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Syllabus outline

11. Emerging Topics <:



Today is the last course lecture

We survived, it has been quite fun to teach this course

Hope you also had fun and learn a lot of advancements happening in the area of
storage research

In coming days and weeks

Next Tuesday: Milestone 5 interview - sign up!
Next Wednesday: Guest Lecture from Nikolas
Afterwards: Prepare for the exam - Good luck!

In the End: We will ask for some feedback on the course
o Me as ateacher
o Broadly about the course - you can be frank!
0 Want to be the TA next year? https://www.pinterest.com/pin/534732155736634419/ 3



https://www.pinterest.com/pin/534732155736634419/

If you are interested in such research ...

READ. WRITE, RINGE. REPEAT.

Individual research projects (XM_405088)
e 6 o0r12ECTS credits

Master projects / literature study

e Benchmarking the storage benchmarks
e io_uring/CXL research (today’s lecture)
Integrating NVM(e)/NVMoF storage in ML runtime to train large models
(Swapping Tensors)
Building computation storage device prototype in QEMU
Virtualizing ZNS/NVMe devices
Scheduling 1/0 operations for workload-specific optimizations
Your favorite idea ... | am broadly open to ideas from your side, pick a paper and lets discuss



The triangle of storage hierarchy

Cost: $/GB

- cache line granularity
- volatile
- load/store instructions

register Access latencies

. . ~10-100ms
- Block granularity Hard disk drive (HDD) e
- non-volatile
- 1/0 commands ~100ms-10ses
Tape
- .

capacity



Recap: From HDDs to Persistent Memories (PMem)

{— arm assembly

10s ms 100s us 100s ns 10s ns

Cold
storage

HDD Flash Optane DRAM

http://pages.cs.wisc.edu/~remzi/OSTEP/file-disks.pdf
https://www.partitionwizard.com/help/what-is-chs.html



http://pages.cs.wisc.edu/~remzi/OSTEP/file-disks.pdf
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The (new) triangle of storage hierarchy

Cost: $/GB

register Access latencies

DRAM Memory ~10-100ns
Persistent Memory <1 usec

NAND Flash/Optane SSDs ~10-100 usec
- Block granulari : :
_noneatie Hard disk drive (HDD) ~10-100ms
- 1/0 commands Tape 100mS.10s

. >
- capacity

- cache line granularity
- volatile storage
- load/store instructions

- cache line granularity
- non-volatile storage
- load/store instructionS/' e




Multiple Emerging Topics (non-exhaustive)

Domain-specific/specialized storage solutions

Storage virtualization, Disaggregation (end-to-end software-defined-¥*)
Quality-of-service in Storage Ecosystems (scheduling, multi-tenancy)
Energy Considerations

CPU-free Computing (re-thinking the computing architecture)
° CPU-free Computing: A Vision with a Blueprint | Proceedings of the 19th Workshop on Hot Topics in Operating Systems

Hardware changes: Computer Express Link (CXL)
e  Brief motivation and capabilities (without getting into too much hw/PCle details)

New software APIs: io_uring (Linux, also being ported to other OSes)
®  How is it different than other APIs and what options does it provide, performance implications


https://dl.acm.org/doi/10.1145/3593856.3595906

A more modern (simplified) setup
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The Key Problems 1/ 2

Compute offload
(ASIC, DSPs, FP)

Ethernet, WiFi

'EZT

DRAM memory

/ % Disk storage
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The Key Problems 1/ 2
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DRAM memory

CPU cache management is non-trivial and complex
(even with same/similar homogeneous CPU architectures)

(2022) Intel® Xeon® Processor Scalable Family Technical Overview,
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html 11
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The Key Problems 1/ 2

Compute offload
(ASIC, DSPs, FP)

Ethernet, WiFi

.E:LT

DRAM memory

% Disk storage

12




The Key Problems 1/ 2

DRAM memory
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https://www.eenewseurope.com/en/14336-arm-cores-in-chiplet-based-waferscale-ai-engine/
https://www.techspot.com/article/2176-history-of-the-gpu-part-5/
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The Key Problems 1/ 2
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The Key Problems 1/ 2
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Cost-effective, Energy-efficient, and Scalable Storage Computing for Large-scale Al Applications. ACM Trans. Storage 16, 4, Article 21 (November 2020), 37 pages.

https://doi.org/10.1145/3415580
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The Key Problems 1/ 2
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Cost-effective, Energy-efficient, and Scalable Storage Computing for Large-scale Al Applications. ACM Trans. Storage 16, 4, Article 21 (November 2020), 37 pages.
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The Key Problems 1/ 2

A

. These accelerators can have:

@

Compute elements (specialized - FPGA, or general - ARM)
Memory elements

Storage chips

Multi-level caches

Outside connectivity

L

Elba

Who manages “coherency”, “data flow”, “configuration”, “management” of
memories/caches/devices here? Software, hardware? Performance?
Cost of development of new APIs, protocols?

Cost-effect

https://doi.org/10.1145/3415580

ARM®
irtex™-mM7
hack-end)



https://doi.org/10.1145/3415580

The Key Problems 2/ 2 : CPU - DRAM Coupling

malloc (3GB) &
SW

malloc (1GB) g
SW

DRAM memory
8 GB / DIMM

malloc (2GB) g SW

malloc (0.5GB) & SW

)

 mEEEEE .

e What happens to the remaining 1.5 GB DRAM?
Do applications use all the DRAM what they ask for?

18



The Key Problems 2/ 2 : CPU - DRAM Coupling

1. Can not mix and match different DRAM
technologies and generations

2. More performance means more capacity

%g
=
EZ
(©)
Q

(need to buy more DIMMSs)
3. Limit to how much DRAM can be packed in

a single machine

Very close coupling of CPU-DRAM (1) DRAM technology; (2) Density, capacity; and (3)
Performance

https://frankdenneman.nl/2017/10/03/vsphere-focused-guide-intel-xeon-scalable-family-memory-subsystem/ 19
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The Key Problems 2/ 2 : CPU - DRAM Coupling

__40
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Gend Gen.l Po‘s;ee:lz_‘_g:sl? Genit Gemns Figure 2: Memory stranding (§3.1). Stranding increases sig-
nificantly as more CPU cores are scheduled. Error bars indi-
cate the 5" and 95" percentiles (outliers in dots).

DRAM is a big power and cost factor in data center (up to ~40%)
A big part can remain underutilized

Azure with VMs : on average ~10% (but as high as ~30%)

Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, ASPLOS 2023, https://doi.org/10.1145/3575693.3578835
TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory. ASPLOS 2023, https://doi.org/10.1145/3582016.3582063
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The Key Problems 2/ 2 : CPU - DRAM Coupling
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Figure 7: Application memory usage over last N mins. Figure 11: Fraction of pages re-accessed at different intervals.

Not all pages allocation are used uniformly:

(1)  Only a small fraction of memory is accessed in 1-2 minutes window

(2) For Web, almost 80% of the pages are re-accessed within a ten-minute interval but for
warehouse it is 20%.

(do they all have to be in DRAM?)

Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, ASPLOS 2023, https://doi.org/10.1145/3575693.3578835
TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory. ASPLOS 2023, https://doi.org/10.1145/3582016.3582063

21


https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3582016.3582063

Summary Problem

There has to be a better way to

e Manage non-CPU memories and caches (accelerators)
e Manage CPU-attached memories (allocation, disaggregate from the CPU)
e Expand beyond the CPU-attached memories

+ Think of non-volatile memories...
e Persistent memories
e [aststorage

Solution : Compute Express Link (CXL) (the last protocol we will ever need)

22



Computer Express Link (CXL)

A cache coherent Interconnect between
e The CPU
e Accelerators
e Memory expansion cards s e

s Olcis

Asymmetric protocol

Motherboard down

A set of standardized protocols defined on the top = DataRateper ¥16 Unidectional  Specifcatin
Specification Lane (GT/s) Bandwidth (GB/s) Ratification Year
of PCle 5.0 (PHY) 1x 25 8b/10b 4 2003
e Runsin the standard PCle slots “ 5 = ‘ “
3x 8 128b/130b 1575 2010
o 32 GT/s, or4 GB/lane = x32 card = 128 GB/sec |, N s s -

e Latencies approaching the NUMA CPU (with v6.0)

o
o
w
[N

128b/130b 63 2019

6.0 64 PAMA4/FLIT 128 2022

https://www.electronicdesign.com/technologies/embedded/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.xda-developers.com/pcie-5/ 23
https://www.rambus.com/blogs/pcie-6/



https://www.electronicdesign.com/technologies/embedded/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.xda-developers.com/pcie-5/
https://www.rambus.com/blogs/pcie-6/

