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Reminder: for the Coming Weeks

We will be gradually transforming to networking and distributed systems
It is important you understand networking basics and important concepts such as
e TSO, LRO, Jumbo Frames, Multicore scalability, affinities, and RDMA, etc.

| will only introduce these topics selectively

Background reading: Please check out lecture 1, 2 (networking basic), 4 (multicore scalability), and 6
(RDMA networking) from the networking course linked below

e Public slides for the course: https://animeshtrivedi.github.io/course-anp/



https://animeshtrivedi.github.io/course-anp/

M3 Interview Preparations

We will announce a sign up link in coming days
15-20 mins/group
Give a demo and show if all tests work

Make 1-2 page slides to only “visualize” the core operations/data structures used —
please no writing bullet points.

Have both team members ready to navigate the code and explain details

We will ask/move quickly - so keep your answer to the point and precise
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So, What is a Key-Value Store

identify with a key (cache vs store, pay attention)

Examples: associate arrays, dictionaries, hash table K ‘

A simplified data structure to store data and ﬁ Key

Quite popular with web, scalable services

Isn’t a file system suppose to store our data?
e FSes create new files, directories for every object
e Web objects are often small, but basic file system inode overheads per directory/files
o inodes can be a few kBs, if you want to store 64 bytes of data?
Files/directories are difficult to iterate over quickly
Range based queries need further auxiliary indexing
Object stores can support flexible consistent models (with FSes, this is typically is a bad idea)
Performance and feature optimizations, e.g., deduplication, transactions, compression, etc.
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Basic Operations

put(key, value) : saves a value associated with a key

value = get (key) :retrieve the value associated with a key

delete(key) : deletes a key (can be equivalent of put(key, NULL))

Batch’ed versions of these commands: multiget, multiput

Range based queries: iterate (start_key, end _key);

Further helper commands: replace, add, incr, decr, merge, etc.
No single data structure can do all operations efficiently

(see later, the RUM Conjecture)



Layout of the Coming Slides

B+ Trees and what they are good for
e What you need to do for storing them efficiently on NAND flash
LSM tree based KV design

e The basicidea
e LSM trees on Open-Channel SSDs (OC-SSDs, precursor to ZNS devices)
e Application amplification in LSM trees

[Optional] A Hash table-based KV design (see the Backup slides)

e FlashStore (and general topic of {memory «—— 1/0} tradeoff)



A Big Design Space

“Key-Value Stores on Flash Storage Devices: A
Survey”, Krijn Doekemeijer, Animesh Trivedi
(2022).

https://arxiv.org/abs/2205.07975

Krijn took the course in 2021 :)

arXiv:2205.07975v1 [cs.AR] 11 May 2022

Key-Value Stores on Flash Storage Devices: A Survey

Krijn Doekemeijer

Vrije Universiteit, Amsterdam and Universiteit van Amsterdam

Abstract

Key-value stores (KV) have become one of the main com-
ponents of the modern storage and data processing system
stack. With the increasing need for timely data analysis, per-
formance becomes more and more critical. In the past, these
stores were frequently optimised to run on HDD and DRAM
devices. However, the last decade saw an increased interest in
the use of flash devices because of their attractive properties.
Flash is cheaper than DRAM and yet has a lower latency and
higher throughput than HDDs. This literature survey aims to
highlight the changes proposed in the last decade to optimise
key-value stores for flash devices and predict what role these
devices might play for key-value stores in the future.

Keywords. Flash storage, SSD, NVMe, Key-value stores,
NoSQL, LSM-tree, B-tree, Hash table

1 Introduction

It is estimated that we will generate over 175 zettabytes of
data globally by the year 2025 [110]. This is mainly because
of the ever-increasing interest in big data, the cloud and the
internet of things [71, 110, 130]. As the size of the datasets
keeps increasing, so do the demands of the systems that are
used to store and process this data. This in turn has caused

Animesh Trivedi
Vrije Universiteit, Amsterdam

series management [75].

Traditionally the main storage medium used to store key-
value stores was the Hard Disk Drive (HDD) [35]. Most
data and alg s were thus optimised around
the physical properties of these devices. These were among
others high latencies, symmetric read and write speeds, slow
random access and an infinite number of reads and writes
for each block on the HDD. This caused certain HDD spe-
cific optimisations such as trying to always write and read

However, as flash devices became cheaper, many data cen-
tres and consumers alike transitioned to flash devices [5, 85].
This made it important to ensure that applications can still be
properly used with flash devices and are in addition also opti-
mised for these devices. (Un)fortunately, most of the proper-
ties and assumptions that hold for HDDs, do not hold for flash
devices. Flash devices have lower latencies, have asymmet-
ric read and write speeds, do not allow for in-place updates,
have an all-new erase operation, are indifferent to random
reads on the cell level and individual cells have a finite life
cycle. The finite life cycle, commonly known as wear level-
ling (WL), can in particular be ic if ded. If
applications carelessly keep writing to the same cells, the cells
will eventually stop working correctly. Lower latencies are
also important as lower latencies are becoming more critical

for an i interest in optimising the data

stack. A big part of this stack is used by key-value stores. It
is therefore beneficial to look into how key-value stores can
be optimised.

Key-value stores are a means of storing data and are radi-
cally different from the more traditional RDBs, also known
as relational databases [59]. Key-value stores store data as
a single collection, where each key is unique and leads to
one value. Data can be accessed using these keys with basic
operations such as: get, put, delete and scan. Key-value stores
can be used for all sorts of applications and are not limited
to a particular size or hardware. Some common applications
include caching systems [50], messaging applications [21],
games [42], web shops [119]. SQL backends [48] and time

for i [10]. Yet, at the same time lower latencies
on flash result in the latency overhead moving to other parts
of the key-value store, such as the software that is executed
on the host, and therefore require different design consid-
erations [10]. Because of such idiosyncrasies. properly and
efficiently using these devices requires a transition [60].
This survey tries to highlight the changes proposed in the
last decade for using key-value stores on flash. We will look
into various optimisation strategies that can be used to use key-
value stores more efficiently on flash. However, first we will
take a look at flash and key-value stores themselves. We will
then combine the two topics and take a look at the main de-
sign concerns that occur when combining them. After having
defined the problem space, we will show how these problems
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https://arxiv.org/abs/2205.07975

B+ Tree L

_ , ) : 911 16
M-ary tree with sorted (keys-values) stored in leaves /»I\I-\L\ jl\l\l

Useful for block-storage devices as it facilitate 1]
on-demand node fetching from the storage in a .
block granularity (e.g., 512 or 4KB)

4| |l9f10] |{11]12] [[13[15] |[16]20[25
I

http://www.cburch.com/cs/340/reading/btree/index.html

d-order tree has “d” keys and (d+1) pointers in
non-leaf nodes, non-leaf nodes only contains “keys"” for pivoting

Self-balancing (by splitting and merging nodes) and distance to all leaves nodes are equal from the
root : every non-leaf, non-root node has at least floor(d / 2) children, each leaf contains at least floor(d / 2)
keys

Popular data structure, used in Databases (Oracle, SQL) and file systems (ext4)

Optimized for read-heavy workloads (sorted indexes)


http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions

e Splitinto two, pick the min of left block and push up
e Ifit was a non-leaf split, then remove the key from low levels

http://www.cburch.com/cs/340/reading/btree/index.html

10


http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions

16| 16| 916 916
f’N\ f’N\ »IXI:L\ /»I«I«L\
1[419][6R5 1a]9|[teRoBs| [114] |93l |[6l20R5] [1[4] |19 [13[15/[16[20725
Soos|DhEs oo DanE iO0EE CONE| DOOE jooNs oooR(0OD

Initial Insert 20 Insert 13 Insert 15

13 |
B
%ﬁ@ 9||1|3|}6 of[11] 1f|5\| I
pe = o 2R LA LTEN ?

1||z|1|| 9|1|0| 1:?|1|5|I 1(la|2|o||25 1||4|1 | 9||1|d|11 1:|3|1|5|I 1(|5|2|0|%5 1||4|1|I 9||1|0|| 11)12| 1:|3|1|5|I 1E|s|2|0||25
e|e [ BN J e|e o|o| @ [ BN ] e|o| o [ BN J o|o| @ [ BN J [ BN J [ ) Ol [ BN J [ BN NN )

Insert 10 Insert 11 Insert 12

http://www.cburch.com/cs/340/reading/btree/index.html
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http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions on NAND Flash

16 po pointers
pTa] m
I\

1141916125 16 1, 4, 9 16, 25
eTele [ J[eIe] | ] - ,

NAND flash pages, the same layout used with HDD too
e Whole pages can be read in a single go

e Large sequential transfers, good performance
e All values sorted, so we know which page to load for which node

12
http://www.cburch.com/cs/340/reading/btree/index.html



http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions on NAND Flash

16 po

Insert 20
el | : >
/N

1141911625 N TP TP
o - olefe]
p3

NAND pages cannot be in-place updated

http://www.cburch.com/cs/340/reading/btree/index.ntml



http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions on NAND Flash

16 pe 16| pe

fl"lk |::>Insert20 |::> fl.‘l\lx

1[4]9][16R5] | con "% [M6R0ODS 1149|1625 16120125
ofefe] [[e]e ofefe olefe] [[e]e] | ofefef
0N DOEE R N el L
p3 Now we need to update the root page too

14
http://www.cburch.com/cs/340/reading/btree/index.html



http://www.cburch.com/cs/340/reading/btree/index.html

Example: B+ Tree Insertions on NAND Flash

16 pe 16| pe
e |::>Insert20 :> Jrl.\lk
1149|1625 | fen’ ™" " Meoks 1| ‘|‘ |9 1f|52|5 | 1620125
ofefe] |[e]e] | 30 olele] Jlele ofefe]
pl p2 [o]] pl p2 p3
p3 Now we need to update the root page too
16 p4 For a simple valge insertion we endeq up yvriting 2 new pages (p3 and
Tl | p4) and generating 2 old (p0 and p2) invalid pages
In general, for a tree “H"” height: Read and Write “H” pages, and
1[4]9][16[20[25| generates“H" invalid pages
ofefe] |[e]e]e]
pl p3 It's the same problem what we saw in Log-Structured FSes (recursive

update problem or also known as Wandering Tree problem)
15
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B+ Trees on NAND Flash

j.-Tree : An Ordered Index Structure for NAND Flash
Memory:-

Dongwon Kang Dawoon Jung

Jeong-Uk Kang Jin-Soo Kim

Computer Science Division
Korea Advanced Institute of Science and Technology (KAIST)
Daejeon 305-701, Korea
{dwkang.dwjung,ux)@camars.kaist.ac.kr jinsoo@cs.kaist.ac.kr

ABSTRACT

As NAND flash memory becomes increasingly popular
as data storage for embedded systems, many file systems
and database management systems are being built on it.
They require an efficient index structure to locate a par-
ticular item quickly from a huge amount of directory en-
tries or database records. This paper proposes p-Tree. a
new ordered index structure tailored to the characteristics
of NAND flash memory. p-Tree is a balanced tree similar to
B*-Tree. In p-Tree, however, all the nodes along the path
from the root to the leaf are put together into a single flash
memory page in order to minimize the number of flash write
operations when a leaf node is updated. Our experimental
evaluation shows that p-Tree outperforms B*-Tree by up to
28% for traces extracted from real workloads. With a small
in-memory cache of 8 Kbytes, p-Tree improves the overall
performance by up to 90% compared to B*-Tree with the
same cache size.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods; D.4.3 [File Systems Management]: Directory struc-
tures

General Terms

Algorithms, Design, Performance

Keywords

B'-Tree, NAND Flash. index structure

1. INTRODUCTION

Flash memory is being widely adopted as a storage medinm
for many portable embedded devices such as PMPs (portable
media players). PDAs (personal digital assistants). digital
cameras and camcorders, and cellular phones. This is mainly
due to the inherent advantageous features of flash memory:
non-volatility, small and lightweight form factor, low-power
consumption, and solid state reliability.

