
1

Storage Systems (StoSys)
XM_0092

Lecture 5: Key-Value Stores

Animesh Trivedi
Autumn 2023, Period 1

Reminder: for the Coming Weeks
We will be gradually transforming to networking and distributed systems

It is important you understand networking basics and important concepts such as

● TSO, LRO, Jumbo Frames, Multicore scalability, affinities, and RDMA, etc.

I will only introduce these topics selectively

Background reading: Please check out lecture 1, 2 (networking basic), 4 (multicore scalability), and 6
(RDMA networking) from the networking course linked below

● Public slides for the course: https://animeshtrivedi.github.io/course-anp/

2

https://animeshtrivedi.github.io/course-anp/

M3 Interview Preparations
We will announce a sign up link in coming days

15-20 mins/group

Give a demo and show if all tests work

Make 1-2 page slides to only “visualize” the core operations/data structures used →
please no writing bullet points.

Have both team members ready to navigate the code and explain details

We will ask/move quickly - so keep your answer to the point and precise

3

Syllabus Outline
1. Welcome and introduction to NVM (today)
2. Host interfacing and software implications
3. Flash Translation Layer (FTL) and Garbage Collection (GC)
4. NVM Block Storage File systems
5. NVM Block Storage Key-Value Stores
6. Emerging Byte-addressable Storage
7. Networked NVM Storage
8. Trends: Specialization and Programmability
9. Distributed Storage / Systems - I

10. Distributed Storage / Systems - II
11. Emerging Topics

4

So, What is a Key-Value Store
A simplified data structure to store data and
identify with a key (cache vs store, pay attention)

Examples: associate arrays, dictionaries, hash table

Quite popular with web, scalable services

Isn’t a file system suppose to store our data?
● FSes create new files, directories for every object
● Web objects are often small, but basic file system inode overheads per directory/files

○ inodes can be a few kBs, if you want to store 64 bytes of data?
● Files/directories are difficult to iterate over quickly
● Range based queries need further auxiliary indexing
● Object stores can support flexible consistent models (with FSes, this is typically is a bad idea)
● Performance and feature optimizations, e.g., deduplication, transactions, compression, etc. 5

Key
 value

Basic Operations
put(key, value) : saves a value associated with a key

value = get (key) : retrieve the value associated with a key

delete(key) : deletes a key (can be equivalent of put(key, NULL))

Batch’ed versions of these commands: multiget, multiput

Range based queries: iterate (start_key, end_key);

Further helper commands: replace, add, incr, decr, merge, etc.

No single data structure can do all operations efficiently

(see later, the RUM Conjecture)
6

Layout of the Coming Slides
B+ Trees and what they are good for

● What you need to do for storing them efficiently on NAND flash

LSM tree based KV design

● The basic idea
● LSM trees on Open-Channel SSDs (OC-SSDs, precursor to ZNS devices)
● Application amplification in LSM trees

[Optional] A Hash table-based KV design (see the Backup slides)

● FlashStore (and general topic of {memory ←→ I/O} tradeoff)
7

A Big Design Space

“Key-Value Stores on Flash Storage Devices: A
Survey”, Krijn Doekemeijer, Animesh Trivedi
(2022).

https://arxiv.org/abs/2205.07975

Krijn took the course in 2021 :)

8

https://arxiv.org/abs/2205.07975

B+ Tree
M-ary tree with sorted (keys-values) stored in leaves

Useful for block-storage devices as it facilitate
on-demand node fetching from the storage in a
block granularity (e.g., 512 or 4KB)

d-order tree has “d” keys and (d+1) pointers in
non-leaf nodes, non-leaf nodes only contains “keys” for pivoting

Self-balancing (by splitting and merging nodes) and distance to all leaves nodes are equal from the
root : every non-leaf, non-root node has at least floor(d / 2) children, each leaf contains at least floor(d / 2)
keys

Popular data structure, used in Databases (Oracle, SQL) and file systems (ext4)

