
‘ODAbler’: Design and Evaluation of an Operational Data Analytics
Framework for Energy-efficient management of Workloads

in a Data Centre Simulator OpenDC

A thesis submitted in partial fulfilment

of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Faculty of Science

Vrije Universiteit Amsterdam & Universiteit van Amsterdam

Proponent:
Shekhar Suman

Research Supervisor:
Prof. dr. ir. Alexandru Iosup

Daily Supervisor:
Xiaoyu Chu (PhD fellow)

Second Reader:
Prof. dr. Tiziano De Matteis

Date: October 31, 2023 Place: Amsterdam,
The Netherlands

The Road Not Taken

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

ROBERT FROST (1874–1963)

ii

Abstract

In an era marked by the growing urgency of addressing climate change and ad-
vancing green initiatives, the role of data centres in sustainable technology practices
cannot be overstated. Data centres have experienced unprecedented growth serv-
ing as the digital infrastructure of the modern world, further being driven by the
ever-expanding digital ecosystem. All this has resulted in the rise of their energy
consumption, contributing to the carbon footprint and environmental challenges.
This thesis highlights the pressing necessity to optimise energy consumption and
minimise the environmental impact of modern data centres.

The aim of this master’s thesis is to highlight the challenges in energy-efficient
management of operations within a data centre environment. Given the complexity
originating due to heterogeneity and the vastness of the components in a data centre
(DC), there should be a fine-grained study and evaluation of the impact of various
components ranging from the infrastructure layer to the data centre hardware layer,
underlying software and the applications running on them. The HPC data centre
ontology is crucial in providing a structured and standardised way to represent the
complex and dynamic environment of HPC clusters like DAS-6. This report proposes
an ontology model for HPC clusters based on metrics collected from two produc-
tion clusters from HPC data centres, and proposes a simplistic design of an ODA
framework (driven by the modelled ontology) for analysing energy-efficiency-related
and anomaly-detection-related aspects of a DC processing various kinds of work-
loads (either scientific or industrial). Further, the same approach is implemented
as part of ‘ODAbler’, an ODA framework built as a digital twin of OpenDC, and
energy-related experiments are carried out to validate the energy efficiency and per-
formance goals as desired.

In conclusion, the thesis underscores the pivotal role of an ODA framework fol-
lowing the design of an ontology-driven approach by offering actionable insights and
recommendations that would be helpful for data centre operators, policymakers, and
stakeholders to advance a greener, more sustainable future.

iii

Acknowledgement

This work could not have been successfully accomplished without the help of many
people.

Thanks to Alexandru and Xiaoyu for their excellent supervision and support.
It has been a pleasure working with them, most especially my primary supervisor,
Alexandru, who constantly gives his support in all of my endeavours throughout my
studies. I have enjoyed working with the ‘AtLarge Research’ team and look forward
to collaborating with them even after graduation.

Thanks to Xiaoyu, our doctoral research fellow in the team, for all the help and
support, especially for the guidance about the ontology design and data analytics
that I used in this thesis project. I have learned a lot from her - both technical and
personal.

Thanks to the whole ‘AtLarge Research’ team for warmly welcoming me into the
discussions, and for all the assistance when I was starting.

Thanks to my family for their love and full support in all of my endeavours.
Thank you for helping me with my finances, especially during the time that I was
having financial difficulties.

Thanks to all of my friends (and ‘best’ friends) in India and the Netherlands
for keeping in touch with me and for making me feel like I’m still home every day
through our constant messages.

Thanks to my closest VU friends (“13th-floor folks”) for the good friendship and
company. I hope we can still keep in touch in the coming years and keep hanging
out every time we get ’lost’ and feel stressed out with our research.

Special thanks to my former co-workers from ‘Keylane’ (The Netherlands) and
from ‘State Bank of India’ (SBI), for all the unending and unconditional support and
for always keeping me sane, especially during my downtimes. Thanks for believing
in me and showing me how proud you are of me. You both are a big part of my
success and of who I am today.

Lastly, special thanks to my well-wishers for all the countless blessings that you
have been showering me.

This is all for you, lovely people!

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 3
1.3 Research Questions . 4
1.4 Research Methodology . 5
1.5 Thesis Contributions . 6
1.6 Plagiarism Declaration . 7
1.7 Open Science . 7
1.8 Thesis Structure . 7

2 Background/Literature Review 9
2.1 Large-scale Computing Infrastructure/Ultra-large-scale systems (ULSS) 9
2.2 Data Centre Simulation . 10
2.3 ODA: Operational Data Analytics . 14
2.4 Ontology for HPC . 26
2.5 Design process of the @Large Research team 26
2.6 Related work . 28

3 Ontology modelling to drive the ODA design 30
3.1 Overview . 30
3.2 Requirements analysis . 33
3.3 HPC ontology modelling . 34
3.4 Experimental validation . 43
3.5 Summary . 45

4 Design of ‘ODAbler’: an ODA framework for a data centre sim-
ulator (OpenDC) 47
4.1 Why is an ODA framework needed? 47
4.2 Requirements analysis . 48
4.3 Proposed Architecture . 49
4.4 Design elements overview . 50
4.5 Summarised technical implementation 56
4.6 Summary . 59

5 Results: Experimental evaluation of ‘ODAbler’ 61
5.1 Experimental setup . 61
5.2 Scheduling policies’ energy-efficiency analysis 63
5.3 Node-based anomaly detection . 69
5.4 ODA analysis’ discussion . 71
5.5 Summary . 73

v

6 Conclusion and Future Work 74
6.1 Conclusion . 74
6.2 Limitations . 75
6.3 Future Work . 76

A Artefact Reproducibility 77
A.1 Ontograf representation of OWL ontologies 77
A.2 System setup for ODAbler-based experiments 79
A.3 Projects’ execution . 79

B Source Codes 81
B.1 HPC Ontology Modeller application 81
B.2 ODAbler (ODA framework) . 81

References 82

vi

List of Figures

1.1 Typical data flow involved in a distributed system using ODA 2
1.2 Thesis overview . 8

2.1 Generic model for data centre operations 10
2.2 Comparison of various data centre simulators 12
2.3 Four pillars of energy efficient HPC 14
2.4 Types of data analytics for HPC . 15
2.5 Proposal of a holistic ODA framework 16
2.6 OMNI Integrated ODC&A Architecture 19
2.7 Wintermute: A high-level overview of ODA framework 21
2.8 Architecture of Wintermute (abstract-level) 22
2.9 High-level overview of the architecture of DCDB 23
2.10 EAS concept proposed by IBM Research 24
2.11 Overview of the intelligent data collection framework architecture . . . 25
2.12 The @Large (or, AtLarge) design process 26

3.1 A correspondence between the concepts of OOP and formal ontologies 31
3.2 SURF’s LISA HPC cluster’s class-hierarchy representation 41
3.3 CINECA’s M100 HPC cluster’s class-hierarchy representation 42
3.4 Modelled ontology’s SPARQL output showing various properties . . . 43
3.5 CINECA’s OWL ontology visualisation (using WebVOWL) 44
3.6 SURF’s OWL ontology visualisation (using WebVOWL) 45

4.1 Basic stages composing a generic ODA pipeline 48
4.2 High-level architecture of ODAbler framework 49
4.3 An overview of the architecture of OpenDC (2.0) 51
4.4 Ontology driven metrics export to InfluxDB 54
4.5 Implemented ODA capabilities highlighted in red 56
4.6 OpenDC exported metrics visualised in InfluxDB explorer 58

5.1 Task-scheduling algorithms’ energy-consumption: shell at 60% scale . 64
5.2 Task-scheduling algorithms’ energy-consumption: shell at 100% scale . 65
5.3 Task-scheduling algorithms’ energy-consumption: shell at 150% scale . 66
5.4 Task-scheduling algorithms’ energy-consumption: Pegasus at 60% scale 67
5.5 Task-scheduling algorithms’ energy-consumption: Pegasus at 100% scale 68
5.6 Task-scheduling algorithms’ energy-consumption: Pegasus at 150% scale 68
5.7 Node-anomaly detection for abnormal power usage: shell at 100% scale 70
5.8 Timestamp details from ODAbler’s anomaly analysis: 100% scale . . . 70
5.9 Node-anomaly detection for abnormal power usage: shell at 150% scale 71
5.10 Timestamp details from ODAbler’s anomaly analysis: 150% scale . . . 72

vii

A.1 SURF’s OWL ontology OntoGraf visualisation (using Protege) 78
A.2 CINECA’s OWL ontology OntoGraf visualisation (using Protege) . . . 78

viii

List of Tables

3.1 Base classes from both SURF’s & CINECA’s ontology modelling . . . 34
3.2 Additional classes from SURF’s ontology modelling 35
3.3 High-level concepts from SURF’s ontology modelling 38
3.4 Additional classes from CINECA’s ontology modelling 39
3.5 High-level concepts from CINECA’s ontology modelling 40
3.6 Ontology metrics related to the modelled SURF’s LISA cluster. 41
3.7 Ontology metrics related to the modelled CINECA’s M100 cluster . . 41

5.1 Workload traces used for the experiments in ODAbler project 62
5.2 Task-scheduling algorithms’ total-energy consumption analysis: 100% 64
5.3 Task-scheduling algorithms’ total-energy consumption analysis: 150% 67

ix

Chapter 1

Introduction

The complexity of modern large-scale computing infrastructures (e.g., HPC clus-
ters, supercomputers, and cloud systems) has grown to an extreme level, at the
verge of exascale, which introduces operational challenges. The complexity of these
systems originates due to their adoption of heterogeneous architectures, ability to
provide support to modern workflows and other applications, novel cooling mech-
anisms, modern infrastructure facilities, and several other components [1]. These
systems typically have thousands to millions of CPU cores running up to a billion
threads involved in complex computation. Moreover, the dynamic nature of work-
loads involved in these environments adds to the complexity. All these complexities
result in understanding the state of such systems significantly challenging, before
even talking about the optimal decisions involved in their operation. It is, unfor-
tunately, common that these systems generate various kinds of malfunctions many
times per day, resulting in process crashes ranging to even halting of operations on
the compute nodes. Resilience has been studied for HPC executions on these future
exascale systems, and several technical options have been established [2]. However,
this exascale resilience problem is far from solved, and thus the associated research
problems pose a critical challenge for the HPC community.
Also, as the architecture of HPC has evolved over the years, so has the energy
consumption of these supercomputers [3]. Due to the expanding use of HPC sys-
tems, energy consumption is also expected to expand, causing sustainability-related
concerns (for example, CO2 emissions). This needs to be taken into consideration,
otherwise, it will impact heavily on climate change. Safeguarding the interests of
the community is a journey, which requires a multidisciplinary team of scientists,
engineers and technologists to collaborate on this research. Several initiatives are
being taken in this regard to meet the organisational energy efficiency goals, and
the supercomputing community is promoting the same and publishing the greenest
HPC supercomputers to create awareness[4].

1.1 Context
We set the preface of this project by asking a pair of hypothetical questions: "If
we were to extract efficiently and quickly a significant bit of information in a large-
scale computing system, what kind of decisions would we be able to make? Would
adding this intelligence to the system change the way we design software operating
on large-scale infrastructures like HPC or cloud?". Of course, some of the possi-

1

Figure 1.1: Typical data flow involved in a distributed system using ODA (Source:[5]).

ble answers would preface an imagination questioning whether this capability has
existed before, and if so, what were the limitations. This project aims to deeply
dive into the journey to answer such questions. The first known practical usage
of performance dashboards in IT operations began around 2000 when the field of
business intelligence (BI) converged with performance management, resulting in the
creation of the term "performance dashboard" [6]. Dating back to the 1980s, ex-
ecutive information systems (EISs) were built for the company executives to serve
as executive dashboards for driving the companies by their respective bedrooms,
but they never gained much traction because they were available to a few people
in the company and were built on mainframes or supercomputers (which gradually
gave way to client/server systems in the 1990s). The dashboards were already in
use in automobiles and other vehicles back then, but businesses, governments, and
non-profit organisations have been known to adopt them later.

Large-scale computing infrastructures like supercomputers, clusters, and clouds are
already pervasive as most of the members of our society interact with them on a
daily basis, e.g., social networks, media streaming services, government services,
etc1. The purpose of Operational Data Analytics (ODA) is to gain insight into
the behaviour of such large-scale computing infrastructure (like HPC clusters) by
analysing the operational data from various layers of the computing system [1]. The
ODA-related analysis yields various interesting results and behaviours about these
large-scale systems which one could not even be aware of. The typical data flow in-
volved in a large-scale system having ODA enabled is shown in Fig. 1.1 [5]. One of
the most prominent large-scale infrastructures where ODA-related research has been
done extensively is the HPC cluster. High-performance computing (HPC) refers to a
specialised branch of computing that has the ability to solve advanced computations
(which are too large to be solved using commodity computational resources) with
the help of supercomputers or computer clusters. As per one of the tech reports
published by a technical college, HPC integrates systems administration (including

1https://www.universiteitleiden.nl/en/science/computer-science/systems-and-security/
large-scale-computing-infrastructure

2

https://www.universiteitleiden.nl/en/science/computer-science/systems-and-security/large-scale-computing-infrastructure
https://www.universiteitleiden.nl/en/science/computer-science/systems-and-security/large-scale-computing-infrastructure

network and security knowledge) and parallel programming into a multidisciplinary
field that combines digital electronics, computer architecture, system software, pro-
gramming languages, algorithms, and computational techniques2. HPC architectures
couple together powerful integrated compute nodes using a high-speed interconnect.
In our study, we are mainly concerned with large-scale computing infrastructures
that run exclusively a variant of POSIX-compliant Linux operating systems (OS).
The OS on each compute node runs various services and specialised hardware drivers
that allow the applications to utilise the resources that are distributed across several
nodes.

There are impacts at various layers and scales of the large-scale infrastructures rang-
ing from facility and hardware to the software and applications running on these
systems. One of the interesting studies measured the energy efficiency of 27 popular
programming languages, measuring the correlation among energy, time and memory
[7]. There is a lot of research work ongoing in the related fields due to rising inter-
est in our community to explore the topic in a holistic manner (some of which are
discussed in this literature). The term "ODA" was officially defined for data centre
operations’ monitoring and analytics in 2019 by Bourassa et al. [1]. Its popularity
has been rising gradually (although slowly) as can be inferred from the increased
count of published works of literature related to the topic. In contrast, data centre
monitoring has been there for a long time, exhibiting almost a constant trend. Data
centre monitoring might appear overall to be less actively researched compared to
other trending computing terms, though the data centre components/entities are
being actively researched either individually or in comparatively smaller conjunc-
tions, and not from a holistic perspective (as what is the goal of ODA). As part of
the manifesto of Future Computer Systems and Networking Research in the Nether-
lands, we aim to create awareness about the ODA framework within the Netherlands
to promote the implementation of those capabilities across the entire information
and communications technology (ICT) infrastructure [8].

1.2 Problem Statement
Quoting the vision of "Future Computer Systems and Networking Research in the
Netherlands" [8]:
The grand challenge in the ICT environment of the Netherlands is "to make system-
wide qualities easy to observe, reason about, and manage optimally". The fundamen-
tal research challenge includes enabling Operational Data Analytics (ODA) across
the entire ICT infrastructure.

A lot of research is done every year aiming to promote sustainability and energy
efficiency goals for the ecosystem. ODA technique aims to achieve energy efficiency
by ensuring that the data centre operations are optimised, along with the business
goals being met successfully. As quoted above, it is not easy to reason about the
events and their outcomes in an HPC environment without having sufficient access
to the underlying states of these events. Hence, a need arises to observe the event,
reason about the same using data captured at various levels, and optimise the oper-

2https://web.archive.org/web/20100731043053/http://system.tstc.edu:80/forecasting/
techbriefs/HPC.asp

3

https://web.archive.org/web/20100731043053/http://system.tstc.edu:80/forecasting/techbriefs/HPC.asp
https://web.archive.org/web/20100731043053/http://system.tstc.edu:80/forecasting/techbriefs/HPC.asp

ations by continuous monitoring and optimising using Operational Data Analytics.
Before one starts designing a standard ODA framework for analysing the HPC en-
vironment, it is important to understand the ontology model providing a unified
representation of HPC resources. There is a need to propose a unified ontology
which is comprehensive enough, that could model the publicly available datasets
consisting of cluster metrics collected from the HPC environments.

Also, once the ontology model is available for the HPC environment, there is ap-
parently a lack of an ODA framework for data centre simulators which could enable
easier experimentation with the datasets (e.g., traces, performance metrics), allow-
ing for extensive research in this regard. There are works done in pieces related to
energy-efficiency analysis on cloud environment simulators, but there is currently
no published literature which discusses the data centre operations and its ODA
capabilities as part of an ODA framework separately.

1.3 Research Questions
The main objective of this thesis is to create a proof-of-concept ODA framework
for large-scale computing infrastructures like HPC, cloud, etc. Such a framework
would address the problem highlighted in Section 1.2. We consider the size of the
DAS-6 cluster hosted at VU as the base size of the cluster for all of our ODA-related
experiments3. Here we list the research questions covered as part of the scope of
this thesis project. These research questions will be answered subsequently in the
upcoming sections of this study.

• RQ1 (HPC cluster-metrics-based ontology modelling): How to design the
ontology of a large-scale computing infrastructure (typically HPC
cluster) using the metrics exported in a time-series format?
The answer to this research question stands as a novel contribution as part
of this thesis report. This research question will conceptualise a novel way
of designing ontology for large-scale computing infrastructures like HPC sites,
with a focus on modelling data from the metrics exported in a time-series
format.

• RQ2 (Designing an ODA framework): How to design an ODA framework
for a data-centre simulator like OpenDC to realise some of the ben-
efits of the ODA techniques?
This section will be the major contribution as part of this thesis report. We
will briefly discuss the architecture ’ODAbler’ - the ODA framework we have
designed for OpenDC based on certain requirements.

• RQ3 (Evaluation of the designed ODA framework): What are the various
(quantitative/qualitative) energy or performance benefits that have
been realised as part of experimental evaluation of the ODA frame-
work?
In this section, we will go through the experimental evaluation of the ODA

3DAS-6 cluster @ VU: https://www.cs.vu.nl/das/clusters.shtml

4

https://www.cs.vu.nl/das/clusters.shtml

framework ’ODAbler’ configured for a large-scale distributed data centre sim-
ulated in OpenDC when various workload traces are executed in such an envi-
ronment with different cluster-size configurations. We will talk about the gains
realised in quantitative terms (related to the energy-efficiency analysis of a set
of task-scheduling algorithms) and/or qualitative terms (in terms of anomaly
detection), wherever applicable.