Flash memory comes in two flavors. The NOR type is
usually used for storing codes since it can be directly ad-
dressable by processors. On the other hand, the NAND type
is accessed on a page basis (typically 512 bytes ~ 4 Kbytes)
and provides higher cell densities. The NAND type is pri-
marily used for removable fash cards thumb drives.
and internal data storage in portable devices.

As the NAND flash technology development continue
double density growth on an average of every 12 months [23].
the capacity of a single NAND chip is getting larger at an
The declining cost of NAND flash
memory has made it a viable and economically attractive
alternative to hard disk drives especially in portable em-
ems. As a result, many fash-aware file
systems (DBMSs) are
currently being built on NAND flash memory [2, 7. 9, 13,

to

increasingly lower cost.

ystems

2

Any file system or DBMS requires an efficient index strue-
ture to locate a particular item quickly from a huge amount
of directory entries or database records. For small scale
sms, the index information can be kept in main mem-
For example, JFFS2 keeps the whole index structures
in memory that are necessary to find the latest file data on
Hasl 241 Anparentls shic 1 is nor

16



pu-Tree : The Basic Idea

Key Idea: Rearrange the layout, do not give each nodes its own page. Store multiple nodes on a
single page: typically along the path which will be update in case of an insertion

B el noce I
[ & | » & ]
| L | |

[ o || & b || E

[ valid node
[ invalid node
B C »

Lo Il e J[L ¢ | |

Basic (“N” writes)

Proposed (update in 1 write)

C
ENIRE

O o>
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How to Pack Nodes in a Page

Should we equally divide space in a page to all levels

Keeps the logic simple, and searchable, we will know
exactly which offset in a page a level starts L

However,
L1

e Then we need to “fix" the maximum height of the tree

e Key space exponentially increases at every level
o LO:2 order tree with 3 pointers
o L1:3x3 pointers
o L2:3x3x3pointers

L2

we need to proportionally distribute space for different levels with flexibility to increase the level as
we increase (or decrease the size of the tree)



M-Tree: Proportional Packing

In this setup

e Nodes within a page are still searchable
o For a given level, and the height of the
tree | can calculate which offset the
node data starts
e Proportionally distribute space to different
levels
e Enables us to do updates in one go, while
keeping some date in old pages

The only thing we need to keep track of which
page contains the “Root” pointer
e Changed from p2 to p3

Root

Root = »

Root

Root

512 bytes
512 bytes

- 1024 bytes

~ 2048 bytes

Height

PO P1T P2 P3 P4 PS5 P6 ...

19



pU-Tree Insertions on NAND Flash

S>>
16 L2
Pl ] 1o
1{4]9][16]25 zll 16 L1 In this case:
ofefe] [[o]e] ] 9 25 — e 2 pages reading
e 1 page writing

In general: H x reading + 1 X writing

|::>Insert20 /\ v

16|
16 16
pled |

20 1{4]9](16[20125
9 25 ofofo| [[o]e]e]

I

k%
|




pu-Tree Insertions with Height Increase

13 |
Lo [l |

9I |1|3|}6 9| |1|11L \T?’:’T
ad P BAES s ;
Nl AR

1]4] ||9]10111 13;;;\\T%pop5 sy N

Tl Tl TeTeT 1[sTe] Tl[eTeTe] 1]4] ||9f10] |[1112] |[1315] |{16[20125
ofe[ [ [[ele] [ [{elel | I[ofe] [ |[o]e]e]
=\ < o~
. \: 13
13 [
16 IEC
9 16
1 10 |13 |2 1 9 11 |13 || 6
4 15 4 |10 |12 [[15 |28
11 25 e

Eventually as you write more, things will be grouped together (the update path) on the same page
blocks. A similar logic applies to deletion and tree compaction logic (skipped).



u-Tree: Performance (analytical)

Since the number of pointers that can be
stored in a single page for a given level is

different for y and B+ Trees
e Height difference, within +1 (upto 18)
e Takes twice as much flash space
Will results in more reads

Table 3: The cost of operations

Operations BT -Tree pu-Tree

Retrieval crhp erhy
Insertion (¢ + cw)hs crhy + Cw
Deletion (¢ + cw)he crhy + cw

The height of the tree

-== B+Tree

------ B+Tree with ceiling
— p-Tree

-.=+ y-Tree with ceiling

2 3 - 5 6 7
log10(the total number of records)

10

In absence of a split or collapse
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U-Tree: Performance

Traces collected from ReiserFS (B+ tree) about node creation, access, deletions
Could have used some other benchmarks (well!)

6000 - 800 -
2500 -
Oread Oread Joo | Oread
— 5000 { — ; :
2000 A @ write Bwrite 600 - O write
M erase 40001 W erase 500 - M erase
1500 - =
3000 - 400
1000 4 [ |
2000 - 20
200 - |
500 1000 -
< HE - = = [
é’_ 0 - 0 = 0 = (=] —_— pa—
m BtTree p-Tree |B+Tree p-Tree |B+Tree p-Tree |B+Tree p-Tree B+Tree p-Tree [B+Tree u-Tree |B+Tree p-Tree |B+Tree p-Tree B+Tree p-Tree |B+Tree p-Tree |B+Tree p-Tree |B+Tree p-Tree
£
[ OKB+0KB 4KB+4KB 8KB+8KB 16KB+16KB OKB+0KB 4KB+4KB 8KB+8KB 16KB+16KB OKB+0KB 4KB+4KB 8KB+8KB 16KB+16KB
(a) kernel_compile (b) postmark (c) mp3

Better performance : decreases the number of writes and with more reads (taller tree)
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There are other works too

FlashDB: Dynamic Self-tuning Database for NAND Flash

An Efficient B-Tree Layer Implementation for
Flash-Memory Storage Systems

CHIN-HSIEN WU and TEI-WEI KUO
National Taiwan University

and

LI PING CHANG

National Chiao-Tung University

With the significant growth of the markets for consumer electronics and various embedded systems,
flash memory is now an ic solution for storage syst design. B index structures
require intensively fine-grained updates/'modifications, block-oriented access over flash memory
could introduce a significant ber of redund writes. This might not only severely degrade
the overall performance, but also damage the reliability of flash memory. In this paper, we propose
a very different approach, which can efficiently handle fine-grained updates/modifications caused
by B-tree index access over flash memory. The lmplemenumon is done directly over the flash
translation layer (FTL); hence, no modi to ion systems are needed. We
demonstrate that when index structures are adopted over ﬂash memorv the proposed methodology
can significantly improve the system performance and, at the same time, reduce both the overhead
of flash-memory management and the energy dissipation. The average response time of record
insertions and deletions was also significantly reduced.

Categories and Subject Descriptors: C.3 [Special-| Purpoae and Application-Based S })
Real-Time and Embedded Syst : H.3.1 [Content Analysis and Indexing|: Indexing Methods;
H.3.3 [Information Search and Retrieval: Search Process

General Terms: Design, Performance, Algorithm

Additional Key Words and Phrases: Flash memory, B-tree, storage systems, embedded systems,
database systems

ACM Reference Format:

Wu, C.-H., Kuo, T-W,, and Chang, L.-P. 2007. An efficient B-tree layer implementation for flash-

memory storage systems. ACM Trans. Embedd. Comput. Syst. 6, 3, Article 19 (July 2007}, 23 pages.
DOI = 10.1145/1275986.1275991 http://doi.acm.org/ 10.1145/1275986.1275991

Suman Nath
Microsoft Research

sumann@microsoft.com

ABSTRACT

FlashDB is a self-tuning database optimized for sensor networks
using NAND flash storage. In practical systems flash is used in dif-
ferent packages such as on-board flash chips, compact flash cards,
secure digital cards and related formats. Our experiments reveal

Aman Kansal
Microsoft Research

kansal@microsoft.com

example includes sensor networks of mobile devices which have
significant local processing power [4, 12]. In these cases rather
than uploading the entire raw data stream, one may save energy
and bandwidth by processing queries locally at a cluster-head ora
more cap.lhlc node and uploading only the query response or the

non-trivial differences in their access costs. Furthermare, d
may be subject to different types of workloads. We show that ex-
isting databases for flash are not optimized for all types of flash
devices ar for all workloads and their pefformance is thus subop-

ior y data. Starage centric networks have also

hccn discussed in [6,7).
In most cases where the storage is part of the sensor network,
the storage device used is flash based rather than a hard disk due 10
shock resi e, node size, and energy considerations. Addition-

timal in many practical systems. FlashDB uses a novel self-t
index that dynamically adapts its storage structure to workload and
underying storage device. We formalize the self<tuning nature of
an index as a two-state task system and propose a 3-competitive
online algarithm that achieves the theoretical optimum. We also
provide a framewark to determine the optimal size of an index node
that minimizes energy and latency for a given device. Finally, we
propose optimizations to further improve the performance of our
index. We prototype and compare different indexing schemes on
multiple flash devices and workloads, and show that our index-
ing scheme outperforms existing schemes under all workloads and
flash devices we consider.

Categories and Subject Descriptors: H.2.4 [Database Manage-
ment Systems|: Query processing H.3.1 [Content Analysis and
Indexing|: Indexing methods

General Terms: Algorithms, Design, Measurement, Performance.

ally, flash is also commaon in many mobile devices such as PDA's,
cell-phones, music players, and personal exercise monitars. These
devices can benefit from a having light weight database.

Our objective is to design storage and retrieval functionality for
flash storage. A simple method is to archive data without an in-
dex, and that is in fact efficient in many scenarios. However, as
we show in section 6, for scenarios where the number of queries
is more than a small fraction (= 1%) of the number of data items,
having an index is useful. Hence, we focus on indexed starage.
Prior work on flash storage provides file systems (e.g., ELF [5])
and other useful data structures such as stacks, queues and limited
indexes (e.g.. Capsule [14], MicroHash [22]). Our goal is to ex-
tend the functionality provided by those methods to B* -tree hased
indexing to support useful queries such as lookups, range-queries,
multi-dimensional range-queries, and joins.

Existing database products are not well suited for sensor net-
waorks due to several reasons. Firstly, existing cts, includin

24



Now, what about write-heavy workloads?

