
1

Storage Systems (StoSys)
XM_0092

Lecture 4: Flash-based File Systems
Animesh Trivedi

Autumn 2023, Period 1

The layered approach in the lectures

New devices (Flash)

New host interfaces (NVMe protocol)

Software implication in the block layer

File systems

Applications (key-value store)

2

Distributed Systems

L1

L2

L3

L4

L5

L6
Byte-addressable,
persistent memories

L7
Networked NVM

L8

Specialization

L9-L10
L11

Emerging topics

Recap: File System (FS)
FS is responsible for
1. storing hierarchical directories and files on a flat disk;
2. translating user read/write to disk addresses

File systems have (1) data ; (2) metadata
1. Data: user data
2. Metadata: user and fs informations (name, creation

time, storage location) etc.

Important data structures: inode (stores file system
metadata, and location of data)

More: free bitmaps, extent maps, superblock, etc.

3Background reading: chapter 40, File System Implementation, http://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

http://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

Recap: File System (FS)

4
For example, ext2, https://wiki.osdev.org/Ext2 and https://piazza.com/class_profile/get_resource/il71xfllx3l16f/inz4wsb2m0w2oz

https://wiki.osdev.org/Ext2
https://piazza.com/class_profile/get_resource/il71xfllx3l16f/inz4wsb2m0w2oz

Why Do we really need a new file system?
NAND Flash SSD, even though “semantically” is
like HDD (read/write sectors), internally it has:

● Mixed performance spectrum:
○ Very good sequential performance
○ Good random read performance
○ Poor random write performance
○ Very poor small random write performance

● FTL implementation
● GC interference
● Chip-die-plane parallelism
● Wear-leveling
● Error handling

5

What happens if we just ignore it
Technically we can just run any file system. Sure it will work, but

1. Poor degraded performance
2. Unpredictable performance (cloud providers do not like this!)
3. Poor reliability during related failures (e.g., wearing metadata areas)
4. Poor device lifetime

Bad things will happen :(Let’s do our best try to avoid bad things.

Recall: we talked about how a “log” is a perfect match for flash-based I/O

● Immutable, sequential, transactional → perfect for flash !

6

Interestingly enough …

7

A Log-structured file system (SpriteFS) was
investigated back in the early 1990s

Highly influential work

Can you guess why such a design would make
sense back in 1992 for a HDD based fs?

Mendel Rosenblum and John K. Ousterhout. 1992. The design and implementation of a log-structured file system. ACM
Trans. Comput. Syst. 10, 1 (Feb. 1992), 26–52. DOI:https://doi.org/10.1145/146941.146943

https://doi.org/10.1145/146941.146943

Why Log-Structured file system (LFS) in 1992?

1. The amount of system DRAM was increasing
a. More opportunity to cache data and serve “read” requests from DRAM
b. DRAM is random access, hence, good “read” performance

2. Access to disk will dominated by “writes”
a. Writes can be sequential and random
b. Writes can be small (metadata) and large (data) - large writes are OK, but small writes are really

bad. Plus random writes for metadata updates --- really really bad

3. Hence, use a log-structured file system optimized for servicing fast writes
a. Random “read” (metadata) not so much → must be served from the buffer cache

It turned out that “log” is a very useful data structure for write-once media as well (like NAND
flash). But how do you make a working file system on a log? How to do you find inodes? and what
happens when a log is full? 8

The basic idea of an LFS
With an LFS, there cannot be a single known location where inodes are stored, the
location changes every time an inode is updated

LFS’s goal is to optimize inode metadata lookups -- why?

All new writes are written to the log in a
sequential manner, and then a “inode map”
structure is written to identify their locations

inode maps are written to the log after each (or batch of) updates

LFS’s checkpoint region contains all inode maps information

Inode maps are typically cached in the buffer cache for fast lookups
9

http://www.cs.cornell.edu/courses/cs4410/2014fa/slides/13-lfs.pdf

http://www.cs.cornell.edu/courses/cs4410/2014fa/slides/13-lfs.pdf

Simple example
Let’s say we want to create /dir1/file1

10

fd fi
Data block

File inode block On-disk log

File inode contains the disk offsets for these pointers

Simple example
Let’s say we want to create /dir1/file1

11

fd fi dd di
Data block

File inode block

Directory data block

Directory inode block

On-disk log

Remember directories are just special files with a
special format to keep track of all other files and
directories inside it

fd = file data
fi = file inode
dd = directory data
di = directory inode

File entries
● Name: “file1”