– RQ3.1 (Demonstration of an energy-awareness scheduling analy-
sis): How to validate the energy-awareness benefits realised (if any) after
enabling an ODA framework for a large-scale computing infrastructure?
With this research question, the idea is to present the out-of-band ODA
analysis for the best energy-aware task scheduling algorithm among the
available task scheduling algorithms for resource managers, as this topic is
the crux of energy efficiency research. This analysis would pave the way for
further exploration of mapping specific task scheduling algorithms while
executing a specific nature of trace against a specific cluster scale and con-
figuration, based on the learning obtained from past experimentations.

– RQ3.2 (Demonstration of node-related performance-leak detec-
tion analysis): How to validate the node-performance-related benefits
realised (if any) after enabling an ODA framework for a large-scale com-
puting infrastructure?
With this research question, the idea is to present an in-band ODA mode
covering online analysis that presents the way the faults or anomalies are
detected on a node level to begin with, as this field is gaining momentum
gradually (related to the field of performance engineering). The node-level
anomaly detection would help the system engineers figure out the perfor-
mance leak (covered in this report), and fix the problem (out of the scope
of this project), thus contributing to improved performance.

1.4 Research Methodology
The research methodology involving this thesis is discussed below.

• RM1 - Standard Literature review process (SLR): An extensive litera-
ture study was conducted (forming the basis of this work) to study the various
ODA frameworks operational in various large-scale computing infrastructures.
That study helped in arriving at the ‘ODAbler’ design based on the proposed
reference architecture for the ODA framework.

• RM2 - Design, Prototyping, and Evaluation: ODAbler has been designed
and evaluated as part of this master’s thesis. The project has been made
possible with the help of literature study work, and adapting to various energy
usage analysis related research already done on the OpenDC simulator.

• RM3 - Experimental research (energy-efficiency analysis): This exper-
imentation is inspired by the learning from a master’s course on Distributed
Systems lectured at VU (by the head supervisor of this thesis). The previ-
ous project done as part of the course was to compare various task scheduling

5

algorithms in terms of various parameters related to makespan and energy us-
age. This work inherits the implementation of task-scheduling algorithms like
HEFT, MinMin, etc. from that project4Previous experience in the OpenDC
project - https://github.com/CloudScheduling/opendc).

• RM4 - Experimental research (node-anomaly analysis): This experi-
ment has been selected for ODA analysis based on various works of literature
and standalone thesis projects based on anomaly detection. The ‘Background’
chapter discusses anomaly detection and related work in detail.

1.5 Thesis Contributions
We aim to provide the following contributions to the community as part of this
project, which would hopefully add to research in the field of Operational Data
Analytics (ODA):

• C1 - Highlighting the benefits of modelling ontologies from operational data,
which could enable automated reasoning about relationships between different
concepts of large-scale computing infrastructure(s).

• C2 - Contributing to the design of an ODA framework for a data-centre simu-
lator (OpenDC) which could facilitate the experimentation of various models
for testing operational efficiency (both energy and performance efficiency).

• C3 - Conducting experiments to determine the energy efficiency among vari-
ous task scheduling algorithms used in the data-centre simulator for workload
execution, highlighted by the designed ODA framework.

• C4 - Conducting experiments to identify the node anomaly related to power
usage, highlighting any performance leak concerns using the designed ODA
framework.

• C5 - Discussing the design of the ‘ODAbler’ ODA framework, which facilitates
the operation of a data centre simulator with enabled experimentation related
to data analysis, without significantly affecting the operation or functionality
of the former.

Novel Contributions

We claim the following contributions from this project which are conceptually novel,
as they are being explored for the first time in the research field:

• NC1 - Representation of an ontology model derived from time-series data
collected from multiple HPC clusters. To the best of our knowledge, we have
not found a mapping process of ontology modelling based on collected cluster
metrics in time-series format.

• NC2 - Contribution to the design of an ODA framework for a data-centre
simulator enriched with the module that facilitates the experimentation of
various ODA functionalities for driving operational efficiency. We have not
found any work of literature detailing ODA framework usage in a data centre
simulator yet.

4(

6

https://github.com/CloudScheduling/opendc

• NC3 - Contribution to the easier experimentation in OpenDC using an ODA
framework for a data-centre simulator, which adheres to the FAIR principle,
discussing various ODA modes (in-band, and out-of-band) of operation and
ODA techniques (online, and on-demand) in use. In addition to the contribu-
tion of an ODA framework, the ‘ODAbler’ analyser is flexible with experimen-
tation capabilities, which is one of its kind for a data centre simulator.

Societal Relevance

We foresee that our contribution might lead to awareness in society about sustain-
ability practices, promoting the adoption of energy-efficient methods for managing
day-to-day operations. This would have a far more significant impact on the mod-
ern era, where there is a lot of concern involving climate change due to sub-optimal
practices in different aspects of the industries.

1.6 Plagiarism Declaration
This project report was written by me and in my own words, except for quotations
from published and unpublished sources which have been clearly indicated and ac-
knowledged as such. I am conscious that the incorporation of material from other
works or a paraphrase of such material without acknowledgement will be treated as
plagiarism, subject to the custom and usage of the subject, according to the Univer-
sity Regulations and Guidelines regarding examinations. The source of any picture,
plot or other illustrations is also indicated, as is the source, published or unpub-
lished, of any material not resulting from my own experimentation, observation, or
specimen-collecting.

1.7 Open Science
Abiding by the FAIR data principles, all of the work revolving around the ODAbler
project (including OpenDC integration) has been made available in their respective
GitHub repositories. The ‘ODAbler’ repo is comparatively richer in terms of a
detailed guide for reproducibility, and includes documentation about the work done
in terms of video tutorials, making available the former literature study work for
deep diving into the ODA research. The detailed guide to the replication of the work
done under this thesis is discussed in Appendix A and Appendix B respectively.

1.8 Thesis Structure
The remainder of the thesis is structured as depicted in Fig. 1.2. We start with
a brief overview of the key concepts revolving around the subjects in Chapter 2.
Chapter 3 discusses the HPC ontology modelling based on two of the industrial
datasets collected from HPC environments, facilitating the understanding of vari-
ous metrics generated by existing monitoring/ODA frameworks that are enabled in
production, and paving the way for designing one such framework for a data centre
simulator environment ‘OpenDC’. In Chapter 4, the design of ‘ODAbler’, a simple
ODA framework for OpenDC, is presented discussing the design choices and under-
lying decisions. We evaluate the features designed as part of the ‘ODAbler’ project
for OpenDC in Chapter 5, and present some interesting results demonstrated by

7

Figure 1.2: Thesis overview

the framework, thus validating the operational data analytics-related claims. Fi-
nally, in Chapter 6, we summarise the contributions of this thesis and present future
directions for the project to promote awareness of ODA-related benefits in the com-
munity. Additionally, an appendix is attached which links to the source code and
artefacts available resulting from this thesis, as part of the FAIR initiative adoption.

8

Chapter 2

Background/Literature Review

In this section, we discuss some of the underlying concepts which form the backbone
of this thesis project. There is an additional section on the design process, which
is strongly encouraged for projects that are associated with the “@Large Research”
team. This project also adheres to the corresponding design process and principles.

2.1 Large-scale Computing Infrastructure/Ultra-large-

scale systems (ULSS)
Large-scale computing infrastructure, or Ultra-large-scale systems (ULSS) term is
used in the field of computer science to refer to software-intensive systems having the
influence of unprecedented amounts of hardware, users, volumes of data, and lines of
code. In terms of computing infrastructure, it includes the pervasive ones with which
we interact directly or indirectly on a regular basis - supercomputers, clusters and
clouds, while using social networks, media streaming services, government services,
etc1. All these are powered by such large-scale infrastructure. A generic model for
the operations of such large-scale computing infrastructure is laid out in Fig. 2.1
[9].

HPC: High-Performance Computing

High-performance computing is the ability to solve advanced computation problems
with the help of supercomputers or computer clusters. As mentioned by TSTC in
their technical report2, HPC is a multidisciplinary field, combining digital electron-
ics, computer architecture, system software, programming languages, algorithms and
computational techniques in parallel computing environments to model complex sys-
tems or to control transactional computing services. HPC is applied to many differ-
ent technologies and it is rapidly evolving. HPC was most frequently associated with
scientific research in the past; however, it is being applied to business, government
and military uses of cluster-based computing strategies, such as data warehouses,
line-of-business (LOB) applications, transaction processing, utility computing and

1Large-scale computing infrastructure - https://www.universiteitleiden.nl/en/science/
computer-science/systems-and-security/large-scale-computing-infrastructure

2HPC - https://web.archive.org/web/20100731043053/http://system.tstc.edu:80/forecasting/
techbriefs/HPC.asp

9

https://www.universiteitleiden.nl/en/science/computer-science/systems-and-security/large-scale-computing-infrastructure
https://www.universiteitleiden.nl/en/science/computer-science/systems-and-security/large-scale-computing-infrastructure
https://web.archive.org/web/20100731043053/http://system.tstc.edu:80/forecasting/techbriefs/HPC.asp
https://web.archive.org/web/20100731043053/http://system.tstc.edu:80/forecasting/techbriefs/HPC.asp

Figure 2.1: Generic model for data centre operations (Source:[9]).

next-generation telecommunications.

Cluster computing

HPC clusters link multiple nodes through a LAN (local area network), and are
uniquely designed to solve one problem by spanning it across the nodes in a system.
These interconnected nodes act as a single computer.

Grid and Distributed Computing

Grid computing and distributed computing have synonymous architectures. They
constitute multiple computers connected through a network, sharing a common
goal to perform a large computational task. Each node can perform tasks indepen-
dently without communicating with other nodes in the system. Grid computing
distinguishes itself from conventional distributed computing in terms of its focus on
large-scale resource sharing, and high-performance orientation in some cases. The
core difference between them and cluster computing is that the former has nodes
connected in a heterogeneous network, whereas the latter (cluster computing) has a
homogeneous network of connected hosts.

2.2 Data Centre Simulation
Simulation is defined as the "imitation of a real-world process or system over time,
enabling the study of, and experimentation with the internal interactions of complex
systems" [10]. We consider a specific type of simulation, "discrete-event simulation",
where a system’s operation is represented as a sequence of events over time, in ad-
dition to the assumption that no changes occur in between events. This type of
simulation allows considering only the direct progression of events, unlike the con-
tinuous models. Almost all efforts to model cloud and data centre operations rely
on discrete-event simulation, owing to the sheer scale and complexity of the data
centre operations and the nature of experiments [11].
The data centre simulation application provides the functionality of a virtual model
representation of the data centre and external infrastructure components like gen-
erators, cooling towers, etc. that facilitate various tasks like energy-consumption-

10

related simulations, performance-related experimentations, etc. Various popular
data centre simulators have been used in academic research in the past, some of
which are briefly discussed below. Please note that our work is based on one such
data centre simulator called ’OpenDC’ for multiple reasons which are discussed in
the corresponding subsection.

Reasons for selecting a simulator for ODA-framework design (OpenDC)

It is true that experiments involving physical infrastructure deliver results closer to
real-world operations. However, the main challenge in such large-scale computing
infrastructure involves the reproduction of problematic scenarios that would result
in the significant exploration of the problem space (due to various phenomena, e.g.,
network variability [12]). Other relevant challenges associated with real-world ex-
periments on data centres are that they are time-consuming, expensive, and have a
lot more impact on the environmental footprint.

On the other hand, simulation enables the flexibility to investigate a wide range
of "what-if" scenarios. In our current project, the simulation coupled with an ODA
framework (discussed later) allows us to represent the data centre environment model
virtually, and analyse the power usage and energy consumption of implemented task-
scheduling algorithms, helping us understand if there is a single winner in terms of
the most energy-efficient algorithm. Another experiment based on simulation allows
node-anomaly analysis based on the power usage metrics of the cluster environment,
helping identify if there is any related anomalous behaviour on any node. These ex-
periments have been validated as reproducible (with various tests included in the
simulator), involve almost negligible cost as the experimentation is carried out on
a professional laptop, and also contribute to extremely low energy cost and envi-
ronmental footprint comparatively. Thus, a data centre simulator (OpenDC) has
been selected as the source for designing an ODA framework (ODAbler), which acts
as the “Digital Twin” of the former. A digital twin is “a virtual representation
of a physical system (and its associated environment and processes) that is updated
through the exchange of information between the physical and virtual systems” [13].
In simpler terms, ODAbler virtually models the efficient operations of OpenDC and,
thus, is coined as the digital twin of OpenDC.

CloudSim

CloudSim is a high-quality data centre simulator focusing on the simulation of cloud
system components including virtual machines, data centres, and resource provision-
ing policies [14]. There are several other single-feature simulators based on CloudSim
such as iFogSim [15], WorkflowSim [16], and CloudAnalyst [17] that extend it in a
specific field like fog, edge, cloud, etc.

SimGrid

SimGrid is a simulation framework which enables the simulation of distributed appli-
cations in distributed computing environments for the specific purpose of developing
and evaluating scheduling algorithms [18]. It has been designed to solve the concerns
related to accuracy and scalability, and the goal of versatility involving various use
cases. However, this has limited scope and features, as compared to other simulation
frameworks discussed in the next section.

11

Figure 2.2: Comparison of various data centre simulators, as conducted by the authors of
OpenDC 2.0 literature (Source: [11]).

OpenDC

OpenDC is a data-centre simulator [11] managed by the “AtLarge Research” team
whose first version was released in 2017. The current version 2.0 underwent a radical
change involving re-design and re-engineering efforts. The three main high-level
components of OpenDC are: (i) a web and textual frontend, (ii) a model-driven
discrete-event simulator, and (iii) a set of tools to assist with simulation. This
thesis project involves the use of the simulation component and the convenience
tools (experiment runner, workload processor, environment processor, and library of
metrics). In addition to the features found in CloudSim and SimGrid, OpenDC has
a couple of strength points (discussed in the next subsection comparing the three).
The detailed architecture and other important details are discussed in Chapter 4 on
ODAbler. Further details about OpenDC can be referred to in the linked literature.

Comparison of notable data centre simulators

There are many notable high-quality data centre simulators built by the commu-
nity like DGSim [19], GroudSim [20], and iCanCloud [21] which have not been
discussed here for brevity reasons, but they have been contrasted against each other
by OpenDC authors in their literature, as shown in Fig. 2.2 [11]. Referring to the
same figure, it can be noticed that other high-quality simulators typically provide a
single feature, or are comparatively general with respect to the functionalities avail-
able in OpenDC. The closest alternative to OpenDC in terms of functionality is the
CloudSim platform, but because of several other extensions extending its capability
in a specific research direction, OpenDC has been preferred due to its integrated
approach and specific modelling features already discussed in the OpenDC 2.0 liter-
ature. Another excellent cloud simulation framework not discussed here is CloudSim
Plus [22], which has several modern capabilities worth exploring. Thus, this project

12

work has been restricted to using OpenDC (as the data centre simulator), given the
scope of the project. And, accordingly, ODABler (an ODA framework) has been
designed (a novel contribution to this research project) that acts as a digital twin
of OpenDC.

Task scheduling simulation

The data centres receive ‘workloads’ to execute as part of day-to-day operations.
These workloads comprise streams of ‘jobs’ which themselves comprise several ‘tasks’.
The component ‘scheduler’ manages the data centre resources, and is responsible for
the execution of the incoming workloads. For a task scheduler to schedule a set of
tasks, it needs to determine an order of execution and assign each task to a suitable
processor(s) [23]. Thus, it needs to consider any task inter-dependencies and service
level agreements [24] (if enforced). There are a variety of techniques proposed to
find a solution to the NP-hard task scheduling problem [25], and below we discuss a
few of them which have been used in the project for experiments. Please note that
we have used invariably either the term task scheduling policies or task scheduling
algorithms in many places in this report, and they correspond to task-scheduling
techniques in general.

FIFO: SubmissionTimeTaskOrder (STTO) or FirstInFirstOut (FIFO) is a task
scheduling policy that selects the task from the list of tasks ready to be sched-
uled in terms of ascending order of their submission time (analogous to first come,
first served). This policy also exists by default in OpenDC’s original implementa-
tion, and, thus has been reused in this project.

HEFT: Heterogeneous Earliest Finish Time (HEFT) [23] is a heuristic algorithm
that schedules tasks in a way that reduces their finish time, hence it optimises for
a short makespan of the whole workflow. HEFT consists of two phases. In the
task prioritising phase, the execution order is determined by sorting the tasks in
decreasing order by their upward rank. The upward rank of a task ti is recursively
defined as

rank(ti) = wi + max
tj∈succ(ti)

(ci,j + rank(tj)),

where wi is the average computation cost of ti, ci,j is the average communication cost,
and succ(ti) the set of tasks that depend on ti. Because of its recursive definition,
this ordering satisfies task-precedence constraints. The original HEFT algorithm
considers the cost of communication when there is a data dependency between two
tasks that are executed on different machines, but in the experiments described in
this report, the communication cost was assumed constant as zero (due to the limi-
tation of our data-centre environment). This algorithm’s implementation has been
reused here from a previous project work done on OpenDC3, during the distributed
systems course at VU.

Random:Random is another scheduling algorithm that selects a random task from
the list of tasks that are ready to be scheduled on a suitable processor(s). Its im-
plementation already exists in the OpenDC simulator’s original work, and thus has
been used in designing the experiments.

3Previous OpenDC work by the author - https://github.com/CloudScheduling/opendc.git

13

https://github.com/CloudScheduling/opendc.git

Figure 2.3: Four pillars of energy efficient HPC (Source: [26, 27]).

2.3 ODA: Operational Data Analytics
Bourassa et al. [1] define Operational Data Analytics (ODA) as a mechanism to
analyse the operation of an HPC system to gain insight into its behaviour. Several
monitoring frameworks capture data from a large number of sensors (located across
the infrastructure down to the compute node level) in hardware and software units
at fine granularity. The ODA framework establishes a built-in control loop, which
enhances the HPC operations by increasing system reliability and energy efficiency
among other aspects. Alessio Netti and his team at LRZ (supercomputing cen-
tre) along with a few other members involved in ODA projects (Oak Ridge National
Laboratory, Hewlett Packard Enterprise, and Energy Efficient HPCWorking Group)
proposed a conceptual framework for HPC Operational Data Analytics (ODA) [27].
They mentioned the four pillars of energy-efficient HPC (shown in Fig. 2.3) and
highlighted the four types of data analytics possible on each of these four pillars
(shown in Fig. 2.4).

