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The layered approach in the lectures

New devices (Flash) 

New host interfaces (NVMe protocol) 

Software implication in the block layer 

File systems

Applications (key-value store) 
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Recap: File System (FS)
FS is responsible for 
1. storing hierarchical directories and files on a flat disk; 
2. translating user read/write to disk addresses 

File systems have (1) data ; (2) metadata 
1. Data: user data 
2. Metadata: user and fs informations (name, creation 

time, storage location) etc. 

Important data structures: inode (stores file system 
metadata, and location of data) 

More: free bitmaps, extent maps, superblock, etc. 

3Background reading: chapter 40, File System Implementation, http://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf  

http://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf


Recap: File System (FS)
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For example, ext2, https://wiki.osdev.org/Ext2 and https://piazza.com/class_profile/get_resource/il71xfllx3l16f/inz4wsb2m0w2oz 

https://wiki.osdev.org/Ext2
https://piazza.com/class_profile/get_resource/il71xfllx3l16f/inz4wsb2m0w2oz


Why Do we really need a new file system?
NAND Flash SSD, even though “semantically” is 
like HDD (read/write sectors), internally it has: 

● Mixed performance spectrum:
○ Very good sequential performance 
○ Good random read performance 
○ Poor random write performance 
○ Very poor small random write performance 

● FTL implementation 
● GC interference 
● Chip-die-plane parallelism 
● Wear-leveling 
● Error handling 

5



What happens if we just ignore it
Technically we can just run any file system. Sure it will work, but 

1. Poor degraded performance 
2. Unpredictable performance (cloud providers do not like this!) 
3. Poor reliability during related failures (e.g., wearing metadata areas) 
4. Poor device lifetime 

Bad things will happen :( Let’s do our best try to avoid bad things.  

Recall: we talked about how a “log” is a perfect match for flash-based I/O 

● Immutable, sequential, transactional → perfect for flash ! 

6



Interestingly enough … 
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A Log-structured file system (SpriteFS) was 
investigated back in the early 1990s 

Highly influential work 

Can you guess why such a design would make 
sense back in 1992 for a HDD based fs? 

Mendel Rosenblum and John K. Ousterhout. 1992. The design and implementation of a log-structured file system. ACM 
Trans. Comput. Syst. 10, 1 (Feb. 1992), 26–52. DOI:https://doi.org/10.1145/146941.146943 

 

https://doi.org/10.1145/146941.146943


Why Log-Structured file system (LFS) in 1992? 

1. The amount of system DRAM was increasing 
a. More opportunity to cache data and serve “read” requests from DRAM 
b. DRAM is random access, hence, good “read” performance 

2. Access to disk will dominated by “writes” 
a. Writes can be sequential and random 
b. Writes can be small (metadata) and large (data) - large writes are OK, but small writes are really 

bad. Plus random writes for metadata updates --- really really bad 

3. Hence, use a log-structured file system optimized for servicing fast writes 
a. Random “read” (metadata) not so much → must be served from the buffer cache 

It turned out that “log” is a very useful data structure for write-once media as well (like NAND 
flash). But how do you make a working file system on a log? How to do you find inodes? and what 
happens when a log is full? 8



The basic idea of an LFS
With an LFS, there cannot be a single known location where inodes are stored, the 
location changes every time an inode is updated  

LFS’s goal is to optimize inode metadata lookups -- why? 

All new writes are written to the log in a 
sequential manner,  and then a “inode map” 
structure is written to identify their locations  

inode maps are written to the log after each (or batch of) updates 

LFS’s checkpoint region contains all inode maps information 

Inode maps are typically cached in the buffer cache for fast lookups
9

http://www.cs.cornell.edu/courses/cs4410/2014fa/slides/13-lfs.pdf 

http://www.cs.cornell.edu/courses/cs4410/2014fa/slides/13-lfs.pdf


Simple example 
Let’s say we want to create /dir1/file1
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fd fi
Data block 

File inode block On-disk log 

File inode contains the disk offsets for these pointers



Simple example 
Let’s say we want to create /dir1/file1
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fd fi dd di
Data block 