○ ctime: Jan 1st, 1970
○ Inode number, offset
○ permissions

Simple example
Let’s say we want to create another /dir2/file2

12

fd fi dd di
Data block

File inode block

Directory data block

Directory inode block

file1

dir2

Typically these updates are buffered in the DRAM cache
and then written out in a single large sequential
segments to amortize the disk seek cost

Simple example
Two locations: /dir1/file1 and /dir2/file2

13

fd fi dd di
x
xData block

File inode block

Directory data block

Directory inode block

inode map
dir1 #inode : offset1
dir2 #inode : offset2
file1 #inode : offset3
file2 #inode : offset4

file1

Every time a file is created, modified, and updated, the new data blocks
with the new version of inodes are written to the log

When a file is deleted, a NULL inode is written to mark a file deleted

There is an in-memory big inode map table that has the latest offset
entries for all inode locations written to the log (optimization, not necessary
for the correctness)

Simple example

14

Data block

File inode block

Directory data block

Directory inode block

In-memory Inode map Table

Inode number 100 : offset1
Inode number 200 : offset2
…

In case there are concurrent updates
→ The last one wins
→ in case there is a crash, the in-memory
table can be build again by scanning the log
at the mount time

Simple example

15

Data block

File inode block

Directory data block

Directory inode block

In-memory Inode map Table

Inode number 100 : offset1
Inode number 200 : offset2
…

In case there are concurrent updates
→ The last one wins
→ in case there is a crash, the in-memory
table can be build again by scanning the log
at the mount time

The one thing it has to remember is where is the root inode location - that can be stored when
the LogFS does checkpointing (like any other file system). The initial SuperBlock location and 2x
checkpoint regions are fixed (stores inode map table, root inode location etc.)

Super
Block

Checkpoint
0

Checkpoint
1

Log →

What happens when a log become full?
The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs, anyone Zones?)

So what can be done with this design? Two options:

16

new log starts new log ends

segments

What happens when a log become full?
The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs, anyone Zones?)

So what can be done with this design? Two options:

17

new log starts new log ends

Threading
Compaction

pointers

segments

What happens when a log become full?
The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs, anyone Zones?)

So what can be done with this design? Two options:

18

new log starts new log ends

Threading: no explicit GC (quick use),
But (i) additional metadata; (ii) random access inside the log

Compaction: GC, copy and clean (overhead)
(i) nice clean blocks; (ii) no random access

pointers

Threading : no explicit garbage collection, fast, but metadata to keep track of holes, random accesses

Compaction : explicit garbage collection phase, copy cost, but gives nice clean blocks with less overheads

Sprite LFS used a hybrid: segments is always written sequentially and then copy and compacted
However, the log is threaded segment-by-segment basis

The log cleaning
Segments are the unit of GC cleaning

After each segment there is a segment summary block to keep track of “live”
and “dead” blocks
● How does FTL keep track of this?

Everytime GC is invoked - it need to select a target/victim segment for cleaning

At the time of cleaning, when data is being re-arranged, the GC has an
opportunity to re-arrange blocks in a segment to pack “hot and cold” data
separately (lazy classification)

19

Segment cleaning logic: Picking up a victim
Greedy

20

Cost-Benefit Analysis

Goal: the goal is is to create one clean segment for every new segment data written
Greedy picks up the most utilized segment (“u” is utilization between 0 and 1), “N” is the number of
pages in a segment

Cost-benefit analysis does include the “hotness” or “age” of data (the last time data was updated) and
how much space we will free (1 - u), with total work (1 (read) + u (write))

For FTL: These mechanisms are exactly the same (now with formulas) what we discussed in the
context of GC, and even actually inspired many “victim” selection policies in FTL/GC implementations

Segment cleaning logic: Picking up a victim
Greedy

21

Cost-Benefit Analysis

Goal: the goal is is to create one clean segment for every new segment data written
Greedy picks up the most utilized segment (“u” is utilization between 0 and 1), “N” is the number of
pages in a segment

Cost-benefit analysis does include the “hotness” or “age” of data (the last time data was updated) and
how much space we will free (1 - u), with total work (1 (read) + u (write))

For FTL: These mechanisms are exactly the same (now with formulas) what we discussed in the
context of GC, and even actually inspired many “victim” selection policies in FTL/GC implementations

What is missing here?
Should I apply these formulas as it is in my FTL?