Optimized for read-heavy workloads (sorted indexes) 9

http://www.cburch.com/cs/340/reading/btree/index.html

http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions

10
http://www.cburch.com/cs/340/reading/btree/index.html

1 2 3 4

1 2 3 4 5

3

● Split into two, pick the min of left block and push up
● If it was a non-leaf split, then remove the key from low levels

http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions

11
http://www.cburch.com/cs/340/reading/btree/index.html

Initial Insert 20 Insert 13 Insert 15

Insert 10 Insert 11 Insert 12

http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions on NAND Flash

12
http://www.cburch.com/cs/340/reading/btree/index.html

p0

p1 p2

16 1, 4, 9 16, 25

p0 p1 p2

pointers

NAND flash pages, the same layout used with HDD too
● Whole pages can be read in a single go
● Large sequential transfers, good performance
● All values sorted, so we know which page to load for which node

http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions on NAND Flash

13
http://www.cburch.com/cs/340/reading/btree/index.html

p0

p1 p2
p3

Pick a new page
Copy

Insert 20

NAND pages cannot be in-place updated

http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions on NAND Flash

14
http://www.cburch.com/cs/340/reading/btree/index.html

p0

p1 p2
p3

p0

p1 p2 p3

Now we need to update the root page too

Pick a new page
Copy

Insert 20

http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions on NAND Flash

15
http://www.cburch.com/cs/340/reading/btree/index.html

p0

p1 p2
p3

p0

p1 p2 p3

Now we need to update the root page too

p4

p1 p3

For a simple value insertion we ended up writing 2 new pages (p3 and
p4) and generating 2 old (p0 and p2) invalid pages

In general, for a tree “H” height: Read and Write “H” pages, and
generates “H” invalid pages

It's the same problem what we saw in Log-Structured FSes (recursive
update problem or also known as Wandering Tree problem)

Pick a new page
Copy

Insert 20

http://www.cburch.com/cs/340/reading/btree/index.html

B+ Trees on NAND Flash

16

μ-Tree : The Basic Idea
Key Idea: Rearrange the layout, do not give each nodes its own page. Store multiple nodes on a
single page: typically along the path which will be update in case of an insertion

17

Basic (“N” writes)

Proposed (update in 1 write)

How to Pack Nodes in a Page
Should we equally divide space in a page to all levels

Keeps the logic simple, and searchable, we will know
exactly which offset in a page a level starts

However,

● Then we need to “fix” the maximum height of the tree
● Key space exponentially increases at every level

○ L0 : 2 order tree with 3 pointers
○ L1 : 3 x 3 pointers
○ L2 : 3 x 3 x 3 pointers

we need to proportionally distribute space for different levels with flexibility to increase the level as
we increase (or decrease the size of the tree)

18

L2

L1

L0

μ-Tree: Proportional Packing
In this setup

● Nodes within a page are still searchable
○ For a given level, and the height of the

tree I can calculate which offset the
node data starts

● Proportionally distribute space to different
levels

● Enables us to do updates in one go, while
keeping some date in old pages

The only thing we need to keep track of which
page contains the “Root” pointer
● Changed from p2 to p3

19
P0 P1 P2 P3 P4 P5 P6 ….

μ-Tree Insertions on NAND Flash

20

1
4
9

16
25

16
L2

L1

Insert 20

1
4
9

16
25

16

16
20
25

16

In this case:
● 2 pages reading
● 1 page writing

In general: H x reading + 1 x writing

μ-Tree Insertions with Height Increase

21

1
4

9
10
11

13
15

16
20
25

9
13
16

1
4

9
10

11
12

13
15

16
20
25

9
11

16

13

Eventually as you write more, things will be grouped together (the update path) on the same page
blocks. A similar logic applies to deletion and tree compaction logic (skipped).

μ-Tree: Performance (analytical)

22

Since the number of pointers that can be
stored in a single page for a given level is
different for μ and B+ Trees
● Height difference, within +1 (upto 1B)

● Takes twice as much flash space
Will results in more reads

In absence of a split or collapse

μ-Tree: Performance
Traces collected from ReiserFS (B+ tree) about node creation, access, deletions
Could have used some other benchmarks (well!)