Three CXL Protocols

CXL.io
e Mandatory for all hosts, and CXL supported devices
e Discovery, enumerations, capabilities (DMA, interrupts, I0OV), and host physical address

configuration
e Same in spirit to what any basic PCle device would support

CXL.mem
e Enables (only) CPU to access device/accelerator memory in a cacheable manner

e Useful in DRAM expansion
e Device is not initiating any communication

CXL.cache
e The same as CXL.mem, but now devices can also access the CPU memory/caches

e Additional commands/requests for maintaining coherence among all copies

24



Three Classes of Devices

Accelerators with Memory Memory Buffers

Caching Devices / Accelerators

TYPE 2 TYPE 3

} Processor } Processor Processor

PROTOCOLS PROTOCOLS PROTOCOLS
= CXL.io

» CXL.io + CXL.io
» CXL.cache » CXL.memory

» CXL.cache
» CXL.memory

TYPE1

Accelerator Accelerator Memory Controller >
NIC — | g_
=

Cache Cache

USAGES USAGES USAGES

= PGASNIC * GPGPU * Memory BW expansion

* NIC atomics » Dense computation * Memory capacity expansion
« Storage class memory

https://www.computeexpresslink.org/ files/ugd/0c1418 a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/ files/ugd/0c1418 998df4f459734f319e7a12cc2163b943.pdf


https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_998df4f459734f319e7a12cc2163b943.pdf

Three Generations of CXL Protocols

Release date 2019 2020 1H 2022
Max link rate 32GTs 32GTs 64GTs
Fi 48 byte (up t0 32679 e e

Flit 256 byte (up to 64 GTs)

Type 1, Type 2 and Type 3 Devices
Memory Pooling w/ MLDs

Global Persistent Flush

CXL IDE

Switching (Single-level)
Switching (Multi-level)

Direct memory access for peer-to-peer
Enhanced coherency (256 byte flit)
Memory sharing (256 byte flit)

Multiple Type 1/Type 2 devices per root port
Fabric capabilities (256 byte flit)

e (XL 3.0: Enabling composable systems with expanded fabric capabilities, October 6, 2022,
https://www.computeexpresslink.org/ files/ugd/0c1418 998df4f459734f319e7a12cc2163b943.pdf
. Good overview, https://community.cadence.com/cadence blogs 8/b/breakfast-bytes/posts/hot-chips-cxl-tutorial

26
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Evolving Use Cases

e A;;;’/’ggy e [ e el CXL Switch with SLD and MLD

Scales to large datasets
Flexibility across the fabric
Improves Memory Utilization
Lowers TCO

Reduces Memory Stranding
Improves Data Flow Efficiency
Improves Memory Utilization
Lowers TCO

Improves processor
efficiency

Increases Capacity
Improves Bandwidth
Lowers TCO

Flexible support for faster-
slower Memory Tier
Lowers TCO- higher memory
capacity for cheaper $/GB
Improves Bandwidth

What can we do? Expansion of DRAM, CPU-Memory Decoupling (multiple generation of devices),
Memory Pooling and sharing, Single Logical Device (SLD — Exclusive to one CXL root) to Multiple
Logical Device (MLD, connected to multiple CXL roots), Memory hot swapping ...

Alook into the CXL device ecosystem and the evolution of CXL use cases,
https://0c141887-fbed-4ec3-bel17-adc8d70d3922.usrfiles.com/ugd/0c1418 037d4ba31f4b44cfofcb37f5b36ae4d6.pdf



https://0c141887-fbe4-4ec3-be17-adc8d70d3922.usrfiles.com/ugd/0c1418_037d4ba31f4b44cf9fcb37f5b36ae4d6.pdf

Design a Distributed Cluster Running CXL

CXL 3.0 Fabric Architecture
Interconnected Spine Switch
System
Leaf Switch NIC Enclosure
Leaf Switch CPU Enclosure
Leaf Switch Accelerator Enclosure
Leaf Switch Memory Enclosure

Multiple type of devices, Global Fabric Attached Memory (GFAM)

CXL 3.0: Enabling composable systems with expanded fabric capabilities October 6, 2022
https://www.computeexpresslink.org/ files/ugd/0c1418 998df4f459734f319e7a12cc2163b943.pdf
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CXL.mem

CPU

PCH

Host CPU
Complex

—

Typel

oy Vemorme
RUTEER viemory e

Local
DRAM

HDM

HDM

—» Local {>CXL.cache— CXL mem

92eds Asowaw wiaisAs NdD

Host Processor

PCle/CXL.io Logic

T

CXL.io
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*

%+
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8
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A 4
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1

Coherent Requests

Accelerator Logic
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https://www.computeexpresslink.org/ files/ugd/0c1418 998df4f459734f319e7a12cc2163b943.pdf

\ 4

1
1

CXL.cache CXL.memory
Memory Flows, Memory Flows

Hello bytes, bye blocks: PCle storage meets compute express link for memory expansion (CXL-SSD). https://doi.org/10.1145/3538643.3539745 29
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CXL.mem Expansion Device Example

System Memory Space

BIOS and other

-

System DRAM

-

9 PCle BAR

0X00000000
CPU MMU /
Virtual
Address
OXFFFFFFFFF

—_—

W

Memory
Controller
h

-w-

. DEDDEM0 .
 DDNDDDD

HDM

HDM

)

PCle/CXL
Root

PCle enumeration and BAR mapping with, Host-Managed Device Memory (HDM) areas
Setup MMU and allocate the DRAM physical address from this area (software support)
Access happens, and the request is routed to the PCle/CXL root



CXL.mem Expansion Device Example

Address space |System memory | ]

BAR |HDM |: Reserved for CXL
/‘@ [Host Local |. 1CPU
CPU DRAM
[RP -

ZFl< @ DSP[0 1
~ : v o+ + a0 oo
Host CPU Root complex |_{ Rooti port“ | g 3 7Pl e 3| 9l 5 5
éf,"c;ggg- [BAR/HDM size? [BAR/ADM base [ _CXLA E,

A . / ] £ /g \ {USPF—o———USP}—- - [USPOHUSP T

| Endpoint | 2

[ x (8]
CXL - ~ Address S | N Crossbar|_|s
device (Bar size|Bar base [HDM size|[HDM base irancladon Ep Pl 4 Usp X T
: HDM HDM]{|{[HDM] L[HDM ]| | ¢
l Uevice memory M MEMm rqu CXL device| |CXL device CXL device DSP OHDSP 1
< (a) (b)

Device Physical Address (DPA)

\ DRAM Translation Layer DTL ;)

See the ISCA’23 reference at the end of the slides

Multiple configurations (1) striping across multiple devices, ports, roots; (2) allocation units...
31




Transparent Page Placement (TPP)

4 GB/s per x16 lipkp

2 GB/s per lin}
Interconnect

~180 ns ~170-250 ns
38.4 GB/s per channel ‘ 38.4 GB/s per channel
/ ~100 ns  ~100 ns
(a) Without CXL (b) With CXL

PCle 6.0 latencies and bandwidth are approaching access to a remote NUMA CPU socket

Challenge: How to profile pages (at low-overheads) and put them in the right storage
level in the CXL-enabled memory hierarchy

Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, ASPLOS 2023, https://doi.org/10.1145/3575693.3578835
TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory. ASPLOS 2023, https://doi.org/10.1145/3582016.3582063
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POND (ASPLOS'23): How to Disaggregate VM Memory

Pl
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Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, ASPLOS 2023, https://doi.org/10.1145/3575693.3578835
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Where does Storage Come into the Play?

Industry Ist CXL-based Storage
Optimized for AI/ME— . <

o

<

Any device can implement the CXL protocol

e Use SSD as large capacity RAM
o B ! te*'a d d ressa b I e Dual Mode Support Persistent Memory Mode

.
Persistent Applcation s ,
. L ] table lookups - loy ncy 10
- Caching i
- Graph analytics
Load/Store Load/Store
CXLio CXLmem CXLmem
File system-based access Load/store access Load/store access to DRAM
* 6 q B a d d re Ssa b | e supports legacy NVMe for memory-mapped files Persistency cia flushes to NAND

CXL Interface CXL Interface

% ‘ DRAM DRAM

https://news.samsung.com/global/samsung-electr



https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022

Emerging work: Quantifying and Hiding Flash Latencies

Hello Bytes, Bye Blocks: PCle Storage Meets Compute Express Link for
Memory Expansion (CXL-SSD)

Myoungsoo Jung
Computer Architecture and Memory Systems Laboratory,
Korea Advanced Institute of Science and Technology (KAIST)
http://camelab.org

ABSTRACT

‘Compute express link (CXL) is the first open multi-protocol
method to support cache coherent interconnect for differ-
ent processors, accelerators, and memory device types. Even
though CXL manages data coherency mainly between CPU
memory spaces and memory on attached devices, we argue
that it can also be useful to reform existing block storage as
cost-efficient, large-scale working memory. Specifically, this
paper examines three different sub-protocols of CXL from a
memory expander viewpoint. It then suggests which device
type can be the best option for PCle storage to bridge its
block semantics to memory-compatible, byte semantics. We.
then discuss how to integrate a storage-integrated memory
expander into an existing system and speculate how much
effect it does have on the system performance. Lastly, we visit
various CXL network topologies and explore a new opportu-
nity to efficiently manage the storage-integrated, CXL-based
memory expansion.

1 INTRODUCTION

Cache coherence interconnects are recently emerged to inte-
erate different CPUs, accelerators, and memory components
into a heterogencous, single computing domain. Specifically,
the interconnect technologies maintain data coherency be-
tween CPU memory and private memory attached to devices,
defining a new type of globally shared memory and network
space. While there have been several efforts o coherently
connect different hardware components, such as Gen-Z [1]
and CCIX [2], Compute Express Link (CXL) is the first open
interconnect protocol supporting various types of processors
and device endpoints [3]. CXL has absorbed Gen-Z [4] and
has become one of the most promising interconnect interfaces
thanks to its high-speed coherence control and full compati-
bility with the existing bus standard, PCle. A broad spectrum

Permision to ks cgtal e copes o oo pat of s werk o penoral

of datacenter-scale hardware such as CPU, GPU, FPGA, and
domain-specific ASIC is thus expected to take significant
advantage of CXL [5-7]. CXL consortium announces that it
can also disaggregate memory by pooling DRAM and byte-
addressable persistent memory (PMEM).