Why Log-Structured FSes were not good enough

1. Segment cleaning overheads in Log-Structured file systems
a. The Achilles heel for LogFS : a long and interesting debate

i. “the impact of the cleaner is so severe that BSD-LFS cannot compete with either FFS or EFS. For the tests
presented here, the disk was running at 85% utilization, and the cleaner was continually running. Note
that FFS and EFS allocate up to 90% of the disk capacity without exhibiting any performance
degradation” (https://www.hhhh.org/perseant/lfs/lfs_for_unix.pdf, page 16)

b. Not expressive enough for modern file system workloads
i. Dominated by random, small I/O on files (stresses the primitive segment cleaning)

c. How would you identify hot/cold data? Is there a FS API?

2. Ignoring the device characteristics
a. Different sector, page, block sizes and layouts
b. Multiple read/write possible at the same time
c. Not all random writes are the same
d. Different read, write, and GC cost and granularities
e. Performance vs. utilization 22

https://www.hhhh.org/perseant/lfs/lfs_for_unix.pdf

The Semantic Gap: File Systems and FTL
Both, FTL designs and Log-Structured file systems advocate to separate cold from
hot data

In-place update file systems like FAT32 or ext4
● The FTL can identify hot and cold data by keeping track of #invalidation

But in a log-structured file system, the same page is not written twice. How does
the FTL knows now? Open challenge

Generally this problem is known as “Semantic Gap” between layers, exists in
multiple systems fields like virtualization, networking, storage, etc.

⇒ risen from Modularity and Layering principles 23

SFS: Random Write Considered Harmful in Solid State Drives
(2012)

24

Improving the semantic gap by letting the FS
maintain hotness statistics actively

● Hotness is maintained on the File Block (or offset),
not its address (that changes in an LFS)

● Classify Files, FB, and segments into different
hotness groups

● Use this hotness statistics to do better victim segment
selection for GC

● Do an “eager” classification than a “lazy” one as proposed in
the original LFS paper

Goal: This makes the life of the device-side FTL easy(-ier)

SFS: Basic workings
Hotness is maintained on three levels:
(i) File; (ii) File-Block; and (iii) Segment

● Segment - the same concept as before (GC unit)
● File-Block - file offset (or its logical address)
● File - can contain multiple file-blocks

Classify writes to [hot, warm, cold, ro]

Segment cleaning is similar to LogFS,
but it also goes through the same path
of writing a segment

Key Difference: Every write is classified (eagerly),
unlike LFS which classifies data when doing GC
(this design helps with managing traffic skewness)

25

Cost-Hotness victim selection policy

Recall: we looked at Greedy and Cost-Benefit policies before

In Sprite FS, they just use the
last modified time as an estimation of hotness

SFS uses proposes Cost-Hotness policy

● Us is segment utilization
● Hs is segment hotness

Similar logic, but now (more) accurately picks up victim segment for cleaning

26

So, is this effective?

27

Multiple number of hotness groups help to
decrease the write cost (WC)
● (New W data + Old R data + Old W data) /

New W data
● Same as the write amplification but includes

read cost too

SFS beats
(i) LFS-CostBenefit (CB);
(ii) BrtFS (COW-mode);
(iii) BrtFS (no-COW);
(iv) ext4 (which uses logging for data journaling)

Flash-Friendly File System (F2FS) (2015)

Highly influential work

One of the first file systems designed from scratch for NAND flash and is part of the mainline kernel
(production quality):
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/f2fs?h=master

https://www.kernel.org/doc/html/latest/filesystems/f2fs.html

Primary concerns: layout and parallelism inside flash devices (+previous best ideas) 28

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/f2fs?h=master
https://www.kernel.org/doc/html/latest/filesystems/f2fs.html

F2FS: Disk Layout

29

Device is split into:
● Zones : unit of parallelism, can open multiple parallel zones for I/O

○ Sections : unit of cleaning, some multiple of the flash GC units (if known, or large enough)
■ Segments : unit of space allocation (can contain multiple flash pages)