We present and discuss below a reference architecture for an ODA framework in
Fig. 2.5 which is mapped to ecosystems of distributed computing (devised during
the formerly conducted literature study). The components in the proposed refer-
ence architecture of the ODA framework are complementary to the role handled by
the respective layers. It must also be noted that although almost all of the func-
tionalities can be automated and optimised, there might be some scenarios where
manual intervention would be required (e.g., verification, validation, etc.), which we
do not discuss here. It might vary on a case-to-case basis, and the same is open for
interpretation by the researchers who work in this field.
The relevant components of the ODA framework outlined in the reference archi-

tecture are further defined below. Please note that various components at different
layers in the proposed reference architecture overlap to some extent to contribute to
power usage optimisation, energy efficiency, or performance. An additional point to
consider is that the target users responsible for managing those components must
focus on selective functionalities, giving freedom for management, research and ex-

14

Figure 2.4: Types of data analytics for HPC (Source: [28]).

ploration in detail (they could either be distributed in different teams as described
above as key actors or might be from the same team but with slightly different
roles). We think that this would enable high productivity, with ease of management
and focussed research in the operations, and also refer to the works of literature
resulting in the identification of these key functionalities.

Proposed holistic ODA framework (result of the literature study)

The input actions on each of the ODA components first involve the understanding
of various metrics available for observation, which can be modelled using ontology
mapping of the data collected from operational data sources. The data from the
data sources may not be used directly as such, and usually some sort of data clean-
ing and filtering is required which might be distinct for distinct ODA functionalities
as per the customary requirement. Once the data is available after cleaning, data
characterisation is needed for summarising the general characteristics, after which
the designated modelling and/or learning techniques is applied with a defined
objective resulting in an outcome. Each of the ODA functionalities discussed below
keeps undergoing reassessment and redeployment (usually at periodic intervals
but also dynamically as and when needed) which is fed back via the feedback con-
trol loop, for continual optimisation of the data centre operations (as shown in Fig.
2.5):

• Infrastructure Management: Being operational at the lowermost building
block (at the facility level), this ODA functionality relies on the online data
source collected from various sensors from the facility and provides an out-of-
band mode of service for managing the infrastructure.

• Runtime Tuning: An ODA framework can be used to predict the behaviour
of various components of the compute and storage hardware, and perform the
dynamic tuning using system knobs. It relies on real-time data and information
about specific components supplied from various layers, which is then sent to
the compute nodes for dynamic adjustment of the values of those components.

• Hardware-managed security: This is a critical security-related function-
ality which is a part of both compute hardware and operating service layers,
and is responsible for assisting in the security of the underlying computing
hardware with the help of on-demand data getting tracked with periodic in-
tervals, thereby ensuring that the hardware is not tampered with. This idea
is slightly novel due to the fact that there is not much security-related context

15

Figure 2.5: Proposal of a holistic ODA framework in previously conducted literature study

made available in the state-of-the-art ODA frameworks (except LBNL’s newer
OMNI architecture deployment which discusses some traits about the security
considerations handled within the ODA framework).

• Fault Detection: This ODA component is responsible for detecting and pre-
dicting anomalous states in hardware and software components, thereby help-
ing to improve the resiliency of the system as a whole by helping prevent
catastrophic events. This monitors data from underneath as well as top layers
on a real-time basis and helps detect and predict faults in both hardware and
software components (continuously as well as periodically reviewing through-
out the sections), preventing in turn unmasked failures.

• Scalability Tuning: It is crucial for the operating services to closely monitor
the scalability of the compute and storage resources (physical or virtual) as per
the requirements of the jobs. Thus, the ODA framework must use real-time
(online) data from the cluster manager and related computing layers.

• Allocation & Scheduling: As crucial as something could be, this is the
backbone operation of the resource manager and is responsible for the optimal
placement of jobs or allocation of resources. This needs real-time data about
jobs and resources, supplies additional information to the scheduler for achiev-
ing the ODA goals, and operates in both in-band and out-of-band modes.

• Application Fingerprinting: The idea involves predicting the behaviour of
user jobs and correlating this with the data from the past to characterise fea-

16

tures such as power consumption and memory utilisation, helping to optimise
management decisions. This relies on data sources from online sources as well
as from the past and operates in both in-band and out-of-band modes.

• Workload Modelling: An ODA framework uses heuristic or learning tech-
niques to predict the properties (duration, submission pattern, etc.) of jobs
submitted by users and helps in improving the effectiveness of scheduling poli-
cies. This relies on data sources from the past and operates in out-of-band
mode to help reduce queuing times.

• Interoperability: The ODA framework should be able to manage and fine-
tune the interoperability requirements with various layers, processing both
real-time (online) and historical data while operating in either in-band or out-
of-band modes.

• Error Handling: This is another crucial functionality which is responsible
for monitoring the error events (online) originating from the back-end engine
or as reported by other upstream layers, and acting upon them on a real-time
basis to provide a reliable service.

• Software-based Security: Similar to hardware-managed security, software-
based security is spread across both the front-end platform and back-end engine
and ensures security by monitoring and acting upon the security events col-
lected online from multiple layers as part of near real-time operation handling.

• Productivity Enhancement: The idea at the front-end layer is to enrich the
user experience resulting in productivity enhancement. The component could
optionally involve seeking custom input from the user or the data source could
be the relevant front-end application logs analysed at regular periodic intervals,
and desirable action could result in contributing to a rich user experience.

• Profiling: The ODA framework should be able to profile the code or the
binary used in the front-end platform or the back-end service in an out-of-
band fashion, and suggest a suitable action or perform automatic remediation
for improving the performance.

• Monitoring & Alerting: The majority of the ODA framework functionality
revolves around this core functionality of the DevOps layer. Monitoring and
alerting functionality relies on data from almost all other computing layers for
acting on them, and includes the visualisation of the various operational data
and/or analysis results to the different segments of users discussed previously.
This functionality stands out as one of the most important ODA applications
using data from both online sources and on-demand from distinct sources, and
operating in both in-band and out-of-band modes.

• Energy Modelling: This is an outcome of various ODA functionalities dis-
cussed before. The idea involves modelling the energy of a system by employing
data analysis for investigating different scenarios or assumptions.

• Pipeline Optimisation: The pipelines in the DevOps layer can be optimised
by cleaning up the stale data, information or logs, and applying data transfor-
mations on the speed of ingress/egress, or on the data formats for compression

17

and type-conversion. The automatic builds defined as part of DevOps prac-
tices can be monitored and acted on efficiently to ensure their acceleration
and faster delivery of results, utilising the underlying infrastructure optimally.
These must be monitored continuously (on individual components) and at pe-
riodic intervals (to have a holistic overview) and should be configured to use
real-time data or offline data at the DevOps layer.

• Reusability: Some of the data collected at various data sources or the de-
veloped models might be reusable in nature (for operational analysis), and it
could help in avoiding reinventing the wheel at times. This intelligence could
be available to an ODA framework so that it can predict, identify and reuse
the data or the models as and when required.

• Experimentation: The data sources or the models should allow experimen-
tation for enriching the learning of the entire ODA ecosystem, which can be
done at periodic intervals by collecting data from various layers. Some of the
similar aspects related to this are testing, measuring and benchmarking.

• Data Governance & Security: This layer is pertinent to identifying the
data, characterising it, ensuring that they are of high quality, and improving
its value (with archival and cleanup policies as desired). It can help organisa-
tions to respond to threats without a significant delay. This activity can be
conducted periodically on-demand, and should also include the data collected
from relevant layers.

This ODA framework has been designed to cover all relevant forms of analytics
discussed earlier, and the scalability aspects for any component can be considered
during the time of its implementation, to optimise the respective operational goals.
Also, we have tried to reuse the concepts from the massivising distributed processing
ecosystem literature and energy-efficient pillars of HPC and have tried to build the
reference architecture covering them all. We expect that this idea can be utilised in
other domains of computing or even other fields to optimise operational efficiency.

Notable ODA frameworks in use

There are currently various ODA frameworks which are in use in production infras-
tructures, and it is not possible to list all of them. The author has done a literature
study4 before starting this thesis project that delves deeper into detailed specifi-
cations of a couple of those notable ODA frameworks, which is also available as a
document in the ‘ODAbler’ project GitHub repo’s ‘documentation-guide’ directory.
Some of the notable ODA frameworks which serve as an inspiration for this thesis
project are discussed in this section.
1. Operations Monitoring and Notification Infrastructure (OMNI), National
Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley
National Laboratory (LBNL) or, Berkeley Lab, USA

NERSC utilises multiple monitoring systems for their operational monitoring, amongst
which OMNI and SkySpark5 are the most prominent ones [1]. They have docu-
mented an effective use of operational data instrumentation, analysis, integration,

4ODA-based literature study: https://github.com/am-i-helpful/ODAbler/blob/master/
documentation-guide/Shekhar_Literature_Study_about_ODA_on_Energy__2023_Final.pdf

5SkySpark, SkyFoundry https://skyfoundry.com/product

18

https://github.com/am-i-helpful/ODAbler/blob/master/documentation-guide/Shekhar_Literature_Study_about_ODA_on_Energy__2023_Final.pdf
https://github.com/am-i-helpful/ODAbler/blob/master/documentation-guide/Shekhar_Literature_Study_about_ODA_on_Energy__2023_Final.pdf
https://skyfoundry.com/product

Figure 2.6: OMNI Integrated Operational Data Collection and Analytics Architecture
(Source: [29]).

and archiving, that aims towards effective design, commissioning, and optimisation
of power usage effectiveness (PUE) in their HPC facility environments [29]. It is
worth mentioning that 16 of the NERSC systems appear on the TOP-500 list of
fastest computing systems in the world [29, 30]. Their mission is to provide HPC
and compute resources to science users guaranteeing high availability along with
high utilisation of the systems to bolster the scientific research for the Office of Sci-
ence in the U.S. Department of Energy (DOE).

Monitoring and Optimisation tools: The architecture of OMNI is shown in
Fig. 2.6 [29]. OMNI is a multifaceted platform of applications that combines a
large amount of HPC and IT systems data with comprehensive cooling and facil-
ity systems performance data. The NERSC OMNI system merges the Building
Management System (BMS) data (covering an array of rack-level IT sensors) with
Cray syslog data, resulting in a real-time, searchable, and easily visualised ODA
system. The resulting Elasticsearch dataset then (at the time of publishing of corre-
sponding literature) archived 25k data points/sec within the general HPSS storage
system, which was further planned to expand to 100k data points/sec in late 2019.
The graphical visualisation of the real-time data is managed by the Elasticsearch
Grafana and Kibana web browser-based user interfaces, whereas various other anal-
ysis and visualisation needs are completed using more specific open-source software
tools as needed. On the other hand, SkySpark interfaces with building systems
(e.g., via BACnet) to collect and analyse available building data. The SkySpark
platform gathers data through a live connection to the NERSC BMS, the Elastic-
search database, and an ION power meter database. The NERSC Energy Efficiency
(EE) team have built their custom views for performance metrics which are auto-

19

matically updated with the live OMNI data link.

OMNI design and implementation: OMNI is an integrated operational data
collection and analytics infrastructure. The OMNI data collection architecture is
shown in Fig. 2.6 along with its diverse data sources. The core system requirements
identified for creating OMNI system are scalability (managing the volume of systems
and sensor data to provide near-real-time insights), high availability (data collection
infrastructure must be always available, even in the presence of some issues at the
data centre), maintainability (to apply patches, upgrades, warm hardware swaps,
etc. to parts of the system without affecting the flow of data), usability (fast and
easy access to the collected data for analytics, visualisation, and monitoring pur-
poses by different actors), and lifetime data retention policy (collecting and saving
the data forever theoretically, for statistical modelling and failure prediction from
historical data). Accordingly, the OMNI cluster has been made independent of any
other system in the facility, which becomes available as soon as the power is turned
on (and the last one to be taken down before powering off). OMNI has been im-
plemented with the help of various open-source software, on-premise hardware, and
virtualisation technologies, and keeps collecting data as long as there is power to the
facility. Virtualisation is implemented using oVirt and Rancher, and data ingestion
and storage are managed by Elastic stack in near-real-time. The key component in
the elastic stack is Elasticsearch (a distributed JSON-based RESTful search engine)
that facilitates real-time ingestion and search within massive amounts of data. The
Logstash component manages the server-side data processing pipeline, and forwards
them to Elasticsearch for ingestion. The Kibana interface provides a web interface
for data discovery, analysis, and visualisation of Elasticsearch data in addition to
the monitoring information and management controls for the Elastic stack.
Data is collected from various systems (Systems Environment Data Collections
(SEDC) data, job information from Slurm scheduler, Lustre parallel file system
data, information from the Aries high-speed network, etc.) and sensors (ranging
from building management systems like BACnet, Modbus, and various other fa-
cility sensors, to power distribution units (PDUs), Uninterruptible Power Supplies
(UPSs) etc.) into Elastic search with the help of RabbitMQ cluster (a popular mes-
saging broker supporting multiple messaging protocols and queuing), which sends
it further to Logstash. Logstash acts as the local aggregation point by reducing the
number of network connections managed by the central logging clusters, and for-
wards a single connection to the central logger in an encrypted manner (and could
also convert collected UDP packets to TCP to ensure reliability of data). Elastic-
search indexes the data for near-real-time retrieval and querying, which could be
either queries using its native RESTful APIs or by visualisation and data discovery
tools such as Kibana and Grafana.

2. DCDB (Data Center Data Base) Wintermute, Leibniz Supercomputing
Centre (LRZ), Germany

Wintermute is an ODA framework implemented on top of the holistic DCDB mon-
itoring system that offers a large variety of configuration options to satisfy the
varying requirements of ODA applications [31]. It enables the analysis of data and
granular level control at various levels of an HPC system. The authors originally
suggested the use of two types of data sources (in-band and out-of-band), and the

20

Figure 2.7: Wintermute: A high-level overview of the suggested architecture for an online
ODA framework integrated into a monitoring system, showing the main components and
actors involved (Source: [31]).

grouping of ODA techniques (into online and on-demand modes), both of which
the authors borrowed in their ODA framework’s reference architecture. They also
shared the analysis of the operational requirements while designing their online Win-
termute framework for HPC systems, which we extended during our requirements
analysis. Their suggested high-level overview of the online ODA framework archi-
tecture, which could be integrated into a monitoring system, is shown in Fig. 2.7
[31]. The idea is to implement the ODA framework within an existing monitoring
system, where the integration with monitoring daemons in compute nodes facilitates
in-band operation and management nodes enable out-of-band operation, where the
latter allows its interaction with a monitoring data broker, thus enabling access to
streamed cluster-wide data as well as remote persistent storage.

Wintermute Architecture: Wintermute has been architected in a modular way
driven by the requirements analysis, and is based on the analysis capabilities being
supplied by operator plugins that are used to instantiate operators. Operators are
the computational entities that perform all ODA tasks asynchronously, utilising a
flexible local thread pool. These operators work on a set of blocks, which are con-
tainer data structures that represent physical components like compute nodes or
racks, or logical entities like user jobs in an HPC system). Each block has a set
of input sensors which are used for the analysis and a set of output sensors which
are responsible for storing the results of ODA operation, that are further either
consumed by the monitoring system or some other operators (output sensors). A
sensor captures some system information (whose reading has a numerical value and
a time-stamp) and is defined to be an atomic monitoring entity (e.g., power, temper-
ature, CPU counter, or ODA output). The architecture of Wintermute is presented
in Fig. 2.8 which shows its interaction with the external components (excluding
its integration into a monitoring system) [31]. The core components can be briefly
summarised as follows:

• Operator Manager: It acts as the main interface between Wintermute and the
monitoring system, and is responsible for loading requested operator plugins.
It acts as a front-end interface responsible for exposing the available actions
within the framework (e.g., start, stop or load plugins dynamically, trigger
specific actions as signalled by the respective plugin).

21

Figure 2.8: Architecture of Wintermute (abstract-level) (Source: [31]).

• Query Engine: It is a singleton component that exposes access to a sensor
navigator object (which uses the block system to maintain a tree-like repre-
sentation of the current sensor space) to operator plugins. Its uniform interface
allows querying based on sensor name and time-stamp ranges.

• Operator Plugins: They are responsible for performing analysis by implement-
ing a specific logic on the input sensor data alone. Job operator plugins are an
extension that uses job-related data to produce output pertaining to a specific
job. Plugins have two main components:

– Operator: These objects perform the required analysis tasks whenever a
computation is invoked for that operator.

– Configurator: These components read plugins’ configuration files, and
instantiate the operators together with their blocks.

• Configuration: It is responsible for the initialisation of Wintermute, and grants
access to the designated configuration files.

• Remote Interface: This is the interface exposed by the monitoring daemon
which is used by Wintermute in turn to expose its data retrieval and remote
control features.

Integration with DCDB Monitoring system: DCDB is a holistic monitoring
framework for HPC systems which comprises several components enabling it to
achieve a distributed and scalable architecture [32]. Wintermute is implemented
in C++11 and is tightly coupled with the DCDB monitoring framework, as shown
in the high-level overview of DCDB in Fig. 2.9 [31]. Pushers use a plugin-based
architecture for the sampling of sensors on monitored components. Collect Agents
collect the data sent to them via the MQTT protocol [33] and forward them to
a storage backend (implemented using Apache Cassandra). Also, DCDB exposes a

22

Figure 2.9: High-level overview of the architecture of DCDB, highlighting the Wintermute
framework’s integration in components and the data flow (Source: [31]).

RESTful API providing control of each of its components as well as sensor caches for
faster in-memory access. The workflow of components involved is briefly discussed
below (in the order presented by the respective literature authors):

• Operator Location: Operators can be instantiated in both pushers and collect
agents by loading the appropriate plugins. Collect Agent location is optimal
for system or infrastructure-level analysis because access to the entire system’s
sensor space is available (or the data could even be queried from the storage
backend). Whereas, the operators only have access to locally sampled sensors
and their sensor cache date in the pusher locations, thus making it optimal
for runtime models which require low latency, data liveness, and horizontal
scalability.

