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Reminder: for the Coming Weeks 
We will be gradually transforming to networking and distributed systems 

It is important you understand networking basics and important concepts such as 

● TSO, LRO, Jumbo Frames, Multicore scalability, affinities, and RDMA, etc. 

I will only introduce these topics selectively 

Background reading: Please check out lecture 1, 2 (networking basic), 4 (multicore scalability), and 6 
(RDMA networking) from the networking course linked below 

● Public slides for the course: https://animeshtrivedi.github.io/course-anp/  
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M3 Interview Preparations
We will announce a sign up link in coming days 

15-20 mins/group 

Give a demo and show if all tests work 

Make 1-2 page slides to only “visualize” the core operations/data structures used → 
please no writing bullet points. 

Have both team members ready to navigate the code and explain details 

We will ask/move quickly - so keep your answer to the point and precise  
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Syllabus Outline 
1. Welcome and introduction to NVM (today) 
2. Host interfacing and software implications 
3. Flash Translation Layer (FTL) and Garbage Collection (GC) 
4. NVM Block Storage File systems 
5. NVM Block Storage Key-Value Stores 
6. Emerging Byte-addressable Storage
7. Networked NVM Storage 
8. Trends: Specialization and Programmability 
9. Distributed Storage / Systems - I 

10. Distributed Storage / Systems - II 
11. Emerging Topics 
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So, What is a Key-Value Store 
A simplified data structure to store data and 
identify with a key (cache vs store, pay attention) 

Examples: associate arrays, dictionaries, hash table 

Quite popular with web, scalable services 

Isn’t a file system suppose to store our data? 
● FSes create new files, directories for every object
● Web objects are often small, but basic file system inode overheads per directory/files 

○ inodes can be a few kBs, if you want to store 64 bytes of data?
● Files/directories are difficult to iterate over quickly
● Range based queries need further auxiliary indexing 
● Object stores can support flexible consistent models (with FSes, this is typically is a bad idea) 
● Performance and feature optimizations, e.g., deduplication, transactions, compression, etc. 5

Key            
          value



Basic Operations 
put(key, value)   : saves a value associated with a key 

value = get (key) : retrieve the value associated with a key 

delete(key)       : deletes a key (can be equivalent of put(key, NULL)) 

Batch’ed versions of these commands: multiget, multiput 

Range based queries: iterate (start_key, end_key); 

Further helper commands: replace, add, incr, decr, merge, etc. 

No single data structure can do all operations efficiently 

(see later, the RUM Conjecture) 
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Layout of the Coming Slides
B+ Trees and what they are good for 

● What you need to do for storing them efficiently on NAND flash 

LSM tree based KV design

● The basic idea 
● LSM trees on Open-Channel SSDs (OC-SSDs, precursor to ZNS devices)  
● Application amplification in LSM trees 

[Optional] A Hash table-based KV design (see the Backup slides) 

● FlashStore (and general topic of {memory ←→ I/O} tradeoff) 
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A Big Design Space

“Key-Value Stores on Flash Storage Devices: A 
Survey”, Krijn Doekemeijer, Animesh Trivedi 
(2022). 

https://arxiv.org/abs/2205.07975 

Krijn took the course in 2021 :) 

8

https://arxiv.org/abs/2205.07975


B+ Tree 
M-ary tree with sorted (keys-values) stored in leaves 

Useful for block-storage devices as it facilitate 
on-demand node fetching from the storage in a 
block granularity (e.g., 512 or 4KB) 

d-order tree has “d” keys and (d+1) pointers in 
non-leaf nodes, non-leaf nodes only contains “keys” for pivoting

Self-balancing (by splitting and merging nodes) and distance to all leaves nodes are equal from the 
root : every non-leaf, non-root node has at least floor(d / 2) children, each leaf contains at least floor(d / 2) 
keys

Popular data structure, used in Databases (Oracle, SQL) and file systems (ext4) 

Optimized for read-heavy workloads (sorted indexes) 9

http://www.cburch.com/cs/340/reading/btree/index.html 

http://www.cburch.com/cs/340/reading/btree/index.html


Example: B+ Tree Insertions
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http://www.cburch.com/cs/340/reading/btree/index.html 