23

Better performance : decreases the number of writes and with more reads (taller tree)

There are other works too

24

Now, what about write-heavy workloads?
Write heavy workloads on flash can be really bad
● Key-Values can be really small (32-64-128 bytes)

The best solution so far we have seen is a log (FTL, file system)
● Append small writes to a log and read from there (search)

How can we improve searching the log?
● We can build a hash table (key) → {flash offset}

○ But will need a lot of memory for the hash table
■ 8 bytes offset per key (similar to the page-level FTL challenge)

● Does not allow doing fast range-based queries and lookups

25

Back to the Future: LSM Trees
Log-Structured Merge (LSM) Tree data structure
Invented and optimized for HDD, why?
● Same logic as LogFS

○ Disks have fast sequential performance
○ Disks have poor random, small I/O performance

● Read/Write large chunks to disk
● Eliminates random insertions, updates and deletions

Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth J. O'Neil:
The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33(4):
351-385 (1996)

Very popular data structure: Bigtable, HBase, LevelDB,
SQLite4, Tarantool, RocksDB

26

https://queue.acm.org/detail.cfm?id=3220266

https://queue.acm.org/detail.cfm?id=3220266

LSM Tree Basics

27

WALog

a 1
2c

m 8

Sorted In-memory
table, MemTable Sequential log on disk, only

used in for failure recovery

insert(key,value)
At insertion, (key,value) is
● written to the device-resident write ahead log

(WAL, large sequential performance)
● Inserted in the sorted MemTable to enable fast

lookup with a range based query

What happens when the in-memory data structure is full?

LSM Tree Basics

28

Full MemTable in memory Sorted, immutable, MemTable
ready to flush to disk

● Once the in-memory table is full : the MemTable is marked immutable and flushed to disk
● Key get() requires searching in (1) the MemTable; then (2) looking up on the disk

○ (we will see how this can be made efficient)
● If data is present in both locations, use the timestamps to reconcile which is the newest

write

Challenge now is how to (a) manage and (b) search TBs of data on disk to look for a key

a 1
2c

m
z

8
4

a 1
2c

m
z

8
4

Allocate a new MemTable to continue
receiving the writes

LSM Tree Basics

29

L0 (1MB)

L1 (10MB)

L2 (100MB)

Ln (1TB)

…

compaction

Data is stored in a multi-level, large, immutable files on the disk (no holes/gaps). Each level has a fixed
size that increases as you go to the higher levels

A new table flush is written always written to L0

Just like in-memory table, once, a preconfigured size of file is reached, a files are level i can be merged
with (i+1). This process is known as compaction. Since files written are sorted, the compaction is
essentially an N-way merge sort from level (i) to (i+1)

Multiple levels

Larger capacity threshold

On-Disk File Format (SSTables)

30

Sorted String Tables (SSTables)

Index
{K101:201, b0}

{K321:350, b1}

{K500:624, b2}

{K876:900, b3}

Bloom Filters
K101 → K201

K321 → K350

K500 → K624

K876 → K900

Data Block
b0

Data Block
b1

Data Block
b2

When searching : find a value in the index range, then check in the bloom filter

Then go fetch the “block” for reading and scan the value inside

All files are immutables, hence, a delete is a new insertion with a “NULL” value at L0

Recap: Bloom Filters

31

Bitmap or an array (any size)

A bunch of hash function, h1, h2, h3

Set key1

1 1 1

Set key2

1 1 1 1 1

collision

Now if we were to check the filter for (assume these bit hashes):
● lookup (key1) ⇒ {1, 3, 7} bits // all set, key1 exists, true positive
● lookup (key3) ⇒ {1, 4, 7} bits // all set, but the key3 was never set, false positive
● lookup (key4) ⇒ {0, 2, 5} bits; // nope, this key was never set, always accurate!

○ cannot have false negative!