File inode block 

Directory data block 

Directory inode block

On-disk log 

Remember directories are just special files with a 
special format to keep track of all other files and 
directories inside it

fd = file data
fi  = file inode 
dd = directory data 
di = directory inode 

File entries 
● Name: “file1” 

○ ctime: Jan 1st, 1970 
○ Inode number, offset
○ permissions



Simple example 
Let’s say we want to create another /dir2/file2
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fd fi dd di
Data block 

File inode block 

Directory data block 

Directory inode block

file1

dir2

Typically these updates are buffered in the DRAM cache 
and then written out in a single large sequential 
segments to amortize the disk seek cost



Simple example 
Two locations: /dir1/file1 and /dir2/file2
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fd fi dd di
x
xData block 

File inode block 

Directory data block 

Directory inode block

inode map 
dir1 #inode  : offset1 
dir2 #inode  : offset2 
file1 #inode : offset3
file2 #inode : offset4

file1

Every time a file is created, modified, and updated, the new data blocks 
with the new version of inodes are written to the log 

When a file is deleted, a NULL inode is written to mark a file deleted

There is an in-memory big inode map table that has the latest offset 
entries for all inode locations written to the log (optimization, not necessary 
for the correctness)



Simple example 
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Data block 

File inode block 

Directory data block 

Directory inode block

In-memory Inode map Table 

Inode number 100 : offset1 
Inode number 200 : offset2 
… 

In case there are concurrent updates 
→ The last one wins 
→ in case there is a crash, the in-memory 
table can be build again by scanning the log 
at the mount time 



Simple example 
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Data block 

File inode block 

Directory data block 

Directory inode block

In-memory Inode map Table 

Inode number 100 : offset1 
Inode number 200 : offset2 
… 

In case there are concurrent updates 
→ The last one wins 
→ in case there is a crash, the in-memory 
table can be build again by scanning the log 
at the mount time 

The one thing it has to remember is where is the root inode location - that can be stored when 
the LogFS does checkpointing (like any other file system). The initial SuperBlock location and 2x 
checkpoint regions are fixed (stores inode map table, root inode location etc.) 

Super
Block

Checkpoint
0

Checkpoint
1

Log → 



What happens when a log become full?
The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs, anyone Zones?)

So what can be done with this design? Two options: 

16

new log starts     new log ends

segments



What happens when a log become full?
The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs, anyone Zones?)

So what can be done with this design? Two options: 

17

new log starts     new log ends

Threading
Compaction

pointers

segments



What happens when a log become full?
The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs, anyone Zones?)

So what can be done with this design? Two options: 
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new log starts     new log ends

Threading: no explicit GC (quick use), 
But (i) additional metadata; (ii) random access inside the log 

Compaction: GC, copy and clean (overhead)
(i) nice clean blocks; (ii) no random access 

pointers

Threading : no explicit garbage collection, fast, but metadata to keep track of holes, random accesses

Compaction : explicit garbage collection phase, copy cost, but gives nice clean blocks with less overheads 

Sprite LFS used a hybrid: segments is always written sequentially and then copy and compacted 
However, the log is threaded segment-by-segment basis



The log cleaning 
Segments are the unit of GC cleaning 

After each segment there is a segment summary block to keep track of “live” 
and “dead” blocks 
● How does FTL keep track of this?  

Everytime GC is invoked - it need to select a target/victim segment for cleaning 

At the time of cleaning, when data is being re-arranged, the GC has an 
opportunity to re-arrange blocks in a segment to pack “hot and cold” data 
separately (lazy classification) 

19



Segment cleaning logic: Picking up a victim 
Greedy 
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Cost-Benefit Analysis

Goal: the goal is is to create one clean segment for every new segment data written
Greedy picks up the most utilized segment (“u” is utilization between 0 and 1), “N” is the number of 
pages in a segment  

Cost-benefit analysis does include the “hotness” or “age” of data (the last time data was updated) and 
how much space we will free (1 - u), with total work (1 (read) + u (write)) 

For FTL: These mechanisms are exactly the same (now with formulas) what we discussed in the 
context of GC, and even actually inspired many “victim” selection policies in FTL/GC implementations 



Segment cleaning logic: Picking up a victim 
Greedy 

21

Cost-Benefit Analysis

Goal: the goal is is to create one clean segment for every new segment data written
Greedy picks up the most utilized segment (“u” is utilization between 0 and 1), “N” is the number of 
pages in a segment  

Cost-benefit analysis does include the “hotness” or “age” of data (the last time data was updated) and 
how much space we will free (1 - u), with total work (1 (read) + u (write)) 

For FTL: These mechanisms are exactly the same (now with formulas) what we discussed in the 
context of GC, and even actually inspired many “victim” selection policies in FTL/GC implementations 

What is missing here? 
Should I apply these formulas as it is in my FTL? 