1 2 3 4

1 2 3 4 5

3

● Split into two, pick the min of left block and push up 
● If it was a non-leaf split, then remove the key from low levels 

http://www.cburch.com/cs/340/reading/btree/index.html


Example: B+ Tree Insertions
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http://www.cburch.com/cs/340/reading/btree/index.html 

Initial                                 Insert 20                                 Insert 13                                      Insert 15

Insert 10                                            Insert 11                                                       Insert 12

http://www.cburch.com/cs/340/reading/btree/index.html


Example: B+ Tree Insertions on NAND Flash 
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http://www.cburch.com/cs/340/reading/btree/index.html 

p0

p1 p2

16 1, 4, 9 16, 25

p0           p1             p2

pointers

NAND flash pages, the same layout used with HDD too
● Whole pages can be read in a single go 
● Large sequential transfers, good performance 
● All values sorted, so we know which page to load for which node 

http://www.cburch.com/cs/340/reading/btree/index.html


Example: B+ Tree Insertions on NAND Flash 
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http://www.cburch.com/cs/340/reading/btree/index.html 

p0

p1 p2
p3

Pick a new page 
Copy 

Insert 20

NAND pages cannot be in-place updated 

http://www.cburch.com/cs/340/reading/btree/index.html


Example: B+ Tree Insertions on NAND Flash 
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http://www.cburch.com/cs/340/reading/btree/index.html 

p0

p1 p2
p3

p0

p1 p2 p3

Now we need to update the root page too

Pick a new page 
Copy 

Insert 20

http://www.cburch.com/cs/340/reading/btree/index.html


Example: B+ Tree Insertions on NAND Flash 
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http://www.cburch.com/cs/340/reading/btree/index.html 

p0

p1 p2
p3

p0

p1 p2 p3

Now we need to update the root page too

p4

p1 p3

For a simple value insertion we ended up writing 2 new pages (p3 and 
p4) and generating 2 old (p0 and p2) invalid pages 

In general, for a tree “H” height: Read and Write “H” pages, and 
generates “H” invalid pages

It's the same problem what we saw in Log-Structured FSes (recursive 
update problem or also known as Wandering Tree problem) 

Pick a new page 
Copy 

Insert 20

http://www.cburch.com/cs/340/reading/btree/index.html


B+ Trees on NAND Flash
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μ-Tree : The Basic Idea
Key Idea: Rearrange the layout, do not give each nodes its own page. Store multiple nodes on a 
single page: typically along the path which will be update in case of an insertion 
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Basic (“N” writes) 

Proposed (update in 1 write)



How to Pack Nodes in a Page
Should we equally divide space in a page to all levels

Keeps the logic simple, and searchable, we will know 
exactly which offset in a page a level starts  

However, 

● Then we need to “fix” the maximum height of the tree 
● Key space exponentially increases at every level 

○ L0 : 2 order tree with 3 pointers 
○ L1 : 3 x 3 pointers 
○ L2 : 3 x 3 x 3 pointers

we need to proportionally distribute space for different levels with flexibility to increase the level as 
we increase (or decrease the size of the tree) 
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μ-Tree: Proportional Packing 
In this setup

● Nodes within a page are still searchable 
○ For a given level, and the height of the 

tree I can calculate which offset the 
node data starts 

● Proportionally distribute space to different 
levels 

● Enables us to do updates in one go, while 
keeping some date in old pages 

The only thing we need to keep track of which 
page contains the “Root” pointer 
● Changed from p2 to p3 

19
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μ-Tree Insertions on NAND Flash 
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In this case: 
● 2 pages reading 
● 1 page writing 

In general: H x reading + 1 x writing  



μ-Tree Insertions with Height Increase
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Eventually as you write more, things will be grouped together (the update path) on the same page 
blocks. A similar logic applies to deletion and tree compaction logic (skipped).  