• Operational Modes: Operators can be configured to work in both online mode
(at regular time intervals, resulting in continuous analysis) as well as in on-
demand mode (by explicitly invoking the RESTful API for a specific block at
scheduled intervals)

• Block Management: The blocks of a single operator can either be arranged as
sequential when all corresponding blocks share a common operator (and are
processed sequentially to avoid race conditions) or parallel if a distinct oper-
ator is created for each block, thus allowing parallel computation to improve
scalability.

• Analysis Pipelines: The same format is shared by the output data produced by
online operators (identical to all other sensor data), which facilitates creating
pipelines of other operators’ input as output to another operator. This func-
tionality is very helpful in splitting the computational load between multiple
locations, and implementing feedback loops (via control operators at the end
of a pipeline) in an HPC system.

3. AI-driven Energy Aware Scheduling (EAS), IBM Research, STFC Dares-
bury Laboratory, UK

The IBM research team based in STFC Daresbury Laboratory, UK published a liter-
ature presenting an AI-driven holistic approach to energy and power management in
data centres, which they describe as Energy Aware Scheduling (EAS) [34]. The aim
of EAS is to look at energy efficiency across both hardware and software stacks of the
IT infrastructure, including data centre(s), servers, network, cooling, IoT and Edge

23

Figure 2.10: EAS concept: data continuously collected across hardware and software stacks
and fed to the AI-based model for performance and power consumption predictions, which
are then used by scheduling components to send control decisions back to the respective
stacks (Source: [34]).

devices, to software stack ranging from firmware through to the OS, applications
and workload managers. To achieve the same, EAS uses ML and AI methods for
performance and power consumption modelling, and software-hardware co-design
for implementing various energy/power-aware scheduling policies at different levels
of the infrastructure. Fig. 2.10 broadly represents the main components of the
Holistic EAS, where data is collected from a broad range of hardware devices and
software components and fed into an AI component which generates some optimal
decisions to meet required criteria, which are then sent back to respective hardware
and software system components to re-implement [34].

Data Collection Framework: Fig. 2.11 represents the architecture used for
data collection, where each component is housed in a Docker container resulting in
numerous benefits like easier rolling upgrades independently from other components
in the system, easy swapping of databases or graphing components, and easier porta-
bility to a different set of nodes (not necessarily IBM POWER servers), if required
[34]. We briefly discuss the core components of the Data Collection Framework
below:

• Monitoring Tools: The requirement for selecting a monitoring tool is to
have as minimal impact on the cluster as possible, and thus clients running
on the nodes are avoided for this reason. Amester tool is used to gather data
from the Baseboard Management Controller (BMC) port on IBM POWER
systems. BMC is a specialised service processor responsible for monitoring the
physical state of the running system, and the BMC port connects to it, which
helps Amester to gather out-of-band results as it will have zero impact on the
running of the system and its resources. Another monitoring tool used is IBM
Spectrum LSF Explorer because it integrates easily with the IBM Spectrum
LSF, which is used as the workload manager. The authors are convinced that
such a monitoring system could easily scale for exascale size and allow easier

24

Figure 2.11: Overview of the intelligent data collection framework architecture (Source:
[34]).

upgrade of the current system.

• Metrics: The requirement for metrics was driven by the need for them to be
useful for general monitoring and ML, and be available on as many systems
as possible. Hardware metrics considered for collection are fan power, CPU
power and GPU power, and they are recorded every 250ms (the fastest the
servers could read from the sensors). IBM Spectrum LSF Explorer is used for
the collection of workload information which collects over 700 metrics every 10
seconds. Since this is an early analysis phase for the team, they are collecting
all metrics and they can eventually identify the most useful ones for monitoring
and feeding them into the ML systems. IoT-related metrics are sampled at an
average rate of 5 seconds.

• Databases: Two separate databases are used given the nature of the sys-
tem, to support Grafna. Elasticsearch is used to collect data from LSF, as
it comes packaged with LSF Explorer and is already optimised to work with
the high-frequency data sent from the former. The second database chosen is
OpenTSDB, which is built on top of HBase.

• Visualisation and API: The visualisation is mainly centred around Grafana,
which is very useful for generating graphs and dashboards to visualise the initial
data and also allows the creation of live rotating dashboards. The data can
also be accessed via API as the developers created a Python library (due to
them using other ML libraries like Keras, PyTorch, and TensorFlow, which are
all Python-based).

These frameworks are complex yet simplistic in understanding the design of an
ODA functionality within a large-scale computing infrastructure, and provide a good
explanation of the essential components required in an ODA framework. These
frameworks have laid the groundwork for various ODA frameworks in the scientific
domain including our design of an ODA framework for the data centre simulator
OpenDC.

25

Figure 2.12: The @Large (or, AtLarge) design process (Source: [36]).

2.4 Ontology for HPC
An ontology encompasses a representation, formal naming, and definition of the
categories, properties, and relations between the concepts, data, and entities that
substantiate one, many, or all domains of discourse. The basic idea is to represent
the properties of a subject area and their relationships, by defining a set of concepts
and categories that represent the subject. One of the main reasons for designing
an ontology for HPC is to make training datasets and AI models FAIR (FAIR data
principles describe Findability, Accessibility, Interoperability, and Reusability) [35].
Some of the existing HPC ontology design already captures both high-level meta
information as well as low-level data content for software, hardware, experiments,
workflows, training datasets, AI models, and so on 6.

2.5 Design process of the @Large Research team
This project is supported under the affiliation of the “@Large Research” team, and
supervised by the Professor who is the lead faculty and member of the @Large Re-

6https://hpc-fair.github.io/ontology/

26

https://hpc-fair.github.io/ontology/

search team. Thus, this project adheres to the principles mandated by the team, and
aims to raise awareness amongst the scientific community (and general audience) of
the operational data analytics (ODA) capabilities by showcasing the potential of
energy-efficiency analysis of task-scheduling algorithms executing various types of
workloads as part of data centre operations, and also highlight any node-anomaly
resulting in higher power consumption at corresponding nodes. The mission of the
@Large Research team (which is quoted below) supports designing and prototyping
such critical systems which revolve around the critical topics related to energy-
efficiency and sustainability concerns, including this project.

“Our group is Massivizing Computer Systems (MCS), that is, making computer sys-
tems scalable, reliable, performant, etc., yet forming efficient, engineered ecosystems
available to everyone.
Our group aims to achieve this by conducting groundbreaking, impactful research, by
educating the new generation of top-quality and socially responsible individuals, and
by making innovation available to industry and society at large to improve the lives
of millions.”

The @Large design process is shown in Fig. 2.12, and the key principles from
the vision literature authored by the team are listed below: [36]

• P1: Good design processes foster good system designs.

• P2: This is the Age of Distributed Ecosystems.

• P3: Dynamic non-functional properties and phenomena are first-class con-
cerns.

• P4: Resource Management and Scheduling, and its interplay with various
sources of information to achieve local and global Self-Awareness, are key con-
cerns.

• P5: Education practices for MCS must ensure the competence and integrity
needed for experimenting, creating, and operating ecosystems.

• P6: Design communities can foster and curate pragmatic, innovative, and
ethical design practices.

• P7: We understand and create together a science, practice, and culture of
MCS design.

• P8: We are aware of the history and evolution of MCS designs, key debates,
and evolving patterns.

In a nutshell, the design principles takeaway that we have used in this thesis project
are namely: focusing on the design process itself, brainstorming at the functional
and non-functional requirements, pragmatic and innovative design adoption, and
ensuring that the design is enabled with experimental evaluation, thus contributing
to the science, practice, and culture of massivising computer systems (MCS).

27

2.6 Related work
This thesis project is split into two inter-related subprojects: the modelling of on-
tology for HPC systems based on publicly available cluster metrics, which paves
the way for utilising the designed ontology to design an ODA framework for a data
centre simulator (which relies on exact semantics from the modelled ontology) for
analysis of the data centre operations. In this section, we go through some of the
work which has been done individually under both sub-projects.

HPC ontology modelling

HPC ontology modelling work has already been done in previous scientific research.
There are several research works already done in the field of HPC ontology, for
example, by C. Liao et al. in [35], and by Castañé in [37], amongst others. One of
the comprehensive HPC ontology designs that already captures both high-level meta
information as well as low-level data content for software, hardware, experiments,
workflows, training datasets, AI models, and so on is available as HPC Ontology7.
There are other works of literature on HPC resources’ ontology models like Zhou et
al in [38], Zhao et al in [39], Tenschert A. in [40] and others, but those are simplified
where the main goal of the authors has been to decompose applications between
compute and data processes for HPC environments. There are several other works
of literature presenting a unified ontology of cloud computing like Youseff et al in [41]
and Imam, F.T. in [42]. Amongst these works, we did not find any literature studying
the modelling of ontology derived from the metrics collected from operational HPC
clusters. But, these metrics are the source of ODA framework design, and, so, the
ODA framework should be driven by the modelled ontology, which should be derived
from those captured metrics of large-scale computing infrastructures.

ODA capabilities implemented in data centre simulators

We explored various data centre simulators and found previous work based on
scheduling algorithms comparison, but we found that they involved conducting ex-
periments dedicated to only specific metrics. Thus, there is a lack of holistic ODA
framework implementation for the data centre simulators, which could act as its
digital twin presenting a virtual model for the same (reasons are presented already
in Section 2.2).

We propose to use OpenDC [11] for simulating the execution of workloads within
a data centre environment. However, the current version of OpenDC has limited
visibility of the various metrics required as part of enabling ODA in a data centre
environment, and it is also limited in the way it supports executing the workloads to
reason about the events at deeper levels. Scientific works have been done by various
authors using OpenDC, who have mainly focused on optimising various metrics like
TDP (thermal design power). A holistic research work has not yet been performed
under the umbrella term "ODA", which should focus jointly on the key pillars of
an energy-efficient HPC or similar large-scale infrastructure, based on the definition
shown in Fig. 2.3 [].
It must be noted that the thesis proposes to contribute to research on the con-
vergence of scientific workloads in a large-scale computing environment, without

7https://hpc-fair.github.io/ontology/

28

https://hpc-fair.github.io/ontology/

generalising it to a specific environment with the aim that the ideas might be bor-
rowed in other domains/environments. Some of the significant novel works done
related to the field of ODA for HPC systems, which appear to be highly relevant to
this thesis are listed below:

• DCDB Wintermute: Enabling Online and Holistic Operational Data
Analytics on HPC Systems [31]: This appears to be the most extensively
documented ODA framework "Wintermute", a novel generic framework to en-
able online ODA on large-scale HPC installations. The authors claimed to have
implemented Wintermute on top of the holistic DCDB monitoring system, of-
fering a large variety of configuration options to accommodate the varying
requirements of ODA applications.

• Collecting, Monitoring, and Analyzing Facility and Systems Data
at the National Energy Research Scientific Computing Center [29]:
The authors describe their experiences in designing and implementing an in-
frastructure for extreme-scale operational data collection, known as the Op-
erations Monitoring and Notification Infrastructure (OMNI) at the National
Energy Research Scientific Computing (NERSC) centre at Lawrence Berkeley
National Laboratory.

• Revealing Power, Energy and Thermal Dynamics of a 200PF Pre-
Exascale Supercomputer [43]: This paper claims that they are the first to
present the systematic analysis of power data of an HPC system at this scale.

• A Study of Operational Impact on Power Usage Effectiveness using
Facility Metrics and Server Operation Logs in the K Computer [44]:
This paper analyses the effect of operational impact on PUE (power usage
effectiveness) using the facility metrics as well as the server operation metrics,
and reveal that some maintenance operations degrade PUE.

• Anomaly Detection and Anticipation in High Performance Comput-
ing Systems [45]: The authors conduct an experimental evaluation on a tier-
0 production supercomputer hosted at CINECA, Bologna, Italy, using the
data/labels extracted from a service monitoring tool (Nagios) used by HPC
system administrators to flag the nodes which undergo maintenance opera-
tions.

29

Chapter 3

Ontology modelling to drive the
ODA design

In this chapter, we explore the modelling of ontology from the metrics collected
from two HPC data centres, and how could they be useful for the purpose of Opera-
tional Data Analytics (ODA). The metrics collected are time-series data containing
a sequence of observations ordered in time (a common method of monitoring and
analysing the states of different components in a large-scale computing infrastruc-
ture).

3.1 Overview
Ontology is the field of science which helps us investigate what types of entities

(or classes, sometimes also called concepts) exist in a domain of discourse, how they
are grouped into categories, and how they are related to one another on the most
fundamental level. An ontology along with a set of individual instances of classes
constitutes a knowledge base [46]. Some of the common reasons for developing an
ontology are briefly discussed below [46].

• Sharing a common understanding of the structure of information among the
utilising resources (people or software agents): This is one of the most common
goals in developing ontologies, which allows the ontology utilising resources to
extract and aggregate information to answer user queries or as input data to
other applications.

• Enabling reusability of domain knowledge: This is one of the driving forces
behind the surge in ontology research. If we want to build a large ontology,
several existing ontologies pertaining to various portions of the large domain
can be integrated.

• Making explicit domain assumptions: This allows the assumptions underlying
an implementation to be changed later if the knowledge about the domain
changes. It also allows newer users to be familiar with the explicit specifications
of the domain knowledge.

• Analysing domain knowledge: Once a declarative specification of the terms is
available, the domain knowledge can be analysed formally accordingly.

Developing an ontology includes the following in practical terms (which is the basis
for our ontology modelling):

30

Figure 3.1: A correspondence between the concepts of object-oriented programming and
formal ontologies (Source: [47]).

• defining classes (sometimes called concepts) in the ontology,
• arranging the classes in a taxonomic hierarchy (subclass-superclass order),
• defining various features and attributes of the concepts (also called slots, or roles
of properties), and
• filling in the values for slots for instances of classes.

OWL (Web Ontology Language)

The Web Ontology Language (OWL) is a formal language for expressing ontolo-
gies and is based on the description logic (DL). The underlying format which is
fundamental to storing a wide range of information in OWL-based ontologies is the
Resource Description Framework (RDF). The information stored in an RDF con-
sists of a triple: subject, property, and object. For instance, ("DataCentre-XYZ",
hasAmbientTemperature, "21 degrees") states that a DataCentre-XYZ has an ambi-
ent temperature of 21 degrees (which could further be explicitly related to the time
of record capture using another property, or annotated with the timestamp informa-
tion). It must be noted that an ontology can be queried using a standard RDF query
language named SPARQL, short for “SPARQL Protocol And RDF Query Language”.

In this thesis project, OWL has been used for modelling the ontology (where OWL
support is made available in the Python platform by Owlready2) [48], and a few ex-
periments (using the SPARQL language) have been conducted to validate that the
designed ontology meets the expectations by satisfying the requirements outlined in
the next section. Some of the key definitions which set up the basis of the ontology
modelling using OWL are outlined below:

Classes: Entities in an object-oriented world
Inheritance: Inheritance is called “is-a” relationship
Disjoints: Two classes cannot have individuals in common (a given grouping can-

31

not be both x and y)
Partitions: class a and b constitute a partition of class AB (when AB is always
either a or b)
Data properties: properties whose values are data (number, text, date, boolean,
etc.)
Object properties: properties whose values are entities (ontology individuals)
Annotation Properties: properties that can mix data and entities without re-
striction

• OWL supports inheritance between properties, in addition to inheritance between
classes

• Each “data property” can be configured by specifying: the domain (the class
for which the property is defined), range (associated datatype), and its functional
status (a given individual can have only one value for this property if functional, or
if it can have several values)

• Each “object property” can be configured by specifying: the domain (the class
for which the property is defined), range (associated objects), its inverse property
(existing relationships when the property is read backwards), its functional status
(a given individual can have only one value for this property if functional, or if
it can have several values), its inverse functional status (if the inverse property is
functional), its transitive status (if it is possible to chain the property on several
objects), its symmetric status (if it can be read indifferently in both directions), its
asymmetric status (if it is never symmetrical), its reflexive status (if it always applies
between any object and itself), and its irreflexive status (if it is never reflexive)

• We can also add restrictions to the classes: “existential restriction” or some (the
class of individuals who have at least one relation of a certain property with an in-
dividual belonging to a certain class), “cardinality restrictions” or exactly/min/max
(the class of individuals who have either exact or a minimum or a maximum number
of relations of a certain property with an individual belonging to a certain class),
“universal restriction” or only (the class of individuals who only have a relation of
a certain property with one or more individuals belonging to a certain class), and
“value restriction” or value (the class of individuals who have a certain value for a
certain property; sometimes called role-filler)

• OWL allows the use of logical operators as constructors: logical AND or intersec-
tion (individuals belonging to several classes at the same time), logical OR or union
(individuals belonging to a class among several), and logical NOT or compliment
(individuals who do not belong to a given class)

• OWL also allows using a formal equivalence definition via an equivalence rela-
tion (the defined classes allow reclassifying individuals during automatic reasoning).

32

3.2 Requirements analysis
We need to understand how ontology is modelled. Before doing that, we first need
to understand the relationship or correspondence between the object-oriented field
of programming and the field of ontology. The table shown in Fig. 3.1 represents
the correspondence between the two fields [47].

Functional requirements

Here we discuss some of the functional requirements governing our ontology model:
• Time-series modelling: The ontology should support the modelling of attributes
extracted from time-series metrics collected from a large-scale computing infrastruc-
ture, e.g., an HPC cluster.
• Resource description: The ontology should describe the HPC cluster resources
in a structured way, including details about nodes, processors, etc.
• Performace metrics: The ontology should capture and analyse performance
metrics such as resource utilisation and energy consumption.
• Consistent and Accurate: The ontology should be consistent and accurate in
its representation by reflecting the state of the HPC cluster and its resources.

Non-functional requirements

Below, we discuss some of the non-functional requirements governing our ontology
model.
• Interoperability: The ontology should be designed with interoperability in mind,
which should facilitate integration or reuse with/by other ontologies.
• Usability: The ontology should be user-friendly in nature, having sufficient com-
ments or labels for accessibility by both experts and non-experts.
• The ontology might be based on the international, European or de facto standards
in existence.
The best resource which is closer to our ontology requirements is a work of literature
studying the ontological representation of time-series observations on the Semantic
Sensor Web [49]. It suggests the usage of three important modelling classes, out
of which we find that the most relevant class "Observation" can be reused, and
thus discussed in detail below. The two other classes "ObservationCollection" and
"TimeSeriesObservation" do not seem convincingly reusable, mainly because of the
nature of the requirements to model a sample time-series data. If we were to model
multiple time-series data in the ontology, then we could have inherited the same
structure. But, in this project, we limit ourselves to demonstrating a single set
of records in the ontology model, other than the established relations amongst the
classes.