A section stores either (1) Node contains inode (with single, double, triple pointer pages) and indices of data pages;
or (2) Data segments (user data)

Two areas: random writes (F2FS’s own metadata) and sequential writes

F2FS: Disk Layout

30

All the file metadata is written in the start Zones (classified as Random Write Zones)
● Superblock : read-only information about the file system
● Check point area (CP) : 2x to switch between stable and active
● Segment Information Table (SIT) : per-segment information, live blocks, used in GC
● Node Address Table (NAT) : address of “nodes” blocks in the Main Area
● Segment Summary Area (SSA) : to identify parent blocks and fs tree
● Main Area : data (metadata and data) segments are written

F2FS : File Structure
The file structure is not surprising, follows a typical
“inode” based tree model

There are direct, single, double, and triple indirect
pointers

In original LFS: there is an inode map to translate an
inode number to an on-device location (written at the
end of the segment)

F2FS uses the NAT table to translate an inode number
to its on-device location

This design solves an important problem with log-based
file system: Recursive update problem 31

Update Propagation in LFS vs. F2FS

32
https://www.usenix.org/sites/default/files/conference/protected-files/fast15_slides_lee.pdf

In a Log-Structured file system, updates at the bottom of the tree will be bubbled through the
whole tree (updating device addresses) until reached at the top and a new inode map location is
written - this is called recursive update problem (also known as Wandering Tree problem)

https://www.usenix.org/sites/default/files/conference/protected-files/fast15_slides_lee.pdf

Update Propagation in LFS vs. F2FS

33
https://www.usenix.org/sites/default/files/conference/protected-files/fast15_slides_lee.pdf

In a Log-Structured file system, updates at the bottom of the tree will be bubbled through the
whole tree (updating device addresses) until reached at the top and a new inode map location is
written - this is called recursive update problem (also known as Wandering Tree problem)

In contrast, F2FS uses node numbers for indexing and only immediate parent is updated with
further updates in-place in NAT (which is at a fixed location, Node Number → Device Address)

https://www.usenix.org/sites/default/files/conference/protected-files/fast15_slides_lee.pdf

Random writes in the NAT?
The idea (I think) is that it is a reasonable tradeoff to build a general
purpose FS with good performance in most of the cases. The
original Log-FS has many “*” for it to operate efficiently

34An f2fs teardown, https://lwn.net/Articles/518988/, October 2012
https://www.pinterest.com/pin/440226932298031698/

...[f2fs] leaves a number of tasks to the FTL while focusing primarily on those

tasks that it is well positioned to perform. So, for example, f2fs makes no effort

to distribute writes evenly across the address space to provide wear-leveling.

...Some metadata, and occasionally even some regular data, is written via random
single-block writes. This would be anathema for a regular log-structured file
system, but f2fs chooses to avoid a lot of complexity by just doing small updates
when necessary and leaving the FTL to make those corner cases work.

https://lwn.net/Articles/518988/
https://www.pinterest.com/pin/440226932298031698/

Multi-Headed stream logging
F2FS leverages device parallelism by
opening multiple write segment streams

These streams are classified based on their
hotness and separated in zones

● Uses a simple classification (unlike SFS)
● Different types (table) put in different

classes

Different zones are mapped to different
parallel units inside the flash

35

On ZNS devices it can get more interesting …

36
Nick Tehrany (MSc thesis, msF2FS - Design of Multi-Streamed F2FS, TU Delft)
https://repository.tudelft.nl/islandora/object/uuid%3A3c2b3e73-6aff-45f3-af43-31a50314b547

Files → Stream maps

https://repository.tudelft.nl/islandora/object/uuid%3A3c2b3e73-6aff-45f3-af43-31a50314b547

Victim selection and segment cleaning
Recall: Greedy and Cost-Benefit (CB) policies
● Greedy is simple, but perhaps not the most effective
● CB is more effective, but needs more homework

F2FS does two type of cleaning
● Foreground: when the free segments drop below a threshold, uses Greedy
● Background: routine, takes its time with a CB policy with hotness

The rest of the trick is the same, move the data from the victim segment to the buffer
cache, and mark them dirty. They will be written down to the device in the due time. Not to
erase the old blocks until the checkpoint-ing is done.