While CXL can handle diverse computing resources and
memory components, it sets block storage aside and leaves a
question on whether the storage can reap the benefits of CXL
ornot. A primary question that storage designers and system
architects may have is i) why and what can the block storage
benefit from CXL?. If there is an advantage, we should be able
to answer the following questions: if) how can we connect the
underlying block storage to the host’s system memory bus?,
iii) what kind of CXL device type should be used for the block
storage and memory expander?, and i) what does CXL need
1o improve for better utilization of the block storage?.

In this paper, we argue that CXL is helpful in leveraging
PCle-based block storage to incarnate a large, scalable work-
ing memory by answering all the four questions mentioned
above. We believe CXL is a cost-effective and practical in-
terconnect technology that can bridge PCle storage’s block
semantics to memory-compatible, byte semantics. To this end,
we should carefully integrate the block storage into its inter-
connect network by being aware of the diversity of device
types and protocols that CXL supports. This paper first dis-
cusses what a mechanism makes the PCle storage impractical
and unable to be used for a memory expander (§2). Then, we
explore all the CXL device types and their protocol interfaces
to answer which configuration would be the best for the PCle
storage 1o expand the host’s CPU memory (§3).

Even though CXL can be the most promising interface for
the block storage in getting closer to CPU, it is non-trivial
to speculate how much effect a storage-integrated memory
expander does have on system performance. As there is no
CPU and fabric for CXL yet, itis also unclear for the storage
designers and system architects to see how CXL-enabled
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and interact with CPU. To answer
this, e discuss shat a PCle sorage device needs to change,
how it can be connected to the host over CXL, and how users
can access the device through load/store instructions (§4).
We then project the performance of the storage-integrated
memory expander by prototyping CXL agents and controllers
in different FPGA nodes, all connected by a PCle network.

Cache in Hand: Expander-Driven CXL Prefetcher for
Next Generation CXL-SSDs

Miryeong Kwon*!, Sangwon Lee*’, Myoungsoo Jung*"
*Computer Architecture and Memory Systems Laboratory, KAIST
TPanmnesia, inc.

ABSTRACT

Integrating compute express link (CXL) with SSDs allows
scalable access to large memory but has slower speeds than
DRAMs. We present EXPAND, an expander-driven CXL
prefetcher that offloads last-level cache (LLC) prefetching
from host CPU to CXL-SSDs. EXPAND uses a heteroge-
neous prediction algorithm for prefetching and ensures data
i with CXL.mem’s back-i We examine
prefetch timeliness for accurate latency estimation, EXPAND,
being aware of CXL multi-tiered switching, provides end-
to-end latency for each CXL-SSD and precise prefetch time-
liness estimations. Our method reduces CXL-SSD reliance
and enables direct hm! c‘lche access for most data. EXPAND
enhances graph by 3.5x. i
CXL-SSD pools with diverse prefetching strategies.

1 INTRODUCTION

Compute Express Link (CXL) is receiving considerable at-
tention as an emerging interface that separates memory re-
sources from computing servers, allowing users to access
large-capacity memory scalably. In terms of capacity. stor-
age class memory (SCM) technologies such as PRAM [1],
Z-NAND [2], and XL-Flash [3] offer greater advantages over
DRAMS. As a result, both industry and academia strive to
introduce byte-addressable solid-state drives (SSDs) using
the CXL protocol and SCM’s memory instruction semantics.
For instance. one method integrates CXL into Optane SSDs
for hierarchical memory expansion, while several proof-of-
concepts (PoCs) employ new flash like Z-NAND and XL~
Flash to develop CXL-SSDs [4-6].
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While CXL-SSDs target capacity needs for memory disag-
aregation, their backend media remain slower than DRAMs.
Specifically, PRAMs are 7x slower than DRAM:s (7], and the
new flash technologies exhibit latencies 30x slower [2]. To
address this, industrial PoCs employ SSD-side DRAM buffers
as internal caches, resembling high-performance NVMe stor-
age with larger internal DRAMs. Although these buffers ef-
fectively handle write latency issues, they struggle to mask
the long read latency caused by SCM backend media. Un-
like file system-managed block devices, CXL-SSDs should
serve memory requests (load/store) without relying on the
host-side storage stack. Concealing long read latency necessi-
tates understanding execution behaviors of host applications
and managing the corresponding CPU cache hierarchy, appro-
priately. Regrettably. these aspects are neglected by existing
SSD technologies, as they have solely handled block requests
thus far.

When CXL-SSDs are placed in the system memory space
as host-managed device memory, existing CPU-side cache
prefetching mechanisms can still be beneficial. However,
two main unaddressed challenges prevent current prefetchers
within the cache hierarchy from fully utlizing the advantages
of LLC with CXL-SSDs: i) hardware logic
in handling a wide range of memory access patterns possi-
bly encountered in the extensive CXL memory pooling space,
and ii) latency variations experienced by different CXL-SSDs
located in diverse positions within the CXL switch network.

In particular, rule-based cache prefetchers, such as spatial
[8-10] and temporal prefetching algorithms [11-13], require
tens of MB storage that is similar to the actual last-level
cache (LLC) of aCPU [9]. As a result, modern CPUs employ
simpler stream cache prefetching algorithm [14], which un-
fortunately is unable to mask the increased latency introduced
by CXL-SSDs. Another contributing factor is the interconnect
network topology used in CXL-based memory disag gregation.
To boost memory capacity in a scalable way, CXL introduces
a multi-level switch architecture where each level can po-
tentially increase memory expander latency, depending on
the target’s position within the network. This is because the
processing time taken by CXL switches at different levels
cannot be C ly, existing are

Overcoming the Memory Wall with CXL-Enabled SSDs
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This paper investigates the feasibility of using inexpensive - g T P

flash memory on new interconnect technologies such as CXL
(Compute Express Link) to overcome the memory wall. We
explore the design space of a CXL-enabled flash device and
show that techniques suchas caching and prefetching can help
mitigate the concems regarding flash memory’s pcrformancc

and lifetime. We using real-world

traces that these techniques enable the CXL device to have
an estimated lifetime of at least 3.1 years and serve 68-91%
of the memory requests under a microsecond. We analyze the
limitations of existing techniques and suggest system-level
changes to achieve a DRAM-level performance using flash.

1 Introduction

The growing imbalance between computing power and mem-
ory capacity requirement in computing systems has devel-
oped into a challenge known as the memory wall [ 52].
Figure 1, based on the data from Gholami et al. [34] and
expanded with more recent data [11,30, 43], illustrates the
rapid growth in NLP (natural language processing) models
(14.1x per year), which far outpaces that of memory capac-
ity (1.3 per year). The memory wall forces modern data-
intensive applications such as databases (8, 10,14,20], data
analytics [1,35], and machine learning (ML) [45, 48, 66] to
cither be aware of their memory usage [61] or implement
user-level memory management [66] to avoid expensive page
swaps [37,53]. As a result, overcoming the memory wall in an
application-transparent manner is an active research avenue;
approaches such as creating an ML-centric system [45,48,61],
building a memory disaggregation framework [36,37,52, 69],
and designing new memory architecture [23,42] are actively
pursued.

We question whether it is possible to overcome the mem-
ory wall using flash memory — a memory technology that
is typically used in storage due to its high density and capac-
ity scaling [59]. While DRAM can only scale (o gigabytes
in capacity, a flash memory-based solid-state drive (SSD) is

210" . 40GB
L wan
2 g @A
1084 & 400MB
2018 2010 2020 201 2022

en
Figure 1: The trend in memory requirements for NLP appli-
cations [11,30,34,43). The number of parameters increases
by a factor of 14.1x per year, while the memory capacity in
GPUs only grows by a factor of 1.3x every year.

in the terabyte scale [23], a sufficiently large capacity to ad-
dress the memory wall challenge. The use of flash memory as
main memory is enabled by the recent emergence of intercon-
nect technologies such as CXL [3], Gen-Z [7], CCIX [2], and
OpenCAPI [12], which allow PCle (Peripheral Component
Interconnect Express) devices to be accessed directly by the
CPU through load/store instructions. Furthermore, these tech-
nologies promise excellent scalability as more PCle devices
can be attached across switches [13] unlike DIMM (Dual
Inline Memory Module) used for DRAM.

However, there are three main challenges to using flash
memory as CPU-accessible main memory. First, there is a
granularity mismatch between memory requests and flash
memory. This results in a significant traffic amplification on
top of the existing need for indirection in flash [23, 33]: for
example, a 64B cache line flush to the CXL-enabled flash
would result in 16KiB flash memory page read, 64B update,
and 16KiB flash program to a different location (assuming a
16KiB page-level mapping). Second, flash memory is still or-
ders of magnitude slower than DRAM (tens of microseconds
vs. tens of nanoseconds) [5,24]. As a consequence, while the
peak data transfer rate between the two technologies is simi-
lar [4,15). the long flash memory latency hinders sustained

as data-intens ications can only endure
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Putting SSDs with CXL Memory Expander

Which type of device to use? Type-1, Type-2, or Type-3 when using SSD as
memory expander?