• Observation class (an act of observing a property or phenomenon with the in-
tent to produce an estimate of the value of the property). Some of the relationships
for observations which have been used here are listed below:
featureOfInterest (representation of the object being observed)
observedProperty (the phenomenon for which the observation result provides an
estimate of its value)
samplingTime/generatedAtTime (the time when the phenomenon was mea-
sured)

33

result/value (an estimate of the value of a property generated using a known pro-
cedure)
memberOf (a relation to a set of observations of observation collection)

3.3 HPC ontology modelling

Class Parent-class

Hardware Thing
Computer Hardware
Cluster Computer
Rack Hardware
Server Computer

Processor Hardware
CPU Processor

Coprocessor Processor
Accelerator Coprocessor

GPU Accelerator
Memory Hardware
Concept Thing
Entity Concept
Site Entity

Class Parent-class

Artifact Thing
Data Artifact

Software Entity
MonitoringSystem Software
MetricsExporter Software
MonitoringMetrics Data
ResourceManager Software
JobScheduler Software

Job Data
Resource Entity
Feature Thing
Property MonitoringMetrics

MetricCollector Feature

Table 3.1: List of classes that form the basic hierarchy which is commonly used in both
SURF’s & CINECA’s cluster-exported metrics ontology modelling.

As the basics have been discussed sufficiently, we proceed with the steps taken for
modelling ontology based on metrics collected from 2 different HPC clusters running
different data exporters (SURF’s Prometheus vs CINECA’s IPMI). We highlight the
base classes required for ontology modelling, which have been referenced from the
existing popular HPC ontology model [35]. The base classes in an ontology are
all derived from the special ’Thing’ class. This representation is listed below in
the form of child-class(parent-class), and can be read as a child-class inherits from
parent-class.

• The core classes which have been inherited (we tried to reuse the classes already
modelled in HPC as much as possible) are listed in Table 3.1.

• The entries in the table must be read from the left column from top to bot-
tom, and then to the right column from top to bottom. Each of the row entries can
be interpreted as the leftmost entry being a child class inheriting from the parent
class entry appearing on the right side.

Further, properties which are distinct from SURF’s metrics or CINECA’s metrics
are discussed later in their respective sections.

SURF’s LISA cluster metrics (relational) description

• The key classes (or, concepts) and properties of HPC ontology involving SURF’s
LISA cluster metrics are described in Table 3.2 and 3.3 respectively.

34

Class Parent-class

DataCentre Site
AmbientTemperature Property

PowerUsage Property
DeviceStatus Property

TimeSinceEpoch Property
Motherboard Hardware
ThermalZone Feature
Temperature Property

SystemStatisticsCollector MetricCollector
ProcessesBlocked Property
ProcessesRunning Property

MemoryStatisticsCollector MetricCollector
ActiveBytes Property
DirtyBytes Property

MemFreeBytes Property
PerCPUBytes Property

DiskIOStatisticsCollector MetricCollector
NumberOfIOs Property
TotalWrites Property
ReadBytes Property

WrittenBytes Property
HardwareMonitor MetricCollector
NodeTemperature Property
CPULoadCollector MetricCollector
CPULoadAverage Property

ARPMetricCollector MetricCollector
ARPEntries Property

BootTimeMetricCollector MetricCollector
BootTime Property

Class Parent-class

EnergyUsageMetricCollector MetricCollector
RunningAveragePowerLimit Property

UDPQueuesCollector MetricCollector
UDPQueues Property

VirtualMemoryStatisticsCollector MetricCollector
ContextSwitches Property

Forks Property
Interrupts Property

FileSystemMetricCollector MetricCollector
FilesFree Property
Files Property

FreeSpace Property
DeviceErrorReport Property
FileSystemSpace Property
FileSystemSize Property
GPUDevice Feature
FanSpeed Property

Temperature Property
PowerUsage Property
DutyCycle Property
Memory Property

NetworkInterface Feature
NetworkInterfaceMetrics Property
KernelNetworkSubsystem Feature

ICMPMetrics Property
TCPMetrics Property
UDPMetrics Property
ExitCode Data

Table 3.2: List of classes that form the hierarchy which is used in SURF’s cluster-exported
metrics’ ontology modelling.

• It must be noted that aggregation operators such as sum, min, max and avg have
been used in several metrics in the dataset, before exporting these metrics to one of
the available Prometheus Exporters (Splunk).

Property Property-
type

Nature of value
(Domain » Range)

Description

hasMember Object prop-
erty

Thing » Thing shows membership
relation between two
entities

featureOfInterest Object prop-
erty

Thing » Feature representation of
the object being
observed

manageJob Object prop-
erty

Software » Job software manages
jobs

35

hasMonitoringSystem Object prop-
erty

Computer » Moni-
toringSystem

computer has moni-
toring system

hasMetricsExporter Object prop-
erty

Entity » Metric-
sExporter

an entity has metrics
exporter

exportMonitoringMetrics Object prop-
erty

Software » Job software manages
jobs

observedProperty Object prop-
erty

Thing » Property the phenomenon for
which the observa-
tion result provides
an estimate of its
value

generatedAtTime Data prop-
erty

Thing » datetime timestamp of event
generation

hasMeasurementIdentifier Data prop-
erty

MonitoringMetrics
» int

metrics has identifier

measuresValueOfThing Object prop-
erty

MonitoringMetrics
» Thing

metrics measures
value of a thing

hasTemperatureValue Data prop-
erty

Feature » float temperature value of
the feature

hasPowerUsageValue Data prop-
erty

Property » float power-usage value of
the property

atLocation Object prop-
erty

Thing » Thing thing is at some loca-
tion

hasUpValue Data prop-
erty

Property » float system up value

hasTimeSinceEpochValue Data prop-
erty

Property » date-
time

property has epoch
timestamp

hasNumberOfProcessesBlockedValue Data prop-
erty

Property » float blocked processes
count

hasNumberOfProcessesRunningValue Data prop-
erty

Property » float running processes
count

hasActiveBytesValue Data prop-
erty

Property » float memory field Ac-
tive_bytes

hasDirtyBytesValue Data prop-
erty

Property » float memory field
Dirty_bytes

hasMemFreeBytesValue Data prop-
erty

Property » float memory field Mem-
Free_bytes

hasPerCPUBytesValue Data prop-
erty

Property » float memory field Per-
cpu_bytes

hasNumberOfIOsInProgressValue Data prop-
erty

Property » float number of I/Os in
progress

hasTotalNumberOfWritesCompletedValue Data prop-
erty

Property » float number of writes
completed

hasTotalNumberOfReadBytesValue Data prop-
erty

Property » float number of bytes read

hasTotalNumberOfWrittenBytesValue Data prop-
erty

Property » float number of bytes
written

hasNodeTemperatureValue Data prop-
erty

Property » float temperature of the
node

hasCPULoadAverageValue Data prop-
erty

Property » float CPU load average

hasArpEntriesValue Data prop-
erty

Property » float ARP entries by de-
vice

hasBootTimeValue Data prop-
erty

Property » float node boot time

36

hasRAPLPackageValue Data prop-
erty

Property » float Running Average
Power Limit package
value

hasAllocatedMemoryForUDPDatagramsValue Data prop-
erty

Property » float memory allocated in
the kernel for UDP

hasNodeTemperatureValue Data prop-
erty

Property » float temperature of the
node

hasTotalContextSwitchesValue Data prop-
erty

Property » float total context
switches

hasTotalForksValue Data prop-
erty

Property » float total number of forks

hasTotalInterruptsServicedValue Data prop-
erty

Property » float number of interrupts
serviced

hasTotalFreeFileNodesValue Data prop-
erty

Property » float total free file nodes
(filesystem)

hasTotalFileNodesValue Data prop-
erty

Property » float total file nodes
(filesystem)

hasTotalFreeSpaceValue Data prop-
erty

Property » float free space (filesys-
tem)

hasDeviceErrorValue Data prop-
erty

Property » float total error occurred
while getting device
statistics

hasAvailableFileSystemSpaceToNonRootUsersValueData prop-
erty

Property » float space available
to non-root users
(filesystem)

hasFileSystemSizeValue Data prop-
erty

Property » float size (filesystem)

hasFanSpeedValue Data prop-
erty

Property » string fanspeed as a percent
of its max (GPU de-
vice)

hasDutyCycleValue Data prop-
erty

Property » string percent of time of
kernel execution on
the GPU device

hasMemoryUsedValue Data prop-
erty

Property » float memory used (GPU
device)

hasReceiveBytesTotal Data prop-
erty

Property » float network de-
vice statistic re-
ceive_bytes

hasReceivePacketsTotal Data prop-
erty

Property » float network de-
vice statistic re-
ceive_packets

hasReceiveMulticastPacketsTotal Data prop-
erty

Property » float network de-
vice statistic re-
ceive_multicast

hasReceiveDroppedPacketsTotal Data prop-
erty

Property » float network de-
vice statistic re-
ceive_drop

hasTransmitBytesTotal Data prop-
erty

Property » float network device
statistic trans-
mit_bytes

hasTransmitPacketsTotal Data prop-
erty

Property » float network device
statistic trans-
mit_packets

hasICMPInErrorsMessagesValue Data prop-
erty

Property » float statistic IcmpIn-
Errors

hasICMPInMessagesValue Data prop-
erty

Property » float statistic IcmpInMsgs

37

hasICMPOutMessagesValue Data prop-
erty

Property » float statistic Icm-
pOutMsgs

hasTCPInErrorsSegmentsValue Data prop-
erty

Property » float statistic TcpInErrs

hasTCPInSegmentsValue Data prop-
erty

Property » float statistic InSegs

hasTCPOutSegmentsValue Data prop-
erty

Property » float statistic TcpOutSegs

hasTCPRetransmittedSegmentsValue Data prop-
erty

Property » float statistic TcpRe-
transSegs

hasUDPInDatagramsValue Data prop-
erty

Property » float statistic UdpInData-
grams

hasUDPOutDatagramsValue Data prop-
erty

Property » float statistic UdpOut-
Datagrams

hasUDPInErrorsDatagramsValue Data prop-
erty

Property » float statistic UdpIn-
Errors

hasResourceManager Object prop-
erty

Computer » Re-
sourceManager

a computer has a re-
source manager

hasJobScheduler Object prop-
erty

Computer » Job-
Scheduler

a computer has a job
scheduler

managesJob Object prop-
erty

JobScheduler » Job job scheduler man-
ages job

hasJobIdentifier Data prop-
erty

Job » int job has job-ID

hasStartDate Data prop-
erty

Thing » datetime thing (job) has a
start-date

hasEndDate Data prop-
erty

Thing » datetime thing (job) has an
end-date

isScheduledOn Object prop-
erty

Data » Thing data (job) is sched-
uled on something
(node)

hasNodeType Data prop-
erty

Server » string type of node

usesNode Data prop-
erty

Job » int number of nodes
used for the job

usesCore Data prop-
erty

Job » int number of cores used
for the job

requiresSharedNode Data prop-
erty

Job » string whether requires
shared node

submittedAtTime Data prop-
erty

Job » datetime submission time of
job

startedAtTime Data prop-
erty

Job » datetime start time of job

endedAtTime Data prop-
erty

Job » datetime end time of job

hasState Data prop-
erty

Job » string job end state

hasExitCode Data prop-
erty

Job » string exit code of job

hasExitCodeValue Data prop-
erty

string » int exit code value of job

hasReservationIdentifier Data prop-
erty

Job » string reservation for the
job

Table 3.3: High-level concepts of the HPC ontology involved in modelling SURF’s LISA
cluster metrics.

38

CINECA’s Marconi100 cluster metrics (relational) description
Marconi 100 is the new accelerated cluster based on IBM Power9 architecture and

Volta NVIDIA GPUs, acquired by Cineca within PPI4HPC European initiative1. It has
been made public to the Italian public and industrial researchers since April 2020, and its
computing capacity is about 32 PFlops.

• The dataset metric used in this project for ontology modelling is made available by
the IPMI plugin, which collects the sensor data provided by the OOB management inter-
face (BMC) of cluster nodes [50].

• The dataset used for ontology modelling in this thesis project is a subset of the huge
dataset made publicly available by the Unibo2 and CINECA computing centre3 teams [51].

• The key classes (or, concepts) and properties of HPC ontology involving CINECA’s
Marconi100 cluster metrics are described in Table 3.4 and 3.5 respectively.

Class Parent-class

IPMIProperty Property
Temperature IPMIProperty

AmbientTemperature IPMIProperty
Speed IPMIProperty

PowerUsage IPMIProperty
Voltage IPMIProperty
Current IPMIProperty

NVIDIAQuadroGV100Card IPMIProperty
Accelerator IPMIProperty
Organization Thing
Company Organization
NVIDIA Company

ServerInlet Feature
DualInlineMemoryModule Feature

Class Parent-class

DriveShelfFanModule Feature
Fan Feature

DiskFan Feature
GPUCore Feature

GPUMemory Feature
GraphicsCard Feature
CPUSocket Feature

CPUSocketCore Feature
InputOutputSubsystem Feature

MemorySubsystem Feature
VoltageRegulator Feature
PCIExpressSlot Feature

PowerSupplyInput Feature
PowerSupplyOutput Feature

Table 3.4: List of classes used dedicatedly in CINECA’s cluster-exported metrics’ ontology
modelling.

Modelling SURF’s LISA cluster metrics
The metrics reflected in the modelled ontology for SURF’s LISA cluster metrics are

shared below in Table 3.6, which is quite extensive in modelling all classes and properties
(including sample data consisting of one record for each of the classes, properties and their
respective relationships) available in the shared dataset. We share the relevant snippet
from LISA’s metric-based ontology modelling, as the overall image size is too large to fit
into this report. However, interested readers can access the same from the GitHub page,
where the link of how to access and visualise the owl file is also discussed in sufficient detail
in the Appendix at the end of this report.

1Marconi 100 - https://www.hpc.cineca.it/hardware/marconi100
2University of Bologna - https://www.unibo.it/en
3CINECA - https://www.cineca.it/en

39

https://www.hpc.cineca.it/hardware/marconi100
https://www.unibo.it/en
https://www.cineca.it/en

Property Property-
type

Nature of value
(Domain »
Range)

Description

hasMember Object
property

Thing » Thing shows membership relation
between two entities

featureOfInterest Object
property

Thing » Feature representation of the object
being observed

isAssociatedWith Object
property

Organization »
Thing

organisation is associated with

hasMonitoringSystem Object
property

Computer » Mon-
itoringSystem

computer has monitoring sys-
tem

hasMonitoringMetrics Object
property

Entity » Data an entity has monitoring
metrics

observedProperty Object
property

Thing » Property the phenomenon for which the
observation result provides an
estimate of its value

generatedAtTime Data prop-
erty

Thing » datetime timestamp of event generation

measuresValueOfThing Object
property

MonitoringMetrics
» Thing

metrics measures value of a
thing

hasTemperatureValue Data prop-
erty

Feature » float temperature value of the fea-
ture

hasSpeedValue Object
property

Property » int speed value of the property

hasPowerValue Object
property

Property » int measured power value

hasValue Data prop-
erty

Property » int possesses some value

hasVoltageValue Data prop-
erty

Property » int property has voltage

hasCurrentValue Data prop-
erty

Property » int property has current

Table 3.5: High-level concepts of the HPC ontology involved in modelling CINECA’s
Marconi100 cluster metrics.

Modelling CINECA’s Marconi100 cluster metrics
The metrics reflected in the modelled ontology for CINECA’s Marconi100 cluster met-

rics are shared below in Table 3.7, which successfully modelled all classes and properties
(including sample data consisting of one record for each of the classes, properties and their
respective relationships) available in the shared dataset. We share the relevant snippet
from Marconi100’s metric-based ontology modelling, as the overall image size is too large
to fit into this report. However, interested readers can access the same from the GitHub
page, where the link of how to access and visualise the owl file is also discussed in sufficient
detail in the Appendix at the end of this report.

40

Axiom 710
Logical axiom count 442

Declaration axiom count 230
Class count 82

Object property count count 17
Data property count 63
Individual count count 69

Annotation property count 2

Table 3.6: Ontology metrics related to the modelled SURF’s LISA cluster.

Figure 3.2: A class-hierarchy representation capturing the ontology for a dataset pertaining
to SURF’s LISA HPC cluster

Axiom 384
Logical axiom count 250

Declaration axiom count 98
Class count 47

Object property count count 10
Data property count 7
Individual count count 35

Annotation property count 2

Table 3.7: Ontology metrics related to the modelled CINECA’s Marconi100 cluster.

41

Figure 3.3: A class-hierarchy representation capturing the ontology for a dataset about
CINECA’s Marconi100 cluster

42

(a) SURF’s ontology SPARQL output (b) CINECA’s ontology SPARQL output

Figure 3.4: Modelled ontology’s SPARQL output showing the ambient temperature prop-
erty, amongst others

3.4 Experimental validation
The very first scenario is to validate that the modelled ontologies meet the requirements

of an ontology in terms of structural modelling. It should be noted that the overall ontology
structure could be validated to be syntactically correct using the graph dump property
(ontology.graph.dump() in Python’s ‘Owlready2‘ module4), to ensure that there are no
errors encountered while representing data with the ontology (e.g., datatype mismatch,
incorrect attribute-name, data missing scenario). If the modelled ontology is structurally
incorrect while adding data, then the graph dump statement should give an error.

• Exp-1: Validation of some of the key properties which are common in both ontologies
(like ambient temperature, host power usage, etc.)
→ We perform a SPARQL query to validate that the results are matched in both
ontologies, as shown below.

1 # Owlready2 stores every triple in a ‘World ’ object , and it can handle
several Worlds in parallel. ‘default_world ’ is the World used by

default.
2 result_surf = list(default_world.sparql("""
3 PREFIX <https :// example.org/hpcontology_surf.owl

#>
4 SELECT DISTINCT ?x where{
5 ?x rdfs:subClassOf* Property .
6 }
7 """))
8 result_cineca = list(default_world.sparql("""
9 PREFIX hpc: <https :// example.org/

hpcontology_cineca.owl#>
10 SELECT DISTINCT ?x where{
11 ?x rdfs:subClassOf* hpc:Property .
12 }
13 """))
14

The output of both the SPARQL queries from SURF’s and CINECA’s ontology are
shown in Fig. 3.4. We can see that the common properties like ’AmbientTempera-
ture’ and ’PowerUsage’ are captured in the modelled ontology, which is successfully
retrieved based on the SPARQL query. Additionally, this SPARQL lists all the prop-
erties which have been modelled in both ontologies based on the metrics shared in

4Owlready2 - https://owlready2.readthedocs.io/en/latest/

43

https://owlready2.readthedocs.io/en/latest/

Figure 3.5: CINECA’s OWL ontology visualisation (using WebVOWL) showing the ambi-
ent temperature property, amongst others

their datasets respectively.