μ-Tree: Performance (analytical) 
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Since the number of pointers that can be 
stored in a single page for a given level is 
different for μ and B+ Trees 
● Height difference, within +1 (upto 1B)

● Takes twice as much flash space
Will results in more reads 

In absence of a split or collapse



μ-Tree: Performance
Traces collected from ReiserFS (B+ tree) about node creation, access, deletions
Could have used some other benchmarks (well!) 
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Better performance : decreases the number of writes and with more reads (taller tree) 



There are other works too 
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Now, what about write-heavy workloads? 
Write heavy workloads on flash can be really bad
● Key-Values can be really small (32-64-128 bytes)

The best solution so far we have seen is a log (FTL, file system) 
● Append small writes to a log and read from there (search) 

How can we improve searching the log? 
● We can build a hash table (key) → {flash offset} 

○ But will need a lot of memory for the hash table 
■ 8 bytes offset per key (similar to the page-level FTL challenge) 

● Does not allow doing fast range-based queries and lookups 
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Back to the Future: LSM Trees 
Log-Structured Merge (LSM) Tree data structure 
Invented and optimized for HDD, why? 
● Same logic as LogFS

○ Disks have fast sequential performance 
○ Disks have poor random, small I/O performance 

● Read/Write large chunks to disk 
● Eliminates random insertions, updates and deletions 

Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth J. O'Neil: 
The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33(4): 
351-385 (1996)

Very popular data structure:  Bigtable, HBase, LevelDB, 
SQLite4, Tarantool, RocksDB
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https://queue.acm.org/detail.cfm?id=3220266 

https://queue.acm.org/detail.cfm?id=3220266


LSM Tree Basics
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WALog

a 1
2c

m 8

Sorted In-memory 
table, MemTable Sequential log on disk, only 

used in for failure recovery

insert(key,value) 
At insertion, (key,value) is 
● written to the device-resident write ahead log 

(WAL, large sequential performance) 
● Inserted in the sorted MemTable to enable fast 

lookup with a range based query 

What happens when the in-memory data structure is full?



LSM Tree Basics

28

Full MemTable in memory Sorted, immutable, MemTable 
ready to flush to disk 

● Once the in-memory table is full : the MemTable is marked immutable and flushed to disk
● Key get() requires searching in (1) the MemTable; then (2) looking up on the disk 

○ (we will see how this can be made efficient) 
● If data is present in both locations, use the timestamps to reconcile which is the newest 

write 

Challenge now is how to (a) manage and (b) search TBs of data on disk to look for a key 

a 1
2c

m
z

8
4

a 1
2c

m
z

8
4

Allocate a new MemTable to continue 
receiving the writes 



LSM Tree Basics
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L0 (1MB)

L1 (10MB)

L2 (100MB)

Ln (1TB)

… 

compaction

Data is stored in a multi-level, large, immutable files on the disk (no holes/gaps). Each level has a fixed 
size that increases as you go to the higher levels 

A new table flush is written always written to L0 

Just like in-memory table, once, a preconfigured size of file is reached, a files are level i can be merged 
with (i+1). This process is known as compaction. Since files written are sorted, the compaction is 
essentially an N-way merge sort from level (i) to (i+1) 

Multiple levels 

Larger capacity threshold



On-Disk File Format (SSTables)
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Sorted String Tables (SSTables)

Index 
{K101:201, b0}

{K321:350, b1}

{K500:624, b2}

{K876:900, b3}

Bloom Filters 
K101 → K201

K321 → K350

K500 → K624

K876 → K900

Data Block
b0

Data Block
b1

Data Block
b2

When searching : find a value in the index range, then check in the bloom filter 

Then go fetch the “block” for reading and scan the value inside 

All files are immutables, hence, a delete is a new insertion with a “NULL” value at L0 



Recap: Bloom Filters
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Bitmap or an array (any size) 

A bunch of hash function, h1, h2, h3 

Set key1

1 1 1

Set key2

1 1 1 1 1

collision

Now if we were to check the filter for (assume these bit hashes):  
● lookup (key1)  ⇒ {1, 3, 7} bits // all set, key1 exists, true positive
● lookup (key3)  ⇒ {1, 4, 7} bits // all set, but the key3 was never set, false positive 
● lookup (key4)  ⇒ {0, 2, 5} bits; // nope, this key was never set, always accurate! 