Type-3:
e (inCXL 1.0, 2.0): Only one Type-1 or Type-2
device allowed per CXL root, hence Type-3
are more scalable.

Type-1/2 can be more complex, caches, all load/store requests require checking the
cache states of PCle storage computing complex

RRSING

=
E=
E

Hence, a Type-3 device type is the ideal CXL device for a “memory expander”

Hello bytes, bye blocks: PCle storage meets compute express link for memory expansion (CXL-SSD). https://doi.org/10.1145/3538643.3539745
Cache in Hand: Expander-Driven CXL Prefetcher for Next Generation CXL-SSD. https://doi.org/10.1145/3599691.3603406
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CXL + Flash SSDs: Can Flash do it?
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(a) LocalDRAM. (b) CXL-SSD.

Can we use NAND flash SSDs as memory expander?

e What latencies one get with the granularity mismatch?

o Cacheline: 64B, flash pages : 8-16 KiB

o DRAM: 100s of nanoseconds, vs. flash in 10-100 microseconds
e Whatis the access pattern for common workloads?

Can we optimize latencies in any manner? Prefetching, buffering, caching?
e How about flash P/E limitations? Can it endure small 64B writes?
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CXL-Enabled SSDs - Virtual v

= Shows that the access

pattern at
the virtual address level
do not correspond to

the physical address level~ k==

Why?

Just basic prefetching is
not effective to hide
latencies

s. Physical A

ddresses

Shao-Peng Yang and others. Overcoming the Memory Wall with CXL-Enabled SSDs, USENIX ATC 2023,
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng
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Impact of Caching

Inter-arrival time of 64B requests
has a huge impact

Average Access
Latency(ps)
N A

e Queuing delays w/o cache

A No Cache =9 2GB
B 0.5GB [ 8GB

Lots of repeated
accesses for the same

page!

Multiple 64B requests go

a) Average access latenc
e Small amount of cache helps (0.5GB) (a) g y
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Figure 6: Flash memory read count for physical memory frames. The solid bar represents the total number of reads, while the
shaded bar, the number of repeated reads. A repeated read is a read request to an outstanding read request.

into the same flash page
(Keep track of it)
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Workload-level Performance
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The New(er) Triangle of Storage-Memory Continuum

Local CXL Mem Local CXL SSDs
150-300 nsecs 1-10 usec

Cost: $/GB

Remote CXL Mem Remote CXL SSD

p ~1-2 usecs 10-100 usec
NAND Flash/Optane SSDs \ -100 usec
Hard disk drive (HDD) 10-100ms

Instead of discrete steps, it is a continuous spectrum now: Continuum »




io_uring : What is it and why you should care?

4

What is io_uring?, https://unixism.net/loti/what is io_uring.html
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The Long Debate: How to get Concurrency?

Threads versus Events (Asynchronous)

are two different things!

f while(not_done!)
/2 _ |

I
N

sizz
=235

Y
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BLOCKING NON-BLOKING

IlEAD/LlIlI‘fE
(0-NONBLOCK)

Linux I/0 Options YNCHRONOUS |

(o)
I{NA[TIPLE)‘ ING

Standard POSIX I/0 blocking read/write calls:
e https://man7.org/linux/man-pages/man2/read.2.html AYNURONDUS
e https://man7.org/linux/man-pages/man2/write.2.html

Make 1/0 calls non-blocking : set O_NONBLOCK flag on the file descriptor

e https://man7.org/linux/man-pages/man2/fcntl.2.html (0 NONBLOCK)

Asynchronous I/0 on Linux : libaio and POSIX AIO

e https://github.com/littledan/linux-aio
e Example of how to use libaio: https://github.com/axboe/fio/blob/master/engines/libaio.c

Asynchronous programming. Blocking 1/0 and non-blocking I/0, https://luminousmen.com/post/asynchronous-programming-blocking-and-non-blocking 44
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Archive- Article, Thread
link:

On Mon, Jan 11, 2016 at 2:07 PM, Benjamin LaHaise <bcrl@kvack.org> wrote:

AI O Iss u es > Another blocking operation used by applications that want aio
> functionality is that of opening files that are not resident in memory.

> Using the thread based aio helper, add support for IOCB CMD_ OPENAT.

So I think this is ridiculously ugly.

SIGNAL based de||Very Of Complet|0n AIO is a horrible ad-hoc design, with the main excuse being "other,
less gifted people, made that design, and we are implementing it for
PY Preemption and context SWitCh compatibility because database people - who seldom have any shred of

taste - actually use it".

e Needs care for signal-safe function execution B AT AN EEE By, GGG

Linux’ AIO works truly “asynchronously” under very restricted conditions:

works only with O_DIRECT modes (alignment, and size restrictions)
works only when the file’s metadata is available
(otherwise blocks until the metadata is fetched)
e can block based on device's queue capacity
e needs to memcpy of I/0 metadata (~100 bytes)

Good introduction: https://unixism.net/loti/async_intro.html and https://kernel.dk/io_uring.pdf

Signal Handling in a Multi-Threaded Application in Linux, https://www.baeldung.com/linux/signals-multi-threaded-app
Re: [PATCH 09/13] aio: add support for async openat(), https://lwn.net/Articles/671657/
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Cost of these Interfaces
TABLE I: Categories of system-call techniques

per sys request

Kind Mechanism Examples traps CSW cost[ns]

Sync Blocking read(), write() 1 2 955 +£1069

Sync Non-Blocking SOCK_NONBLOCK [1, 3] 2, 6] 1656 £1318
& epoll()

Async  Callback POSIX AIO [13] 1 2.3 6224 +12 232

Async  Queue-based  Linux AIO 10, 2] 11, 4] 1922 +1467

Modern Concurrency Platforms Require Modern System-Call Techniques, Florian Schmaus, Florian Fischer, Timo Honig, Wolfgang
Schroder-Preikschat, 2021. https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docld/17655
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Skip the OS Complexity: The SPDK Stack

SPDK 1/0 Stack
User space applications (databases, key-value store, browsers, file and email servers) MM / BLK PCle NVMe

read, write, open, stat, chmod (syscalls)

The virtual file system (VFS) B B

\ The pagcleqbuffer Poll Memory
Network-fs Pseudo FS Special FS Block-FS ol .
[(NFS, samba)}[ (proc, sys) J [ (tmpfs) } [ (ext4, f2fs, brtfs) J grlvenl I{[ O ';/ICaIpFl)/eg
ompietion e

Kernel Linux Block Layer

Device drivers

— ey

A user-space I/0 framework for NVMe devices (only)

Block-level abstraction (no file system, but there are research prototypes)

Has user-space mapped drivers (https://spdk.io/doc/userspace.html)

Designed for light-weight I/0, best performance (eschews many core OS features)
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SPDK can have the Highest Performance

6 Million Ops/core ~30 Million Ops/server

SPDK NVMe BDEV 10PS

4KiB Random Read, QD=19 4KiB Bdevperf Core Scaling Perfo

35000.00
7000.00

30000.00
6000.00

25000.00
5000.00
20000.00
4000.00
3000.00
10000.00
2000.00
5000.00
1000.00 . I
1 2 3 a4 5 6
0.00

Used CPU cores

10PS (thousands)
(Higher is better)
10PS (k)
(Higher is better)
E
o
o

Number of SSDs mRandom Read mRandom Write mRandom ReadWrite

2 CPU sockets, Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz
22x Kioxia® KCM61VUL3T20 3.2TBs (FW: 0105) (10 on CPU NUMA Node 0, 12 on CPU NUMA Node 1)

SPDK NVMe BDEV Performance Report Release 23.05, June 2023,

https://ci.spdk.io/download/performance-reports/SPDK nvme bdev perf report 2305.pdf 48
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Zebin Ren and Animesh Trivedi. 2023. Performance Characterization of Modern Storage Stacks: POSIX I/0, libaio, SPDK, and io_uring. 49
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Background Reading on this Topic

=

Because the original of the following paper by Lauer and Needham is not
widely available, we are reprinting it here. If the paper is referenced
in published work, the citation should read: "Lauer, H.C., Needham, R.M.,
"On the Duality of Operating Systems Structures," in Proc. Second Inter-
national Symposium on Operating Systems, IRIA, Oct. 1978, reprinted in
Operating Systems Review, 13,2 April 1979, pp. 3-19.

On the Duality of Operating System Structures

Hugh C. Lau
Xerox Corporation
Palo Alto, California

Roger M. Needham *
Cambridge University
Cambridge, England

Abstract

Many operating system designs can be placed into one of two very rough
categories, depending upon how they implement and use the notions of
process and synchronization. One category, the "Message-oriented System,"
is characterized by a relatively small, static number of processes with an
explicit message system for communicating among them. The other category,
the "Procedure-oriented System," is characterized by a large, rapidly
changing number of small processes and a process synchronization
mechanism based on shared data.

In this paper, it is it these two are duals of each
other and that a system which is constructed according to one model has a
direct counterpart in the other. The principal conclusion is that neither model
is inherently preferable, and the main consideration for choosing between
them is the nature of the machine architecture upon which the system is
being built, not the application which the system will ultimately support.