Write heavy workloads on flash can be really bad
e Key-Values can be really small (32-64-128 bytes)

The best solution so far we have seen is a log (FTL, file system) ﬁﬁﬁﬁﬁ

e Append small writes to a log and read from there (search)
How can we improve searching the log? S
e We can build a hash table (key) — {flash offset}

o But will need a lot of memory for the hash table
m 8 bytes offset per key (similar to the page-level FTL challenge)
e Does not allow doing fast range-based queries and lookups

25



Back to the Future: LSM Trees

Log-Structured Merge (LSM) Tree data structure

Invented and optimized for HDD, why?
e Same logic as LogFS
o Disks have fast sequential performance
o  Disks have poor random, small I/0 performance
e Read/Write large chunks to disk
e Eliminates random insertions, updates and deletions

Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth J. O'Neil:
The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33(4):
357-385 (1996)

Very popular data structure: Bigtable, HBase, LevelDB,
SQLite4, Tarantool, RocksDB

ﬂ Articie development led by iCTIQUELE

Different uses for read-optimized
B-trees and write-optimized LSM-trees.

BY ALEX PETROV

Algorithms
Behind
Modern
Storage
Systems

THE AMOUNTS OF data processed by applications are
constantly growing. With this growth, scaling storag
becomes more challenging. Every database system

has its own trade-offs. Understanding them is crucial, | cou

as it helps in selecting the right one from so many
available choices.

Every application is different in terms of read
write workload balance, consistency requirements,
latencies, and access patterns. Familiarizing yourself
with database and storage internals facilitates

https://queue.acm.org/detail.cfm?id=3220266
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LSM Tree Basics

insert(key,value)
At insertion, (key,value) is
4/\ e written to the device-resident write ahead log
a |1 (WAL, large sequential performance)
c ﬂﬂﬂﬂ e Inserted in the sorted MemTable to enable fast
m | 8 lookup with a range based query

| waLog =

Sorted In-memory . .
table, MemTable Sequgnt/a/ /og on disk, only
used in for failure recovery

What happens when the in-memory data structure is full?

27



LSM Tree Basics

/

4 né
|

Full MemTable in memory

Allocate a new MemTable to continue
receiving the writes

0N |=

a
Cc
m
Z

=

Sorted, immutable, MemTable
ready to flush to disk

e Once the in-memory table is full : the MemTable is marked immutable and flushed to disk
e Key get() requires searching in (1) the MemTable; then (2) looking up on the disk
o (we will see how this can be made efficient)

e If datais presentin both locations, use the timestamps to reconcile which is the newest
write

Challenge now is how to (a) manage and (b) search TBs of data on disk to look for a key

28



LSM Tree Basics

Lo (1MB)

< LIRCIOHE) Multiple levels

: | | |

8 compaction L i L2 (100MB) Larger capacity threshold
n“au <<::\\\ u_ L Ln (1TB)

Data is stored in a multi-level, large, immutable files on the disk (no holes/gaps). Each level has a fixed
size that increases as you go to the higher levels

N

A new table flush is written always written to LO

Just like in-memory table, once, a preconfigured size of file is reached, a files are level i can be merged
with (i+1). This process is known as compaction. Since files written are sorted, the compaction is -

essentially an N-way merge sort from level (i) to (i+1)



On-Disk File Format (SSTables)

Sorted String Tables (SSTables)

Index Bloom Filters
{K101:201, be} K101 — K201
{K321:350, b1} K321 — K350
{K500:624, b2} K500 — K624
{K876:900, b3} K876 — K900

Data Block
bo

Data Block
bl

Data Block
b2

When searching : find a value in the index range, then check in the bloom filter

Then go fetch the “block” for reading and scan the value inside

All files are immutables, hence, a delete is a new insertion with a “NULL" value at LO
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Set key1

Recap: Bloom Filters ]

Set key2

Bitmap or an array (any size) collision
. 1 1 1 1
A bunch of hash function, hi, h2, h3

%) 1 2 3 4 5 6 7

Now if we were to check the filter for (assume these bit hashes):
e |ookup (key1) = {1, 3, 7} bits // all set, key1 exists, true positive
e lookup (key3) = {1, 4, 7} bits // all set, but the key3 was never set, false positive
e |ookup (key4) = {0, 2, 5} bits; // nope, this key was never set, always accurate!
o cannot have false negative!

The rate of false positive depends upon the size of the filter (how many bits) and the quality of the hash
functions

For more fun read see https://blog.cloudflare.com/when-bloom-filters-dont-bloom/



https://blog.cloudflare.com/when-bloom-filters-dont-bloom/

Example Compaction Process
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Example Compaction Process

LO can have duplicates keys in different files

LO 11, 21 11, 21

11, 13

Pick all files which have overlapping ranges
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Example Compaction Process

LO can have duplicates keys in different files

L0 | 11, 21 11, 21 || 11, 13 < 1, 15 12, 99
L1 11, 13, 21
L2 Pick all files which have overlapping ranges
LO You can check how many segments this
12, 99 compaction will touch

L1 ......................................................................................

1, 11, 13, 15 21 1, 11, 13, 15 21, 53, 65, 90
L2 e

34



Example Compaction Process

LO can have duplicates keys in different files

L0 | 11, 21 11, 21 || 11, 13 < 1, 15 12, 99
L1 11, 13, 21
L2 Pick all files which have overlapping ranges
LO You can check how many segments this
12, 99 compaction will touch

L1 ....................................................................................

1, 11, 13, 15 21 1, 11, 13, 15 21, 53, 65, 90
L2 e
LO 2, 16, 95
. e T B SO

L2

53, 65, 90, 95

99 35




How to Optimize for Searching Files?

Look in: (i) mutable MemTable (ii) look at all the files at LO

e LOfiles can contain overlapping key ranges, hence, all files need to be
searched at LO

Further down, it can be a bit simpler as

Files at L1 onwards do not have overlapping ranges (they are built that way)
e Hence, for each level, only need to check the range block and the bloom filter, not

need to have read the file
e Lower levels contain fresher data (e.g., data at L3 would be newer than at L5)

Also, since indexes are sorted and immutable, it support range-based queries
36



General LSM Considerations

What are the size threshold for each level
What are the block sizes

When to do compaction

Will result in decreasing the number of files

Which level should be compacted to which next level

Which two files/key range to pick up for compaction (Tiered, Leveled, FIFO)

Also: as LO fills up the speed of writes will be stalled (in the end it will stop completely)

When to do garbage collection
e Deletion of old values which have been deleted
e Typically read the keys from the tree, and insert them back in the system

37



RocksDB (uses LSM tree) is very popular

Use Case 1: UDB

Social Graph Related

Primary key indexed raw mapping to a RocksDB KV-pair

Applications

mUDB ®mZippyDB mUP2X _ [ Rodonrey e

100% SQleomneetions [ TableindexNumber | primarykey | Columns | checksum |

90% MySQL

80% RocksDB Secondary key indexed raw mapping to a RocksDB KV-pair

70% ; ‘Ro(kSDEKey | : RocksDB Value }

File System Table Index Number | SecondaryKey | Primarykey | Checksum
60% Y,
. —_— .
50% Use Case 2: ZippyDB
40% . ____EEEEEE——

= s s

20%
10% | | t |
0% I || = . - ZippyDB Data Management Service
2 s
N ) () S ()
621 QQ’ 2}‘ g‘}r \0 ,&% Secondary Primary Secondary Primary Secondary
& & & ¥ ][] [
.»;,&% Use Case 3: UP2X
User Profile Updates Different ML/Al services
j P data reads

Characterizing, Modeling, and Benchmarking RocksDB Key-Value — - ”
Workloads at Facebook, USENIX FAST 2020.
https://www.usenix.org/conference/fast20/presentation/cao-zhichao i . . cocken
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Key-Value size
distribution at Facebook

Table 2: The average key size (AVG-K), the standard deviation
of key size (SD-K), the average value size (AVG-V), and the
standard deviation of value size (SD-V) of UDB, ZippyDB,

and UP2X](in bytes)

XVG-K SD-K AVG-V SD-V
UDB 271 56 1967 221
ZippyDB  47.9 37 429 26.1
UP2X 1045 14 468 11.6

Key message: Bytes-KB ranges are
very important to optimize!

0.4
0.2

Object —x—
Object 2ry —e—
Assoc —a—
Assoc_2ry —+—
Assoc_count —e—
Non SG —»— |

0 20 40 60 80 100 120 140 160 180
Key size (bytes)

(a) UDB key size CDF

Get —w— |
Put —e—

Delete —»— |
Iterator_Seek —+—

0 20 40 60 80 100120 140 160 180
Key size (bytes)

(c) ZippyDB key size CDF

Get —»—
Put —e—
Merge —— |

0 20 40 60 80 100 120 140 160 180
Key size (bytes)

(e) UP2X key size CDF

0.8
0.6
04 -

Object —»— |

Assoc 2ry —— |

02} Assoc_count —&—
0 e Non SG )
100 100 12 100 100 105 10°
Value size (bytes)

(b) UDB value size CDF

\

\

\

~ Valuessize — ‘

100 001 10 100 105 10°
Value size (bytes)

(d) ZippyDB value size CDF

103

10
Value size (bytes)

(f) UP2X value size CDF

100 10!
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Two Interesting Papers: LOCS

An Efficient Design and Implementation of
LSM-Tree based Key-Value Store on Open-Channel SSD

Peng Wang  Guangyu Sun Song Jiang * Jian Ouyang  Shiding Lin
Peking University Peking University and Baidu Inc.
{wang_peng, gsun}@pku.edu.cn Wayne State University {ouyangjian, linshiding} @baidu.com
sjiang@eng wayne.edu
Chen Zhang Jason Cong * 1

Peking University
chen.ceca@pku.edu.cn

Abstract

Various key-value (KV) stores are widely employed for
data management to support Internet services as they offer
higher efficiency, scalability, and availability than relational
database systems. The log-structured merge tree (LSM-tree)
based KV stores have attracted growing attention because
they can eliminate random writes and maintain acceptable
read performance. Recently, as the price per unit capacity
of NAND flash decreases, solid state disks (SSDs) have
been extensively adopted in enterprise-scale data centers to
provide high VO bandwidth and low access latency. How-
ever,itisinefficient to naively combine LSM-tree-based KV
stores with SSDs, as the high parallelism enabled within the
SSD cannot be fully exploited. Current LSM-tree-based KV
stores are designed without assuming SSD’s multi-channel

Peking University and
University of California, Los Angeles
cong@cs.ucla.edu

addition, we optimize scheduling and dispatching polices for
concurrent /O requests to further improve the efficiency of
data access. Compared with the scenario where a stock Lev-
eIDB runs on a conventional SSD, the throughput of storage
system can be improved by more than 4x after applying all
proposed optimization techniques.

Categories and Subject Descriptors H.34 [Information
Storage And Retrieval]: Systems and Software

Keywords  Solid state disk, flash, key-value store, log-
structured merge tree
1. Introduction
With the rapid development of Web 2.0 applications and

architecture.