Also: F2FS dynamically switches between threading and cleaning for log management
37

F2FS performance

38

SQLite workload on 3 different file systems, F2FS outperforms them all
(more detailed performance evaluation in the paper)

Thesis topic: these
numbers ought to be

updated for the fastest
flash we have

F2FS recap
Key choices in the design of F2FS

1. Flash-friendly data layouts : align fs GC unit (segments) with FTL gc unit
2. NAT updates to restrain writes update propagations

a. Accepts random writes for the FS metadata regions

3. Multi-headed logging for parallelism
4. Adaptive logging (threading vs. cleaning) and GC policies (foreground and

background)

It is highly influential work, and one of the few production quality code that we
can test and benchmark

39

So far
You have seen the original Log-Structured File System design (Sprite FS)
● Design originally for disks, but fits perfectly with NAND flash too :)
● Typically “GC” is the Achilles Heel of any log-structured file system

SSD File system (SFS) that explores FS-assisted GC policies, but mostly kept
the original Log-Structured layout
● File system maintains statistics actively for hotness on file blocks

F2FS, flash-friendly layouts with with multi-headed logging capabilities

All these file system assumed a conventional SSDs, can we think of something
new to do here?

40

Thinking outside the (flash) box
All conventional file systems, do these three steps:

1. Determine a location (the on-device address) where to write data
2. Write data
3. Keep track of the location in the file system metadata

We will talk two unique file system designs (there are more in literature):

● Direct File System for virtualized Flash (DFS) (2009)
● Nameless Writes (2012)

41

DFS: Direct File System (2010)

42

File System

File

Flash Logical Address

FTL

Flash Physical Address

DFS: Context
The year is 2010, flash is this new cool technology that is going to solve all our
problems (allegedly)

● Host-based FTL designs are being explored
● FS exploration is happening, but not much is understood yet
● SSD device performance is increasing
● PCIe-attached is the way to attach flash storage (NVMe is not there yet)

This work is from Fusion-IO, the company that put flash on PCIe and run the FTL in
the device driver on the host-CPU (no-embedded, device-side FTL)

● Attaching to the PCIe bus brings the device within CPU memory management
● Delivered 100K IOPS random read performance (!)

43

Virtualize Flash Storage: Key ideas
Instead of restrictive “N” block interface (where N is the capacity, like 1TiB) to a flash
SSD, present a large 64-bit block address space (like the virtual memory)

Combine the two re-directions:

1. FS-level: from file to logical flash page
2. FTL-level: from logical flash page to physical location

File systems is just responsible for choosing the most easy/lightweight layout for file
management

Virtualized FTL: wear-leveling, remapping, and reliability

64-bit page addressing for 512 bytes pages in Fusion-IO flash, 273 bytes space
44

How does it look?

45

Building a simplified file system

46

273 bytes space (264 x 29 bytes, 512 byte blocks)

Virtualized address space from flash FTL, 64 bits address identifying the 512 byte block

Building a simplified file system

47

273 bytes space (264 x 29 bytes, 512 byte blocks)

2TiB allocation chunks

How many 2TB chunks there can be? 273/241 = 232 (hence, a 32 bit chunk addressing is enough)

The 64 bit storage space is divided as : 232 chunks of size 232 x 512 bytes (2TiB).

Files/directories are divided into large and small. Large files gets full 2TiB (virtual) chunk, multiple smalls files are
packed together in a single 2TiB chunk → how to do this classification? User-defined threshold

Building a Simplified File System

48

273 bytes space (264 x 29 bytes, 512 byte blocks)

Large File
(2 TB)

Superblock

inode0
inode1
inode2
inode3

inodeK

Simple
Array
offsets

Occupied Small file

Small dirLarge
Directory

(2 TB)

Occupied

Inodes are 512 bytes, hence there are 2TB / 512 bytes number of inodes → 32 bits address
Inode location look-up is then trivial : inode_number → to location translation (array offsets)
Inode entries contain the virtual address of the allocated 2TB block, file type, creation time, access,
etc.

File Offset Translation
Let's say I want to read a file at an offset (in the units of 512 bytes)

49

<file descriptor, offset>
 32 bits

<inode num, offset>

Indexing in the inode array

DFS file to inode mappings (OS)

<2TB block address, offset>
 32 bits + 32 bits = 64

512 bytes

32-bits offset

9-bits offset

Goes to the FTL
for I/O

232 of them

Does it help with performance?