• Exp-2: Visualisation to validate that the monitoring metrics relationship is preserved
with the captured properties and includes key properties which can (as collected in
the metrics)
→ The goal of this experiment is to verify that the ontology modelled for the available
datasets satisfies the key relations which can be used for scientific work, such as
the representation of data centre ambience temperature which is captured in their
datasets, which can be used while researching coolant-related topics in data centre
infrastructure.
Here, we share the snippet from CINECA’s Marconi 100 modelled ontology in Fig.
3.5 which shows that the essential properties like ambient temperature are captured.
We use the WebVOWL [52] online visualisation of the OWL ontology file provided
by TIB-EU5 to verify that the visualisation reflects the key classes and properties in
a relationship.

• Exp-3: Verification that the modelled ontology also reflects the graphical layout,
which could be inferred to create general graph structures on the fly for analytical
purposes (e.g., for performing ODA-related analysis)
→ The goal of this experiment is to verify that the ontology modelled for both HPC
clusters can be visualised in the form of graphical layouts with nodes and edges,
which could be easily converted to a graphical structure in a graph database using
available tools.
The resulting graphical layout for SURF’s LISA cluster is visualised using Web-

5TIB-EU: https://service.tib.eu/webvowl/

44

https://service.tib.eu/webvowl/

Figure 3.6: SURF’s OWL ontology visualisation (using WebVOWL) showing the graph
layout according to the VOWL specification, and listing graphical nodes and edges infor-
mation on the right side information box

VOWL ontology visualisation and shown in Fig. 3.6.

There are tools like Onto2Graph6 that enable the creation of general graph structures
from the OWL ontologies using automated reasoning [53]. Once the graph structure
is available in a graph database, graphical analysis can be performed as conducted
in one of the works of literature based on climatic-data analysis [54].

Strength of this ontology project
An important point worth sharing is the collaboration with the Unibo team, Metaphacts
team, and other stakeholders via Graph-Massivizer [55] and GraphGreenifier[56] projects,
and this ontology modelling serves as a stepping stone highlighting how the modelled HPC
ontology could be used by CINECA/Unibo teams by converting to graphical data format
in a graph database, and further operational data analytics (like node anomaly detection)
could be done. Additional work could be done to integrate other HPC components for
more advanced analytical capabilities (not included in the current scope), which form
future work in this field.

3.5 Summary
In this section, we discussed the significance of ontology, and how could this be useful
for gaining insights about various metrics in the dataset. The ontology provides a nice

6Onto2graph - https://github.com/bio-ontology-research-group/Onto2Graph

45

https://github.com/bio-ontology-research-group/Onto2Graph

relationship among various components of the large-scale computing infrastructure, which
is difficult to study without proper modelling. This could help in the simplified correlation
and analysis of various metrics whose relationships earlier were difficult to establish and
correlate by the researchers. It is important to note that the 2 ontologies were modelled
individually from the point of segregation of both clusters that are from the heterogeneous
environments, however, both ontologies have a lot of common concepts (classes) and prop-
erties (promoting reusability and uniformity) of the HPC computing infrastructure.

To the best of our knowledge, this is the first attempt to explicitly address an ontol-
ogy model supporting HPC metrics available in time-series format, and that too using
multiple (two) datasets covering unique as well as different aspects of ontology (due to
different host data collectors targeting different components of the infrastructure).

46

Chapter 4

Design of ‘ODAbler’: an ODA
framework for a data centre
simulator (OpenDC)

In this section, we present the design of the ODAbler framework to perform operational
data analytics on a large-scale computing infrastructure configured within the OpenDC
simulator, mimicking the real-world environment and operations in the simulator to a
close extent.

4.1 Why is an ODA framework needed?
An operational data analysis framework is needed in production data centres for several
important reasons: to enable energy efficiency of the infrastructure, proactive performance
monitoring, capacity planning, fault detection and mitigation, security-related safeguard-
ing, and resource optimisation to name a few. We have seen some of the popular ODA
frameworks being used in production in Section 2. Netti et al. proposed a macroscopic-
level classification of Operational Data Analytics depending on the purpose of the technique
being used [57], namely Operational Data Analytics for Visualisation (ODAV) and Opera-
tional Data Analytics for Control (ODAC), as shown in Fig. 4.1. The key stages involved
in a simplistic ODA pipeline are listed below:

• Monitoring: The monitoring of data centre infrastructure, hardware or software
metrics is the basis of enabling an ODA pipeline.

• Monitoring data processing: The monitoring data generated for the data centre
components needs to undergo data processing for further analysis.

• Operational Data Analytics: The analytics performed on the relevant monitoring
metrics to gain some insights about the behaviour of the computing infrastructure
at various levels is termed ODA.

• Operational Data Analytics Visualisation (ODAV): The analysis performed
on monitoring metrics needs to be visualised and presented with meaningful analysis
such that it can used by the system operators and other stakeholders.

• Operational Data Analytics Control (ODAC): Once the analysis results are
reflected, the gained insights are then transferred back to the infrastructure for tuning

47

Figure 4.1: Basic stages composing a generic ODA pipeline (Source: [57]).

the system components for optimal energy consumption and optimal performance to
bolster sustainability goals.

We start with the goal of creating an ODAV framework for OpenDC as part of this thesis
project to be precise, which could be upgraded to have integrated ODAC capabilities in
future.

4.2 Requirements analysis
Before proceeding with the design of an ODA framework, we need to go through the set of
requirements which an ODA framework should meet. These requirements are essential for
developing an effective ODA framework that can support the efficient operation of a data
centre. These are categorised into functional and non-functional requirements.

Functional Requirements
These requirements specify the functions or features a system (design) must meet. As part
of designing, we discuss the functional requirements below:

• FR1 - Data persistence: The ODA framework system design should include stor-
age of exported metrics to a time-series database which could persist the data for
both in-band and out-of-band analysis.

• FR2 - Monitoring: The ODA framework should continuously collect and enable
analysis of data related to various data centre components within OpenDC (CPU
utilisation, power usage, number of guests, etc.).

• FR3 - Analysis: It should enable an analysis of the energy and performance-related
metrics available in the time-series database.

• FR4 - Configurability: Easier configuration of the host environment is required
to allow experimentation with varied host environments.

• FR5 - Flexibility: It should be flexible enough to analyse the energy consumption
of multiple scheduling policies to highlight better energy-efficient task scheduling
algorithms available in the portfolio with respect to various use cases.

48

Figure 4.2: High-level architecture of ODAbler framework showing various components
and its integration with OpenDC

Non-Functional Requirements
Non-functional requirements are those requirements which define the quality attributes or
constraints a system must adhere to. These requirements describe how the system should
adhere to in terms of certain functionalities. Below we discuss some of the non-functional
requirements which have been considered as part of our design goals.

• NFR1 - Scalability: The ODA framework must be scalable to accommodate the
growing amount of data and devices in the data centre.

• NFR2 - Reliability and Availability: The ODA framework should be reliable
and available, ensuring that it can operate continuously withstanding failures at the
data centre side.

• NFR3 - Performance: It should be capable of processing and analyzing data
in a timely manner, providing near real-time insights wherever possible to support
proactive management of the data centre’s operations.

4.3 Proposed Architecture
The key design element involves several key elements as represented in Fig. 4.2. Some of
the key elements include OpenDC itself, and Apache Kafka as the middleware which is re-
sponsible for message publishing to a time-series database ’InfluxDB’, using the ’Telegraf’
agent. Once the time-series data is available at InfluxDB, the ODAbler client application
performs out-of-band analysis (as part of the current scope of its implementation). The
key technical components (other than OpenDC that has already been described earlier)

49

are dedicated described below:

• Apache Kafka: Apache Kafka is an open-source distributed event-streaming plat-
form used by several organisations for high-performance data pipelines, streaming
analytics, data integration, and mission-critical applications1 [58, 59].

• InfluxDB: It is a time-series database built specifically for time-series data2 [60]. Its
key features include native SQL support, low-latency queries, superior data compres-
sion, single datastore support for all time-series data, openness and interoperability
with data ecosystems, and unlimited cardinality.

• Telegraf : It is an open-source plugin-driven server agent that is responsible for
collecting and sending metrics and events from various databases, systems, and IoT
sensors3 [61, 62]. It is written in Go and has no external dependencies due to its
compilation into a single binary, which allows its easier execution on any system. It
requires a very minimal memory footprint. There are 4 types of Telegraf plugins:
input, process, aggregate and output. We use the input and output plugins in the
Telegraf configuration, where the input plugin collects metrics from the Kafka system
and the output plugin writes to the InfluxDB datastore.

• OpenDC simulator: OpenDC is a data centre simulation framework which allows
various experimentations related to task scheduling and others [11]. This project’s
goal is to create a digital twin for OpenDC, showcasing the ODA capabilities using
ODAbler on top of the OpenDC simulator.

• ODAbler client (analyser) application: A pure Python-based analysis applica-
tion, which is responsible for communicating with OpenDC to trigger the execution
of energy-efficiency-analysis and node-anomaly-analysis related experiments4. Once
the experiments are executed in OpenDC, the data made available to InfluxDB is
analysed in this ODAbler client application, meaningful plots are visualised and rel-
evant data points indicate the result of the analysis. This ODA-related application
is a novel contribution as part of this thesis project.

As presented in Figure 4.5, various ODA functionalities like “anomaly detection” (part of
fault detection from layer 2), resource “allocation and scheduling” (from layer 3), “energy
modelling” and “monitoring & alerting” (from layer 6), and layer 7 forms the crux of OD-
Abler experimentation using OpenDC (allowing ‘reusability’ and ‘experimentation’ of data
centre operations).

→ The proposed architecture (consisting of proven technical components like Kafka, In-
fluxDB and Telegraf) satisfies the key requirements, some of which are discussed in the
next couple of sections, and the experiments discuss the results to strengthen the claim.

4.4 Design elements overview
The key technical components discussed in the previous section are set up in a way that
meets all of the requirements outlined in the requirements analysis section.

1Apache Kafka - https://kafka.apache.org/
2InfluxDB - https://www.influxdata.com
3Telegraf - https://www.influxdata.com/time-series-platform/telegraf/
4ODAbler analysis client - https://github.com/am-i-helpful/ODAbler

50

https://kafka.apache.org/
https://www.influxdata.com
https://www.influxdata.com/time-series-platform/telegraf/
https://github.com/am-i-helpful/ODAbler

Figure 4.3: An overview of the architecture of OpenDC (2.0) (Source: [11]).

OpenDC 2.0 (or simply, OpenDC) operation
Please note that all references to OpenDC in this thesis project correspond to the enriched
version of OpenDC, i.e., OpenDC 2.0. Fig. 4.3 shows an overview of the architecture of
OpenDC. In this subsection, we discuss the functionalities of key classes which are available
within OpenDC 2.0, and play a crucial role in executing energy-related experiments in
OpenDC. From the operational perspective, the OpenDC simulator allows the simulation
of workload trace scheduling on a cluster (datacentre) environment configured with the
desired host specifications. Although OpenDC features are heavily documented within the
codebase, the author felt that there is a lack of description of the functionalities which
could simplify the complexity of understanding OpenDC functionalities for a new user. As
a contribution to the same, we have shared our understanding of the OpenDC simulator
from a technical guide perspective, in addition to the existing OpenDC documentation
by the authors of OpenDC. Some of the key classes around which the ODA framework
(ODAbler) design revolves are discussed below. Please note that the classes starting with
’Sim’ represent that is a simulated representation of the corresponding real-world entity.

• WorkflowService: An interface that defines the service for workflow execution.
This interface specifies an abstract invoke() function using the WorkflowService im-
plementation elements (Dispatcher, ComputeClient, Job AdmissionPolicy, JobOrder-
Policy, TaskEligibilityPolicy, and TaskOrderPolicy).

• WorkflowServiceImpl: This class implements the WorkflowService interface, by
adding invoke() function implementation details besides other functions. The class
provides an implementation for various stages specified in the "reference architecture
for datacentre scheduling" literature [9]. Stages like J1 (incoming jobs), J2 (creation
of a list of eligible jobs), J4 (performing certain actions per job), T1 (creating a list
of eligible tasks), and T3 (performing certain actions per task) are implemented in
various functions in the class. This class is critical and various additional configura-
tions can be done on a central level at the scheduler using this (e.g., fault injection
boolean flag is configured for controlling node-anomaly experiments related to the
ODA framework design).

• WorkflowServiceTest: This is a test class which allows the execution of the work-
load trace, and allows verification that all tasks in a trace are executed correctly.
This is the integration-test-related class that should be explored first in OpenDC for
understanding the trace file execution and energy consumption-related operations.

• ComputeMonitor: This interface specifies a monitor that tracks the metrics and
events of the OpenDC compute service. It has 3 record() functions, one each for

51

Server, Host and Service related compute recordings. A class should implement this
interface for retrieving host or server records (metrics), as done in the ODACom-
puteMonitor class during ODAbler framework implementation.

• HostTableReader: This interface provides the declaration of various host-related
metrics (host, timestamp, guestsRunning, cpuUtilisation, powerUsage, etc.) which
can be extended.

• ComputeService: This is one of the most critical classes in the OpenDC simulator
that hosts the implementation of the OpenDC compute engine.

• MonitoringMetrics: A special data class which defines the metrics to be exported
to Kafka, driven by the modelled ontology of HPC cluster(s). Some of the key metrics
elements used in the experiments are powerUsage, energyUsage, serverId, timestamp,
policyId, and guestsRunning.

• OpenDCNodeConfig: A newly added configuration class in the newer "opendc-
oda-experiments" module (implemented as part of this project) which contains the
specification of cluster host environment (describing configurations of CPU, memory,
etc. in the host).

• ODAExperimentListener: A newly added class in the newer "opendc-oda-listener"
module (implemented as part of this project) enabled to start a server socket, which
allows external ODAbler client analyser to connect requesting to run the experi-
ment(s).

• ODAComputeMonitor: This ODA class extends ComputeMonitor and triggers
the export of ontology-modelled metrics to Kafka at every defined interval when the
record() function is triggered.

• ODAExperimentKafkaProducer: The ODA class which statically initialises Kafka
producer instance (using the "kafka.clients" library) that assists in sending messages
to the Kafka platform.

• SchedulingAlgorithmComparatorExperiment: This ODA class executes the
energy-efficiency experiment collecting and exporting ontology-modelled metrics dur-
ing the execution of various task-scheduling algorithms implemented in OpenDC.

• NodeAnomalyIdentifierExperiment: The ODA class that executes the node-
anomaly experiment collecting and exporting ontology-modelled metrics during the
execution of various task-scheduling algorithms implemented in OpenDC.

• HostSpec: This class describes a physical host’s specification that is to be simulated
within OpenDC, which will host the virtual machine(s) internally.

• TraceHelpers: This class consists of a helper method which replays the trace on the
list of virtual machines (VMs), and suspends execution until all VMs have finished
their execution.

• Job: A class representing a DAG (directed acyclic graph) of tasks with control and
data dependencies between tasks.

• Task: A class that represents the lowest level element of a workload, which is basi-
cally a stage of a job that is scheduled by the task-scheduling algorithms.

52

• TaskState: This class declares various states (created, started, finished) of the tasks
which are scheduled for execution.

• Host: This interface declares various methods about the host specifications and
functionalities (including the fault injection capability).

• SimHost: This class implements the Host interface describing the host specifications
and functionalities. This class allows the faults to be injected, if the experiment is
configured with the boolean flag related to node anomaly set as true.

• SimHypervisor: This class is another critical class which facilitates the execution of
multiple concurrent workloads, while acting as a single workload to another machine.

• SimHypervisorCounters: This class represents the performance counters of a
SimHypervisor.

• ProcessingUnit: This class represent a single logical compute unit of processor,
that could be either virtual or physical.

• SimBareMetalMachine: This class acts as a simulated bare-metal machine that
executes a single workload.

• SimPsu: This interface represents a power supply configuration, which enables the
construction of a power supply for the SimMachine interface.

• SimMachine: This interface represents a generic machine that is able to execute
workload objects.

• SimPsuFactory: An interface that defines a SimPsu unit for the specified SimMa-
chine.

• ComputeMetricReader: This is an important helper class that collects metrics
for a ComputeService instance, and exports it automatically at every export interval.

• Provisioner: It is a helper class that sets up the experimental environment in a
reproducible manner, in which the users configure the environment using multiple
provisioning steps which are executed sequentially.

• ProvisioningStep: This interface declares a provisioning step having functions ap-
ply() and create() which are responsible for provisioning various infrastructure ele-
ments as required in the simulation experiment.

• ComputeMonitorProvisioningStep: This critical class provisions a Compute-
MetricReader to periodically collect the metrics (as defined by export-interval) of a
compute service, and report them to a ComputeMonitor implementation.

• ComputeServiceProvisioningStep: This class provisions a compute service with-
out hosts, including the construction of a compute scheduler.

• ComputeSteps: This is another critical class which contains functions to setup
compute service, register compute monitor, and setup hosts, all of which form the
backbone of executing the workload trace on a host environment.

• HostsProvisioningStep: This class is responsible for provisioning a list of hosts to
be used by the compute service.

53

Figure 4.4: Metrics exported to time-series database reusing the concepts from the mod-
elled ontology (in the previous chapter).

• WorkflowServiceProvisioningStep: This class provisions a workflow service which
manages the workflow execution.

• Dispatcher: An interface that defines a schedule to execute future tasks over mul-
tiple threads potentially.