Why Log-Structured FSes were not good enough 

1. Segment cleaning overheads in Log-Structured file systems 
a. The Achilles heel for LogFS : a long and interesting debate 

i. “the impact of the cleaner is so severe that BSD-LFS cannot compete with either FFS or EFS. For the tests 
presented here, the disk was running at 85% utilization, and the cleaner was continually running. Note 
that FFS and EFS allocate up to 90% of the disk capacity without exhibiting any performance 
degradation” (https://www.hhhh.org/perseant/lfs/lfs_for_unix.pdf, page 16) 

b. Not expressive enough for modern file system workloads 
i. Dominated by random, small I/O on files (stresses the primitive segment cleaning) 

c. How would you identify hot/cold data? Is there a FS API? 

2. Ignoring the device characteristics  
a. Different sector, page, block sizes and layouts 
b. Multiple read/write possible at the same time 
c. Not all random writes are the same
d. Different read, write, and GC cost and granularities  
e. Performance vs. utilization 22

https://www.hhhh.org/perseant/lfs/lfs_for_unix.pdf


The Semantic Gap: File Systems and FTL
Both, FTL designs and Log-Structured file systems advocate to separate cold from 
hot data

In-place update file systems like FAT32 or ext4 
● The FTL can identify hot and cold data by keeping track of #invalidation

But in a log-structured file system, the same page is not written twice. How does 
the FTL knows now? Open challenge 

Generally this problem is known as “Semantic Gap” between layers, exists in 
multiple systems fields like virtualization, networking, storage, etc. 

⇒ risen from Modularity and Layering principles 23



SFS: Random Write Considered Harmful in Solid State Drives 
(2012)
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Improving the semantic gap by letting the FS 
maintain hotness statistics actively 

● Hotness is maintained on the File Block (or offset), 
not its address (that changes in an LFS) 

● Classify Files, FB, and segments into different 
hotness groups

● Use this hotness statistics to do better victim segment 
selection for GC

● Do an “eager” classification than a “lazy” one as proposed in 
the original LFS paper 

Goal: This makes the life of the device-side FTL easy(-ier) 



SFS: Basic workings
Hotness is maintained on three levels:  
(i) File; (ii) File-Block; and (iii) Segment 

● Segment - the same concept as before (GC unit) 
● File-Block - file offset (or its logical address) 
● File - can contain multiple file-blocks 

Classify writes to [hot, warm, cold, ro] 

Segment cleaning is similar to LogFS, 
but it also goes through the same path 
of writing a segment 

Key Difference: Every write is classified (eagerly), 
unlike LFS which classifies data when doing GC 
(this design helps with managing traffic skewness) 

25



Cost-Hotness victim selection policy

Recall: we looked at Greedy and Cost-Benefit policies before 

In Sprite FS, they just use the 
last modified time as an estimation of hotness 

SFS uses proposes Cost-Hotness policy 

● Us is segment utilization 
● Hs is segment hotness 

Similar logic, but now (more) accurately picks up victim segment for cleaning 

26



So, is this effective?
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Multiple number of hotness groups help to 
decrease the write cost (WC) 
● (New W data + Old R data + Old W data) / 

New W data 
● Same as the write amplification but includes 

read cost too 

SFS beats 
(i) LFS-CostBenefit (CB); 
(ii) BrtFS (COW-mode); 
(iii) BrtFS (no-COW); 
(iv) ext4 (which uses logging for data journaling) 



Flash-Friendly File System (F2FS) (2015)