This is an empirical paper, in the sense of empirical studies in the natural sciences. We have
observed a number of samples from a class of ob]etls and identified a classification of some of
their properties. We have then ized our and abstract models to
describe these properties. With the aid of these models, we were able to make some observations
about the nature of the objects themselves, observations which are supported by other experimental
evidence. Finally, we have drawn some conclusions about the class of objects which better aid our
understanding of that class and the decisions which affect the design of members of that class.

The universe in this investigation is the class of operating systems, and the properties in which we
are interested are the ways in which the concepts of process, synchronization, and interprocess
communication occur within these systems and among their clients. There appear to be two
general categories in this respect, which we designate the Message-oriented Systems and the
Procedure-oriented Systems. Most systems which we have observed tend to be biased fairly
strongly in favour of one or the other, rather than being neutral or indeterminate. Moreover,

* This work was done while the author was on sabbatical leave at the Xerox Palo Alto Research Center during
the summer of 1977. 3

Why Threads Are A Bad Idea
(for most purposes)

John Ousterhout
Sun Microsystems Laboratori

john.ousterhout(@eng.sun.com
httpz//www.sunlabs.com/~ouster

Introduction

v Threads:
— Grew up in OS world (processes).
— Evolved into user-level tool.
— Proposed as solution for a variety of problems.

‘Why Events Are A Bad Idea
(for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer
mputer Science Division, University of California at Berkeley
{jrvb, jeondit, brewer} @cs.berkeley.cdu

hutp://capricci

berkeley.cdu/

o Inexpensive synchronization due to

jing y touted 0
| v
Bf these systems, we now believe this
Specifically, we believe that threads
Engths of events, including support
verhead, and a simple concurrency
e that threads allow a simpler and
ptyle

ed strengihs of events over threads
messes of threads are anifacts of
Bentations and ot inherent 1o the
evidence, we present a user-level
s to 100,000 threads and achieves
a web server. We also refine the
F and Necdham, which implies that
thread systems and cvent sysiems
Ince. Finally, we argue that compiler
a fruitful area for future rescarch.
igh concurrency without help from
Buss several enhancements that are
e compiler changes.

applications such as Interet
processing databases present a
to application designers. First,
| of concurrent tasks requires the
fuctures. Second, these systems.
Jaximum capacity. which creates
@ high sensitivity to scheduling
$t be handled with care to avoid
& conditions and subtle corner

lich makes debugging and code

these

— Every programmer should be a threads
Problem: threads are very hard to program.
v Alternative: events.
v Claims:
— For most purposes proposed for threads, events are
better.
— Threads should be used only when true CPU
concurrency is needed.

Way Threads dre A Bad ldea Sepember 28, 1995, stde 2

By researchers to conclude that
ing is the best (o even only)
irformance in highly concurrent
re gives four primary arguments.
ents:

 Lower overhead for managing state (no

o Better scheduling and locality,
application-level information; and

« More flexible control flow (not just call/r

We have made extensive use of events
high-concurrency environments, including
SEDA [17], and Inkiomi's Traffic Server. I
with these systems, we realized that the propef
are not restricted 1o event systems; many haf
been implemented with the restar]
Ultimately, our experience led us to conf
event-based programming is the wrong choice]
concurrent systems. We believe that (1) threaf
a more natural abstraction for high-concurrend
and that (2) small improvements to compilers.
runtime systems can eliminate the historical
use events. Additional ads are more|
to compiler-based enhancements: we belie
paradigm for highly concurrent applications
package with better compiler support.
Section 2 compares events with threads
the common arguments against threads. Next}
explains why threads are particularly natural
high-concurrency servers. Section 4 explore
of compiler support for threads. In Section 5.
our approach with a simple web server. Finall
covers (some) related work, and Section 7 corf

2 Threads vs. Events

The debate between threads and events is a very
old one. Laver and Needham attempted to end the
discussion in 1978 by showing that message-passing
systems and process-based systems are duals, both in
terms of program structure and performance character-
istics [10]. Nonetheless. in recent years many authors

the need for event.
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Scala Actors: Unifying thread-based and event-based programming”
Philipp Haller *, Martin Odersky
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ARTICLE INFO ABSTRACT

Keywords: There is an impedance mismatch between message-passing concurrency and virtual
Concurmens programniog ‘machines, such s the JVM. VMs usually map their threads to heavyweight OS processes.
ol Without a lightweight process abstraction, users are often forced to write parts of
Events d
the burden on the programmer.
In this paper we show how thread-based and event-based programming can be
unified under a single actor abstraction. Using advanced abstraction mechanisms of the
Scala programming language. we implement our approach on unmodified JVMs. Our
2008 Elsevier BV. All rights reserved.
1. Introduction
c i because of first, multi-core pr

‘make concurrency an essential ingredient of efficient program execution. Second, distributed computing and web services
are inherently concurrent. Message-based concurrency is attractive because it might provide a way to address the two
challenges at the same time. It can be seen as a higher-level
computation. Many message passing systems used in practice are instantiations of the actor model [28.2). A popular

of this form of is the language [4]. Erlang supports massively concurrent
systems such as telephone exchanges by using a very lightweight implementation of concurrent processes [3,36].

On mainstream platforms such as the JVM [34],an equally .3 yet missing
shared- locks, suffer from high

overhead. Therefor, th intrleaving o independent computatons i often modeled in an e style on o

platforms. However, oy nd error-prone, because it involves an

inversion of control [41,13].

In previous work (24, we developed even:ased actorswhich et o program eventdrven systens without nversion

fcontrol. E

seturn normally o the thiead that invoked it Instead the entire ontinuation of such an actor has tobe a part of the receive
operation. This makes it pos than
suspending a thread.

In this paper we present a unification of thread-based and event-based actors. An actor can suspend with a full thread
stack (receive) or it can suspend with just a continuation closure (react). The first form of suspension corresponds
to thread-based, the second form to event-based programming. The new system combines the benefits of both models.

= apr paper appe 2007, LNCS 4467, June 2007.
* Comesponding address: EPFL, Station 14, 1015 Lausanne, Switzerland.Tel: +4121 693 6483; fax: +4121 693 6660.
E-mail address: philipp haller@epfL.h (7. Haller).

0304-39755 - see front matter © 2008 Elsevier B. All ights reserved.
01:10.1016/.1652008.09.019

highly concurrent systems [11, 12, 17].
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Storage APIs: Recap

Applications

syscalls

Linux Kernel

A

A\

N\

NVMe Device

Libaio:
+ Asyncl/O
+ Any files/FSes
+ Any device: HDD, NVMe

- Async only with direct I/O
- Performance
- Metadata management

Applications
SPDK
NVMe Device
SPDK:
+ Performance
+ Close application integration
+ No syscall or interrupts

Only NVMe
No kernel assistance
Scalability and brittle

Applications

) §

Q" ‘Q'
Linux Kernel

NVMe Device

io_uring

Best of both worlds?
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io_uring: A Structured Approach to Asynchronous I/0

Application

Application consumes completion

Application puts submission at tail ) from head to tail

Application
Submission Completion
Queue Queue
'Cb‘ 'Cb‘
syscall | bmission / N€ad tail . i
jo_uring enter ST \ cernel "‘ﬁ
o, i / Producer-consumer pattern
g e SQ: producer = application (tail), consumer = kernel (head)

e (CQ: producer = kernel (tail), consumer = application (head)

E% interrupt Head and tail pointers manipulation with exclusive write

ownership

What's new with io_uring, 2022, https://kernel.dk/axboe-kr2022.pdf 52



https://kernel.dk/axboe-kr2022.pdf

io_uring: A Structured Approach to Asynchronous I/0

Application

Request:

File descriptor
Offset

Size

(also vector)

i

< EE% Qterrupt

Response:
° I/0 status
° Context
(user-defined)
° Size of the I/O

Applications can

Async I/0

I/0 on any fd type (+net)
Queue requests (batch)

Vector I/0

Optimize (fixed FD, pin)
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The three new Syscalls

1. io_uring_setup: This call is for creating the ring structure (queue-depth, 1/0
completion and notification modes)

a. Completion polling by the kernel on the device (IORING_SETUP_IOPOLL)
b. Kernel polling for submission (IORING_SETUP_SQPOLL, zero system call)

2. io_uring_enter: This call enters the kernel and tells it to process I/0 requests (any

type and extensible, not just storage 1/0)
a. Networking, ZNS, Programmable storage and more
b. Replacement for the ioctl() call: a private interface between a device driver and
application

3. io_uring_register: This call is for registering specific fd, buffers, file ranges that are
being used frequently to put them on an optimized fast path

See: /usr/include/linux/io uring.h file for the full structure and call definitions o4



syscall

< Application

T -

+ (o]

c |

Y e I 38

S () (@) %

TR Y R

3 ol

S o
N io_uring‘/ ’

Three Modes of Operations

E% %terrupt

(a) io_uring (default)

< Application .

q) .