The rate of false positive depends upon the size of the filter (how many bits) and the quality of the hash
functions

0 1 2 3 4 5 6 7

For more fun read see https://blog.cloudflare.com/when-bloom-filters-dont-bloom/

0 1 2 3 4 5 6 7

https://blog.cloudflare.com/when-bloom-filters-dont-bloom/

Example Compaction Process

32

11, 21L0

L1

L2

Example Compaction Process

33

11, 21L0

L1

L2

11, 21 11, 13

11, 13, 21 11, 13, 21

1, 15 12, 99

Pick all files which have overlapping ranges

L0 can have duplicates keys in different files

11, 21 11, 13

11, 13, 21

Example Compaction Process

34

11, 21L0

L1

L2

11, 21 11, 13

11, 13, 21 11, 13, 21

1, 15 12, 99

L0 can have duplicates keys in different files

1, 11, 13, 15 21 1, 11, 13, 15

12, 99

21, 53, 65, 90

later

You can check how many segments this
compaction will touch

L0

L1

L2

Pick all files which have overlapping ranges

Example Compaction Process

35

11, 21L0

L1

L2

11, 21 11, 13

11, 13, 21 11, 13, 21

1, 15 12, 99

Pick all files which have overlapping ranges

L0 can have duplicates keys in different files

1, 11, 13, 15 21 1, 11, 13, 15

12, 99

21, 53, 65, 90

You can check how many segments this
compaction will touch

1, 11, 12, 13 15, 21, 53, 65 90, 99

L0

L1

L2

L0

L1

L2

2, 16, 95

1, 2, 11, 12 13, 15, 16, 21 53, 65, 90, 95

99

later

How to Optimize for Searching Files?
Look in: (i) mutable MemTable (ii) look at all the files at L0

● L0 files can contain overlapping key ranges, hence, all files need to be
searched at L0

Further down, it can be a bit simpler as

● Files at L1 onwards do not have overlapping ranges (they are built that way)
● Hence, for each level, only need to check the range block and the bloom filter, not

need to have read the file
● Lower levels contain fresher data (e.g., data at L3 would be newer than at L5)

Also, since indexes are sorted and immutable, it support range-based queries
36

General LSM Considerations
What are the size threshold for each level

What are the block sizes

When to do compaction
● Will result in decreasing the number of files
● Which level should be compacted to which next level
● Which two files/key range to pick up for compaction (Tiered, Leveled, FIFO)
● Also: as L0 fills up the speed of writes will be stalled (in the end it will stop completely)

When to do garbage collection
● Deletion of old values which have been deleted
● Typically read the keys from the tree, and insert them back in the system

37

RocksDB (uses LSM tree) is very popular

38

Characterizing, Modeling, and Benchmarking RocksDB Key-Value
Workloads at Facebook, USENIX FAST 2020.
https://www.usenix.org/conference/fast20/presentation/cao-zhichao

https://www.usenix.org/conference/fast20/presentation/cao-zhichao

Key-Value size
distribution at Facebook

39

Key message: Bytes-KB ranges are
very important to optimize!

Two Interesting Papers: LOCS (2014) and SILK (2019)

40

Placement and scheduling of I/O in LSM trees Not all LSM operations are equal

Challenges with the Basic LSM Design

Open-Channel SSD (OCSSD) is similar to SDF where all
device internals and placement information is
Exposed - high parallelism (think of Zone ~= Channel)

1. Single head writing of immutable SSTable
2. Operation unaware scheduling (read, write, erase)
3. Placement and parallelism unaware scheduling

This work: LOCS
“LSM-tree-based KV store on Open-Channel SSD”

They retain the basic LSM design, but optimize it for OCSSD

41OC-SSD https://events.static.linuxfound.org/sites/events/files/slides/LightNVM-Vault2015.pdf

https://events.static.linuxfound.org/sites/events/files/slides/LightNVM-Vault2015.pdf

4 Key Ideas in LOCS (more in Backup slides)
1. Leverage Parallelism

a. Instead of 1 memtable, use 44

2. Do operation aware scheduling
a. Read, write, and erase operations are different
b. Simple RR scheduling can be bad

3. Placement-aware scheduling
a. Compaction need reading, and writing
b. Which channels to use

4. Erase-aware scheduling
a. Erase can be moved around

42

Idea 2: Scheduling Optimization
Question: How should you pick which
channel an SSTable should be flushed?
● Writes decides read workload too

Strategy 1: Round-Robin

Strategy 2: Least Weighted Queue Length
Write dispatching

● Weight is read/write/erase cost

43

Idea 3: Placement Aware Compaction

44

Recall that LSM trees need compaction

Here: L0 file (b-d) is being pushed to L1

At L1 it overlaps with two files (a-b),(c-d)

[Step 1] We first read those two files in DRAM

Do a multi-way merge sort with the three files

[Step 2] Then write out the L1 files (a-b) and (c-d)

[Step 3] Next-level of compaction at level L1 and
L2 for key ranges of (a-b)

Problem?

