Bases (VLDB '1998).

● And many more …

However, they did not become popular because

1. Too expensive technology
2. Gains from such disk-based setup were low. Disk performance was bottleneck, and

a. host/drive/link speeds were improving
b. DRAM caching size was getting bigger too 15

What are the Challenges in Programmable Storage?

1. How to provide programmability?
a. In the hardware or software, or some combination of these?
b. ASIC, embedded CPUs, FGPA, languages, toolchain

2. What is the programming API?
a. What is a useful programing abstraction to perform any computation
b. How do you transfer computation logic to a remote end point (storage)
c. Integrate other known storage abstractions: files, key-value stores, etc.

3. How do you provide?
a. Multi-tenancy
b. Quality of service, isolation
c. Security and privacy 16

Willow: A User-Programmable SSD (2014)

17

Key Challenge

18https://www.usenix.org/sites/default/files/conference/protected-files/osdi14_slides_seshadri.pdf

How to build a usable abstraction
to build these multiple specialized
applications?

Why specalization?

https://www.usenix.org/sites/default/files/conference/protected-files/osdi14_slides_seshadri.pdf

Willow Architecture
Conventional SSDs (figure (a)), Willow (figure (b))

● Contains Storage Processor Unit (SPUs)
○ that process requests for their

attached NVM storage

19

Normal NVMe SSD Willow SSD (uses own PCIe protocol)

Willow Architecture
Conventional SSDs (figure (a)), Willow (figure (b))

● Contains Storage Processor Unit (SPUs)
○ that process requests for their

attached NVM storage

● The host does not do conventional r/w
but uses Host RPC Endpoints (HREs)

○ Why RPCs? The most flexible way of establishing a
command/response protocol

○ HREs communicate with SPUs
○ What to communicate, how to communicate -

the application/user decide

So how do these HREs, SPUs work together to offer a programmable SSD?
20

https://networkencyclopedia.com/remote-procedure-call-rpc/

https://networkencyclopedia.com/remote-procedure-call-rpc/

Willow: An SSD-Application View
Each SSD application
1. Provides RPC handlers to the

Willow driver to be installed in SSD
2. A user-space library to access SSD

directly
3. [optional] Kernel module to get

support for kernel routines - filesystem

21

Here in the figure (example): Design for a Direct-Access Storage

1. Ask the Willow driver to install direct-IO RPC handlers and request an Host RPC Endpoint (HRE)
2. At the open of a file for direct I/O, the application asks the kernel driver to check file

permissions and install them in the SSD
3. Do a direct read/write using RPCs from HREs to SPUs

The customization with kernel module, user library and SPU RPC handler → Programming !

inter-SPU RPCs

What is Inside SPUs?
● 125 MHz MIPS processor
● 32 KB of Data and Instruction Memory
● Connected to a bank of NVM (here:

PCM)
● Network interface (PCIe)

The SPU runs a simple operating system
(SPU-OS)

● Gives simple multi-threading
● Memory is managed by the host driver

○ Statically allocated
22

Protection and Sharing Features
1. How to track which user application is executing code on a shared SSDs?

a. Each HRE has an id which is always propagated with all RPC request and
responses to keep track of which process is responsible for computation

2. How to check if an SSD-Application has rights to modify and update data?
a. Each application has permissions associated with the HRE and data touched
b. In case not all permissions can be stored inside the SSD, a permission miss will

happen and the SPU will contact the kernel model to get updated permissions

3. Code and data protection inside SPU
a. Use SPU’s memory segmentation support (segmentation registers)

23

Code Complexity

Many ideas only take a 100s of lines of code to implement in Willow

4-6 weeks of development time (reasonable)

24

Performance

● Direct I/O helps to reduce FS + syscall overheads
● Key-value on Willow (RPC) can improve performance from 8% - 4.8x

25

Willow SSD app as a KV-SSD

This RPC-based Design - Flexibility

26

Jaeyoung Do, Victor C. Ferreira, Hossein Bobarshad, Mahdi Torabzadehkashi, Siavash Rezaei, Ali Heydarigorji, Diego Souza, Brunno F.
Goldstein, Leandro Santiago, Min Soo Kim, Priscila M. V. Lima, Felipe M. G. França, and Vladimir Alves. 2020. Cost-effective,
Energy-efficient, and Scalable Storage Computing for Large-scale AI Applications. ACM Trans. Storage 16, 4, Article 21 (November 2020),
37 pages. https://doi.org/10.1145/3415580

Local SSD as an
Network-attached
Server with RPC
(over PCIe)

https://doi.org/10.1145/3415580

Relational Data Processing Frameworks (why?)