Highly influential work 

One of the first file systems designed from scratch for NAND flash and is part of the mainline kernel 
(production quality): 
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/f2fs?h=master 

https://www.kernel.org/doc/html/latest/filesystems/f2fs.html 

Primary concerns: layout and parallelism inside flash devices (+previous best ideas) 28

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/f2fs?h=master
https://www.kernel.org/doc/html/latest/filesystems/f2fs.html


F2FS: Disk Layout

29

Device is split into: 
● Zones : unit of parallelism, can open multiple parallel zones for I/O 

○ Sections : unit of cleaning, some multiple of the flash GC units (if known, or large enough) 
■ Segments : unit of space allocation (can contain multiple flash pages) 

A section stores either (1) Node contains inode (with single, double, triple pointer pages) and indices of data pages; 
or (2) Data segments (user data)

Two areas: random writes (F2FS’s own metadata) and sequential writes 



F2FS: Disk Layout
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All the file metadata is written in the start Zones (classified as Random Write Zones) 
● Superblock                                       : read-only information about the file system 
● Check point area (CP)                     : 2x to switch between stable and active 
● Segment Information Table (SIT)  : per-segment information, live blocks, used in GC 
● Node Address Table (NAT)          : address of “nodes” blocks in the Main Area 
● Segment Summary Area (SSA)      : to identify parent blocks and fs tree 
● Main Area                                         : data (metadata and data) segments are written 



F2FS : File Structure 
The file structure is not surprising, follows a typical 
“inode” based tree model 

There are direct, single, double, and triple indirect 
pointers 

In original LFS: there is an inode map to translate an 
inode number to an on-device location (written at the 
end of the segment) 

F2FS uses the NAT table to translate an inode number 
to its on-device location 

This design solves an important problem with log-based 
file system: Recursive update problem 31



Update Propagation in LFS vs. F2FS 
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https://www.usenix.org/sites/default/files/conference/protected-files/fast15_slides_lee.pdf 

In a Log-Structured file system, updates at the bottom of the tree will be bubbled through the 
whole tree (updating device addresses) until reached at the top and a new inode map location is 
written - this is called recursive update problem (also known as Wandering Tree problem)

https://www.usenix.org/sites/default/files/conference/protected-files/fast15_slides_lee.pdf


Update Propagation in LFS vs. F2FS 
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https://www.usenix.org/sites/default/files/conference/protected-files/fast15_slides_lee.pdf 

In a Log-Structured file system, updates at the bottom of the tree will be bubbled through the 
whole tree (updating device addresses) until reached at the top and a new inode map location is 
written - this is called recursive update problem (also known as Wandering Tree problem)

In contrast, F2FS uses node numbers for indexing and only immediate parent is updated with 
further updates in-place in NAT (which is at a fixed location, Node Number → Device Address) 

https://www.usenix.org/sites/default/files/conference/protected-files/fast15_slides_lee.pdf


Random writes in the NAT?
The idea (I think) is that it is a reasonable tradeoff to build a general 
purpose FS with good performance in most of the cases. The 
original Log-FS has many “*” for it to operate efficiently 

34An f2fs teardown, https://lwn.net/Articles/518988/, October 2012  
https://www.pinterest.com/pin/440226932298031698/ 

...[f2fs] leaves a number of tasks to the FTL while focusing primarily on those 

tasks that it is well positioned to perform. So, for example, f2fs makes no effort 

to distribute writes evenly across the address space to provide wear-leveling. 

...Some metadata, and occasionally even some regular data, is written via random 
single-block writes. This would be anathema for a regular log-structured file 
system, but f2fs chooses to avoid a lot of complexity by just doing small updates 
when necessary and leaving the FTL to make those corner cases work.

https://lwn.net/Articles/518988/
https://www.pinterest.com/pin/440226932298031698/


Multi-Headed stream logging 
F2FS leverages device parallelism by 
opening multiple write segment streams 

These streams are classified based on their
hotness and separated in zones 

● Uses a simple classification (unlike SFS)
● Different types (table) put in different 

classes 

Different zones are mapped to different
parallel units inside the flash 

35



On ZNS devices it can get more interesting … 

36
Nick Tehrany (MSc thesis, msF2FS - Design of Multi-Streamed F2FS, TU Delft) 
https://repository.tudelft.nl/islandora/object/uuid%3A3c2b3e73-6aff-45f3-af43-31a50314b547 