Idea 3: Placement Aware Compaction

45

Performance: LOCS

46

Basic idea of software-managed parallelism over channels make sense

RR delivers good performance, LWQL even better, LWQL with Compaction aware
optimizations the best of the three

The Long Tail of LSM Trees (RocksDB)

47SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores, USENIX ATC 2019, https://www.usenix.org/conference/atc19/presentation/balmau .

https://www.usenix.org/conference/atc19/presentation/balmau

SILK: Key-Ideas
1. Adaptive bandwidth scheduling

a. Use gaps in the client-load to dynamically
adjust the bandwidth which is given to
different compaction-levels

2. Prioritize different compaction-levels
a. As we saw, the performance flushing and

compaction of L0→L1 is more critical to
client-observed performance. Prioritize
compaction up-high in the trees

3. Preemptable compactions
a. Typically a high-priority compaction will be

able to preempt a low-priority one 48

WiscKey: Separating Keys from Values in SSD-Conscious Storage (2016)

49

So, What is the Problem?
We briefly referenced that reading
performance on LSM can be problematic

Any guesses why?

What was the read path order?

● MemTable → L0 → L1 ... L6 (here)

So, if you were to read simple 1 byte key-value,
how much data you have to read before you can find a 1 byte result?

We have looked this type of problem before in the FTL for writes
(recall: write-amplification)

50

LSM has Read and Write Amplifications

51

L
i

L
i+1 Read them in memory,

merge, sort
Write out

L
0

L
1

L
2

L
3

L
i+1

read,lookup

Analysis : Write/Read Amplification (RA/WA)
Compaction can result in
● Reading “n” times data from the next

level to merge from the current level
○ For LevelDB this is 10x between levels
○ For 6 levels, it could be 50x

Reading can result in
● Reading “n” files on L0 and then 1

file on following level
○ LevelDB, 8 files (at L0) + 6 files (L1-L6) = 14 files

■ Within the file we need to read the “index” + “bloom filter” + data block
■ For Level-DB index (16kB), bloom (4kB) + data (4kB)
■ So, if we are looking for a 1kB file: 14 files x (24 kb) = 336 kb ⇒ 336x RA

○ Determined by how many files do you have to touch and read to find a value

LSM Trees trade high “amplification” for having “sequential performance” → Why does this design
make sense?

52

Application

FTL/Block interface

Flash device

Application-level WA

Device-level WA

Fun reading : Diego Didona, Nikolas Ioannou, Radu Stoica, Kornilios Kourtis: Toward a Better Understanding and Evaluation of Tree Structures on Flash SSDs.
Proc. VLDB Endow. 14(3): 364-377 (2020) http://www.vldb.org/pvldb/vol14/p364-didona.pdf

http://www.vldb.org/pvldb/vol14/p364-didona.pdf

Quantify and Justify

53

Justification for HDD
● Random 1kB latency: 10 milli-sec
● Sequential 1kB latency: 10 micro-sec

Ratio is seq:rand 1:1000. Hence, any data
structure where amplification is less than
1000, sequential access wins

On SSD? Are sequential vs random
accesses are 1:1000 apart?

Key size: 16 bytes, value size : 1024 bytes

Quantify and Justify

54

Justification for HDD
● Random 1kB latency: 10 ms
● Sequential 1kB latency: 10 usec

Ratio is seq:rand 1:1000. Hence, any data
structure where amplification is less than
1000, sequential access wins

On SSD? Are sequential vs random
accesses are 1:1000 apart?