○ cannot have false negative! 

The rate of false positive depends upon the size of the filter (how many bits) and the quality of the hash 
functions 

0    1    2    3   4    5    6   7 

For more fun read see https://blog.cloudflare.com/when-bloom-filters-dont-bloom/ 

0    1    2    3   4    5    6   7 

https://blog.cloudflare.com/when-bloom-filters-dont-bloom/


Example Compaction Process 
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11, 21L0 

L1

L2 



Example Compaction Process 

33

11, 21L0 

L1

L2 

11, 21 11, 13

11, 13, 21 11, 13, 21 

1, 15 12, 99

Pick all files which have overlapping ranges

L0 can have duplicates keys in different files

11, 21 11, 13

11, 13, 21 



Example Compaction Process 
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11, 21L0 

L1

L2 

11, 21 11, 13

11, 13, 21 11, 13, 21 

1, 15 12, 99

L0 can have duplicates keys in different files

1, 11, 13, 15 21 1, 11, 13, 15 

12, 99

21, 53, 65, 90

later

You can check how many segments this 
compaction will touch 

L0 

L1

L2 

Pick all files which have overlapping ranges



Example Compaction Process 
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11, 21L0 

L1

L2 

11, 21 11, 13

11, 13, 21 11, 13, 21 

1, 15 12, 99

Pick all files which have overlapping ranges

L0 can have duplicates keys in different files

1, 11, 13, 15 21 1, 11, 13, 15 

12, 99

21, 53, 65, 90

You can check how many segments this 
compaction will touch 

1, 11, 12, 13 15, 21, 53, 65 90, 99 

L0 

L1

L2 

L0 

L1

L2 

2, 16, 95

1, 2, 11, 12 13, 15, 16, 21 53, 65, 90, 95

99 

later



How to Optimize for Searching Files?
Look in: (i) mutable MemTable (ii) look at all the files at L0 

● L0 files can contain overlapping key ranges, hence, all files need to be 
searched at L0

Further down, it can be a bit simpler as 

● Files at L1 onwards do not have overlapping ranges (they are built that way) 
● Hence, for each level, only need to check the range block and the bloom filter, not 

need to have read the file 
● Lower levels contain fresher data (e.g., data at L3 would be newer than at L5) 

Also, since indexes are sorted and immutable, it support range-based queries 
36



General LSM Considerations 
What are the size threshold for each level 

What are the block sizes 

When to do compaction 
● Will result in decreasing the number of files 
● Which level should be compacted to which next level 
● Which two files/key range to pick up for compaction (Tiered, Leveled, FIFO) 
● Also: as L0 fills up the speed of writes will be stalled (in the end it will stop completely) 

When to do garbage collection 
● Deletion of old values which have been deleted 
● Typically read the keys from the tree, and insert them back in the system 
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RocksDB (uses LSM tree) is very popular 

38

Characterizing, Modeling, and Benchmarking RocksDB Key-Value 
Workloads at Facebook, USENIX FAST 2020. 
https://www.usenix.org/conference/fast20/presentation/cao-zhichao 

https://www.usenix.org/conference/fast20/presentation/cao-zhichao


Key-Value size 
distribution at Facebook

39

Key message: Bytes-KB ranges are 
very important to optimize!



Two Interesting Papers: LOCS (2014) and SILK (2019) 
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Placement and scheduling of I/O in LSM trees Not all LSM operations are equal 



Challenges with the Basic LSM Design 

Open-Channel SSD (OCSSD) is similar to SDF where all 
device internals and placement information is 
Exposed - high parallelism  (think of Zone ~= Channel)

1. Single head writing of immutable SSTable 
2. Operation unaware scheduling (read, write, erase) 
3. Placement and parallelism unaware scheduling 

This work: LOCS 
“LSM-tree-based KV store on Open-Channel SSD”

They retain the basic LSM design, but optimize it for OCSSD 

41OC-SSD https://events.static.linuxfound.org/sites/events/files/slides/LightNVM-Vault2015.pdf 

https://events.static.linuxfound.org/sites/events/files/slides/LightNVM-Vault2015.pdf