Files → Stream maps

https://repository.tudelft.nl/islandora/object/uuid%3A3c2b3e73-6aff-45f3-af43-31a50314b547


Victim selection and segment cleaning 
Recall: Greedy and Cost-Benefit (CB) policies 
● Greedy is simple, but perhaps not the most effective 
● CB is more effective, but needs more homework

F2FS does two type of cleaning 
● Foreground: when the free segments drop below a threshold, uses Greedy  
● Background: routine, takes its time with a CB policy with hotness 

The rest of the trick is the same, move the data from the victim segment to the buffer 
cache, and mark them dirty. They will be written down to the device in the due time. Not to 
erase the old blocks until the checkpoint-ing is done. 

Also: F2FS dynamically switches between threading and cleaning for log management 
37



F2FS performance 
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SQLite workload on 3 different file systems, F2FS outperforms them all 
(more detailed performance evaluation in the paper)

Thesis topic: these 
numbers ought to be 

updated for the fastest 
flash we have



F2FS recap
Key choices in the design of F2FS 

1. Flash-friendly data layouts : align fs GC unit (segments) with FTL gc unit 
2. NAT updates to restrain writes update propagations

a. Accepts random writes for the FS metadata regions 

3. Multi-headed logging for parallelism 
4. Adaptive logging (threading vs. cleaning) and GC policies (foreground and 

background) 

It is highly influential work, and one of the few production quality code that we 
can test and benchmark 

39



So far 
You have seen the original Log-Structured File System design (Sprite FS)
● Design originally for disks, but fits perfectly with NAND flash too :)  
● Typically “GC” is the Achilles Heel of any log-structured file system 

SSD File system (SFS) that explores FS-assisted GC policies, but mostly kept 
the original Log-Structured layout
● File system maintains statistics actively for hotness on file blocks 

F2FS, flash-friendly layouts with with multi-headed logging capabilities 

All these file system assumed a conventional SSDs, can we think of something 
new to do here?

40



Thinking outside the (flash) box
All conventional file systems, do these three steps: 

1. Determine a location (the on-device address) where to write data 
2. Write data 
3. Keep track of the location in the file system metadata 

We will talk two unique file system designs (there are more in literature):

● Direct File System for virtualized Flash (DFS) (2009) 
● Nameless Writes (2012) 

41



DFS: Direct File System (2010) 

42

File System

File

Flash Logical Address

FTL

Flash Physical Address



DFS: Context
The year is 2010, flash is this new cool technology that is going to solve all our 
problems (allegedly)  

● Host-based FTL designs are being explored 
● FS exploration is happening, but not much is understood yet 
● SSD device performance is increasing 
● PCIe-attached is the way to attach flash storage (NVMe is not there yet) 

This work is from Fusion-IO, the company that put flash on PCIe and run the FTL in 
the device driver on the host-CPU (no-embedded, device-side FTL) 

● Attaching to the PCIe bus brings the device within CPU memory management
● Delivered 100K IOPS random read performance (!) 

43



Virtualize Flash Storage: Key ideas  
Instead of restrictive “N” block interface (where N is the capacity, like 1TiB) to a flash 
SSD, present a large 64-bit block address space (like the virtual memory) 

Combine the two re-directions: 

1. FS-level: from file to logical flash page
2. FTL-level: from logical flash page to physical location 

File systems is just responsible for choosing the most easy/lightweight layout for file 
management 

Virtualized FTL: wear-leveling, remapping, and reliability 

64-bit page addressing for 512 bytes pages in Fusion-IO flash, 273 bytes space 
44



How does it look?

45



Building a simplified file system 

46

273 bytes space (264 x 29 bytes, 512 byte blocks)

Virtualized address space from flash FTL, 64 bits address identifying the 512 byte block 



Building a simplified file system 
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273 bytes space (264 x 29 bytes, 512 byte blocks)

2TiB allocation chunks 

How many 2TB chunks there can be? 273/241 = 232 (hence, a 32 bit chunk addressing is enough)

The 64 bit storage space is divided as : 232 chunks of size 232 x 512 bytes (2TiB). 