+ (o]
= 3 I_CS )
Sw X () B
wn | N
Sf Y K R

5, o

N 5

io_uring /

%) polling

(b) with completion polling

userspace
Application
poll
érﬂj; €fiﬂgg
polling = I kernel
with
kthread IO urmg

%) polling

(c) with submission polling

55



Understanding Modern Storage AP

Systor’22

A systematic study of libaio, SPDK, and io_uring

Diego Didona, Jonas Pfefferle
Nikolas Ioannou, Bernard Metzler
IBM Research Europe
Zurich, Switzerland
{ddi jpf.nio,bmt}@ibm.zurich.com

ABSTRACT

Recent high devices b d soft-
ware inefficiencies in exuﬁlml\ nomg stacks, leading to a
new breed of O stacks. The newest storage API of the Linux
kemel is 1o_uring. We perform one of the first in-depth
studies of 10_uring, and compare its performance and dis-
/advantages with the established 1ba 10 and SPOK APIs. Our
key findings reveal that (i) polling design significantly im-
pacts performance; (i) with cnough CPU cores io_uring
can deliver performance close to that of SPOK; and (i) per-
formance scalability over multiple CPU cores and devices
requires careful consideration and necessitates a hybrid ap-
proach. Last, we provide design guidelines for developers of
storage intensive applications.

ACM Reference Format:
Diego Didona, Jonas Plefferle, Nikolas loannou, Bernard Metzler
and Animesh Trivedi. 2022 Understanding Modern Storage APIs
A systematic study of 1ibaio, SPOK, and io_uring In The I5th
ACM International Systems and Storage Conference (SYSTOR '22),
June 13-15, 2022, Haifa, lsrael. ACM, New York, NY, USA, 8 pages.
hitps://doi org/10.1145/3534056.3534945

1 INTRODUCTION

Modern non-volatile memory (NVM) storage technologies,
like Flash and Optane SSDs. can support down to single
digit psecond latencies, and up to multi GB/s bandwidth
with millions of 1/O operations per second (IOPS). CPU per-
formance improvements have stalled over the past years
due to various manufacturing and technical limitations [8].

Animesh Trivedi
VU Amsterdam
Amsterdam, Netherlands
atrivedi@vunl

As a result, researchers have put considerable effort into
identifying new CPU-efficient storage APLs 'hslmlitma de-
signs, and optimizations X 31).
One specific APL io_uring, has drawn mmh.umnun from
the community due to its versatile and high performance
interface (5, 15, 16, 18, 27, 34]. io_ur ing was introduced
in 2019 and has been merged in Linux v5.1. Tt brings to-
gether many well established ideas from the high perfor-
mance storage and networking communities, such as asyn-
chronous L0, shared memory-mapped queues, and polling
(Section 2) [9, 10,31,32).

With the addition of io_uring, Linux now has multi-
ple ways of accessing a storage device. In this paper, we
look at Linux Asynchronous 1O (libaio) (6, 24, the Storage
Performance Development Kit (SPOK) from Intel [13], and
io_uring[15,17, 18], These APIs have different paramelers,
deployment models, and characteristics, which make under-
standing their performance and limitations a challenging
task. The use of the io_uring APland its performance has
been the focus of recent studies (7,28, 33, 36]. However, to the
best of our knowledge, there is no systematic study of these
APIS that provides design guidelines for the developersof 1O
intensive appli There has also be y
of workiin studying Uloverhead [29]
belter interrupt management for /0 devices [30], leveraging
polling for fast storage devices [38], using /O speculation
for psecond-scale devices such as NVMe drives [35], and
improving the performance of the Linux block layer in gen-
eral [3, 39, 40]. These works are orthogonal 1o ours, since
they explore designing new storage stacks, while we focus

of
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onthe he-art APIs
that are readily available in Linux.

Our main contributions include (i) a systematic compar-
ison of 1ibaio, io_uring, and SPOK, that evaluates their
Latency, IOPS, and scalability behaviors; if) a frst-of-its-kind
detailed evaluation of the different io_uring configurations;
and iii) design guidelines for high-performance applications
using modem storage APIs. Our key findings reveal that:

CHEOPS'23

Performance Characterization of Modern Storage
Stacks: POSIX I/0, libaio, SPDK, and io_uring

Zebin Ren
zren@vunl
Vrije Universiteit Amsterdam
Amsterdam, Netherlands

Abstract

Linux storage stack offers a variety of storage /0 stacks
and APIs such as POSIX /O, asynchronous 1O (libaio),
high-performance asynchronous /O (emerging io_uring)
or SPDK, the last of which completely bypasses the kernel
Despite their availability, there has not been a systematic

Animesh Trivedi
atrivedi@vu.nl
Vrije Universiteit Amsterdam
Amsterdam, Netherlands

1 Introduction

Modern storage devices such as Intel Optane SSDs can de-
liver millions of IOPS (/O operations per second) with single-
digit microseconds (psecs) /O access latencies [7, 17). Mean-
while, the CPU performance has remained relatively sta-
ble as Moore's Law driven performance gains stall [29]

study of their performance and overheads. In order to aid  C the stalled CPU with high-
our in this work we ically charac- storage hardware b previousl
terize scalability and prop- hidden software overheads in the storage stack implemen-

erties of popular Linux I/O APIs on high-performance stor-
age hardware (Intel Optane SSDs). Our characterization re-
veals that: (1) at low 1O loads, all APIs perform competi-
tively with each other, with polling helping th

tations, thus leading to a series of efforts to redesign and
optimize the storage stack focusing on lock contentions,
polling, copy elimination, new interfaces, scheduling, context
switches, 1/O paths, interrupt and system call

by 1.7, but consuming 2.3x CPU instructions; (2) at high-
loads and scale, io_uring is more than an order of mag-
nitude slower than SPDK: (3) at high-loads and scale, the
benchmarking tool (fo) itself becomes  bottleneck; (4) state-
of-practice Linux block IO schedulers (BFQ, mq-deadline,
and Kyber) introduce significant (up to 50%) overheads, and
their use of global locks hinder their scalability. Al artifacts
from this work are available at https://github.com/atlarge-
s L

CCS Concepts: + Software and its engineering — Sec-

eliminations [3, 18, 20, 25, 30, 36, 37, 39, 40, 45, 56, 59, 66, 68]

Beyond these optimizations, there have been many efforts
to improve the user-kernel and user-storage APIs and ab-
stractions. Linux supports two popular and widely used APIs
called (synchronous) POSIX file /O calls 12, 13] and an asyn-
chronous API called libaio [3]. Both of these APIs interact via
system calls (syscalls) with the Linux kernel which can have
high overheads [22, 38, 55]. More recently, Linux develop-
ers have introduced a new high-performance 1/0 AP called
io_uring[8]. It takes many established ideas from the high-

ondary storage; Operating systems.

rds: Linux storage stack, io_uring, SPDK, Efficiency,
Measurements
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networking domain (shared ¥ queues,
asynchronous 10, polling, shared 1O contexts) and applies
them to storage in a unified manner [61, 62]. These advance-
ments are now merged in the Linux storage stack (since
v5.1 kernel version), and have shown to deliver high per-
formance and CPU efficiency [22]. All of these APIs (POSIX,
libaio, i0_uring) work within the kernel

The Linux kernel with its generic code execution, func-
tionalities, and features can also introduce significant over-
heads [51], thus leading to the design of kernel-bypassing
userspace storage stacks [24, 34, 69, 74]. The Storage Perfor-
mance Development Kit (SPDK) is one of the most popular
and widely used user space /O libraries, which can deliver
up to 10 million IOPS using a single CPU core [2]. However,
user space 1O libraries lack many kernel-supported features
such as fine-grained isolation, access control, file systems,
multi tenancy, and QoS support [48, 64].

In summary, over the past decade, the in-kernel and
userspace 1/O stacks have undergone a significant devel-
opment phase. Despite sharing a common functional goal

Diego Didona, Jonas Pfefferle, Nikolas loannou, Bernard Metzler, and Animesh Trivedi. 2022. Understanding modern storage APIs: a systematic study of
libaio, SPDK, and io_uring. In Proceedings of the 15th ACM International Conference on Systems and Storage (SYSTOR '22).
https://doi.org/10.1145/3534056.3534945

Zebin Ren and Animesh Trivedi. 2023. Performance Characterization of Modern Storage Stacks: POSIX I/0, libaio, SPDK, and io_uring. In Proceedings of the
3rd Workshop on Challenges and Opportunities of Efficient and Performant Storage Systems (CHEOPS '23). https://doi.org/10.1145/3578353.3589545
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Benchmarking Setup

Setup 1 [Systor'22]:
e 2XIntel® Xeon® E5-2630 (Sandy Bridge), 10 cores/socket = 20 CPU cores

e 20 Intel® DC P3600 400GB NVMe Elash SSDs = ~6 Million IOPS

Setup 2 [CHEOPS'23]:
o 22X Intel® Xeon® Silver 4210R (Cascade Lake), 10 cores/socket = 20 CPU cores

e 7/xIntel Corporation 900P NVMe Optane SSD = 4.2 Million IOPS
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Number of System Calls
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Queue depth

Doing 1/0 with zero system calls!
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Results: Efficiency (single CPU core)

io_uring sits between libaio and SPDK Performance collapses with the kernel polling
Systor’22
| 1 1
aio o
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Analysis

Systor’22 CHEOPS’23
= user m kernel 25
100 g
75 o
5 50 5
O -y
X 25 g
0 g
1 4 16 64 128 ﬁ
£
Queue depth

libaio iou iou+p iou+k SPDK

[Interesting] 8 milliseconds constant

SPDK is still 5x more efficient
latency for all queue depths!