4 Key Ideas in LOCS (more in Backup slides)
1. Leverage Parallelism 

a. Instead of 1 memtable, use 44 

2. Do operation aware scheduling 
a. Read, write, and erase operations are different 
b. Simple RR scheduling can be bad 

3. Placement-aware scheduling 
a. Compaction need reading, and writing 
b. Which channels to use

4. Erase-aware scheduling 
a. Erase can be moved around 

42



Idea 2: Scheduling Optimization 
Question: How should you pick which 
channel an SSTable should be flushed? 
● Writes decides read workload too

Strategy 1: Round-Robin 

Strategy 2: Least Weighted Queue Length 
Write dispatching

● Weight is read/write/erase cost 

43



Idea 3: Placement Aware Compaction 

44

Recall that LSM trees need compaction

Here: L0 file (b-d) is being pushed to L1 

At L1 it overlaps with two files (a-b),(c-d) 

[Step 1] We first read those two files in DRAM 

Do a multi-way merge sort with the three files 

[Step 2] Then write out the L1 files (a-b) and (c-d) 

[Step 3] Next-level of compaction at level L1 and 
L2 for key ranges of (a-b) 

Problem?



Idea 3: Placement Aware Compaction 
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Performance: LOCS

46

Basic idea of software-managed parallelism over channels make sense 

RR delivers good performance, LWQL even better, LWQL with Compaction aware 
optimizations the best of the three 



The Long Tail of LSM Trees (RocksDB)

47SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores,  USENIX ATC 2019, https://www.usenix.org/conference/atc19/presentation/balmau .

https://www.usenix.org/conference/atc19/presentation/balmau


SILK: Key-Ideas 
1. Adaptive bandwidth scheduling 

a. Use gaps in the client-load to dynamically 
adjust the bandwidth which is given to 
different compaction-levels 

2. Prioritize different compaction-levels 
a. As we saw, the performance flushing and 

compaction of L0→L1 is more critical to 
client-observed performance. Prioritize 
compaction up-high in the trees  

3. Preemptable compactions 
a. Typically a high-priority compaction will be 

able to preempt a low-priority one 48



WiscKey: Separating Keys from Values in SSD-Conscious Storage (2016)

49



So, What is the Problem?
We briefly referenced that reading 
performance on LSM can be problematic 

Any guesses why?

What was the read path order? 

● MemTable →  L0 → L1 ... L6 (here) 

So, if you were to read simple 1 byte key-value, 
how much data you have to read before you can find a 1 byte result?

We have looked this type of problem before in the FTL for writes 
(recall: write-amplification) 

50



LSM has Read and Write Amplifications

51

L
i

L
i+1 Read them in memory, 

merge, sort
Write out

L
0

L
1

L
2

L
3

L
i+1

read,lookup



Analysis : Write/Read Amplification (RA/WA)
Compaction can result in 
● Reading “n” times data from the next 

level to merge from the current level 
○ For LevelDB this is 10x between levels 
○ For 6 levels, it could be 50x 

Reading can result in 
● Reading “n” files on L0 and then 1 

file on following level 
○ LevelDB, 8 files (at L0) + 6 files (L1-L6) = 14 files 

■ Within the file we need to read the “index” + “bloom filter” + data block 
■ For Level-DB index (16kB), bloom (4kB) + data (4kB) 
■ So, if we are looking for a 1kB file: 14 files x (24 kb) = 336 kb ⇒ 336x RA 

○ Determined by how many files do you have to touch and read to find a value 

LSM Trees trade high “amplification” for having “sequential performance” → Why does this design 
make sense?