To address this inadequacy, we propose LOCS, a sys-
tem equipped with a customized SSD design, which ex-
poses its internal flash channels to applications. to work with
the LSM-tree-based KV store, specifically LevelDB in this
work. We extend LevelDB to explicitly leverage the multi-

cloud ing. large-scale distributed storage systems are
widely deployed to support Internet-wide services. To store
the ultra-large-scale data and service high-concurrent ac-
cess, the use of traditional relational database management
systems (RDBMS) as data storage may not be an efficient
choice [15]. A number of features and functionalities of
RDBMS, such as transaction consistency guarantee and sup-

Placement and scheduling of I/0 in LSM trees

(2014) and SILK (2019)

SILK: Preventing Latency Spikes in
Log-Structured Merge Key-Value Stores

Oana Balmau Florin Dinu Willy Zwaenepoel
University of Sydney University of Sydney University of Sydney

Karan Gupta Ravishankar Chandhiramoorthi Diego Didona

Nutanix Inc. Nutanix Inc. IBM Research — Zurich

Abstract

LSM-based KV stores are designed to offer good write per-
formance, by capturing client writes in memory, and only
later flushing them to storage. Writes are later compacted
into a tree-like data structure on disk to improve read perfor-
mance and to reduce storage space use. It has been widely
that ions severely hamper

Various optimizations have successfully dealt with this prob-
lem. These techniques include, among others, rate-limiting
flushes and compactions, selecting among compactions for
maximum effect, and limiting compactions to the highest
level by so-called fragmented LSMs.

In this paper we focus on latencies rather than throughput.
We first document the fact that LSM KVs exhibit high tail
latencies. The techniques that have been proposed for opti-
mizing throughput do not address this issue, and in fact in
some cases exacerbate it. The root cause of these high tail
latencies is interference between client writes, flushes and
compactions. We then introduce the notion of an 1/0 sched-
uler for an LSM-based KV store to reduce this interference.
We explore three techniques as part of this /O scheduler: 1)
opportunistically allocating more bandwidth to internal op-
erations during periods of low load, 2) prioritizing flushes
and compactions at the lower levels of the tree, and 3) pre-
empting compactions.

SILK is a new open-source KV store that incorporates this

Not all LSM operations are equal

latency is especially important, because applications often
exhibit high fan-out queries whose overall latency is de-
termined by the response time of the slowest reply. Log-
structured merge key-value stores (LSM KVs), such as
RocksDB (18], LevelDB [14] and Cassandra {30], are widely
adopted in production environments to provide storage be-
yond main memory for such latency-critical applications,
especially for write-heavy workloads. At Nutanix, we use
LSM KVs for storing the meta-data of our core enter-
prise platform, which serves thousands of customers with
petabytes of storage capacity.

KV stores support a range of client operations, such as
Get (), Update() and Scan(), to store and retrieve data.
LSM KVs strive for good update performance by absorbing
updates in an in-memory buffer [36]37]. A tree-like struc-
ture is maintained on storage. In addition to client opera-
tions, LSM K Vs implement two types of internal operations:
Sflushing, which persists the content of in-memory buffers to
disk, and compaction, which merges data from the lower into
the higher levels of the tree.

In this paper we demonstrate that tail latencies in state-of-
the-art LSM K Vs can be quite poor, especially under heavy
and variable client write loads. We introduce the notion of an
1/0 scheduler for LSM KVs. We implement this /O sched-
uler in RocksDB, and we show up to two orders of magnitude
improvements in tail latency.
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Challenges with the Basic LSM Design

3 E

Open-Channel SSD (OCSSD) is similar to SDF where all {teviedal)~/dev/odol

device internals and placement information is

Exposed - high parallelism (think of Zone ~= Channel) | 4 ‘
SSD Ctrl| [SSD Ctrl|  |SSD Ctrl

1. Single head writing of immutable SSTable

2. Operation unaware scheduling (read, write, erase) ] I I
3. Placement and parallelism unaware scheduling

Flash
CH_N

J

Flash
CH_1

|

T —— |
TT———

Flash
This work: LOCS CH_O
“LSM-tree-based KV store on Open-Channel SSD” J

SDF

They retain the basic LSM design, but optimize it for OCSSD

OC-SSD https://events.static.linuxfound.org/sites/events/files/slides/LightNVM-Vault2015.pdf



https://events.static.linuxfound.org/sites/events/files/slides/LightNVM-Vault2015.pdf

4 Key Ideas in LOCS (more in Backup slides)

User Threads
1. Leverage Parallelism = = =
LevelDB
a. Instead of 1 memtable, use 44 /0 requests from Leveiog
. . LevelDB I/O Request Scheduler Eiﬁed
2. DO Operatlon awa re SChEdUIlng Request Queue Request Queue Request Queue LevelDs
. . . R(lead Reid i -
a. Read, write, and erase operations are different Wite Read | Read our main
b. Simple RR scheduling can be bad e e T
| Storage API |
. ) A L
3. Placement-aware scheduling | 55D Driver | st
a. Compaction need reading, and writing Jdev/ssdo Jdev/ssd Jdev/ssda3 Hardware
b.  Which channels to use | 20 tontoller |
R TR - ,———AL———.
. : Channel 1 : : Channel 2 : : Channel 44 :
4. Erase-aware scheduling :_ra | :J__H ... :l—a L
I Il I | I
a. Erase can be moved around e sl T i) [ e R |
L | B | I o S DU |
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Idea 2: Scheduling Optimization

Question: How should you pick which
channel an SSTable should be flushed?
e \Writes decides read workload too

Strategy 1: Round-Robin

Strategy 2: Least Weighted Queue Length
Write dispatching

e Weight is read/write/erase cost

N
1

©
Write
Read
@ Read .
@Write ®Read Write
©Read | [@Read
[@]

@ ®
Write Write Write

Req. Queue Req. Queue Req. Queue
for Channel1 forChannel2 for Channel 3

(a) Round-Robin

®Write [ORead
(DRead © .
@Write ORead Write
©Read @Read
® @ ®
Write Write Write

Req. Queue Req. Queue Req. Queue
for Channel1  for Channel 2  for Channel 3

(b) Least Weighted-Queue-Length

Trace # | 2 3145|6789 ]|10]I11
Op. WIW| W[R|R|R|R|[R|W|W|[W
Channel | = | = | = [ 32|22 |2 - ]| = =

(c) Trace of the example
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Idea 3: Placement Aware Compaction

it } vanveney - Recall that LSM trees need compaction
level O MM |\ X“2 47 | | || s
tj;j:;-F-;;;-l- o BEE -}--j;E-i!%e;-ﬂ--g;ﬁ-lk Here: LO file (b-d) is being pushed to L1
Ch.1 Ch.3 Ch.4 CEh:5 Ch.6
Step 1 At L1 it overlaps with two files (a-b),(c-d)
Level 1: || Level 1:
- A [Step 1] We first read those two files in DRAM
(" Write ) Malrs\sf\élemory
Zﬁi:fr%ed/ﬂsqﬁe«"‘tﬁ Do a multi-way merge sort with the three files
Level 25~p ] [c~d ] Chei]| k| |Ce~| [Ceeha
Ch.1 Ch.2 Ch.3 Ch.4 chis Ch.6
Step 2 [Step 2] Then write out the L1 files (a-b) and (c-d)
[Step 3] Next-level of compaction at level L1 and
Chead - L2 for key ranges of (a-b)
level oSN~ MGz [ [ ) Y S
S NN ] NS ] s s O I
Leve%&l Tlm {LI’:I_JLJ [&J Lgm“ Problem?
Ch.1 Ch. 2 Ch.3 Ch.4 Ch.5 Ch.6
Step 3




Idea 3: Placement Aware Compaction

Il Old sSTable
Level 0: evel 1: | Level 1: Level O: evel 1: | Level 1:
I sl sl R S
0 be erase
Main Memory A e P Main Memory
SSD s Read SSD
levelO MMl |\ X"z A | | f || || ____ Level 0 (MM || X2 4 | | | Y
Level 1 |NERM| _\__E_"'_f_l _____ [ Level1 |NERCH 5 ___(E@ e e
Level2 [[a~b | ik ) (Ce~f ] |Ce~h] Level2 ([a~b || |Cc~d 1| |Ch™id| (k| (e~ ]| [Ce~h]
Ch.1 ch.4 | | Ch.5| | Ch.6 Cch.1||ch.2||ch3)|ch4]||cCh5]|Che
Step 1 Step 1
Main Memory N = Main Memory
55H) \ Write SSD
level ORSSN Az ] /1] ST N e Levelo SSSN)| |[[xz 1) | ) I (o I N —
'-e"e'}}___N__E"____}___}H_E"EJ [ | s | R I Level 1[N [BSN]| [Es™t ] [ [e~T | S
Level 275~p ] Ce~d ] Chei]| [Crk]| e [Ce™h]| | tevel 2|27 | |Cvd | |Cheid Crk ] Cet || |Ceeh)
ch.1 ch.4| | ch.5) | Ch.6 ch.1)|ch.2| | ch3 ch.4 ch.5 | | ch.6
Step 2
Main Memory 4 pa Main Memory
5D \_fead ssD
Level O fANNN 7 Level 0| AN
Level 1IN @%b | Level 1| RSSSH
Level 2/737p ] Level 2] 3%b || |Cc~d J| |Ch~i] Cef | |Ca~h ]
Ch.1 ch.1 | |ch.2 || ch3 ch.5 ) | ch.6

Step 3
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Performance: LOCS

3,000,000 - SRR with SDF  E1Huawei 4,000,000 1 @ waL+coMP BLWAL SRR

< 2,500,000 N - $°00,000 - 7
3 N 3 ] . %
< N \ \ g 3,000,000 % /
é 2,000,000 % § § £ 2,500,000 - % é Z
5 1,500,000 - § § § g 2,000,000 - Z % %
% 1000000 | § § % 1,500,000 - % % Z
2 ] ) S 1,000,000 - 7 7 7
© 0t § : §;_i:f:;§i;f5i ;;:i;l:i:‘ = 500,000 - % % %

0 . ; ‘ N ‘ NN NN | / 4 //:

14 T2 — 2= 41 ’ 1:4 1:2 ) 24 4:1
Workload Get-Put Ratio Workload Get-Put Ratio

Basic idea of software-managed parallelism over channels make sense

RR delivers good performance, LWQL even better, LWQL with Compaction aware
optimizations the best of the three 46



The Long Tail of LSM Trees (RocksDB)