50
Yes, DFS deliver superior performance in microbenchmarks and in real world workloads

Device peak

In Summary: DFS (2010)

51

Very simple and intuitive implementation
Complexity is avoided in
● inode management
● Allocation and logging

DFS has issues, the recovery logic needs
support for atomic hardware logging
● Expensive device
● Consumes CPU cycles on the host

But overall, it is a pretty cool work that shows how to revise old abstractions
and re-think ideas in presence of new technologies like NAND flash

Another cool project: FlashMap (2015)

52
Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten Schwan. 2015. Unified address translation for memory-mapped SSDs
with FlashMap. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA '15).
https://doi.org/10.1145/2749469.2750420

https://doi.org/10.1145/2749469.2750420

Nameless Writes (2012)

53

Key Challenge: Excessive Indirection
Redirection adds layer between two abstractions and an API

Very powerful idea in computer science

● Virtual Memory management (hides physical DRAM addresses)
● Virtualization (hides systems resources CPU, memory, devices)
● (here) FTL (hides low-level flash complexity)
● (also) DFS’s flash virtualization is an example of indirection

However, they come at a performance or complexity cost. The question here is given
that what we know about FTL and the device internals, what can we do?

54

File systems

FTL

NAND physical add.

The Storage Device API and Indirection
How does a storage device API looks like? Where is the indirection?

● write(sector/page/address, data, length)

● read(sector/page/address, data, length)

● trim(sector/page/address, length) // only useful for SSDs

55

write read

API

Virtual

Physical

indirection

The Storage Device API and Indirection
How does a storage device API looks like? Where is the indirection?

● write(sector/page/address, data, length)

● read(sector/page/address, data, length)

● trim(sector/page/address, length) // only useful for SSDs

56

The problem comes from the fact that a file system (or any other storage
service) tells the device “where” to write “what”

● The “name” or the identifier of the location is already given in the call

These are “named” writes. What if we don’t tell the device where to write,
only what to write, hence, the nameless writes?

Nameless Writes Idea

57

Flash device

write(data, length)
Physical location

Device physical addresses are exposed to the
application like file system

Data is written directly directly on physical blocks

Device is free to choose the best location where to
write data and notify the application

Maximum flexibility to the device

Challenges (of course, why else we would do it)? think of running a Log-Structured File system on it...
● Looking up stuff : everytime FS writes something we get a new address?
● Recursive update problem : inode map changes propagation ?
● GC, wear-leveling, copying -- what if a block is migrated inside the flash device?
● Anything else?

Segmented Address Space
Split the address space into two areas:

● Virtually addressed
● Physically addressed

Virtually addressed is “page-mapped”
in the FTL for the best performance
● Small area, hence, low memory

requirements for the FTL

This way virtually mapped areas are always addressable in a known location
● Super block, NAT tables, inode maps can be placed here
● Recursive updates terminate here

58

Nameless API so far
Physical API

● uint64_t physical_write(data, length) → {paddresses, status}

● uint64_t physcial_read(paddress, length) → {data, status}

Virtual API

● virtual_write (vaddress, data, length) → {status}

● virtual_read (vaddress, data, length) → {status}

So what happens if a physical block is moved, like during GC and wear-leveling? How
does the file system know when a block is moved underneath it inside a device?

 59

Callbacks and Metadata
To support free moving of data in physical blocks, Nameless API also
introduced callback to file systems (or to any upper layer API)

● callback → {old paddress, new paddress}

However, now when a file system get an address “0xdeadbeef” is changed,
how does it know which file/directory is this belong to?