Files/directories are divided into large and small. Large files gets full 2TiB (virtual) chunk, multiple smalls files are 
packed together in a single 2TiB chunk → how to do this classification? User-defined threshold 



Building a Simplified File System 
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273 bytes space (264 x 29 bytes, 512 byte blocks)

Large File 
(2 TB)

Superblock

inode0
inode1
inode2
inode3

inodeK

Simple 
Array 
offsets

Occupied Small file

Small dirLarge 
Directory 

(2 TB)

Occupied 

Inodes are 512 bytes, hence there are 2TB / 512 bytes number of inodes → 32 bits address
Inode location look-up is then trivial : inode_number → to location translation (array offsets) 
Inode entries contain the virtual address of the allocated 2TB block, file type, creation time, access, 
etc. 



File Offset Translation
Let's say I want to read a file at an offset (in the units of 512 bytes)

49

<file descriptor, offset>
                    32 bits 

<inode num, offset>

Indexing in the inode array 

DFS file to inode mappings (OS)

<2TB block address, offset>
    32 bits  + 32 bits = 64

512 bytes

32-bits offset

9-bits offset

Goes to the FTL 
for I/O 

232 of them 



Does it help with performance?

50
Yes, DFS deliver superior performance in microbenchmarks and in real world workloads 

Device peak



In Summary: DFS (2010)
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Very simple and intuitive implementation
Complexity is avoided in 
● inode management 
● Allocation and logging 

DFS has issues, the recovery logic needs 
support for atomic hardware logging 
● Expensive device 
● Consumes CPU cycles on the host 

But overall, it is a pretty cool work that shows how to revise old abstractions 
and re-think ideas in presence of new technologies like NAND flash 



Another cool project: FlashMap (2015)

52
Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten Schwan. 2015. Unified address translation for memory-mapped SSDs 
with FlashMap. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA '15). 
https://doi.org/10.1145/2749469.2750420 

https://doi.org/10.1145/2749469.2750420


Nameless Writes (2012) 

53



Key Challenge: Excessive Indirection
Redirection adds layer between two abstractions and an API 

Very powerful idea in computer science 

● Virtual Memory management (hides physical DRAM addresses) 
● Virtualization (hides systems resources CPU, memory, devices) 
● (here) FTL (hides low-level flash complexity) 
● (also) DFS’s flash virtualization is an example of indirection

However, they come at a performance or complexity cost. The question here is given 
that what we know about FTL and the device internals, what can we do? 

54

File systems

FTL

NAND physical add.



The Storage Device API and Indirection
How does a storage device API looks like? Where is the indirection? 

● write(sector/page/address, data, length) 

● read(sector/page/address, data, length) 

● trim(sector/page/address, length) // only useful for SSDs 

55

write                     read

API

Virtual 

Physical 

indirection



The Storage Device API and Indirection
How does a storage device API looks like? Where is the indirection? 

● write(sector/page/address, data, length) 

● read(sector/page/address, data, length) 

● trim(sector/page/address, length) // only useful for SSDs 
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The problem comes from the fact that a file system (or any other storage 
service) tells the device “where” to write “what” 

● The “name” or the identifier of the location is already given in the call 

These are “named” writes. What if we don’t tell the device where to write, 
only what to write, hence, the nameless writes?



Nameless Writes Idea

57

Flash device 

write(data, length)
Physical location

Device physical addresses are exposed to the 
application like file system 

Data is written directly directly on physical blocks 

Device is free to choose the best location where to 
write data and notify the application 

Maximum flexibility to the device 

Challenges (of course, why else we would do it)? think of running a Log-Structured File system on it...
● Looking up stuff : everytime FS writes something we get a new address? 
● Recursive update problem : inode map changes propagation ?
● GC, wear-leveling, copying -- what if a block is migrated inside the flash device? 
● Anything else? 