There exists a gap between random and sequential performance, but
● Not for large values
● The gap can be closed by issuing multiple parallel requests

What does WiscKey Proposes

55

Key Idea: separate keys from the values

● Maintain keys in the LSM tree
● Maintain value in a sequential append value log

Key-Value Insertion and Lookup

56

L
0

L
1

L
2

L
3

L
i+1

MemTable

write (K, V)

K
 V1 | V2 | V3 | V

Tail Head

The basic idea remains the same

Insertion : keys go the LSM tree, values to the log
Lookup : lookup the key in the LSM tree, then read the
offset from the log

For range-based queries, the log can be read in parallel

WiscKey: LSM Tree made out of Keys
What advantages a key-only LSM tree brings
● [with assumptions] keys are small and values are big
● Much improved write-amplification

○ Before WA was: ~10-50x
○ Now (10 x key_size) + value_size / (key + value size)
○ E.g., (10 x 16 + 1024) / (1024 + 16) = 1.14 (not 10x)
○ Worse case : (50 x 16 + 1024) / (1024+16) = 1.76 (not 50x)

● Lower write amplification means longer device life time

Also, the size of the tree can be small (small keys)
● Less levels than a comparable key-value LSM tree
● Small tree can be cached in the memory for fast lookups

57

WiscKey: Performance

LevelDB is at 2-4MB/sec whereas WiscKey is at 350 MB/sec (46-111x)

Significant reduction in the WA factor
58

Hash Tables on Flash

59

offkey

(key,value) Hash function
Hash Table
(HT)

https://en.wikipedia.org/wiki/Hash_table#Choosing_a_hash_function

This simple hash table based schema works, but it needs to deal with
● Small writes (multiple writes must be packed together)
● Can do fast get and put, but no range-based queries (without additional indexes)
● Trade off {DRAM size of the HT } ← → {number of I/O operations}

○ The same tradeoff as FTL design, how much memory do we need to store a hash
table with 1 TB of values

○ Can store the table in flash itself, to decrease the memory size, then multiple I/O

https://en.wikipedia.org/wiki/Hash_table#Choosing_a_hash_function

Alternate Hash Table Designs (see the backup slides)

60

Alternate Hash Table Designs (see the backup slides)

61

The RUM Conjecture

62

Read overheads (RO)
= total read / user read

Update overheads (UO)
= total write / user (or logical) write

Space/Memory overheads (MO)
= total space / data space

“An access method that can set an upper bound for two
out of the read, update, and memory overheads, also
sets a lower bound for the third overhead.“

Or: all three can not be simultaneously optimized
to their optimal value.

Question: what is an optimal value for them?

Examples:
Minimizing RO: an indexed array (1.0)
{1, v1} {3, v2} => store in a sparse array

WO = 2.0 (why 2.0?), MO = O(∞) (why infinity?)

Minimizing UO: append log with diffs updates
RO= O(∞), and MO = O(∞)

Minimizing MO: just store the raw user data (1.0) as
a sequence
RO= O(N), and UO = O(1.0)

63

v1 v2

Implications for
Indexing structures

The RUM Conjecture: Need for efficient
data-structure designs
● Read-heavy, write-heavy, mixed,

range scans, concurrency, batch
operations

● Modeling, statistics, and analysis

64
● Algorithms Behind Modern Storage Systems, https://queue.acm.org/detail.cfm?id=3220266
● Indexing in flash storage devices: a survey on challenges, current approaches, and future trends,

https://link.springer.com/article/10.1007/s00778-019-00559-8

https://queue.acm.org/detail.cfm?id=3220266
https://link.springer.com/article/10.1007/s00778-019-00559-8

Summary of Data Structures
● B+ Tree (read-optimized)

○ Fast, bounded lookup for read/get (log(n))
○ Efficient range based queries
○ But poor performance for write-heavy workloads, update bubbling (also small updates)

● Log-structured Merge (LSM) Tree (write-optimized)
○ Good performance for write-heavy workloads, large sequential log based updates
○ Ranged based queries possible
○ Read/Write amplification is a problem

● Simple hash table (hash like md5 on the key → map to a location)
○ [Typically uses] Log-based writing
○ Easy and fast lookup and retrieval (O(1))
○ Limited range based query support (need additional indexing)
○ Tradeoff between (memory usage, and flash I/O)