● Sure, it has this information, but needs the full FS scan (not feasible)
● Idea: put a metadata pointer with all read/writes

○ Embed any useful pointers in these metadata, e.g., inode + version
○ Metadata stored in small OOB flash areas next to pages and written atomically

60

Nameless Device and API
Physical API

● physical_write(data, length, mdata) → {paddr, status}

● physcial_read(paddr, length, mdata) → {data, status}

● physcial_overwrite(old_paddr(es), data, length, mdata} →

{new paddr(es), status}

● callback → {old paddr(es), new paddr(es), mdata}

● free/trim(p/vaddr, length, mdata} → {status}

Virtual API (not that interesting)

● virtual_write (vaddress, data, length) → {status}

● virtual_read (vaddress, data, length) → {status}

61

Evaluation: Nameless

62

Nameless device performance closely to a page-mapped FTL without
requiring high memory to maintain GBs of FTL mapping tables

1. Application-Managed Flash (USENIX FAST 2016)
a. Completely expose flash chips to file systems and no in-place updates
b. Breakdown recursive updated data structures into small blocks, and build an in-memory

data structure at the time of mounting to capture updates

2. Para File system (USENIX 2016)
a. Also exposes a very simple FTL to the file system exposing all device geometry
b. Considering page allocation and striping to extract maximum performance
c. Coordinated I/O scheduling between on-host GC threads and user writes

There is a large body of work out there regarding optimizing file systems for
NAND flash storage devices

Further ideas in the literature

63

What we are not covering
Popular file system designs for raw-flash chips in embedded systems (FTL+FS):

● JFFS (The Journalling Flash File System), UBIFS (Unsorted Block Image File System), Yaffs
(Yet Another Flash File System), NAFS (NAND flash memory Array File System), CFFS (Core Flash
File System), NAMU (NAnd flash Multimedia file system), MNFS (novel mobile multimedia file
system), …

Typically they are build on similar ideas and concepts, but they

● Assume some sort of NOR byte-addressable location
● Focus on wear-leveling for a single class of applications (not server-class diverse

workloads)
● Are not scalable to TBs of flash chips capacities

64

For further reading see…

65

(2023) Nick Tehrany, Krijn Doekemeijer, Animesh Trivedi, A Survey on the Integration of NAND Flash Storage in the Design of File
Systems and the Host Storage Software Stack, https://arxiv.org/abs/2307.11866.
(2023) Nick Tehrany, msF2FS: Design and Implementation of an NVMe ZNS SSD Optimized F2FS File System,
https://repository.tudelft.nl/islandora/object/uuid%3A3c2b3e73-6aff-45f3-af43-31a50314b547.

https://arxiv.org/abs/2307.11866
https://repository.tudelft.nl/islandora/object/uuid%3A3c2b3e73-6aff-45f3-af43-31a50314b547

What you should know from this lecture
1. How did SSD influence the design of file systems
2. What is a Log-Structured File System and why it is the most popular-way

to build flash-based file systems
3. What are they key design challenges when building a flash-based file

system, choices for
a. Layouts, GC policies, segmentation management
b. Ideas presented with Sprite FS, SSD FS, and F2FS

4. New developments with the co-development of FTL and FS semantics
a. DFS, and Nameless writes

Next week: Flash-based Key-Value Stores

66

References
● Mendel Rosenblum and John K. Ousterhout. 1991. The design and implementation of a log-structured file system. SIGOPS

Oper. Syst. Rev. 25, 5 (Oct. 1991), 1–15.
● Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom. 2012. SFS: random write considered

harmful in solid state drives. In Proceedings of the 10th USENIX conference on File and Storage Technologies (FAST'12).
USENIX Association, USA, 12.

● Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun Cho. 2015. F2FS: a new file system for flash storage. In
Proceedings of the 13th USENIX Conference on File and Storage Technologies (FAST'15). USENIX Association, USA,
273–286.

● William K. Josephson, Lars A. Bongo, David Flynn, and Kai Li. 2010. DFS: a file system for virtualized flash storage. In
Proceedings of the 8th USENIX conference on File and storage technologies (FAST'10). USENIX Association, USA, 7.

● Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2012. De-indirection for
flash-based SSDs with nameless writes. In Proceedings of the 10th USENIX conference on File and Storage Technologies
(FAST'12). USENIX Association, USA, 1.

● Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim, and Arvind Arvind. 2016. Application-managed flash. In
Proceedings of the 14th Usenix Conference on File and Storage Technologies (FAST'16). USENIX Association, USA,
339–353.

● Jiacheng Zhang, Jiwu Shu, and Youyou Lu. 2016. ParaFS: a log-structured file system to exploit the internal parallelism of
flash devices. In Proceedings of the 2016 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '16).
USENIX Association, USA, 87–100.

67