Poor scheduling, and CPU sharing - Careful!
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Result: Efficiency with TWO CPU cores

KIOPS
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[ @io < iou < iou with polling < iou with kernel poll < SPDK ]

Normal service order can be resumed (but at the cost of 2x CPU cores)!
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Results: Scalability

Systor’22 CHEOPS’23
4 @i0 Ajou 4 joutp 4 ioutk a SPDK = aio =-iou =iou_c = SPDK
<080 o= 2 4 cores 13 cores
3000 s 4 B
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& 2000 Z
o o 2
4 <
1000 = 1
e
0 = 0
02/4/6 8 10 12 14 16 18 20 5 10 15 20
CPU Cores used
io_uring kernel polling: Performance collapses when the CPU efficiency is still bad: 10x more CPU cores needed

number of poller CPU threads increases beyond the cores
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io_uring : Programming Ecosystem

liburing : https://

O

ithub.com/axboe/liburin

3x syscall based programming can be tricky, hence, a high(er)-level library

List of manual pages

[en] 10_URING_CHECK_VERSION(3)
[en] 10_URING_VERSION_MAIJOR(3)
[en] 10_URING_VERSION_MINOR(3)
[en] __io_uring_buf_ring_cq_advance(3)
[en] io_uring(7)

[en] io_uring_buf_ring_add(3)

[en] io_uring_buf_ring_advance(3)
[en] io_uring_buf_ring_cq_advance(3)
[en] io_uring_buf_ring_init(3)

[en] io_uring_buf_ring_mask(3)

[en] io_uring_check_version(3)

[en] io_uring_close_ring_fd(3)

[en] io_uring_cq_advance(3)

[en] io_uring_cq_has_overflow(3)
[en] io_uring_cq_ready(3)

[en] io_uring_cqe_get_data(3)

[en] io_uring_cqe_get_data64(3)

[en] io_uring_cqe_seen(3)

[en] io_uring_enter(2)

[en] io_uring_enter2(2)

[en] io_uring_for_each_cqe(3)

[en] io_uring_free_buf_ring(3)
[en]io_uring_free_probe(3)

[en] io_uring_get_events(3)
[en] io_uring_get_probe(3)
[en]io_uring_get_sqe(3)

[en] io_uring_major_version(3)
[en] io_uring_minor_version(3)

[en] io_uring_opcode_supported(3)
[en] io_uring_peek_cqe(3)

[en] io_uring_prep_accept(3)

[en] io_uring_prep_accept_direct(3)
[en] io_uring_prep_cancel(3)

[en] io_uring_prep_cancel64(3)
[en] io_uring_prep_close(3)

[en] io_uring_prep_close_direct(3)
[en] io_uring_prep_connect(3)

[en] io_uring_prep_fadvise(3)
[en]io_uring_g
[en]io_uring_prep_fgetxatr(3)
[en] io_uring_prep_files_update(3)
[en] io_uring_prep_fsetxattr(3)
[en] io_uring_prep_fsync(3)

[en] io_uring_prep_getxattr(3)

[en] io_uring_prep_link(3)
[enlio_uring_prep_link_timeout(3)

ep_fallocate(3)

[en] io_uring_prep_linkat(3)
[en] io_uring_prep_madvise(3)

[en] io_uring_prep_mkdir(3)

[en] io_uring_prep_mkdirat(3)

fen] io_uring_prep_msg_ring(3)

[en] io_uring_prep_msg_ring_cqe_fags(3)
fen] io_uring_prep_msg_ring_fd(3)

fen] io_uring_prep_msg_ring_fd_alloc(3)
fen] io_uring_prep_multishot_accept(3)
[en]
io_uring_prep_multishot_accept_direct(3)
fen] io_uring_prep_nop(3)

[en] io_uring_prep_openat(3)

[en] io_uring_prep_openat2(3)

[en] io_uring_prep_openat2_direct(3)
[en] io_uring_prep_openat_direct(3)

fen] io_uring_prep_poll_add(3)

[en] io_uring_prep_poll_multishot(3)

fen] io_uring_prep_poll_remove(3)

fen] io_uring_prep_poll_update(3)

[en] io_uring_prep_provide_buffers(3)
fen] io_uring_prep_read(3)

[en] io_uring_prep_read_fixed(3)

[en] io_uring_prep_readv(3)
[en] io_uring_prep_readv2(3)

[en] io_uring_prep_recv(3)

[en] io_uring_prep_recv_multishot(3)
fen] io_uring_prep_recvmsg(3)

[en] io_uring_prep_recvmsg_multishot(3)
fen] io_uring_prep_remove._bufers(3)
[en] io_uring_prep_rename(3)

[en] io_uring_prep_renameat(3)

[en] io_uring_prep_send(3)

[en] io_uring_prep_send_set_addr(3)
[en] io_uring_prep_send_zc(3)

[en] io_uring_prep_send_zc_fixed(3)
[en] io_uring_prep_sendmsg(3)

[en] io_uring_prep_sendmsg_zc(3)

fen] io_uring_prep_sendto(3)

[en] io_uring_prep_setxattr(3)

[en] io_uring_prep_shutdown(3)

[en] io_uring_prep_socket(3)

[en] io_uring_prep_socket_direct(3)

[en] io_uring_prep_socket_direct_alloc(3)
fen] io_uring_prep_splice(3)

[enl io_uring_prep_staix(3)

= [en] io_uring_prep_symlink(3)
« [en] io_uring_prep_symlinkat(3)

= [en] io_uring_prep_sync_file_range(3)
= [en] io_uring_prep_tee(3)

= [en] io_uring_prep_timeout(3)

« [en] io_uring_prep_timeout_remove(3)
en] io_uring_prep_timeout_update(3)
fen] io_uring_prep_unlink(3)

fen] io_uring_prep_unlinkai(3)

fen] io_uring_prep_write(3)

fen] io_uring_prep_write_fixed(3)

en] io_uring_prep_writev(3)

fen] io_uring_prep_writev2(3)

en] io_uring_queue_exit(3)

[en] io_uring_queue_init(3)

= [en] io_uring_queue_init_params(3)
[en] io_uring_recvmsg_cmsg_firsthdr(3)
fen] io_uring_recvmsg_cmsg_nexthdr(3)
fen] io_uring_recvmsg_name(3)

fen] io_uring_recvmsg_out(3)

fen] io_uring_recvmsg_payload(3)

« [en] io_uring_recvmsg_validate(3)

[en] io_uring_recvmsg_payload_length(3)

[en] io_uring_register(2)
[en] io_uring_register_buf_ring(3)

[en] io_uring_register_buffers(3)

fen] io_uring_register_buffers_sparse(3)
[en] io_uring_register_buffers_tags(3)
fen]
io_uring_register_buffers_update_tag(3)
[en] io_uring_register_eventid(3)

[en] io_uring_register_eventfd_async(3)
fen] io_uring_register_file_alloc_range(3)
[en] io_uring_register_files(3)

[en] io_uring_register_files_sparse(3)

[en] io_uring_register_files_tags(3)

[en] io_uring_register_files_update(3)
[en] io_uring_register_files_update_tag(3)
[en] io_uring_register_iowq_afi(3)

[en]

io_uring_register_iowq

max_workers(3)

_uring_register_sync_cancel(3)
[en] io_uring_setup(2)

[en] io_uring_setup_buf_ring(3)

fen] io_uring_sq_ready(3)

[en] io_uring_sq_space_left(3)
[en] io_uring_sqe_set_data(3)

[en] io_uring_sqe_set_data64(3)

[en] io_uring_sqe_set_flags(3)

[en] io_uring_sqring_wait(3)

[en] io_uring_submit(3)

fen] io_uring_submit_and_get_events(3|
fen] io_uring_submit_and_wait(3)

[en] io_uring_submit_and_wait_timeout(
[en] io_uring_unregister_but_ring(3)
[en] io_uring_unregister_buffers(3)

[en] io_uring_unregister_eventfd(3)
[en] io_uring_unregister_files(3)

[en] io_uring_unregister_iowq_aff(3)
[en] io_uring_unregister_ring_{d(3)

[en] io_uring_wait_cqe(3)

[en] io_uring_wait_cqe_nr(3)

[en] io_uring_wait_cqe_timeout(3)

[en] io_uring_wait_cqes(3)

e Active research in leveraging io_uring in DBs, key-value store, etc.
e Applicability beyond storage as the “core” kernel-application interfacing

API
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https://github.com/axboe/liburing

What you should know from this lecture

What is CXL and what key problems does it solve

What is different types of CXL protocols, device types, and generational features
What does flash + CXL allow us to do

What is asynchronous and non-block 1/0, and what different APIs support them
What is io_uring? What are the different operation completion modes it support
What are the performance implications of these modes

The New(er) Triangle of Storage-Memory Continuum
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To Conclude

Storage Research is fundamentally
changing and reshaping what

kind of systems we can build
tomorrow

Performance
Abstractions
Efficiency
Programmability
Cost

Scalability

This course came out of this report ;)