52

Application

FTL/Block interface

Flash device

Application-level WA

Device-level WA

Fun reading : Diego Didona, Nikolas Ioannou, Radu Stoica, Kornilios Kourtis: Toward a Better Understanding and Evaluation of Tree Structures on Flash SSDs. 
Proc. VLDB Endow. 14(3): 364-377 (2020) http://www.vldb.org/pvldb/vol14/p364-didona.pdf 

http://www.vldb.org/pvldb/vol14/p364-didona.pdf


Quantify and Justify

53

Justification for HDD
● Random 1kB latency: 10 milli-sec
● Sequential 1kB latency: 10 micro-sec

Ratio is seq:rand 1:1000. Hence, any data 
structure where amplification is less than 
1000, sequential access wins

On SSD? Are sequential vs random 
accesses are 1:1000 apart? 

Key size: 16 bytes, value size : 1024 bytes 



Quantify and Justify
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Justification for HDD
● Random 1kB latency: 10 ms 
● Sequential 1kB latency: 10 usec 

Ratio is seq:rand 1:1000. Hence, any data 
structure where amplification is less than 
1000, sequential access wins

On SSD? Are sequential vs random 
accesses are 1:1000 apart? 

There exists a gap between random and sequential performance, but 
● Not for large values 
● The gap can be closed by issuing multiple parallel requests 



What does WiscKey Proposes 
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Key Idea: separate keys from the values 

● Maintain keys in the LSM tree 
● Maintain value in a sequential append value log 



Key-Value Insertion and Lookup
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L
0

L
1

L
2

L
3

L
i+1

MemTable

write (K, V)

K
    V1 | V2 | V3 |  V 

Tail                        Head

The basic idea remains the same 

Insertion : keys go the LSM tree, values to the log 
Lookup    : lookup the key in the LSM tree, then read the 
offset from the log 

For range-based queries, the log can be read in parallel 



WiscKey: LSM Tree made out of Keys 
What advantages a key-only LSM tree brings 
● [with assumptions] keys are small and values are big 
● Much improved write-amplification 

○ Before WA was: ~10-50x 
○ Now (10 x key_size) + value_size / (key + value size) 
○ E.g., (10 x 16 + 1024) / (1024 + 16) = 1.14 (not 10x)
○ Worse case : (50 x 16 + 1024) / (1024+16) = 1.76 (not 50x)

● Lower write amplification means longer device life time

Also, the size of the tree can be small (small keys)
● Less levels than a comparable key-value LSM tree 
● Small tree can be cached in the memory for fast lookups 
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WiscKey: Performance

LevelDB is at 2-4MB/sec whereas WiscKey is at 350 MB/sec (46-111x) 

Significant reduction in the WA factor 
58



Hash Tables on Flash 

59

offkey

(key,value) Hash function
Hash Table 
(HT)

https://en.wikipedia.org/wiki/Hash_table#Choosing_a_hash_function 

This simple hash table based schema works, but it needs to deal with 
● Small writes (multiple writes must be packed together) 
● Can do fast get and put, but no range-based queries (without additional indexes) 
● Trade off {DRAM size of the HT } ← → {number of I/O operations}

○ The same tradeoff as FTL design, how much memory do we need to store a hash 
table with 1 TB of values 

○ Can store the table in flash itself, to decrease the memory size, then multiple I/O 

https://en.wikipedia.org/wiki/Hash_table#Choosing_a_hash_function


Alternate Hash Table Designs (see the backup slides)
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Alternate Hash Table Designs (see the backup slides)
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The RUM Conjecture 
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Read overheads (RO) 
= total read / user read 

Update overheads (UO) 
= total write / user (or logical) write 

Space/Memory overheads (MO) 
= total space / data space 

“An access method that can set an upper bound for two 
out of the read, update, and memory overheads, also 
sets a lower bound for the third overhead.“

Or: all three can not be simultaneously optimized 
to their optimal value. 

Question: what is an optimal value for them?



Examples: 
Minimizing RO: an indexed array (1.0) 
{1, v1} {3, v2} => store in a sparse array 

 

WO = 2.0 (why 2.0?), MO = O(∞) (why infinity?) 