Ontology-driven export of OpenDC metrics
As shown in Fig. 4.4, the corresponding attributes or properties are selected to be ex-
ported to the time-series database InfluXDB for further analysis by the ODAbler analysis
client. This screenshot is taken from the OpenDC’s MonitoringMetrics class, which is a
data class whose sole purpose is to hold data of various metrics (as reflected by the name
of the member properties). The member properties are briefly described below clarifying
the context and their usage as part of the ODAbler project:

• CPUIdleTime: time spent by CPU in an idle mode on the host; this is not used
in our analysis (but could be considered as part of future use and extension of the
project)

• CPUActiveTime: time spent by CPU actively spending CPU cycles on the host;
this is not used in our analysis (but could be considered as part of future use and
extension of the project)

• CPULostTime: time lost by CPU due to interference on the host; this is not used
in our analysis (but could be considered as part of future use and extension of the
project)

• EnergyUsage: energy-usage of a host after a given timestamp; used in the energy-
efficiency experiment to compare the task-scheduling algorithms

• UpTime: time since the host is up and running; this is not used in our analysis (but
could be considered as part of future use and extension of the project)

• ServerId: the unique identifier of the host server (node) helping it get differentiated
among other host servers (nodes) in the cluster; used in the node-anomaly experiment
to uniquely identify nodes which were fault-enabled

54

• Timestamp: the timestamp of the workload (jobs/tasks) execution exported to
Kafka (and InfluxDB); this is a critical property and is used in both types of exper-
iments (part of the modelled ontology).

→ It is critical to note here that the InfluxDB’s time-series timestamp is not be-
ing used for analysis in this project, but we rely on the timestamp being shared by
OpenDC instead - the reason for the same is because the workload traces are being
simulated and not actually running in a production environment. Thus, the simu-
lation completes within 5 minutes (depending on different trace files and different
scale configurations), making the timestamp-based index of the time-series database
not useful for this project. Still, we want to portray a real-world scenario because in
production environments, the metrics are exported in a time-series format to a time-
series database (like) InfluxDB, and we still wanted to show how could we adhere
to the production-like applications and practices, and at the same time, match the
expectations with the simulated analysis. This is very critical to note for all such
simulator-based experiments that the timestamp-indexing of data insertion to the
database would not help, because the actions are being simulated very quickly (rang-
ing from seconds to minutes depending on the workload trace file) when compared to
the real-world production environments (where metrics are exported actually after a
certain fixed interval, e.g., every 15/30 seconds).

• CPUUtilisation: reflects the CPU utilisation of a given host; this attribute is not
directly used in ODA-related analysis, but this property is critical as it drives the
power usage (and thus, the energy usage too)

• PowerUsage: the instant power usage value at a particular timestamp; used in the
node-anomaly experiment to uniquely identify nodes which have fault-enabled power
values

• GuestsRunning: total number of guests (VMs) running on the system; this at-
tribute is used in the node-anomaly identification experiment, to find a mismatch
between power values of the non-anomalous vs anomalous dataset, because for a
given number of guests running on the host server, the power value should be iden-
tical.

• PolicyId: reflects the policy identifier used to uniquely identify the task-scheduling
policy for calculating their energy efficiency respectively.

ODAbler client (analyser) overview
The ODAbler client (analyser) is a novel contribution as part of this thesis project. This ap-
plication retrieves the OpenDC host environment metrics exported to InfluxDB via Kafka,
and performs in-band and/or out-of-band mode analysis both online (near real-time) or
on-demand (later), as per the requirement. Since the Telegraf agent might act as a bot-
tleneck while writing several metrics to InfluxDB within a few seconds of simulation for
hours of task trace execution, it is more practical to allow on-demand operation for analysis.

In the current application, the ODAbler client performs descriptive analysis on energy us-
age and power usage metrics, highlighting the energy efficiency or node anomaly as desired
in respective experiments. The ODAbler client has a main() function which is configured to
initiate the connection to OpenDC, requesting for an ’ENERGY’ or ’ANOMALY’ related
experiment, or trigger a ’TERMINATE’ signal for shutting down OpenDC’s server socket
(OpenDC’s parent process). The ODAbler client also has a module to detect weather

55

Figure 4.5: The implemented ODA capabilities in the ODA reference architecture are
highlighted in red colour

metrics for the data centre location. Once OpenDC enables the export of data to the time-
series database InfluxDB, the analyser templates are made available in the form of Python
notebooks for various experimental configurations, and these notebooks are executed to
analyse the metrics and publish the results in the form of “energy-efficiency” calculations
and visualisations, and “node-anomaly” detection and visualisation (based on a suitable
threshold value).

4.5 Summarised technical implementation
As mentioned earlier, ODA is needed at all levels of a distributed ecosystem, which relies
directly on the monitoring of various data sources at different time scales. We consider
two types of data sources, as identified by the Wintermute team in their ODA framework
[31]:

• In-band: data that is sampled and consumed within a specific component at any
layer of the distributed ecosystem. The underlying techniques operate at a fine
temporal scale and require low analysis overhead and latency while collecting data.

56

• Out-of-band: data coming from any of the available sources in the system, including
historical or asynchronous data. The underlying operation has to be performed at a
coarse scale (in the order of minutes or higher) and must be synchronised explicitly,
but latency and overhead are less of a concern in this scenario.

Additionally, we also categorise ODA techniques into two modes of operation as listed
below, originally grouped by the Wintermute team [31]:

• Online: a continuous operation resulting in output resembling a time series, which
can be (re)used at various levels as a feedback loop.

• On-demand: operation triggered at specifically scheduled times to steer decisions
managing the information about the system’s status.

→ The technical implementation of the ODAbler framework involves the following steps,
encompassing various components outlined in section 4.3, and covering the ODA elements
as shown in Fig. 4.5:

• Enable fault injection in OpenDC: The first step in the design of ODAbler is
to enable fault injection in OpenDC. This is done via adding a boolean flag which
controls whether the experiment is fault-driven or not. And, the fault is controlled
via the SimPsuFactories class where we set the power usage value to the current
value + 10 for multiple hosts.

• Launch InfluxDB and Kafka: InfluxDb docker image has been used in this project
for the experiment, but a standalone database version would also work. Apache Kafka
native local installation on Fedora (Linux) is used in the current implementation, and
both Kafka and InfluxDB should be launched before launching any other application.

• Start Telegraf service: The Telegraf service has a configuration which has been
tweaked to parse topics from Kafka (which is specific and modified as per project
requirements) and write to InfluxDB in specific measurement and in a specific format
(which is accordingly analysed by ODAbler client analyser application). This con-
figuration (telegraf.conf) is available in the ODAbler repo, which should be placed
at the desired location (/etc/telegraf/telegraf.conf) before starting the Telegraf ser-
vice. Only when the Telegraf service is running successfully, further steps should be
followed.

• Launch OpenDC server: The OpenDC simulator is enriched with a configuration
that allows it to start a server socket (TCP) to accept socket connection requests from
the ODAbler client application. Once the OpenDC server socket is up and running,
only then the ODAbler client analysis application can be invoked, otherwise the client
application would throw a socket connection refused error.

• Launch ODAbler client analyser application: The ODAbler client analyser
application is enabled with the functionality to run either the energy-efficiency anal-
ysis experiment or the node-anomaly analysis experiment, or both sequentially, and
initiate the termination of the OpenDC server connection at the end by sending a
termination message.

• Export operational data from OpenDC to Apache Kafka: Execute the ‘EN-
ERGY’ or ‘ANOMALY’ experiment (or, both sequentially) in ODAbler client applica-
tion (from the main.py’s main() function), which would trigger either the Schedulin-
gAlgorithmComparatorExperiment or the NodeAnomalyIdentifierExperiment class
in OpenDC for producing the metrics to Kafka.

57

Figure 4.6: OpenDC exported metrics visualised by default in InfluxDB data explorer
(however, it has limited capabilities concerning our analysis requirements).

• Kafka exports the ontology-driven relevant power usage and energy usage metrics
(besides others) to InfluxDB via the Telegraf agent

• Data is persisted at InfluxDB with the help of the Telegraf agent, and this should
be verified with the help of the online visualiser capability available (just to be sure
that the data is written). Sometimes, the Telegraf agent might act as a bottleneck
in writing various metrics locally to the InfluxDB taking longer than expected, due
to the huge trace timestamp-based execution (as is the case with Pegasus_P2 trace
in our experiment), which forces the use of the out-of-band mode of analysis for such
trace files.

• ODAbler performs out-of-band analysis on InfluxDB data, once the data is fully
available. In the current implementation, the node anomaly experiment is triggered
automatically because it uses the shell industrial trace, which has a total execution
time of tasks equal to 630 seconds, whereas the other (scientific) trace Pegasus_P2
has a total execution time of beyond 35 hours, which takes longer to be written to
InfluxDB and slow query, and thus not used in the node-anomaly-analysis experi-
ment.

A sample visualisation as reflected in the data explorer menu in the InfluxDB console is
shown in Fig. 4.6.

Task-scheduling algorithms’ energy-efficiency comparison
OpenDC is a discrete-time data centre operations simulator, thus, there is no functionality
to actually measure the energy or power consumption at times when there is no workload
for execution. Thus, the energy experiments are directly dependent on the workload trace
file, and accordingly on the timestamp and other requirements as governed by the trace
file.
As discussed in the previous section on OpenDC in this chapter, the OpenDC is enriched
with data exporting capabilities to InfluxDB via Kafka (and Telegraf agent). The energy-
efficiency analysis to be done later in the ODAbler client analyser application relies on

58

the ’energyUsage’ parameter being exported as part of OpenDC metrics (driven by the
modelled ontology), which signifies the total energy consumed up to a specific timestamp
of execution of the workload trace. This is made available by the HostTableReader interface
and ODAComputeMonitor class (which extends from ComputeMonitor class) that provides
records related to various properties of all of the hosts configured as part of the cluster
setup for the experiment.
The ’energyUsage’ attribute is influenced by ’powerUsage’ and the timestamp of trace
execution. Whereas, the ’powerUsage’ attribute is influenced by the total number of guests
running on the host, and the CPU frequency (CPU utilisation) at which the guests are
running. Once these records are exported to the InfluxDB, ODAbler could perform in-band
or out-of-band analysis comparing the energy consumption of different task-scheduling
algorithms, and determining the most efficient among them for different workload trace files
and different cluster configurations. The aim of the energy-efficiency detection experiment
is to highlight the task scheduling algorithm which consumes the least amount of energy
for executing tasks in trace for the given data centre cluster configuration. The energy-
efficiency analysis part is discussed in detail in the next chapter in its respective experiment
section.

Anomaly injection in hosts’ power usage

To achieve anomaly injection, the hosts’ power usage needs to be modified subtly. The
injection is made static, and during each time reading of record by the compute monitor
class, an addition of 10 watts (W) of power is statically increased on two hosts with host-
name “host-3” and “host-9”.
These two hosts were chosen randomly for anomaly injection to inject anomaly on mul-
tiple hosts, and there is no particular reason as to why these hostnames were selected.
These hostnames were statically injected with the anomaly in power usage, and a boolean
flag ’isFaultInjected’ (or, isAnomalousExperiment) configures whether the trace execution
would run the anomalous power usage (thus, anomalous energy usage too). If the boolean
flag is set to true, the trace execution would be injected with the anomaly in power usage
value on both hosts, otherwise, if set to false, the execution would be uniform as earlier,
and there would not be any anomaly in the power usage.
As part of the anomaly detection experiment, the aim of the experiment is to validate
whether the designed ODAbler client analyser application is able to identify the node
anomaly at various discrete intervals of time. It is extremely critical to understand that
the power usage model selected as part of our experiment is selected as a cubic CPU
power model because of better accuracy than other power models existing in OpenDC, as
claimed in a work of literature analysing performance and energy consumption metrics [63].
The node-anomaly analysis part is discussed in detail in the next chapter in its respective
experiment section.

4.6 Summary
In this section, we discussed the design of ’ODAbler’, an ODA framework for a data cen-
tre simulator ’OpenDC’. We discussed the requirements as to why various components
like Kafka, InfluxDB (and Telegraf) have been selected as members of the ODAbler ODA
framework. In the current approach, the design of ODAbler is geared towards seamless
integration with OpenDC, but we could easily configure ODAbler in a way that it could
also be integrated into other data centre simulators with some tweaking (given that it gives
instructions to OpenDC to execute the experiments for producing the data using Kafka

59

producer client, and query data directly from InfluxDB for analysis purposes).

ODAbler is enriched with the in-band ODA mode of analysis of energy consumed by
different task scheduling algorithms, and can easily detect node anomaly in an out-of-band
mode of operation based on their power usage profile (as part of current implementation
and scope). Further, both energy-efficiency calculation and node-anomaly detection can be
experimented with using online or on-demand ODA techniques, once the data is available
in InfluxDB.

60

Chapter 5

Results: Experimental evaluation of
‘ODAbler’

In this chapter, we present the results and detailed discussion of various experiments con-
ducted (in two categories) as part of the ODAbler framework design: (i) the energy-
efficiency-based evaluation for multiple task-scheduling algorithms used for scheduling the
workload tasks, and (ii) the node-based anomaly detection in terms of anomalous power-
consumption value at specific time instants (originally injected via OpenDC on multiple
nodes). A more summarised discussion of these results can be found in the succeeding
sections.

5.1 Experimental setup
We set the experiment goals (EG) for this chapter by providing a general guideline which
drives our experiment design and its execution, as listed below:

• EG1 - Verification that the OpenDC simulator produces modelled ontology-driven
energy and performance metrics (required for the energy and anomaly experiments).

• EG2 - Comparing the power consumption for three different task-scheduling algo-
rithms in a data centre environment

• EG3 - Anomaly detection is successful and sufficiently visualised for the stakeholders
to examine the same

• EG4 - The experiments should be reproducible and the results should be consistent
in multiple executions of the same experiment configuration.

With the goals set for the experiments, next, we discuss the experimental setup for con-
ducting the experiments. As outlined previously in chapter 4, the ODAbler design involves
a multitude of components performing specific roles required for the insight-based analysis.
We first discuss the experimental setup before discussing the results of the experiment.

Experiment overview
As part of ODAbler design, it is enriched to analyse the energy efficiency of various task-
scheduling algorithms which are implemented in OpenDC. It is also enabled with the ca-
pability to analyse anomalies for abnormal power usage on multiple nodes at discrete time
instants. These two experiment categories serve as the overview, where the experimental
evaluations are further elaborated in their respective sections. Section 5.2 corresponds to

61

Trace-file detail
TraceID Domain Workflows Tasks
shell1 Industrial 3,403 10,208
Pegasus_P22 Scientific 5 5,813

Table 5.1: List of workload trace files (available on WTA archive) that were used for the
experiments in ODAbler

the experimental evaluation of ODAbler in terms of analysing the energy efficiency of vari-
ous task scheduling algorithms whose implementation is done within OpenDC. Section 5.3
corresponds to ODAbler’s evaluation as an anomaly detection and visualisation framework
highlighting the abnormal power usage on multiple hosts which are originally injected with
faults within the OpenDC simulator.

Workload
Two workloads are used as part of multiple experiments as shown in Table 5.1: shell
(industrial) [64] and Pegasus_P2 (scientific) [65]. These special workloads are actually
categorised as workflows, as their set of tasks have precedence/data constraints between
their respective tasks. An easier way to understand this is to think that the output of a
certain task could be the input of another, thus creating a dependency between these two
tasks.
The AtLarge Research group has collected several publicly available real-world workflows
which have been packed into traces, all of which have been made available with their
Workflow Trace Archive initiative3 [66]. Both of the workloads have actually been referred
from this WTA service, under the supervision of the head supervisor.

Compute environment (configured in OpenDC)
The computing environment is identical to that of the DAS-6 cluster4 available at VU. The
scaling of the hosts is set to 60% (representing 0.6 times the number of hosts in the VU
cluster), 100% (meaning an identical configuration as the VU cluster), and 150% (referring
to 1.5 times the number of hosts compared to the cluster used by VU). The resulting host
count is rounded to the nearest integer, following the scientific convention/

Assumptions
OpenDC simulator is a discrete-time simulator, and thus, it does not accurately reflect
power or energy consumption at a continuous range (which is also not required in the
project). Also, the power or energy modelling is not affected by memory usage, storage,
or other network behaviour (this behaviour is not configured in the current version of the
OpenDC simulator).

Limitations
The experiments are executed on a laptop system which is quite old (age > 5 years) and
has a lower CPU configuration, which makes the data writing to InfluxDB slow for traces
with larger scheduling time like Pegasus_P2, and as a result, the analysis at the ODAbler
requires to wait for analysis until the energy-related metrics are available at InfluxDB.
The data retrieval for Pegasus_P2 trace is also affected by the system’s old-age problem,
and takes a longer time to retrieve data from InfluxDB. However, this latency limitation
only affects the time taken for ODAbler to begin the analysis. This limitation doesn’t
affect the experimental evaluation results of ODAbler anyway though.

3WTA - https://wta.atlarge-research.com/
4DAS-6 clusters - https://www.cs.vu.nl/das/clusters.shtml

62

https://wta.atlarge-research.com/
https://www.cs.vu.nl/das/clusters.shtml

5.2 Scheduling policies’ energy-efficiency analysis
This study investigates the energy consumption of three task-scheduling algorithms (FIFO,
HEFT, and Random) when a certain workload trace is executed for a specific host-
environment configuration in a data centre simulator. The primary objective of this set
of experiments is to identify the most energy-efficient algorithm for executing workloads
in a specific cluster environment that consumes the least amount of energy (among the
three task-scheduling algorithms). The total energy consumption is measured, and these
task-scheduling algorithms are compared to determine the energy efficiency. Negative per-
centages are used to flag the less efficient algorithms (in terms of energy consumption).
The results are obtained accordingly which provide insights into optimising energy usage
in data centre operations.

Methodology

• Each task-scheduling algorithm is configured to execute the same workload and cluster
environment configuration in the data centre simulator OpenDC.
• The total energy consumption for each algorithm is recorded for comparison to find the
most efficient one.
• Negative percentages are calculated to indicate the relative efficiency of these task-
scheduling algorithms concerning energy consumption. A negative percentage denotes
less efficiency compared to the most energy-efficient task-scheduling algorithm.
• The same process is repeated for another workload trace and a different scale of cluster
configuration (with respect to the standard size of the DAS-6 cluster that is assumed as
part of this project).

→ ODAbler uses both online and on-demand ODA mode of operation using in-band mode
of analysis for energy-efficiency calculation. The operation could be online when the OD-
Abler client analyses the results soon after the data is exported from OpenDC to the
time-series database InfluxDB, or it could be analysed later given that the timestamp of
the start and end of the experiment is captured for use in the on-demand mode. Thus, it
is important to note the time of execution of the experiment for performing on-demand
analysis. As shell trace execution occurs quickly within 2 minutes (for all scales), we use
online analysis there, whereas the Pegasus_P2 trace execution takes significantly longer
to write data to InfluxDB (due to export interval set to 30 seconds for a 35-hour trace
makespan), this analysis could be done in on-demand ODA.