27

Query Processing on Smart SSDs
One of the earliest attempt to revisit the idea of programmable storage for
relational query processing

Advantages with relational query processing

● Structured operators and query plans
● Defined I/O access patterns
● Opportunities for “code-pushdown”,

early filtering, selection, and aggregation

Proposed: implemented the simple selection and aggregation operators into
the device FTL and integrated with SQL Server query plans

28

Architecture
1. Open and close to maintain session
2. Get to get results

User defined program is executed on
an event (open, close) or arrival of
a data page from flash

● Data pages can be staged in parallel

Basic thread scheduling (a master and worker threads), and memory
management (static, per-thread)

→ Focus on a single workload, no multi tenancy, no file system here!
29

Performance

30

Energy Efficiency

31

Compared to HDDs, SSDs are
more energy efficient

Smart SSDs further allow
faster, more energy efficient
execution

N-ary Storage Model (NSM)
and Partition Attributes Across
(PAX) data layouts - how data is
stored on the device

Biscuit: A Framework for Near-Data Processing of
Big Data Workloads

Flow-based programming model : build a graph of computation steps (very much like
SQL DAGs)

Support (almost) full C++ 11/14 semantics

Split coordination and computation models

A typical application

● Host side : libsisc
● SSD side : libslet,

 with IN/OUT coordination
32

SSDlets and Applications

a. Inter-SSDlet (same application)
b. Host-device ports
c. Inter application ports

Important for coordination and staging of data
33

Word Count Application

34

Flow-based Prog.

Read, split, count

Performance
SSD Prototype has: Two ARM Cortex R7 cores @750MHz, L1$, no cache
coherence, and Key-based pattern matcher per channel (filtering)

35TPC-H Q1, base system energy 103 Watts

In Summary
Fast NVMs put pressure on network/link and performance demands

Modern SSDs are already software-defined, why restrict their use to a block-storage
protocol like NVMe

Willow : a user programmable RPC-based SSD design (with limited memory and
multi-tenancy management) - uses SPUs
Smart Query and Biscuit: query processing designs, with operator offloading and flow
based programming - uses ARM

● Clean, flexible, and powerful
● Block I/O, direct I/O, Append, Transactions, Caching, and KV Store

Is running a general purpose MIPS/ARM processor a right choice? Are there alternative
hardware options for programmability? 36

Insider : Designing In-Storage Computing System for
Emerging High-Performance Drive (2019)

37

Hardware

Runtime

API and Abstractions

Programmability needs Support from the Whole Stack

Hardware
1. ASIC: fast but not-programmable
2. CPU: programmable but not fast

Runtime
1. How to ensure correct access from a code
2. How to ensure multi-tenancy with codes

API and Abstractions
1. New APIs leads to less familiarity with developers
2. Might lead to significant code modifications

38

Hardware

Runtime

API and Abstractions

How to make Programmable Hardware?

Hardware?
● Candidates: ASIC, FPGA, GPU, ARM, x86
● Need to support

○ General programmability
○ Massive parallelism (all flash chips)
○ High energy efficiency

39

Hardware

Runtime

API and Abstractions

Do you know what FPGA is?

Field Programmable Gate Array (FPGA)

DIY hardware, programs can be compiled
to be synthesized for FPGA

Very active area of research

- Performance
- Energy efficiency
- Domain-specific architectures

40

Image credit: B. Ronak et al, Mapping for Maximum
Performance on FPGA DSP Blocks,
https://ieeexplore.ieee.org/document/7229289

Software FPGA ASIC

Flexibility Performance

https://ieeexplore.ieee.org/document/7229289

What is special about FPGA?

● Further reading: https://blog.esciencecenter.nl/why-use-an-fpga-instead-of-a-cpu-or-gpu-b234cd4f309c
● Zsolt Istvan, Building Distributed Storage with Specialized Hardware,

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/266096/1/zistvan-phd-dissert-rev.pdf 41

CPU Memory

instructions

results

- Distance to memory
- Instruction dependencies
- Programming control units in CPUs

SRAM

SRAM

Input

Output- Layout logic in the circuit
- Reconfigurable
- Close and fast memory access
- Heavily pipelined

https://blog.esciencecenter.nl/why-use-an-fpga-instead-of-a-cpu-or-gpu-b234cd4f309c
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/266096/1/zistvan-phd-dissert-rev.pdf

Sources of Performance Gains
1. Hardware-software co-design

a. Trade easy operations in hardware
with difficult ones

2. Specialized operations
a. Use FPGA and specialized operations

3. Leverage parallelism
a. Processing elements (PEs) and space

4. Local memories
a. Leverage SRAM

5. Maximize off-chip DRAM access
a. Large sequential accesses

6. Reduce programming overheads
a. Heavy pipelining 42

SRAM

SRAM

Input

Output- Layout logic in the circuit
- Reconfigurable
- Close and fast memory access
- Heavily pipelined

See Darwin: A Genomics Co-processor Provides up to 15,000X Acceleration
on Long Read Assembly. ASPLOS 2018.