Minimizing UO: append log with diffs updates 
RO= O(∞), and MO = O(∞) 

Minimizing MO: just store the raw user data (1.0) as 
a sequence 
RO= O(N), and UO = O(1.0) 

63

v1 v2



Implications for 
Indexing structures

The RUM Conjecture: Need for efficient 
data-structure designs
● Read-heavy, write-heavy, mixed, 

range scans, concurrency, batch 
operations 

● Modeling, statistics, and analysis 

64
● Algorithms Behind Modern Storage Systems, https://queue.acm.org/detail.cfm?id=3220266 
● Indexing in flash storage devices: a survey on challenges, current approaches, and future trends, 

https://link.springer.com/article/10.1007/s00778-019-00559-8 

https://queue.acm.org/detail.cfm?id=3220266
https://link.springer.com/article/10.1007/s00778-019-00559-8


Summary of Data Structures
● B+ Tree (read-optimized) 

○ Fast, bounded lookup for read/get (log(n)) 
○ Efficient range based queries 
○ But poor performance for write-heavy workloads, update bubbling (also small updates) 

● Log-structured Merge (LSM) Tree (write-optimized) 
○ Good performance for write-heavy workloads, large sequential log based updates  
○ Ranged based queries possible 
○ Read/Write amplification is a problem 

● Simple hash table (hash like md5 on the key → map to a location) 
○ [Typically uses] Log-based writing 
○ Easy and fast lookup and retrieval (O(1)) 
○ Limited range based query support (need additional indexing) 
○ Tradeoff between (memory usage, and flash I/O) 
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What you should know from this lecture 
1. The idea of B+ Tree, LSM Tree, and Hash Tables 
2. Choices these data structures (B+ Tree, LSM, and Hash Table) 
3. What advantages and disadvantages they offer when implementing them 

over NAND flash 
4. Key problem and solution: uTree 
5. Key problem and solution: LOCS and SILK 
6. Key problem and solution: WiscKey 
7. What is read/write amplification in LSM tree (or in any data structure) 
8. The RUM Conjecture 
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Example 2: HashTable on Flash 
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FlashStore: Data Structures 
Many workloads are read-heavy and do not need indexing (B+ tree a bit of an 
overkill) - restrictive layout how the keys can be stores 

● Microsoft wanted to have flash SSDs as a KV cache in front of their HDDs

If we just do a simple hash(key) → location, that would be good enough 

● Hash has O(1) lookup time, not O(Log(n)) like B+ tree 

But the “small write” problem. We cannot store each key in its own page (in 
efficient) and cannot do small writes to just to update the key 

Goal: fast KV cache with a single flash I/O read to locate data 
69



Design Goals and Issues 
1. Deliver low-latency, high-throughput operations 

a. For small key looks up 
b. Values can be in DRAM cache or on Flash 

2. Use flash-aware data structures 
a. Do not do small page updates 

3. Low RAM footprint for indexing to lookup on flash 
a. Technically you can use 8 bytes per key and 64 bytes of value 
b. So for a 1 TB of flash drive, you will need 1 TB / (64 + 8) x 8 bytes = 122 GB of DRAM (!) 
c. Same problem as with the FTL 
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Architecture
RAM Write buffer : buffer until the flash 
page size 

Read cache: fixed-size read cache for 
recently used items (LRU) 

Recency Bit Vector: maintains access 
information for staging data between 
flash and disk 

Bloom filter:  probabilistic “false positive”, but 
never “false negative” (it's not there when it is there) 

HashTable: The primary data structure to look for key → flash location in one flash read
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Key Lookup and Insertion Operations
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Insert (with timestamps): 
1. Into the write buffer 
2. Wait until full 
3. Write out to flash 
4. Update the HT index

Lookup 

1. In RAM read cache 
2. In RAM write cache 
3. Lookup in HT index to find on flash 
4. Lookup bloom filter 

a. No: return NULL 
b. Yes: disk search (B+ tree) 

5. Update recency bit  
6. (Optional) put in RAM read cache



Hash Table Design 

In a simple hash table, we can do something like 

● Hash(key) → HT slot → check if the key stored there matches 
○ OK, then follow the flash page pointer (8bytes) 
○ Collision: then follow the link list of collision pointers 

Uses Cuckoo hashing : use “n” hash functions and find 
the first free location to put the key. No need to 
scan any linear list in case of high collision 

What to store in these hash table slots? Full key and 
flash page address? (lots of data) 