Segmented Address Space 
Split the address space into two areas: 

● Virtually addressed 
● Physically addressed 

Virtually addressed is “page-mapped” 
in the FTL for the best performance 
● Small area, hence, low memory 

requirements for the FTL 

This way virtually mapped areas are always addressable in a known location 
● Super block, NAT tables, inode maps can be placed here
● Recursive updates terminate here 

58



Nameless API so far 
Physical API 

● uint64_t physical_write(data, length) → {paddresses, status}

● uint64_t physcial_read(paddress, length) → {data, status}

Virtual API

● virtual_write (vaddress, data, length) → {status} 

● virtual_read (vaddress, data, length) → {status}

So what happens if a physical block is moved, like during GC and wear-leveling? How 
does the file system know when a block is moved underneath it inside a device? 

 59



Callbacks and Metadata 
To support free moving of data in physical blocks, Nameless API also 
introduced callback to file systems (or to any upper layer API) 

● callback → {old paddress, new paddress} 

However, now when a file system get an address “0xdeadbeef” is changed, 
how does it know which file/directory is this belong to?

● Sure, it has this information, but needs the full FS scan (not feasible) 
● Idea: put a metadata pointer with all read/writes

○ Embed any useful pointers in these metadata, e.g., inode + version 
○ Metadata stored in small OOB flash areas next to pages and written atomically 
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Nameless Device and API
Physical API 

● physical_write(data, length, mdata) → {paddr, status}

● physcial_read(paddr, length, mdata) → {data, status}

● physcial_overwrite(old_paddr(es), data, length, mdata} → 

{new paddr(es), status}

● callback → {old paddr(es), new paddr(es), mdata}

● free/trim(p/vaddr, length, mdata} → {status} 

Virtual API (not that interesting) 

● virtual_write (vaddress, data, length) → {status} 

● virtual_read (vaddress, data, length) → {status}
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Evaluation: Nameless 
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Nameless device performance closely to a page-mapped FTL without 
requiring high memory to maintain GBs of FTL mapping tables 



1. Application-Managed Flash (USENIX FAST 2016) 
a. Completely expose flash chips to file systems and no in-place updates 
b. Breakdown recursive updated data structures into small blocks, and build an in-memory 

data structure at the time of mounting to capture updates 

2. Para File system (USENIX 2016) 
a. Also exposes a very simple FTL to the file system exposing all device geometry 
b. Considering page allocation and striping to extract maximum performance 
c. Coordinated I/O scheduling between on-host GC threads and user writes 

There is a large body of work out there regarding optimizing file systems for 
NAND flash storage devices 

Further ideas in the literature 
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What we are not covering 
Popular file system designs for raw-flash chips in embedded systems (FTL+FS):

● JFFS  (The  Journalling  Flash  File  System), UBIFS  (Unsorted  Block  Image  File  System), Yaffs 
(Yet Another Flash File System), NAFS (NAND flash memory Array File System), CFFS (Core Flash 
File System), NAMU (NAnd flash Multimedia file system), MNFS (novel mobile multimedia file 
system), … 

Typically they are build on similar ideas and concepts, but they 

● Assume some sort of NOR byte-addressable location 
● Focus on wear-leveling for a single class of applications (not server-class diverse 

workloads) 
● Are not scalable to TBs of flash chips capacities
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For further reading see… 
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(2023) Nick Tehrany, Krijn Doekemeijer, Animesh Trivedi, A Survey on the Integration of NAND Flash Storage in the Design of File 
Systems and the Host Storage Software Stack, https://arxiv.org/abs/2307.11866.  
(2023) Nick Tehrany, msF2FS: Design and Implementation of an NVMe ZNS SSD Optimized F2FS File System, 
https://repository.tudelft.nl/islandora/object/uuid%3A3c2b3e73-6aff-45f3-af43-31a50314b547.  

https://arxiv.org/abs/2307.11866
https://repository.tudelft.nl/islandora/object/uuid%3A3c2b3e73-6aff-45f3-af43-31a50314b547


What you should know from this lecture 
1. How did SSD influence the design of file systems 
2. What is a Log-Structured File System and why it is the most popular-way 

to build flash-based file systems 
3. What are they key design challenges when building a flash-based file 

system, choices for 
a. Layouts, GC policies, segmentation management 
b. Ideas presented with Sprite FS, SSD FS, and F2FS 

4. New developments with the co-development of FTL and FS semantics 
a. DFS, and Nameless writes 

Next week: Flash-based Key-Value Stores 
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