7 LO files 8L0files 9LOfiles 10L0files Latency spike ,~=- = ) ] ;
Flush Flush Flush Flush (writes) flush 5 LO files 6 LO files 7 LO files 3 LO files —
'\ H Flush Flush | Flush Flush” [Flush|
: LO->LO (6 LO SSTables) 1 i
| L1 > L2 compaction L1-> L2 compaction\ ! | S0 ! Lat:;:;:;'ke
1 L1 > L2 compaction i
L1> L2 compactlon \ | ! [L1 > L2 compaction H
- 1 L1 > L2 compaction 1
| L1-> L2 compaction L1-> L2 compaction \ |L1 > LZ: | t% o £ fiattion [ |
[ L0 L1 compaction (7 LO SSTables) \ T L1 -> L2 compaction 3
a = > L1 > L2 compaction |
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21\22 23 24 25 26 54 55 56 5/ 58 50 0 1 2 3 2 5 6 7 3
Time (seconds) LO limit reached Time (seconds)
—_— 6F 1l
= 2 10 ] 1l I:I Default RocksDB
c ;
T 5 10% Il No internal ops.
oo
S E g/l @A -4
il il |

=
o
N

0 100 200 300 400 500
Time (s)

SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores, USENIX ATC 2019, https://www.usenix.org/conference/atc19/presentation/balmau
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SILK: Key-ldeas

1. Adaptive bandwidth scheduling 35>
a. Use gaps in the client-load to dynamically = = g =
adjust the bandwidth which is given to orn
different compaction-levels CHEEE A
2. Prioritize different compaction-levels & 1o [Dmemici/oRate imitig ]
a. Aswe saw, the performance flushing and % g“ﬁ Y VAT
compaction of LO—L1 is more critical to o] Sche;‘ju“ngan’d —
client-observed performance. Prioritize 28k | '
compaction up-high in the trees SE | ; ; ,‘
5 7 107 o ] |
3. Preemptable compactions go0 f'“"'""“"'-'m“'ﬂ"mm-mlj
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WiscKey: Separating Keys from Values in SSD-Conscious Storage (2016)

WiscKey: Separating Keys from Values in SSD-Conscious Storage

Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin, Madison

Abstract

We present WiscKey. a persistent LSM-tree-based
key-value store with a performance-oriented data layout
that separates keys from values to minimize IO amplifi-
cation. The design of WiscKey is highly SSD optimized,
leveraging both the sequential and random performance
characteristics of the device. We demonstrate the ad-
vantages of WiscKey with both microbenchmarks and
YCSB workloads. Microbenchmark results show that
WiscKey is 2.5 x~111x faster than LevelDB for load-
ing a database and 1.6x—14x faster forrandom lookups.
WiscKey is faster than both LevelDB and RocksDB in
all six YCSB workloads.

1 Introduction

Persistent key-value stores play a critical role in a va-
riety of modern data-intensive applications, including
web indexing [ 16, 48]. e-commerce [24], data dedupli-
cation [7, 22]. photo stores [12]. cloud data [32]. so-
cial networking [9, 25, 51], online gaming 23], messag-
ing [1, 29]. software repository [2] and advertising [ 20].
By enabling efficient insertions, point lookups. and range
queries, key-value stores serve as the foundation for this
growing group of important applications.

For write-intensive workloads, key-value stores based
on Log-Structured Merge-Trees (LSM-trees) [43] have
become the state of the art. Various distributed and local
stores built on LSM-trees are widely deployed in large-
scale production environments, such as BigTable [16]
and LevelDB [48] at Google. Cassandra [33], HBase [29]
and RocksDB [25] at Facebook, PNUTS [20] at Yahoo!,
and Riak [4] at Basho. The main advantage of LSM-

throughout its lifetime: as we show later (§2). this /O
amplification in typical LSM-trees can reach a factor of
50x or higher [39, 54].

‘The success of LSM-based technology is tied closely
to its usage upon classic hard-disk drives (HDDs). In
HDDs, random 1/Os are over 100 slower than sequen-
tial ones [43]: thus, performing additional sequential
reads and writes to continually sort keys and enable effi-
cient lookups represents an excellent trade-off.

However, the storage landscape is quickly changing.
and modern solid-state storage devices (SSDs) are sup-
planting HDDs in many important use cases. As com-
pared to HDDs, SSDs are fundamentally different in
their per and reliability ch istics; when
considering key-value storage system design, we believe
the following three diffe are of | impor-
tance. First, the difference between random and sequen-
tial performance is not nearly as large as with HDDs:
thus, an LSM-tree that performs a large number of se-
quential IOs to reduce later random L/Os may be wast-
ing bandwidth needlessly. Second. SSDs have a large
degree of internal parallelism: an LSM built atop an
SSD must be carefully designed to harness said paral-
lelism [53]. Third. SSDs can wear out through repeated
writes [34, 40]: the high write amplification in LSM-
trees can significantly reduce device lifetime. As we will
show in the paper (§4). the combination of these factors
greatly impacts LSM-tree performance on SSDs, reduc-
ing throughput by 90% and increasing write load by a
factor over 10. While replacing an HDD with an SSD un-
derneath an LSM-tree does improve performance, with
current LSM-tree technology, the SSDs true potential
goes largely unrealized.
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So, What is the Problem?

We briefly referenced that reading

performance on LSM can be problematic - . e —
Any guesses why? o N ~ m OU&J I
(ev) A? merge sort LI (10MB) O D [:]7 'gLigJ

t was the read path order? e Q QOO0

Wha W p > sesy OO0

e MemTable - LO— L1...L6 (here) S L6 (ITB) OODO BES
D SSTable files D memtable . immutable

So, if you were to read simple 1 byte key-value, (&) L5ecree (b) LevelDB

how much data you have to read before you can find a 1 byte result?

We have looked this type of problem before in the FTL for writes

(recall: write-amplification)
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LSM has Read and Write Amplifications

/ ’_‘_‘_‘_‘ : |
]
]
L /
I‘i+1 |
T ' Read them in memory, Write out
I merge, sort

read,lookup
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Analysis : Write/Read Amplification (RA/WA)

Compaction can result in
e Reading “n” times data from the next

level to merge from the current level

o For LevelDB this is 10x between levels
o For 6 levels, it could be 50x

Application-level WA

Reading can result in Device-level WA

e Reading “n” files on LO and then 1

file on following level

o  LevelDB, 8 files (at LO) + 6 files (L1-L6) = 14 files
m  Within the file we need to read the “index” + “bloom filter” + data block
m For Level-DB index (16kB), bloom (4kB) + data (4kB)
m  So, if we are looking for a 1kB file: 14 files x (24 kb) = 336 kb = 336x RA
o  Determined by how many files do you have to touch and read to find a value

LSM Trees trade high “amplification” for having “sequential performance” — Why does this design
make sense?

Fun reading : Diego Didona, Nikolas loannou, Radu Stoica, Kornilios Kourtis: Toward a Better Understanding and Evaluation of Tree Structures on Flash SSDs.
Proc. VLDB Endow. 14(3): 364-377 (2020) http://www.vldb.org/pvidb/vol14/p364-didona.pdf
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Quantify and Justify

1000 Il Write %/ Read

327

2 .
E 100- %
;—%. 10- 8.2 = %
| 7 _

1 GB 100 GB

Key size: 16 bytes, value size : 1024 bytes

Justification for HDD

e Random 1kB latency: 10 milli-sec
e Sequential 1kB latency: 10 micro-sec

Ratio is seg:rand 1:1000. Hence, any data
structure where amplification is less than
1000, sequential access wins

On SSD? Are sequential vs random
accesses are 1:1000 apart?
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Quantify and Justify
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What does WiscKey Proposes

Key Idea: separate keys from the values

e Maintain keys in the LSM tree
e Maintain value in a sequential append value log

<key, value>

SSD device

LSM-tree Value Log
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Key-Value Insertion and Lookup

write (K, V) Head

MemTable

VI |V2|V3|V

_____________________________________________________ L,
g e S L,
il I L
i..l ....... l...l ....... l...l ....... l...l ....... o LZ The basic idea remains the same
3
il | C O CJC g Insertion : keys go the LSM tree, values to the log

L;.; | Lookup :lookup the key in the LSM tree, then read the
offset from the log

For range-based queries, the log can be read in parallel




WiscKey: LSM Tree made out of Keys

What advantages a key-only LSM tree brings

e [with assumptions] keys are small and values are big
e Much improved write-amplification

o Before WA was: ~10-50x

o Now (10 x key_size) + value_size / (key + value size)

o Eg.,(10x16+1024)/(1024 + 16) = 1.14 (not 10x)

o Worsecase:(50x 16+ 1024)/(1024+16) = 1.76 (not 50x)

e Lower write amplification means longer device life time

Also, the size of the tree can be small (small keys)
e Lesslevels than a comparable key-value LSM tree
e Small tree can be cached in the memory for fast lookups

LO (8MB) UU I o |
tgomey () () ? : '\L_g)'
L2(loome) () ()

Loee) [ u

smm Q00000

(__J SSTable files D memtable . immutable

(b) LevelDB
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WiscKey: Performance

—_
(2]

~
o

500
450 -
400 A
350

X LevelDB O WhisKey

D
0]

o O O =¥ o X

64B 256B 1KB 4KB 16KB 64KB 256KB

Key: 16B, Value: 64B to 256KB

Write Amplification

207 X LevelDB O WhisKey

18 -

16 - \

14 1 % % ; 215

12 1 T~

10 -

8_.

6_

2. G\s-\ﬁ

= 6—o—o—06——0

0 1 1 1 T 1 1 1
64B 256B 1KB 4KB 16KB 64KB 256KB

Key: 16B, Value: 64B to 256KB

LevelDB is at 2-4MB/sec whereas WiscKey is at 350 MB/sec (46-111x)

Significant reduction in the WA factor
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Hash Tables on Flash

Hash Table

|

(key,val ue)/—\

1Nl
1l

L L]

This simple hash table based schema works, but it needs to deal with
e Small writes (multiple writes must be packed together)

e (Cando fast get and put, but no range-based queries (without additional indexes)
e Trade off {DRAM size of the HT } «+ — {number of I/0 operations}
o The same tradeoff as FTL design, how much memory do we need to store a hash
table with 1 TB of values

o Can store the table in flash itself, to decrease the memory size, then multiple 1/0

59
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Alternate Hash Table Designs (see the backup slides)

SkimpyStash: RAM Space Skimpy Key-Value Store on
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ABSTRACT
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resolving hash table collisions using linear
tiple keys that resolve (collide) to the sam¢
chained in a linked list, and (ii) storing the
self with a pointer in each hash table buck
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wide vanation in bucket sizes (hence, chain
lookup times), and a bloom filte in each h
in RAM to disambiguate the choice during
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flas pages soas to reduce flas reads durin
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ful knob for making a continuum of tradeg
usage and low lookup latencies. Our eval
server platforms with real-world data center
SkimpyStash provides throughputs from fe
of 100,000 get-set operatians/sec.

Flash-based Storage

FlashStore: High Throughput Persistent Key-Value Store

Biplob Debnath”
University of Minnesota
Twin Cities, USA

biplob@umn.edu

ABSTRACT

We present FlashStore, a high throughput persistent key-
value store, that uses flash memory as a non-volatile cache
between RAM and hard disk. FlashStore is designed to
store the working set of key-value pairs on flash and use one
flash read per key lookup. As the working set changes over
time, space is made for the current working set by destag-
ing recently unused key-value pairs to hard disk and recy-
cling pages in the flash store. FlashStore organizes key-value
pairs in a log-structure on flash to exploit faster sequential
write performance. It uses an in-memory hash table to index
them, with hash collisions resolved by a variant of cuckoo
hashing. The in-memory hash table stores compact key sig-
natures instead of full keys so as to strike tradeoffs between
RAM usage and false flash read operations.