How to make Programmable Hardware?

Hardware?
● Candidates: ASIC, FPGA, GPU, ARM, X86
● Need to support

○ General programmability
○ Massive parallelism (all flash chips)
○ High energy efficiency

43

Hardware

Runtime

API and Abstractions

Programmability needs Support from the Whole Stack

Hardware
1. ASIC: fast but not-programmable
2. CPU: programmable but not fast

Runtime
1. How to ensure correct access from a code
2. How to ensure multi-tenancy with codes

API and Abstractions
1. New APIs leads to less familiarity with developers
2. Might lead to significant code modifications

44

Hardware

Runtime

API and Abstractions

Use FPGA

INSIDER Architecture

45

Host Program

Storage ChipsStorage ChipsStorage ChipsStorage Chips

Firmware FTL
DMA

Conventional SSD

INSIDER Architecture

46

Host Program

Storage ChipsStorage ChipsStorage ChipsStorage Chips

Firmware FTL

FPGA Unit

DMA

INSIDER SSD

1. Send code, offload

6. Result

2. Read LBAs

3. Read PBAs 4. Data for
FPGA

5. Processing in FPGA

INSIDER Architecture

47

Host Program

Storage ChipsStorage ChipsStorage ChipsStorage Chips

Firmware FTL

FPGA Unit

DMA

INSIDER SSD

1. Send code, offload

6. Result

2. Read LBAs

3. Read PBAs 4. Data for
FPGA

5. Processing in FPGA

How to make sure a rogue FPGA program is not able to read any arbitrary storage location
or write to any location?

INSIDER Architecture

48

Host Program

Storage ChipsStorage ChipsStorage ChipsStorage Chips

Firmware FTL

FPGA Unit

DMA

INSIDER SSD

1. Send code, offload 5. Processing in FPGA

Idea 1: Make FPGA program “Compute-Only”, hence the program itself cannot issue any r/w ops.

Then how to get data from flash chips for processing?

INSIDER Architecture

49

Host Program

Storage ChipsStorage ChipsStorage ChipsStorage Chips

Firmware FTL

FPGA Unit

DMA

INSIDER SSD

1. Send code, offload

2. Read LBAs

3. Read PBAs 4. Data for
FPGA

5. Processing in FPGA

File System

Insider Runtime

File paths (use file as the basic
abstraction)

LBA ranges

Idea 1: Make FPGA program “Compute-Only”, hence the program itself cannot issue any r/w ops.
Idea 2: Make a separate “control plane” which issues read operations for data which FPGA processes

INSIDER Architecture

50

Host Program

Storage ChipsStorage ChipsStorage ChipsStorage Chips

Firmware FTL
DMA

INSIDER SSD

2. Read LBAs

3. Read PBAs 4. Data for
FPGA

5. Processing in FPGA

File System

Insider Runtime

File paths (use file as the basic
abstraction)

LBA ranges

Idea 1: Make FPGA program “Compute-Only”, hence the program itself cannot issue any r/w ops.
Idea 2: Make a separate “control plane” which issues read operations for data which FPGA processes
Idea 3: Partition the FPGA into independent processing spaces for parallelism + scheduler

1.
 S

en
d

co
de

, o
ffl

oa
d

1(a) code offloading
scheduler

Rate management

Programmability needs Support from the Whole Stack

Hardware
1. ASIC: fast but not-programmable
2. CPU: programmable but not fast

Runtime
1. How to ensure correct access from a code
2. How to ensure multi-tenancy with codes

API and Abstractions
1. New APIs leads to less familiarity with developers
2. Might lead to significant code modifications

51

Hardware

Runtime

API and Abstractions

Use FPGA

Compute-only programs with
FPGA partitioning

Files, File, and Files everywhere!
Everything is a file - The UNIX philosophy :)

52

// get a virtual file
vfile = reg_virt_file (real_file, accelerator id);

int fd = vopen(vfile, flags);

send_params(fd, void * argc, int argv);

int sz = vread (fd, buf, buf_size);
int sz = vwrite (fd, buf, buf_size);

// vsync - if written

vclose(fd);

Tells INSIDER which files to prep
for reading, reserve id

Check file systems permissions, and hold
the file for processing

Send FPGA program parameters

These reads and writes move data from
flash to FPGA for processing. Hence, the
virtual. Only the final result is returned!