Data Storage Research Vision 2025

Report on NSF Visioning Workshop held May 30-June 1, 2018
George Amvrosiadis’, Ali R. Butt¥, Vasily Tarasov?, Erez Zadok*, Ming Zhao®
Irfan Ahmad, Remzi H. Arpaci-Dusseau, Feng Chen, Yiran Chen, Yong Chen, Yue Cheng,
Vijay Chidambaram, Dilma Da Silva, Angela Demke-Brown, Peter Desnoyers, Jason Flinn, Xubin He,
Song Jiang, Geoff Kuenning, Min Li, Carlos Maltzahn, Ethan L. Miller, Kathryn Mohror, Raju Rangaswami,
Narasimha Reddy, David Rosenthal, Ali Saman Tosun, Nisha Talagala, Peter Varman, Sudharshan Vazhkudai

Avani Waldani, Xiaodong Zhang, Yiying Zhang, and Mai Zheng.

fCarnegie Mellon University, ¥Virginia Tech, ‘IBM Research,
*Stony Brook University, Arizona State University

February 2019

Executive Summary

With the emergence of new computing paradigms (e.g., cloud and edge computing, big data, Internet of Things (IoT),

deep learning, etc.) and new storage hardware (e.g., non-volatile memory (NVM), shingled-magnetic recording
(SMR) disks, and kinetic drives, etc.), a number of open challenges and research issues need to be addressed to
ensure sustained storage systems efficacy and performance. The wide variety of applications demand that the
fundamental design of storage systems should be revisited to support application-specific and application-defined
semantics. Existing standards and abstractions need to be reevaluated; new sustainable data representations need to
be designed to support emerging applications. To take advantage of hardware advancements, new storage software
designs are also necessary in order to maximize overall system efficiency and performance.

Therefore, there is a urgent need for a consolidated effort to identify and establish a vision for storage systems
research and comprehensive techniques that provide practical solutions to the storage issues facing the information
technology community. To address this need, the National Science Foundation’s (NSF) “Visioning Workshop on
Data Storage Research 2025 brought together a number of storage researchers from academia, industry, national
laboratories, and federal agencies to develop a collective vision for future storage research, as well as to prioritize
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The New(er) Triangle of Storage-Memory Continuum

Local CXL Mem Local CXL SSDs
150-300 nsecs 1-10 usec

Cost: $/GB

Remote CXL Mem Remote CXL SSD

p ~1-2 usecs 10-100 usec
NAND Flash/Optane SSDs \ -100 usec
Hard disk drive (HDD) 10-100ms

Instead of discrete steps, it is a continuous spectrum now: Continuum -




Further Reading - CXL (1 or 2)

CXL Consortium, https://www.computeexpresslink.org/

CXL resources, https://www.computeexpresslink.org/resource-library

Linux CXL driver code: https://elixir.bootlin.com/linux/latest/source/drivers/cx|

Debendra Das Sharma, and others, An Introduction to the Compute Express Link (CXL) Interconnect, 2023,
https://arxiv.org/abs/2306.11227

Hasan Al Maruf, and others. TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory. In Proceedings of the
28th ACM ASPLOS 2023. https://doi.org/10.1145/3582016.3582063

Myoungsoo Jung. 2022. Hello bytes, bye blocks: PCle storage meets compute express link for memory expansion
(CXL-SSD). In Proceedings of the 14th ACM HotStorage ‘22, https://doi.org/10.1145/3538643.3539745

Miryeong Kwon, Sangwon Lee, and Myoungsoo Jung. 2023. Cache in Hand: Expander-Driven CXL Prefetcher for Next
Generation CXL-SSD. In Proceedings of the 15th ACM HotStorage '23, https://doi.org/10.1145/3599691.3603406
Huaicheng Li, and others. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms. In Proceedings of the 28th ACM
ASPLOS 2023, https://doi.org/10.1145/3575693.3578835

Shao-Peng Yang and others. Overcoming the Memory Wall with CXL-Enabled SSDs, USENIX ATC 2023,
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng

Donghyun Gouk and others, Direct Access, High-Performance Memory Disaggregation with DirectCXL, USENIX ATC 2022,
https://www.usenix.org/conference/atc22/presentation/gouk
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Further Reading - CXL (2 of 2)

CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate
Nearest Neighbor Search, USENIX ATC 2023, https://www.usenix.org/conference/atc23/presentation/jang

Marcos K. Aguilera, and others. 2023. Memory disaggregation: why now and what are the challenges. SIGOPS Oper. Syst.

Rev. 57, 1 (June 2023), 38-46. https://doi.org/10.1145/3606557.3606563

Hasan Al Maruf and Mosharaf Chowdhury. 2023. Memory Disaggregation: Advances and Open Challenges. SIGOPS Oper.

Syst. Rev. 57, 1 (June 2023), 29-37. https://doi.org/10.1145/3606557.3606562

Jianguo Wang and Qizhen Zhang. 2023. Disaggregated Database Systems. In Companion of the 2023 International
Conference on Management of Data (SIGMOD '23). https://doi.org/10.1145/3555041.3589403

Wenjing Jin, and others. DRAM Translation Layer: Software-Transparent DRAM Power Savings for Disaggregated Memory.
In Proceedings of the 50th Annual International Symposium on Computer Architecture (ISCA '23).
https://doi.org/10.1145/3579371.3589051

What's the Difference Between CXL 1.1 and CXL 2.0?
https://www.electronicdesign.com/technologies/embedded/article/21249351/cxl-consortium-whats-the-difference-betwe
en-cxl-11-and-cxI-20

QEMU CXL setup, https://www.gemu.org/docs/master/system/devices/cxl.html

How To Map a CXL Endpoint to a CPU Socket in Linux,
https://stevescargall.com/blog/2022/12/27/how-to-map-a-cxl-endpoint-to-a-cpu-socket-in-linux/
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https://stevescargall.com/blog/2022/12/27/how-to-map-a-cxl-endpoint-to-a-cpu-socket-in-linux/

Further Reading - io_uring (1 of 2)

Efficient 10 with io_uring, https://kernel.dk/io uring.pdf
What's new with io_uring, https://kernel.dk/axboe-kr2022.pdf
An Introduction to the io_uring Asynchronous I/0 Framework,
https://blogs.oracle.com/linux/post/an-introduction-to-the-io-uring-asynchronous-io-framework

e Zebin Ren and Animesh Trivedi. 2023. Performance Characterization of Modern Storage Stacks: POSIX I/0, libaio, SPDK,
and io_uring. In Proceedings of the 3rd Workshop on Challenges and Opportunities of Efficient and Performant Storage
Systems  (CHEOPS  '23). Association for Computing Machinery, New  York, NY, USA,  35-45
https://doi.org/10.1145/3578353.3589545

e Diego Didona, Jonas Pfefferle, Nikolas loannou, Bernard Metzler, and Animesh Trivedi. 2022. Understanding modern
storage APIs: a systematic study of libaio, SPDK, and io_uring. In Proceedings of the 15th ACM International Conference
on Systems and Storage (SYSTOR '22). Association for Computing Machinery, New York, NY, USA, 120-127.
https://doi.org/10.1145/3534056.3534945

e Simon A. F. Lund, Philippe Bonnet, Klaus B. A. Jensen, and Javier Gonzalez. 2022. I/0 interface independence with xNVMe.
In Proceedings of the 15th ACM International Conference on Systems and Storage (SYSTOR '22). Association for
Computing Machinery, New York, NY, USA, 108-119. https://doi.org/10.1145/3534056.3534936

e Sidharth Sundar, William Simpson, Jacob Higdon, Caeden Whitaker, Bryan Harris, and Nihat Altiparmak. 2023. Energy
Implications of 10 Interface Design Choices. In Proceedings of the 15th ACM Workshop on Hot Topics in Storage and File
Systems  (HotStorage '23). Association for Computing Machinery, New York, NY, USA, 58-64.
https://doi.org/10.1145/3599691.3603411
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Further Reading - io_uring (2 of 2)

Ringing in a new asynchronous 1/0 API, https://lwn.net/Articles/776703/

[PATCHSET v5] io_uring 10 interface, https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/
Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, and How to Exploit it: High-Performance 1/0 for
High-Performance Storage Engines. Proc. VLDB Endow. 16, 9 (May 2023), 2090-2102.
https://doi.org/10.14778/3598581.3598584

Hugh C. Lauer and Roger M. Needham. 1979. On the duality of operating system structures. SIGOPS Oper. Syst. Rev. 13, 2
(April 1979), 3-19. https://doi.org/10.1145/850657.850658

John Ousterhout, Why Threads Are A Bad Idea (for most purposes),
https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf

Rob von Behren, Jeremy Condit, and Eric Brewer. 2003. Why events are a bad idea (for high-concurrency servers). In
Proceedings of the 9th conference on Hot Topics in Operating Systems - Volume 9 (HOTOS'03). USENIX Association, USA,
4, https://dl.acm.org/doi/10.5555/1251054.1251058

Philipp Haller, Martin Odersky, Scala Actors: Unifying thread-based and event-based programming, 2008,
https://doi.org/10.1016/j.tcs.2008.09.019.

A 5 part series on the asynchronous nature of 170, oS, and concurrency:
https://blog.acolyer.org/2014/12/08/on-the-duality-of-operating-system-structures/

pTune: Auto-Tuned Threading for OLDI Microservices, https://www.usenix.org/conference/osdi18/presentation/sriraman
Linux Asynchronous 1/0, https://oxnz.github.io/2016/10/13/linux-aio/

Linux-aio, https://github.com/littledan/linux-aio
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