65

What you should know from this lecture
1. The idea of B+ Tree, LSM Tree, and Hash Tables
2. Choices these data structures (B+ Tree, LSM, and Hash Table)
3. What advantages and disadvantages they offer when implementing them

over NAND flash
4. Key problem and solution: uTree
5. Key problem and solution: LOCS and SILK
6. Key problem and solution: WiscKey
7. What is read/write amplification in LSM tree (or in any data structure)
8. The RUM Conjecture

66

Further References
● Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. 2011. SILT: a memory-efficient, high-performance

key-value store. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP '11).
● Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan Stutsman, Mohammad Alizadeh, and Sachin Katti.

2019. Flashield: a hybrid key-value cache that controls flash write amplification. In Proceedings of the 16th USENIX
Conference on Networked Systems Design and Implementation (NSDI'19). USENIX Association, USA, 65–78.

● Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan Gupta, and
Pavan Konka. 2017. TRIAD: creating synergies between memory, disk and log in log structured key-value stores. In
Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX
Association, USA, 363–375.

● PinK: High-speed In-storage Key-value Store with Bounded Tails, USENIX ATC 2020.
● Jiacheng Zhang, Youyou Lu, Jiwu Shu, and Xiongjun Qin. 2017. FlashKV: Accelerating KV Performance with Open-Channel

SSDs. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 139 (October 2017), 19 pages.
● Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, WiscKey:

Separating Keys from Values in SSD-conscious Storage, USENIX FAST 2016.
● Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, and Raju Rangaswami. 2015. NVMKV: a scalable,

lightweight, FTL-aware key-value store. In Proceedings of the 2015 USENIX Conference on Usenix Annual Technical
Conference (USENIX ATC '15). USENIX Association, USA, 207–219.

● Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. 2018. DIDACache: An Integration of Device and Application for
Flash-based Key-value Caching. ACM Trans. Storage 14, 3, Article 26 (November 2018), 32 pages.

67

Example 2: HashTable on Flash

68

FlashStore: Data Structures
Many workloads are read-heavy and do not need indexing (B+ tree a bit of an
overkill) - restrictive layout how the keys can be stores

● Microsoft wanted to have flash SSDs as a KV cache in front of their HDDs

If we just do a simple hash(key) → location, that would be good enough

● Hash has O(1) lookup time, not O(Log(n)) like B+ tree

But the “small write” problem. We cannot store each key in its own page (in
efficient) and cannot do small writes to just to update the key

Goal: fast KV cache with a single flash I/O read to locate data
69

Design Goals and Issues
1. Deliver low-latency, high-throughput operations

a. For small key looks up
b. Values can be in DRAM cache or on Flash

2. Use flash-aware data structures
a. Do not do small page updates

3. Low RAM footprint for indexing to lookup on flash
a. Technically you can use 8 bytes per key and 64 bytes of value
b. So for a 1 TB of flash drive, you will need 1 TB / (64 + 8) x 8 bytes = 122 GB of DRAM (!)
c. Same problem as with the FTL

70

Architecture
RAM Write buffer : buffer until the flash
page size

Read cache: fixed-size read cache for
recently used items (LRU)

Recency Bit Vector: maintains access
information for staging data between
flash and disk

Bloom filter: probabilistic “false positive”, but
never “false negative” (it's not there when it is there)

HashTable: The primary data structure to look for key → flash location in one flash read

71

Key Lookup and Insertion Operations

72

Insert (with timestamps):
1. Into the write buffer
2. Wait until full
3. Write out to flash
4. Update the HT index

Lookup

1. In RAM read cache
2. In RAM write cache
3. Lookup in HT index to find on flash
4. Lookup bloom filter

a. No: return NULL
b. Yes: disk search (B+ tree)

5. Update recency bit
6. (Optional) put in RAM read cache

Hash Table Design

In a simple hash table, we can do something like

● Hash(key) → HT slot → check if the key stored there matches
○ OK, then follow the flash page pointer (8bytes)
○ Collision: then follow the link list of collision pointers