FlashStore can be used as a high throughput persistent
key-value storage layer for a broad range of server class ap-
plications. We compare FlashStore with BerkeleyDB, an
embedded key-value store application, running on hard disk
and flash separately, so as to bring out the performance
gain of FlashStore in not only using flash as a cache above
hard disk but also in its use of flash aware algorithms. We
use real-world data traces from two data center applica-
tions, namely, Xbox LIVE Primetime online multi-player
game and inline storage deduplication, to drive and evalu-
ate the design of FlashStore on traditional and low power
server platforms. FlashStore outperforms BerkeleyDB by
up to 60x on throughput (ops/sec), up to 50x on energy
efficiency (ops/Joule), and up to 85x on cost efficiency
(ops/sec/dollar) on the evaluated datasets.

Sudipta Sengupta
Microsoft Research
Redmond, USA

sudipta@microsoft.com

Jin Li
Microsoft Research
Redmond, USA

jinl@microsoft.com

A high throughput persistent key-value store can help ti
improve the performance of such applications. Flash mem
ory is a natural choice for such a store, providing persis
tency and 100-1000 times lower access times than hard disk
Compared to DRAM, flash access times are about 100 time
higher. Flash stands in the middle between DRAM and dis
also in terms of cost — it is 10x cheaper than DRAM, whil
20x more expensive than disk — thus, making it an ideal gaj
filler between DRAM and disk.

There are two types of popular flash devices, NOR an
NAND flash. NAND flash architecture allows a denser lay
out and greater storage capacity per chip. As a resulf
NAND flash memory has been significantly cheaper thal
DRAM, with cost decreasing at faster speeds. NAND flas]
characteristics have lead to an explosion in its usage i
consumer electronic devices, such as MP3 players, phones
caches and Solid State Disks (SSDs). In the rest of the pa
per, we use NAND flash based SSDs as the architecturs
choice and simply refer to it as flash memory. We describ
SSDs in detail in Section 2. To get the maximum perfot
mance per dollar out of SSDs, it is necessary to use flas|
aware data structures and algorithms to avoid small randon
writes that not only have a higher latency but also reduc
flash device lifetimes through increased page wearing.

In this paper, we present the design and evaluation ¢

SILT: A Memory-Efficient, High-Performance Key-Value Store

Hyeontaek Lim', Bin Fan', David G. Andersen’, Michael Kaminsky?

!Carnegie Mellon University, *Intel Labs

ABSTRACT

SILT (Small Index Large Table) is a memory-efficient, high-
performance key-value store system based on flash storge that
scales o serve billions of key-value items on a single node. It re-
quires only 0.7 bytes of DRAM per entry and retrieves key/value
pairs using on average 1.01 flash reads each. SILT combines new
algorithmic and systems techniques to balance the use of memory,
storage, and computation. Our contributions include: (1) the design
of three basic key-value stos ach with a different emphasis on
memory-efliciency and write-friendliness: (2) synthesis of the basic
key-value stores to build a SILT key-value store system; and (3) an
anal ytical model for tuning system pammeters carcfully to meet the
needs of different workloads. SILT requires one to two orders of
magnitude less memory to provide comparable throughput to cur-

rent high-perfarmance key-value systems on a commodity desktop
system with flash storage.

Categories and Subject Descriptors

D42 [Operating Systems]:  Storage Management; D.4.7
[Operating Systems |: Organization and Design: D.4.8 [Operating
Systems|: Performance; E.1 [Data]: Data Structures; E.2 [Datal:
Data Storage Representations: E.4 [Data]: Coding and Information
Theory

General Terms

Algorithi

s, Design, P

Keywords

Algorithms, design, flash, measurement, memory efficiency, perfor-
mance

1. INTRODUCTION

lve storage systems have become 4
lunge-scale, high

al building block for

Metric 2008 — 2011 Increase
CPU transistors Bl =+ LIOM 60 %
DRAM capacity  0.062 — 0.153 GB/S 147 %
Flash capacity 0.134 — 0428 GB/S 219 %
Disk capacity 492 — 15.1 GB/S 207 %

Table 1: From 2008 to 2011, flash and hard disk capacity
increased much faster than either CPU transistor count or
DRAM capacity.
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Figure 1: The memory overhead and lookup performance of
SILT and the recent key-value stores. For both axes, smaller is
better.

e-commerce platforms [21], data deduplication [ 1, 19,
stores [ 7], web object caching [, /], and more.

To achieve low latency and high performance, and make best use
of limited IO resources, key-value starage systems require efficient
indexes to locate data. Asone example, Facebook engincers recently
created a new ue storage system that m: aggressive use
of DRAM-based indexes to avoid the bottleneck caused by multiple
disk operations when reading data [ 7]. Unfortunately, DRAM
10 8X more expensive and uses 25X mare power per bit than
AR TR ) " i B

20], picture

FlashStore, a high performance key-value storage system us-
ing flash as a cache between RAM and hard disk. When a
key-value blob is written, it is sequentially logged in flash.
A specialized RAM-space efficient hash table index using a
variant of cuckoo hashing [32] and compact key signatures
is used to index the key-value blobs stored in flash mem-
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Alternate Hash Table Designs (see the backup slides)

SkimpyStash: RAM Space Skimpy Key-Value Store on
ash-based Storaae
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ABSTRACT
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ServeT icati The distinguishing fea
the design goal of extremely low RAM §
0.5) byte per key-value pair, which is moj
lier designs. SkimpyStash uses a hash tabl
index key-value pairs stored in a log-struc
To break the barrierof aflas  pointer (say, 4
overhead per key, it “moves" most of the py
key-value pair from RAM to flas itself.
resolving hash table collisions using linea
tiple keys that resolve (collide) to the sam¢
chained in a linked list, and (ii) storing the
self with a pointer in each hash table buck
the beginning recard of the chain on flash
ple flas  reads per lookup. Two further tecl
prove performance: (iii) two-choice based Ik
wide vanation in bucket sizes (hence, chain
lookup times), and a bloom filte in cach h
in RAM to disambiguate the choice during
paction procedure to pack bucket chain reo
flas pages soas to reduce flas reads durin
bucket size is the critical design parameter
ful knob for making a continuum of tradeg
usage and low lookup latencies. Our eval
server platforms with real-world data center
SkimpyStash provides throughputs from f¢
of 100,000 get-set operatians/sec.
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ate the design of FlashStore on traditional and low power
server platforms. FlashStore outperforms BerkeleyDB by
up to 60x on throughput (ops/sec), up to 50x on energy
efficiency (ops/Joule), and up to 85x on cost efficiency
(ops/sec/dollar) on the evaluated datasets.

10

Memory overhead (bytes/key)

In flash storge tha)
la single node. It re-
retrieves key/value
BILT combines new
the use of memory,
lude: (1) the design
ffcrent emphasis on
ynthesis of the basic
E system: and (3) an
arefully to meet the
pne to two orders of
e throughput to cur-
fcommodity desktop

rs

inagement:  D.4.7
h:D.4.8 [Operating
bctures: E.2 [Data}:
ing and Information

lry efficiency ferfor-

lajuilding block for
isive applications.

{0 Fan', David G. Andersen’, Michael Kaminsky*

Metric 2008 — 2011 Increase
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DRAM capacity  0.062 — 0.153 GB/S 147 %
Flash capacity 0.134 — 0428 GB/S 219 %
Disk capacity 492 - 15.1GB/S 207 %

ble 1: From 2008 to 2011, flash and hard disk capacity
indgeased much faster than either CPU transistor count or
1 capacity.

a 6

5

]

- 4

&

9

3

g

= Sg.T ..} HashCiache FAWNIDS

L] FlashStofe
0

Memory overhead (bytes /key)
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e-commerce platforms [21], data deduplication [ 1,
stores [7], web object caching [4, ], and more.
To achieve low latency and high performance, and make best use
of limited IO resources, key-value storage systems require cfficient
indexes to locate data. Asone example, Facebook engincers recently
created a new key-value starage system that makes aggressive use
of DRAM-based indexes to avoid the bottleneck caused by multiple
disk operations when reading data [ /], Unfortunately, DRAM is up
10 8X more expensive and uses 25X mare power per bit than flash,
S Suskiap ey

), 20], picture
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ing flash as a cache between RAM and hard disk. When a
key-value blob is written, it is sequentially logged in flash.
A specialized RAM-space efficient hash table index using a
variant of cuckoo hashing [32] and compact key signatures
is used to index the key-value blobs stored in flash mem-
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The RUM Conjecture

Read overheads (RO)
= total read / user read
Update overheads (UO)
= total write / user (or logical) write
Space/Memory overheads (MO)
= total space / data space

“An access method that can set an upper bound for two
out of the read, update, and memory overheads, also
sets a lower bound for the third overhead."

Or: all three can not be simultaneously optimized
to their optimal value.

Question: what is an optimal value for them?

Designing Access Methods: The RUM Conjecture

Manos Athanassoulis' Michael S. Kesterr Lukas M. Maas* Radu Stoica’

Stratos Idreos®  Anastasia Ailamakit  Mark Callaghan

*Harvard University ~ 'IBM Research, Zurich *EPFL, Lausanne °Facebook, Inc.

ABSTRACT

The database rescarch community has been building methods to
store, access, and update data for more than four decades. Through-
out the evolution of the structures and techniques used to access
data, access methods adapt to the ever changing hardware and work-
load requirements. Today, even small changes in the workload or
the hardware lead to a redesign of access methods. The need for
new designs has been increasing as data generation and workload
diversification grow exponentially, and hardware advances intro-
duce increased complexity. New workload requirements are intro-
duced by the emergence of new applications, and data is managed
by large systems composed of more and more complex and het-

one tailored to a set of important workload patterns, or for match-
ing critical hardware characteristics. Applications evolve rapidly
and continuously, and at the same time, the underlying hardware
is diverse and changes quickly as new technologies and architec-
tures are developed [1]. Both trends lead to new challenges when
designing data management software.

The RUM Tradeoff. A close look at existing proposals on access
methods! reveals that cach is confronted with the same fundamen-
tal challenges and design decisions again and again. In particular,
there are three quantities and design parameters that rescarchers
always try to minimize: (1) the read overhead (R), (2) the up-
date overhead (U). and (3) the memory (or storage) overhead (M)

crogencous hardware. As a result, it is important to
develop application-aware and hardwarc-aware access methods.

The fundamental challenges that every rescarcher, systems ar-
chitect, or designer faces when designing a new access method arc
how to minimize. i) read times (R). ii) update cost (U), and iii)
memory (or storage) overhead (M). In this paper, we conjecture
that when optimizing the read-update-memory overheads, optimiz-
ing in any two arcas negatively impacts the third. We present a
simple model of the RUM overheads, and we articulate the RUM
Conjecture. We show how the RUM Conjecture manifests in state-
of-the-art access methods, and we envision a trend toward RUM-
aware access methods for future data systems.