73https://www.geeksforgeeks.org/implementing-our-own-hash-table-with-separate-chaining-in-java/ 

k1

k3

k2

key

h1

h2

h2

https://www.geeksforgeeks.org/implementing-our-own-hash-table-with-separate-chaining-in-java/


Hash Table Memory Usage: What to Store?
Compact key signature (instead of full key and hash): 

● A full key can be of any size, hashes are large 
too (160-512 bits) 

● If the key used ith hash function then used the top-order 16 bits as a 
compact signature 

Flash page offset as 4 byte pointers (not 8 bytes) : maximum size = 232 x 4KB = 8TB 

● How many bits to use, can be optimized for the given size of the device 
● For example, 160GB device (what they used), 160GB/4KB = 26 bits only 

○ Rest of the (32 - 26) = 6 bits, can be used for in-page offsets of 128 bytes 
○ Hence, 128 bytes becomes the minimum packing granularity 

Broadly speaking: a memory-efficient HT table design is an active research problem 
(many papers are out there in the field, we are only covering one trick) 74



Flash Specific Concerns
● Filled flash pages are written in a log-append order (lookup is done using 

the in-memory HT table) 
○ Log garbage collection for entries that have been overwritten or deleted (similar logic) 

● After certain HT table occupancy and Flash usage - trigger destaging from 
flash to HDD 
○ Pick pages and check the recency bitmap in memory to find if they have been accessed 

recently 
■ Yes, put them in write buffer (back in the circulation) 
■ No, push them to HDD and make space 

● At crash 
○ Default option: build HT by scanning flash logs 
○ Options 2: checkpointing 
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Performance

Delivers performance for two important workloads for Microsoft (xbox, and dedup)

Compared with running BerkeleyDB (B+Tree) on SSD and HDD 
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WiscKey: Doing garbage collection in vLog 
A native way would be : to scan the LSM 
key tree to identify all valid values and then 
remove them. 

Better way: to keep a back reference to the 
keys in the value log as well 

Once GC kicks in, values from the tail are read, validated by querying the LSM 
tree, and then move to the head 

The new tail, and addresses are then inserted in the LSM tree before cleaning 
values 77



Idea 1: Enable Concurrent Accesses 
There is still a single mutable MemTable

Number of immutable in-memory 
MemTables are increased to 44 
● Can absorb write bursts 

Run multiple parallel compaction at the 
same time 
● Was not possible with HDD because 

there is only single read/write head 
● No parallelism 
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Idea 2: Scheduling Optimization 
Question: How should you pick which 
channel an SSTable should be flushed? 
● Writes decides read workload too

Strategy 1: Round-Robin 

Strategy 2: Least Weighted Queue Length 
Write dispatching

● Weight is read/write/erase cost 
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Idea 3: Placement Aware Compaction 
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Recall that LSM trees need compaction

Here: L0 file (b-d) is being pushed to L1 

At L1 it overlaps with two files (a-b),(c-d) 

[Step 1] We first read those two files in DRAM 

Do a multi-way merge sort with the three files 

[Step 2] Then write out the L1 files (a-b) and (c-d) 

[Step 3] Next-level of compaction at level L1 and 
L2 for key ranges of (a-b) 

Problem?



Idea 3: Placement Aware Compaction 
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Idea 4: Erase Aware Scheduling
Once the compaction is done, then one must erase blocks 

Unlike read/write, erase can be scheduled by the KV when it is most 
opportune, when is that? 

● Eager, as soon as possible 

Erase is a long operation 

Can lead to interferences with
read operation (poor perf)
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Eager scheduling of erase might be bad for read 
performance 



Idea 4: Erase Aware Scheduling
The trick here is to schedule Erase with Writes, not with Read, why? 

● Because writes can be put to any channel (flexible) 
○ Reads cannot be moved around because they need to a read a given address 

from that channel 
● [Erase + Write] can be used to balance out work among channels 

In this example, we can insert Erase
with write operations to maintain 
A balanced LWQL queue 

E.g., with Erase in write it will take 19 
units, where as Erase in write takes 15 
units 83