Uses Cuckoo hashing : use “n” hash functions and find
the first free location to put the key. No need to
scan any linear list in case of high collision

What to store in these hash table slots? Full key and
flash page address? (lots of data)

73https://www.geeksforgeeks.org/implementing-our-own-hash-table-with-separate-chaining-in-java/

k1

k3

k2

key

h1

h2

h2

https://www.geeksforgeeks.org/implementing-our-own-hash-table-with-separate-chaining-in-java/

Hash Table Memory Usage: What to Store?
Compact key signature (instead of full key and hash):

● A full key can be of any size, hashes are large
too (160-512 bits)

● If the key used ith hash function then used the top-order 16 bits as a
compact signature

Flash page offset as 4 byte pointers (not 8 bytes) : maximum size = 232 x 4KB = 8TB

● How many bits to use, can be optimized for the given size of the device
● For example, 160GB device (what they used), 160GB/4KB = 26 bits only

○ Rest of the (32 - 26) = 6 bits, can be used for in-page offsets of 128 bytes
○ Hence, 128 bytes becomes the minimum packing granularity

Broadly speaking: a memory-efficient HT table design is an active research problem
(many papers are out there in the field, we are only covering one trick) 74

Flash Specific Concerns
● Filled flash pages are written in a log-append order (lookup is done using

the in-memory HT table)
○ Log garbage collection for entries that have been overwritten or deleted (similar logic)

● After certain HT table occupancy and Flash usage - trigger destaging from
flash to HDD
○ Pick pages and check the recency bitmap in memory to find if they have been accessed

recently
■ Yes, put them in write buffer (back in the circulation)
■ No, push them to HDD and make space

● At crash
○ Default option: build HT by scanning flash logs
○ Options 2: checkpointing

75

Performance

Delivers performance for two important workloads for Microsoft (xbox, and dedup)

Compared with running BerkeleyDB (B+Tree) on SSD and HDD

76

WiscKey: Doing garbage collection in vLog
A native way would be : to scan the LSM
key tree to identify all valid values and then
remove them.

Better way: to keep a back reference to the
keys in the value log as well

Once GC kicks in, values from the tail are read, validated by querying the LSM
tree, and then move to the head

The new tail, and addresses are then inserted in the LSM tree before cleaning
values 77

Idea 1: Enable Concurrent Accesses
There is still a single mutable MemTable

Number of immutable in-memory
MemTables are increased to 44
● Can absorb write bursts

Run multiple parallel compaction at the
same time
● Was not possible with HDD because

there is only single read/write head
● No parallelism

78

Idea 2: Scheduling Optimization
Question: How should you pick which
channel an SSTable should be flushed?
● Writes decides read workload too

Strategy 1: Round-Robin

Strategy 2: Least Weighted Queue Length
Write dispatching

● Weight is read/write/erase cost

79

Idea 3: Placement Aware Compaction

80

Recall that LSM trees need compaction

Here: L0 file (b-d) is being pushed to L1

At L1 it overlaps with two files (a-b),(c-d)

[Step 1] We first read those two files in DRAM

Do a multi-way merge sort with the three files

[Step 2] Then write out the L1 files (a-b) and (c-d)

[Step 3] Next-level of compaction at level L1 and
L2 for key ranges of (a-b)

Problem?

Idea 3: Placement Aware Compaction

81

Idea 4: Erase Aware Scheduling
Once the compaction is done, then one must erase blocks

Unlike read/write, erase can be scheduled by the KV when it is most
opportune, when is that?

● Eager, as soon as possible

Erase is a long operation

Can lead to interferences with
read operation (poor perf)

82

Eager scheduling of erase might be bad for read
performance

Idea 4: Erase Aware Scheduling
The trick here is to schedule Erase with Writes, not with Read, why?

● Because writes can be put to any channel (flexible)
○ Reads cannot be moved around because they need to a read a given address

from that channel
● [Erase + Write] can be used to balance out work among channels

In this example, we can insert Erase
with write operations to maintain
A balanced LWQL queue

E.g., with Erase in write it will take 19
units, where as Erase in write takes 15
units 83