Synchronize and close the file to release
resources

Files, File, and Files everywhere!
Everything is a file - The UNIX philosophy :)

53

// get a virtual file
vfile = reg_virt_file (real_file, accelerator id);

int fd = vopen(vfile, flags);

send_params(fd, void * argc, int argv);

int sz = vread (fd, buf, buf_size);
int sz = vwrite (fd, buf, buf_size);

// vsync - if written

vclose(fd);

Tells INSIDER which files to prep
for reading, reserve id

Check file systems permissions, and hold
the file for processing

Send FPGA program parameters

These reads and writes move data from
flash to FPGA for processing. Hence, the
virtual. Only the final result is returned!

Synchronize and close the file to release
resources

You can see the basic compute-only idea here that the
user program needs to issue vread/vwrites to trigger

data movements from the flash chips to FPGA.

FPGA itself cannot issue a read or write request!

How Does FPGA Code Look Like?
Like a simple C++ code … (INSIDER provides a compiler)

54

(simplified)

struct app_data {
char bytes[64];
int length;
bool eop;
}

(simplified)

void filter(Queue<app_data> input, Queue<app_data>
output, void *argv, int argc)
{
 // use argv, argv to setup the environment
 item_to_process = input.read();
 result = process(item_to_process);
 output.append(result);
}

// Essentially a record-by-record processing

Programmability needs Support from the Whole Stack

Hardware
1. ASIC: fast but not-programmable
2. CPU: programmable but not fast

Runtime
1. How to ensure correct access from a code
2. How to ensure multi-tenancy with codes

API and Abstractions
1. New APIs leads to less familiarity with developers
2. Might lead to significant code modifications

55

Hardware

Runtime

API and Abstractions

Use FPGA

Compute-only programs with
FPGA partitioning

Virtual files

Is It Simple? Compared to Moneta

56

File based interface does offer
tangible benefits in terms of
developer’s familiarity

INSIDER: Performance

● Baseline : implementation on POSIX files on host
● Customized I/O Stack: Host-bypass, and use vread of INSIDER to bypass the host fs/block overheads
● Pipeline and offload : Overlap compute and data movement, and offload code to INSIDER drive
● Data Reduction: Gains from reducing the amount of data movement from the drive to the host

Almost an order of magnitude performance gains
57

Is FPGA the only way to provide Programmability?

No - programmability is a large concept with multiple independent ideas

● Programmability in storage device
○ Integrated : ASIC, FPGA, or embedded CPU
○ Side-by-side: FGPA, GPUs, ASICs, co-processor (DSPs) etc.

● How to ensure multi tenancy and isolation?
○ Hardware

■ (INSIDER) FPGA: partition the FPGA
■ (Willow): Use SPU-OS process scheduling

○ Software
■ Use programming languages to provide isolation and correctness

● Rust, Java script, eBPF
● What is the new programming abstraction?

○ RPCs, Virtual Files, ??? 58

Scheduling, Multi-Tenancy and Isolation

59

?

Programmable Storage

User 1

User 2

User 3

Installing and running user-provided extensions
safely

Scheduling, which extension to pick next

Would it yield? Preemption?

How to ensure isolation : security and
performance for multi-tenancy

Parallel themes in the OS/Kernel development,
fault isolation, static and dynamic verifications,
etc.

● Architecture
● Systems software
● Language and runtimes

X

Is FPGA the only way to provide Programmability?

No - programmability is a large concept with multiple independent ideas

● Programmability in storage device
○ Integrated : ASIC, FPGA, or embedded CPU
○ Side-by-side: FGPA, GPUs, ASICs, co-processor (DSPs) etc.

● How to ensure multi tenancy and isolation?
○ Hardware

■ (INSIDER) FPGA: partition the FPGA
■ (Willow/Biscuit): Use SPU-OS/ARM process scheduling

○ Software, use programming languages to provide isolation and correctness
● Rust, Java script, eBPF (⇐ we are working on it, see further reading)

● What is the new programming abstraction?
○ RPCs, Virtual Files, ???