1. INTRODUCTION

Chasing Access Paths. Picking the proper physical design (through
static autotuning [14], online tuning [13], or adaptively [31]) and
access method [27. 49] have been key rescarch challenges of data
management systems for several decades. The way we physically
organize data on storage devices (disk, flash, memory, caches) de-
fines and restricts the possible ways that we can read and update it.
For example, when data is stored in a heap file without an index,
we have to perform costly scans to locate any data we arc interested
in. Conversely, a tree index on top of the heap file, uses additional
space in order to substitute the scan with a more lightweight in-
dex probe. Over the years, we have scen a plethora of exciting
and innovative proposals for data structures and algorithms, cach

2016, Copyright is with the authors. Published in Proc. 19th Inter-
onal Conference on Extending Datsbase Technology (EDBT), March
18, ‘()lb Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper s perited under the terms of the

Lu.‘h\; Commoas license CC-by-n

h called the RUM overheads. Deciding which overhead(s)
to optimize for and to what extent, remains a prominent part of the
process of designing a new access method. especially as hardware
and workloads change over time. For example. in the 19705 one
of the critical aspects of every database algorithm was to minimize
the number of random accesses on disk: fast-forward 40 years and
a similar strategy is still used. only now we minimize the number
of random accesses to main memory. Today, different hardware
runs different applications but the concepts and design choices re-
main the same. New challenges. however, arise from the exponen-
tial growth in the amount of data generated and processed, and the
wealth of emerging data-driven applications. both of which stress
existing data access methods.
The RUM Conjecture: Read, Update, Memory - Optimize Two
at the Expense of the Third. An ideal solution is an access method
that always provides the lowest read cost, the lowest update cost,
and requires no extra memory or storage space over the base data.
In practice, data structures are designed to compromise between the
three RUM overheads. while the optimal design depends on a mul-
titude of factors like hardware, workload. and user expectations.
We analyze the lower bounds for the three overheads (read - up-
date - memory) given an access method which is perfectly tailored
for minimizing cach overhead and we show that such an access
method will impact the rest of the overheads negatively. We take
this observation a step further and propose the RUM Conjecture:
designing access methods that set an upper bound for two of the
RUM overheads, leads 1o a hard lower bound for the third over-
head which cannot be further reduced. For example, in order to
minimize the cost of updating data, one would use a design based
on differential structures, allowing many queries to consolidate up-
dates and avoid the cost of reorganizing data. Such an approach,
however, increases the space overhead and hinders read cost as now
queries need to merge any relevant pending updates during process-
ing. Another cxample is that the read cost can be minimized by

! Access methods: algorithms and data structures for organizing
and accessing data [27),
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Examples:

Minimizing RO: an indexed array (1.0)
{1, v1} {3, v2} => store in a sparse array

v

V2

WO = 2.0 (why 2.0?7), MO = O(«) (why infinity?)

Minimizing UO: append log with diffs updates

RO= 0O(), and MO = O()

Minimizing MO: just store the raw user data (1.0) as

a sequence
RO= O(N), and UO = O(1.0)

Read Optimized

indexes
B-Tree Trie
Skiplist

Cracking
Adaptive structures

PDT MEsine Sparse Index

LSM
Bloom filter
Differential /57 A{)proximat

structures MaSM Bitmap indexes

Write Optimized Space Optimized
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Implications for
Indexing structures

The RUM Conjecture: Need for efficient
data-structure designs
e Read-heavy, write-heavy, mixed,
range scans, concurrency, batch
operations
e Modeling, statistics, and analysis

e Algorithms Behind Modern Storage Systems, https://queue.acm.org/detail.cfm?id=3220266

Index Search

Insertion||deletion

Space Experimental evaluation
SCATTERED LOGGING
BFTL [149, 151] hxc z(ﬁ fﬁspm nxc+B B-tree
+N, ‘merge/rotate)
WOBF [51] = = = BFTL, IBSF
SCATTERED LOGGING & NODE MODIFICATION
FlashB-tree [73] (h,hxc) L (3 % Nope) n+B BFTL, IBSF
NODE MODIFICATION
uB+tree [141] - - - B+tree
BF-tree [7] h+ [pyp = n* Ny B+tree, FD-tree, hashing
* Nt s
IN MEMORY BUFFERING
IBSF [88] h "Lm(]\"jspm + ange,mmw) n+B BFTL
RBFTL [152] - - - B-tree
LU B+tree [116] - - - B+tree
TNC [59] = = = =
AS B-tree [123] - - - B+tree, BFTL, LA-tree
FLASH BUFFERING
FD-tree [98, 99] log,n [ﬁbgk T srw cxn B+tree, BFTL, LSM-tree
FD+tree, FD+FC [139] log, # [ﬁlogﬁ ﬁ]m‘. cxn FD+XM, FB+DS [139]
BSMVBT [34] = & = TMVBT [57]
FLASH BUFFERING & NODE MODIFICATION
AB-tree [64] 2?—1 %l h/s, n B+tree, BFTL, FD-tree
WPCB-tree [61] h [Usw + 3 * 1y + [1]4m n+B B-tree, the d-IPL, pu-tree
| W + [P6]om
IN MEMORY BUFFERING & NODE MODIFICATION
MB-tree [124] 2+ [log,, [3/n¢]w n+B BFTL, B+tree(ST), B-tree
\zl:tl] + [(ng + [logy, %.‘)
/) "(]x
FB-tree [75] - - - B+tree
Bw-tree [92, 93] - - - BerkeleyDB, Skip List
Bloom tree [66] h + Prp * d - n+ B B+tree, B+tree(ST), FD-tree, MB-tree
+2
IN MEMORY BUFFERING & IN MEMORY BATCH READ BUFFERING & NODE MODIFICATION
PIOB-tree [125, 126] h—1+t, [Z;‘;{” ﬁ +ﬁ]r 4 [ﬁ]w n+p BFTL, FD-tree, B+tree
_ et
Gllogyy (u—B)-1)

e Indexing in flash storage devices: a survey on challenges, current approaches, and future trends,

https://link.springer.com/article/10.1007/s00778-019-00559-8
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Summary of Data Structures

e B+ Tree (read-optimized)
o Fast, bounded lookup for read/get (log(n))
o Efficient range based queries
o But poor performance for write-heavy workloads, update bubbling (also small updates)

e Log-structured Merge (LSM) Tree (write-optimized)
o Good performance for write-heavy workloads, large sequential log based updates
o Ranged based queries possible
o Read/Write amplification is a problem

e Simple hash table (hash like md5 on the key — map to a location)
[Typically uses] Log-based writing

Easy and fast lookup and retrieval (O(1))

Limited range based query support (need additional indexing)

Tradeoff between (memory usage, and flash 1/0)

O O O O
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What you should know from this lecture

w N

© N Uk

The idea of B+ Tree, LSM Tree, and Hash Tables
Choices these data structures (B+ Tree, LSM, and Hash Table)

What advantages and disadvantages they offer when implementing them
over NAND flash

Key problem and solution: uTree
Key problem and solution: LOCS and SILK
Key problem and solution: WiscKey

What is read/write amplification in LSM tree (or in any data structure)
The RUM Conjecture
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Example 2: HashTable on Flash

FlashStore: High Throughput Persistent Key-Value Store

Biplob Debnath” Sudipta Sengupta Jin Li
University of Minnesota Microsoft Research Microsoft Research
Twin Cities, USA Redmond, USA Redmond, USA
biplob@umn.edu sudipta@microsoft.com jinl@microsoft.com
ABSTRACT A high throughput persistent key-value store can help to

‘We present FlashStore, a high throughput persistent key-
value store, that uses flash memory as a non-volatile cache
between RAM and hard disk. FlashStore is designed to
store the working set of key-value pairs on flash and use one
flash read per key lookup. As the working set changes over
time, space is made for the current working set by destag-
ing recently unused key-value pairs to hard disk and recy-
cling pages in the flash store. FlashStore organizes key-value
pairs in a log-structure on flash to exploit faster sequential
write performance. It uses an in-memory hash table to index
them, with hash collisions resolved by a variant of cuckoo
hashing. The in-memory hash table stores compact key sig-
natures instead of full keys so as to strike tradeoffs between
RAM usage and false flash read operations.

FlashStore can be used as a high throughput persistent
key-value storage layer for a broad range of server class ap-
plications. We compare FlashStore with BerkeleyDB, an
embedded key-value store application, running on hard disk
and flash separately, so as to bring out the performance
gain of FlashStore in not only using flash as a cache above
hard disk but also in its use of flash aware algorithms. We
use real-world data traces from two data center applica-
tions, namely, Xbox LIVE Primetime online multi-player
game and inline storage deduplication, to drive and evalu-
ate the design of FlashStore on traditional and low power
server platforms. FlashStore outperforms BerkeleyDB by
up to 60x on throughput (ops/sec), up to 50x on energy
efficiency (ops/Joule), and up to 85x on cost efficiency
(ops/sec/dollar) on the evaluated datasets.

improve the performance of such applications. Flash mem-
ory is a natural choice for such a store, providing persis-
tency and 100-1000 times lower access times than hard disk.
Compared to DRAM, flash access times are about 100 times
higher. Flash stands in the middle between DRAM and disk
also in terms of cost — it is 10x cheaper than DRAM, while
20x more expensive than disk — thus, making it an ideal gap
filler between DRAM and disk.

There are two types of popular flash devices, NOR and
NAND flash. NAND flash architecture allows a denser lay-
out and greater storage capacity per chip. As a result,
NAND flash memory has been significantly cheaper than
DRAM, with cost decreasing at faster speeds. NAND flash
characteristics have lead to an explosion in its usage in
consumer electronic devices, such as MP3 players, phones,
caches and Solid State Disks (SSDs). In the rest of the pa-
per, we use NAND flash based SSDs as the architectural
choice and simply refer to it as flash memory. We describe
SSDs in detail in Section 2. To get the maximum perfor-
mance per dollar out of SSDs, it is necessary to use flash
aware data structures and algorithms to avoid small random
writes that not only have a higher latency but also reduce
flash device lifetimes through increased page wearing.

In this paper, we present the design and evaluation of
FlashStore, a high performance key-value storage system us-
ing flash as a cache between RAM and hard disk. When a
key-value blob is written, it is sequentially logged in flash.
A specialized RAM-space efficient hash table index using a
variant of cuckoo hashing [32] and compact key signatures
is used to index the key-value blobs stored in flash mem-
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FlashStore: Data Structures

Many workloads are read-heavy and do not need indexing (B+ tree a bit of an
overkill) - restrictive layout how the keys can be stores

e Microsoft wanted to have flash SSDs as a KV cache in front of their HDDs
If we just do a simple hash(key) — location, that would be good enough
e Hash has O(1) lookup time, not O(Log(n)) like B+ tree

But the “small write” problem. We cannot store each key in its own page (in
efficient) and cannot do small writes to just to update the key

Goal: fast KV cache with a single flash 1/0 read to locate data
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Design Goals and Issues

1.

Deliver low-latency, high-throughput operations
a. For small key looks up
b. Values can be in DRAM cache or on Flash

2. Use flash-aware data structures

3.

a. Do not do small page updates

Low RAM footprint for indexing to lookup on flash

a. Technically you can use 8 bytes per key and 64 bytes of value
b. So for a1 TB of flash drive, you will need 1 TB / (64 + 8) x 8 bytes = 122 GB of DRAM (!)
c. Same problem as with the FTL

70



Architecture

RAM Write buffer : buffer until the flash ——
page size il -
irst Valid Page
: fixed-si O
ety eed s (cRLy ! = B CerrEEEE
:> Disk Store
i Management
Recency Bit Vector: maintains access T e EE EE M
information for staging data between Re ey R o | EQD
flash and disk Rl ] LastvaidPage || AGH
Disk-Presence Bloom Filter i
Bloom filter: probabilistic “false positive”, but index | RAM

never “false negative” (it's not there when it is there)

HashTable: The primary data structure to look for key — flash location in one flash read



Key Lookup and Insertion Operations

Insert (with timestamps):

1.

2.
3.
4.

Into the write buffer
Wait until full

Write out to flash
Update the HT index

Lookup

pUWN -

o U

In RAM read cache
In RAM write cache
Lookup in HT index to find on flash
Lookup bloom filter

a. No:return NULL

b. Yes: disk search (B+ tree)
Update recency bit
(Optional) put in RAM read cache

Key-Value Pair

Write
Buffer

| Key-Value Pair
Read

Cache

[ = [[]

Recency Bit Vector

Ltlofe] - [Jolt]

Disk-Presence Bloom Filter

First Valid Page

OTEE

i
) e
B >D D |:| D Destaging ’
s -EE 0
I FLASH
Hash Table
Index RAM
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Hash Table Design

In a simple hash table, we can do something like

e Hash(key) — HT slot — check if the key stored there matches
o OK, then follow the flash page pointer (8bytes)
o  Collision: then follow the link list of collision pointers

Uses Cuckoo hashing : use “n” hash functions and find
the first free location to put the key. No need to
scan any linear list in case of high collision

What to store in these hash table slots? Full key and
flash page address? (lots of data)

https://www.geeksforgeeks.org/implementing-our-own-hash-table-with-separate-chaining-in-java/ 73



https://www.geeksforgeeks.org/implementing-our-own-hash-table-with-separate-chaining-in-java/

Hash Table Memory Usage: What to Store?

U 1
Compact key signature (instead of full key and hash):

compact key signaturel pointer to key-value pair on flash

e Afull key can be of any size, hashes are large < 2-byte « 4-byte —

too (160-512 bits) U U
e If the key used i" hash function then used the top-order 16 bits as a
compact signature

Flash page offset as 4 byte pointers (not 8 bytes) : maximum size = 232 x 4KB = 8TB

e How many bits to use, can be optimized for the given size of the device

e For example, 160GB device (what they used), 160GB/4KB = 26 bits only
o Restof the (32 - 26) = 6 bits, can be used for in-page offsets of 128 bytes
o Hence, 128 bytes becomes the minimum packing granularity

Broadly speaking: a memory-efficient HT table design is an active research problem
(many papers are out there in the field, we are only covering one trick)

U
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Flash Specific Concerns

Filled flash pages are written in a log-append order (lookup is done using

the in-memory HT table)
o Log garbage collection for entries that have been overwritten or deleted (similar logic)

After certain HT table occupancy and Flash usage - trigger destaging from

flash to HDD
o Pick pages and check the recency bitmap in memory to find if they have been accessed
recently

m Yes, put them in write buffer (back in the circulation)
m  No, push them to HDD and make space

At crash
o Default option: build HT by scanning flash logs

o Options 2: checkpointing
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Performance

MW FlashStore

42527

m BerkeleyDB-SSD
E BerkeleyDB-HDD
S 10000 | 8325
wv
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2
o
)]
wv
> 1000 + 700
Q
o
¥
m

100

Blue Xbox trace Dedup trace

Delivers performance for two important workloads for Microsoft (xbox, and dedup)

Compared with running BerkeleyDB (B+Tree) on SSD and HDD
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WiscKey: Doing garbage collection in vLog

A native way would be : to scan the LSM Tl head and tail are stored in LSM-tree helad
key tree to identify all valid values and then
Femove them ksize, vsize, key,value | - ----------

Value Lo
Better way: to keep a back reference to the —

keys in the value log as well

Once GC kicks in, values from the tail are read, validated by querying the LSM
tree, and then move to the head

The new tail, and addresses are then inserted in the LSM tree before cleaning
values 77



Idea 1: Enable Concurrent Accesses

There is still a single mutable MemTable

Number of immutable in-memory

MemTables are increased to 44
e Can absorb write bursts

Run multiple parallel compaction at the
same time
e Was not possible with HDD because
there is only single read/write head
e No parallelism

User Threads

= = =

LevelDB

1/0 requests from LevelDB
L 1 1 1

LevelDB I/O Request Scheduler om—y—
Request Queue Request Queue Request Queue LevelDs
1 2 44
Read Read -
Write Read Read Our main
Read Erase Write contribution
Erase Write Write
| Storage API |
| SSD Driver | Software
/dev/ssd0 /dev/ssd1 /dev/ssd43 Hardware
SSD Controller |
mTT T [ | T T T |
: Channel 1 : : Channel 2 { : Channel 44 :
I I I I |
| | : | oeee : SDF
| | |
| Flash || 1 Flash [ : Flash |1
I ([ I I
e e QS S —— J !_ ______ |
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Idea 2: Scheduling Optimization

Question: How should you pick which
channel an SSTable should be flushed?
e \Writes decides read workload too

Strategy 1: Round-Robin

Strategy 2: Least Weighted Queue Length
Write dispatching

e Weight is read/write/erase cost

N
1

©
Write
Read
@ Read .
@Write ®Read Write
©Read | [@Read
[@]

@ ®
Write Write Write

Req. Queue Req. Queue Req. Queue
for Channel1 forChannel2 for Channel 3

(a) Round-Robin

®Write [ORead
(DRead © .
@Write ORead Write
©Read @Read
® @ ®
Write Write Write

Req. Queue Req. Queue Req. Queue
for Channel1  for Channel 2  for Channel 3

(b) Least Weighted-Queue-Length

Trace # | 2 3145|6789 ]|10]I11
Op. WIW| W[R|R|R|R|[R|W|W|[W
Channel | = | = | = [ 32|22 |2 - ]| = =

(c) Trace of the example
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Idea 3: Placement Aware Compaction

it } vanveney - Recall that LSM trees need compaction
level O MM |\ X“2 47 | | || s
tj;j:;-F-;;;-l- o BEE -}--j;E-i!%e;-ﬂ--g;ﬁ-lk Here: LO file (b-d) is being pushed to L1
Ch.1 Ch.3 Ch.4 CEh:5 Ch.6
Step 1 At L1 it overlaps with two files (a-b),(c-d)
Level 1: || Level 1:
- A [Step 1] We first read those two files in DRAM
(" Write ) Malrs\sf\élemory
Zﬁi:fr%ed/ﬂsqﬁe«"‘tﬁ Do a multi-way merge sort with the three files
Level 25~p ] [c~d ] Chei]| k| |Ce~| [Ceeha
Ch.1 Ch.2 Ch.3 Ch.4 chis Ch.6
Step 2 [Step 2] Then write out the L1 files (a-b) and (c-d)
[Step 3] Next-level of compaction at level L1 and
Chead - L2 for key ranges of (a-b)
level oSN~ MGz [ [ ) Y S
S NN ] NS ] s s O I
Leve%&l Tlm {LI’:I_JLJ [&J Lgm“ Problem?
Ch.1 Ch. 2 Ch.3 Ch.4 Ch.5 Ch.6
Step 3




Idea 3: Placement Aware Compaction

Il Old sSTable
Level 0: evel 1: | Level 1: Level O: evel 1: | Level 1:
I sl sl R S
0 be erase
Main Memory A e P Main Memory
SSD s Read SSD
levelO MMl |\ X"z A | | f || || ____ Level 0 (MM || X2 4 | | | Y
Level 1 |NERM| _\__E_"'_f_l _____ [ Level1 |NERCH 5 ___(E@ e e
Level2 [[a~b | ik ) (Ce~f ] |Ce~h] Level2 ([a~b || |Cc~d 1| |Ch™id| (k| (e~ ]| [Ce~h]
Ch.1 ch.4 | | Ch.5| | Ch.6 Cch.1||ch.2||ch3)|ch4]||cCh5]|Che
Step 1 Step 1
Main Memory N = Main Memory
55H) \ Write SSD
level ORSSN Az ] /1] ST N e Levelo SSSN)| |[[xz 1) | ) I (o I N —
'-e"e'}}___N__E"____}___}H_E"EJ [ | s | R I Level 1[N [BSN]| [Es™t ] [ [e~T | S
Level 275~p ] Ce~d ] Chei]| [Crk]| e [Ce™h]| | tevel 2|27 | |Cvd | |Cheid Crk ] Cet || |Ceeh)
ch.1 ch.4| | ch.5) | Ch.6 ch.1)|ch.2| | ch3 ch.4 ch.5 | | ch.6
Step 2
Main Memory 4 pa Main Memory
5D \_fead ssD
Level O fANNN 7 Level 0| AN
Level 1IN @%b | Level 1| RSSSH
Level 2/737p ] Level 2] 3%b || |Cc~d J| |Ch~i] Cef | |Ca~h ]
Ch.1 ch.1 | |ch.2 || ch3 ch.5 ) | ch.6

Step 3
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Idea 4: Erase Aware Scheduling

Once the compaction is done, then one must erase blocks

Unlike read/write, erase can be scheduled by the KV when it is most
opportune, when is that?

Time Time
e Eager, as soon as possible A BT e
AV A ———— . ———
Erase is a long operation
3 - }| P S N e
A 2t gea: -----------------------
. . ea
Can lead to interferences with 1 Read | [Read| [Read] ~ 1[[Read| TRead]| [Read]
. Req. Queue Req. Queue Req. Queue Req. Queue Req. Queue Req. Queue
read Operatlon (poor perf) for Channell for Channel2  for Channel 3 for Channel 1 for Channel 2  for Channel 3
Eager scheduling of erase might be bad for read

performance
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Idea 4: Erase Aware Scheduling

The trick here is to schedule Erase with Writes, not with Read, why?

e Because writes can be put to any channel (flexible)
o Reads cannot be moved around because they need to a read a given address
from that channel
e [Erase + Write] can be used to balance out work among channels

. . Time Time
In this example, we can insert Erase ol ol
with write operations to maintain Write Write | |Write
A balanced LWQL queue A - - T A i
Write | | Write Write ‘Erase | |Write Write
E.g., with Erase in write it will take 19 el loms] | witte| |viritel i
units, where as Erase in write takes 15 P TS N R R
for Channell for Channel 2 for Channel 3 for Channell for Channel2 for Channel 3

units
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