60

MSc thesis also:

61

OpenCSD Platform:
https://github.com/Dantali0n/OpenCSD https://animeshtrivedi.github.io/team/

https://github.com/Dantali0n/OpenCSD
https://animeshtrivedi.github.io/team/

eBPF-based Kernel Programming

62

Computation Storage: New Emerging Standard

63

● https://www.snia.org/computationaltwg (should know what SNIA is)
● https://www.snia.org/tech_activities/publicreview

https://www.snia.org/computationaltwg
https://www.snia.org/tech_activities/publicreview

There are Various Settings Possible

64
Computational SSDs, Xilinx, https://www.snia.org/sites/default/files/SDCEMEA/2019/Presentations/Computational_SSDs_Final.pdf

https://www.snia.org/sites/default/files/SDCEMEA/2019/Presentations/Computational_SSDs_Final.pdf

So When Does Using CSD Makes Sense?
CSD: Computation Storage Device, or CS Computational Storage

When offloading computation to the device helps

● Large data transfer reduction is possible
● When data delivery or access does not need any CPU intervention

○ Example, put a video compressor in the FPGA for storing video files, compression,
deduplication

When it might have limited gains?

● Compute heavy workloads with limited/small data transfers
● Little parallelism in the workload

65

Before We Conclude
A large field with different application domains, and names

● Near-Data Processing (NDP), In Storage Computation (ISC), Computational Storage (CS)
and many more

There are many flavors of programming…

1. Map/Reduce, Spark - also ship compute code to the data server for local execution
2. There is a big field of Database research on programmable storage where particular DB

operators or complete queries are offloaded in storage drives
a. Pushdown of filter predicates, aggregate operators from query plans

Programmability: custom untrusted code, protection, usability and expessibility

We are currently investigating how to design, build, and use programmable storage for
data processing - interested? 66

Whole lots of new work in the past 2 years

67

From this Lecture You Should Know
1. What is programmable storage, and why and when this idea make sense

(and when it does not)
a. Data reduction, aggregation, filtering
b. Energy benefits

2. What are different flavor of programmability - hardware (CPUs, FPGAs,
languages), software (runtime, compiler, languages), abstractions (RPCs,
Flow-based programming, or virtual files)

3. The basic idea behind :
a. Willow
b. Smart Queries SSDs
c. Biscuit
d. INSIDER

68

[Optional] Further Reading
● Jaeyoung Do, Sudipta Sengupta, and Steven Swanson. 2019. Programmable solid-state storage in future cloud datacenters. Commun. ACM 62, 6

(June 2019), 54–62.
● Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park, and David J. DeWitt. Query Processing on Smart SSDs: Opportunities

and Challenges. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD ’13, pages 1221–1230, New
York, NY, USA, 2013.

● L. Woods, Z.Istvan, G.Alonso, Ibex: an intelligent storage engine with support for advanced SQL offloading, VLDB 2014.
● M. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkelstein, J. LeFevre, C. Maltzahn, "Malacology: A Programmable Storage System", in EuroSys 2017
● Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian Zhang, Robert Ricci, and Ryan Stutsman. 2018. Splinter: bare-metal extensions for multi-tenant

low-latency storage. In Proceedings of the 13th USENIX conference on Operating Systems Design and Implementation (OSDI'18). USENIX Association,
USA, 627–643.

● Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu,Jamey Hicks, and Arvind. Bluecache: A scalable distributed flash-based key-value store. Proc. VLDB
Endow., 10(4):301–312, November 2016

● Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho,
Jaeheon Jeong, and Duckhyun Chang. 2016. Biscuit: a framework for near-data processing of big data workloads. In Proceedings of the 43rd
International Symposium on Computer Architecture (ISCA '16).

● Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun Cho, Daniel D. G. Lee, and Jaeheon Jeong. 2016. YourSQL: a high-performance
database system leveraging in-storage computing. Proc. VLDB Endow. 9, 12 (August 2016), 924–935.

● D. Tiwari, S. Boboila, S. Vazhkudai, Y. Kim, X. Ma, P. Desnoyers, and Y. Solihin, “Active flash: Towards energy-efficient, in-situ data analytics on
extreme-scale machines,” USENIX FAST 2013.

● Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eberhardt, and Andreas Polze. 2020. Accessible near-storage computing with FPGAs. In
<i>Proceedings of the Fifteenth European Conference on Computer Systems</i> (<i>EuroSys '20</i>).

● Kornilios Kourtis, Animesh Trivedi, Nikolas Ioannou, Safe and Efficient Remote Application Code Execution on Disaggregated NVM Storage with eBPF,
https://arxiv.org/abs/2002.11528 (2020).

● Corne Lukken, Giulia Frascaria, Animesh Trivedi, ZCSD: a Computational Storage Device over Zoned Namespaces (ZNS) SSDs, 2021. 69

https://arxiv.org/abs/2002