A1. Using Shell industrial workload

The results of the experiment for executing the ‘shell’ industrial workload trace at different
scales are summarised in Table 5.2. The task-scheduling algorithm with 0.00000 percent-
age efficiency shows the baseline for reference among the three task-scheduling algorithms
for each block of cluster-scale configuration.

A1.1 - 60% cluster scaling: It is observed that when the cluster-scale configuration
is set at 60% (near-rounded) of the standard DAS-6 cluster size, then the total energy
consumed during the HEFT task scheduling algorithm’s execution of the workload is the
most optimal among the three. The total energy consumed in the case of the HEFT
task-scheduling algorithm’s trace execution is 0.734067 kWh, whereas the total energy
consumption during FIFO and Random algorithms’ trace execution are 0.734074 kWh and
0.734068 kWh respectively. Clearly, in this case, the total energy consumed is the least
when the HEFT algorithm executes the workload trace, thus making it more efficient than

63

Task-scheduling algorithm total energy consumption - ‘shell’ trace
Algorithm Cluster-size

configuration-
percentage (%)

Total power
consumption (in
kWh)

Comparatively ef-
ficient (%)

FIFO 60 0.734074 -0.00099
HEFT 60 0.734067 0.00000
Random 60 0.734068 -0.00008
FIFO 100 1.201992 -0.00104
HEFT 100 1.201990 -0.00089
Random 100 1.201979 0.00000
FIFO 150 1.790465 0.00000
HEFT 150 1.790469 -0.00023
Random 150 1.790471 -0.00032

Table 5.2: Task-scheduling algorithms’ total-energy consumption values for executing shell
trace in OpenDC for different scale of host-environment (when compared to standard-size
of DAS-6 cluster with 34 hosts; 100% means exact identical configuration, 60% means 0.6
times of cluster-size, and 150% means 1.5 times the size of the cluster respectively)

Figure 5.1: Task-scheduling algorithms’ energy-consumption analysis at different time in-
tervals of shell trace execution with cluster-size equal to 60% of the standard DAS-6 cluster
size.

the other two (albeit very slightly). The energy-consumption analysis for this scenario is
visualised in Figure 5.1.

A1.2 - 100% cluster scaling: When the cluster-scale configuration is identical to the
standard DAS-6 cluster size (set to 100%), the total energy consumed during the HEFT
task scheduling algorithm’s execution of the workload is most optimal among the three

64

Figure 5.2: Task-scheduling algorithms’ energy-consumption analysis at different time in-
tervals of shell trace execution with cluster-size equal to 100% of the standard DAS-6
cluster size

(referring from the Table 5.2). The energy-consumption analysis for this scenario is visu-
alised in Figure 5.2, which is difficult to contrast as the values are much closer to each other.

A1.3 - 150% cluster scaling: When the cluster-scale configuration is set to 1.5 times
the standard DAS-6 cluster size (set to 150%), the total energy consumed during the FIFO
task scheduling algorithm’s execution of the workload is the most optimal among the three
(referring from the Table 5.2). The energy-consumption analysis for this scenario is visu-
alised in Figure 5.2, which is difficult to contrast as the values are much closer to each other.

A2. Using Pegasus2 scientific workload

The results of the experiment for executing Pegasus_P2 workload trace at different scales
are summarised in Table 5.3.
The results of the experiment for executing the ‘Pegasus_P2’ scientific workload trace at
different scales are summarised in Table 5.3. The task-scheduling algorithm with 0.00000
percentage efficiency shows the baseline for reference among the three task-scheduling al-
gorithms for each block of cluster-scale configuration.

A2.1 - 60% cluster scaling: It is observed that when the cluster-scale configuration is set
at 60% (near-rounded) of the standard DAS-6 cluster size, then the total energy consumed
during the FIFO task scheduling algorithm’s execution of the workload is most optimal
among the three. The total energy consumed in the case of the FIFO task-scheduling
algorithm’s trace execution is 142.048 kWh, whereas the total energy consumption dur-
ing HEFT and Random algorithms’ trace execution are 142.161 kWh and 142.076 kWh
respectively. Clearly, in this case, the total energy consumed is the least when the FIFO

65

Figure 5.3: Task-scheduling algorithms’ energy-consumption analysis at different time in-
tervals of shell trace execution with cluster-size equal to 150% of the standard DAS-6
cluster size

algorithm executes the workload trace, thus making it more efficient than the other two
(albeit very slightly). The energy-consumption analysis for this scenario is visualised in
Figure 5.4.

A2.2 - 100% cluster scaling: When the cluster-scale configuration is identical to
the standard DAS-6 cluster size (set to 100%), the total energy consumed during the
HEFT task scheduling algorithm’s execution of the workload is most optimal among the
three (referring from the Table 5.3). The energy-consumption analysis for this scenario is
visualised in Figure 5.5.

A2.3 - 150% cluster scaling: When the cluster-scale configuration is set to 1.5 times the
standard DAS-6 cluster size (set to 150%), the total energy consumed during the Random
algorithm’s execution of the workload is most optimal among the three (referring from the
Table 5.3). The energy-consumption analysis for this scenario is visualised in Figure 5.6.

66

Task-scheduling algorithm total energy consumption - ‘Pegasus_P2’ trace
Algorithm Cluster-size

configuration-
percentage (%)

Total power
consumption (in
kWh)

Comparatively ef-
ficient (%)

FIFO 60 142.048 0.00000
HEFT 60 142.161 -0.07973
Random 60 142.076 -0.01981
FIFO 100 240.060 -0.04015
HEFT 100 239.964 0.00000
Random 100 240.033 -0.02863
FIFO 150 359.066 -1.07187
HEFT 150 359.121 -1.08748
Random 150 355.258 0.00000

Table 5.3: Task-scheduling algorithms’ total-energy consumption values for executing Pe-
gasus_P2 trace in OpenDC for different scale of host-environment (when compared to
standard-size of DAS-6 cluster with 34 hosts; 100% means exact identical configuration,
60% means 0.6 times of cluster-size, and 150% means 1.5 times the size of the cluster
respectively)

Figure 5.4: Task-scheduling algorithms’ energy-consumption analysis at different time in-
tervals of Pegasus_P2 trace execution with cluster-size equal to 60% of the standard DAS-6
cluster size

67

Figure 5.5: Task-scheduling algorithms’ energy-consumption analysis at different time in-
tervals of Pegasus_P2 trace execution with cluster-size equal to 100% of the standard
DAS-6 cluster size

Figure 5.6: Task-scheduling algorithms’ energy-consumption analysis at different time in-
tervals of Pegasus_P2 trace execution with cluster-size equal to 150% of the standard
DAS-6 cluster size

68

5.3 Node-based anomaly detection
This study presents a data-driven approach for detecting anomalies in power values within
a network of nodes (which are available in a large-scale computing environment). The ob-
jective is to identify nodes (or servers, also called hosts) that exhibit unexpected variations
in their power consumption compared to a reference dataset (which is known to have no
anomalies). Please note that we have used the terms node, server or host interchangeably
which represents a host configured for workload execution in a cluster setup, as all of them
refer to the same concept. Although, in various research works of literature, apparently
node-anomaly is comparatively a common term. The experiment has been conducted
using a configurable boolean flag in OpenDC which allows a predetermined anomalous
state to be enabled among a set of servers (which is discussed in the previous chapter in
the design section), amongst the network of servers available in a large-scale computing
infrastructure. The method involves merging two datasets: one representing the actual
non-anomalous behaviour, and the other containing potential anomalies. Anomalies are
detected in the servers by calculating the absolute difference in power values between cor-
responding records in the two datasets and applying a predefined threshold. Servers with
power value differences exceeding the threshold are flagged as anomalous. The threshold
can further be experimented with and reasoned for a better value, which is part of future
work. In OpenDC, we inject faults on the hosts with host-id equal to “host-3” and “host-9”
to produce anomalous power usage (having a difference of more than 10 watts), which will
be identified as part of this set of experiments.

Methodology

Data Preparation: Two datasets are prepared - one representing the actual behaviour
of server power values (in the absence of any anomalous setting) and the other containing
potentially anomalous records.
Data Merging: The datasets are merged based on common attributes (e.g., time, server
ID, and guests).
Anomaly Detection: The absolute difference between power values in the merged dataset
is calculated. A threshold is applied to determine whether a server exhibits anomalous
power consumption.
Results: Servers exceeding the threshold are identified as anomalous, and the results are
reported.

The above method provides a straightforward approach to highlighting servers with
anomalous power consumption behaviour. The choice of threshold is critical which should
conform to the expectations of the production data centres, and thus, should be based
on domain knowledge and the specific requirements of the analysis. While this approach
may not be tied to a specific statistical test, it serves as a valuable exploratory tool for
identifying potentially problematic servers within the configured environment. In terms of
mathematical description, the approach can be mathematically represented as follows:
• Let P_non_anomaly be the power value in the reference (non-anomalous) dataset.
• Let P_anomaly be the power value in the dataset containing potential anomalies.
• Calculate the absolute difference |P_non_anomaly - P_anomaly| for each corresponding
record.
• Define a threshold T to classify records as anomalous if |P_non_anomaly - P_anomaly|
> T.
This mathematical representation captures the essence of the approach. The choice of
threshold is set to the numerical value of ’10’ because this value is injected as a fault for

69

Figure 5.7: Node-based anomaly detection for abnormal power usage at different time
intervals of trace execution with cluster-size equal to 100% of the standard DAS-6 cluster
size

Figure 5.8: Snippet taken from the ODAbler client’s anomaly analysis experiment, where
the details of timestamps when the node anomalies are flagged are also listed; this involves
the experimentation with 100% cluster scale equivalent to the scale of DAS-6 cluster.

each compute monitor recording in the power usage at OpenDC (Threshold, T = 10).
The interpretation of the results is discussed further in their respective experiment subsec-
tion.

→ ODAbler uses both online and on-demand ODA mode of operation using in-band mode
of analysis for anomaly detection. The operation could be online when the ODAbler
client analyses the results soon after the data is exported from OpenDC to the time-series
database InfluxDB, or it could be analysed later given that the timestamp of the start and
end of the experiment is captured for use in the on-demand mode. Thus, it is important
to note the time of execution of the experiment for performing on-demand analysis.

70

Figure 5.9: Snippet taken from the ODAbler client’s anomaly analysis experiment, where
the details of timestamps when the node anomalies are flagged are also listed; this involves
the experimentation with 150% cluster scale equivalent to 1.5 times the scale of DAS-6
cluster.

Exp-B1: Executing ’shell’ industrial workload on a cluster having stan-
dard DAS-6 cluster size

The first experiment as part of node anomaly detection compares the instant power
usage value of all hosts with respect to a cluster identical to the DAS-6 cluster size. The
results are visualised in ODAbler as shown in Fig. 5.7, and the data points flagged by OD-
Abler related to the anomalous time instants are represented in Figure 5.8. The anomalous
points are the points where there is a difference of more than 10 watts in power usage at
any instant, when compared to the non-anomalous hosts enabled experiment.

Exp-B2: Executing ’shell’ industrial workload on a cluster with 1.5 times
the DAS-6 cluster size

The second experiment as part of node anomaly detection compares the instant power
usage value of all hosts with respect to a cluster identical to the DAS-6 cluster size. The
data points flagged by ODAbler related to the anomalous time instants are represented in
Figure 5.9, and the results are visualised in ODAbler as shown in Fig. 5.10. Again, the
anomalous points are the points where there is a difference of more than 10 watts in power
usage at any instant, when compared to the non-anomalous hosts enabled experiment.

5.4 ODA analysis’ discussion
The two types of experiments conducted with different scales and multiple workload trace
files reflect the significance of adopting ODA techniques in data centre operations (and
other related operations fields). Although the experimental evaluation conducted as part
of this project might appear to some as having a lack of in-depth analysis of key ODA
techniques, it should be noted that this is the first step of designing an ODA framework for a
data centre simulator. This is just the beginning of enabling more flexible experimentation
for research in the field of ODA, similar to other research works carried out in the past
using the OpenDC simulator.

Energy-efficiency analysis

This set of experiments carried out in Section 5.2 reflect a nice introduction to the capa-
bilities of ‘ODAbler’ as an ODA framework. We notice that the results convey a unique
summary that there is no clear winner in terms of the best task-scheduling algorithm

71

Figure 5.10: Node-based anomaly detection for abnormal power usage at different time
intervals of trace execution with cluster-size equal to 150% of the standard DAS-6 cluster
size

that would be the most efficient in terms of energy consumption. It is noticed that for a
given configuration of a trace file and a cluster scale, the comparatively most efficient task
scheduling algorithm is outplayed in another configuration with another trace file and the
cluster scale. This clearly leads to the fact that task scheduling is an NP-hard problem,
and there is no known best solution. The research community keeps advancing on optimal
task scheduling techniques, which led to the introduction of the term "portfolio scheduling"
(dynamic selection of a scheduling algorithm from a set of algorithms, or - the portfolio).
This should be considered as part of future work in ODAbler, as it is out of the scope of
this project.

Node-anomaly detection

This set of experiments conducted for node-anomaly detection reflects a nice result on
how anomaly is detected based on a sensible threshold value chosen carefully based on the
value used to fault inject on the power usage of multiple nodes. The assumption made for
this experiment is that for an identical number of guests running on the hosts for a given
duration, the power usage value of those hosts should be identical within that duration
(because OpenDC is a discrete-event simulator). The actual results visualised in the re-
spective Python notebooks reflect a deeper visualisation of anomaly and a detailed list of
anomalous values for respective data points when the anomaly is flagged for the anomalous
hosts.

The technique used in the current approach is not significantly advanced though, as inde-
pendent work done in the field of anomaly detection involves sophisticated machine learning
(ML) techniques these days. There are several independent research dedicated to anomaly

72

detection (discussed in Chapter 2 as part of background literature’s related work section)
that cover a lot of such techniques used in various fields like financial markets, data centre
operations, etc. As part of the expansion of this ‘ODAbler’ project, the future plan of
action is to design and implement some of the sophisticated ML models highlighting the
capabilities of ODAbler as an advanced ODA framework acting as a strong digital twin for
OpenDC.

5.5 Summary
In this section, we studied two experiments namely, (i) the energy-efficiency-based evalu-
ation for multiple task-scheduling algorithms used for scheduling the workload tasks, and
(ii) the node-based anomaly detection in terms of anomalous power-consumption value
(originally injected via OpenDC on multiple nodes). We summarise the main findings
obtained experimentally as listed below:

• F1. We noticed that there is no one policy among the available ones in OpenDC
which is superior in terms of consuming less power. The results show that the
power consumption varies with respect to the workload trace and the size of the
host environment, and accordingly, one policy outperforms others in one experiment
(and others in other experiments). This also hints at the introduction of "portfolio
scheduling" (dynamic selection of a scheduling algorithm from a portfolio) as part
of future work in ODAbler, which is out of the scope of this project. Please refer to
Section 5.2 for more details about the current implementation.

• F2. In the nodes’ anomaly-detection-related experiments, we inject anomalies in the
power value of two fixed hosts in OpenDC dynamically at discrete intervals, and we
try to detect the power-spike-related anomaly on all hosts. The ODAbler analyser is
successfully able to detect the node anomaly on both hosts appropriately, and lists
out the anomalous behaviour highlighting the timestamp of the node anomaly, which
is very helpful for further analysis. Please refer to Section 5.3 for more details.

73

Chapter 6

Conclusion and Future Work

Enabling the operational data analytics (ODA) framework serves as a key driving factor
in controlling the environmental footprint of the gigantic HPC, supercomputer, and other
large-scale computing infrastructures. As the demand for computing resources increases,
the need to regulate energy efficiency needs to be addressed, and performance-related ques-
tions arise equally. A holistic ODA framework can address them effectively, contributing
to a greener society.
In this section, we will summarise the contributions, discuss some limitations which were
encountered during the implementation of the project, and propose future opportunities
in this field.

6.1 Conclusion
This thesis project proposes modelling an ODA framework called ’ODAbler’ for a data

centre simulator ’OpenDC’, which allows easier experimentation for research purposes.
The proposed capability aims to make it convenient and flexible for the researchers to
conduct energy- and performance-related experiments, promoting several benefits which
can be simulated based on a real-world data centre infrastructure.

• RQ1: How to design the ontology of a large-scale computing infrastruc-
ture (typically HPC cluster) using the metrics exported in a time-series
format?
In Chapter 3, we propose an exhaustive discussion on ontology modelling for an HPC
cluster derived from the cluster metrics. We go through various requirements to be
satisfied by the ontology, and then discuss the dataset description as reflected by the
metrics. Lastly, we reuse an existing HPC to a significant extent wherever possi-
ble, and create two ontologies for SURF’s LISA cluster and CINECA’s Marconi 100
cluster based on their respective metrics. As the data source and exporters of both
the collectors were different and heterogeneous (Prometheus export in SURF’s LISA
vs IPMI export in CINECA’s Marconi 100), we modelled two distinct ontologies.
However, these two could be merged to derive a full-fledged ontology (depending on
the merge requirements)

• RQ2: How to design an ODA framework for a data-centre simulator like
OpenDC to realise some of the benefits of the ODA techniques? In Chapter
4, we set the preface of a need for an ODA framework, and discuss the requirements.
Further, we discuss the design elements of the ODAbler framework which encom-

74

passes OpenDC, Apache Kafka, InfluxDB + Telegraf, and ODAbler client analyser
application. Additionally, we also discuss OpenDC in detail to support the commu-
nity research on OpenDC in terms of simplified documentation about key classes and
concepts. We discuss how changes are made in OpenDC to add the ODA module
(which is a minor change not to impact the existing OpenDC functionality or affect
the performance significantly), and the “digital twin” designed in the form of the
‘ODAbler’ client analyser application.

• RQ3: What are the various (quantitative/qualitative) energy or perfor-
mance benefits that have been realised as part of the experimental eval-
uation of the ODA framework? This research question is addressed in Chapter
5, where it has been answered in the form of further sub-divided research questions:
split into analysing the quantitative gains and qualitative gains respectively.

– How to validate the energy-awareness benefits realised (if any) after
enabling an ODA framework for a large-scale computing infrastruc-
ture? This research question is further subdivided into two questions aiming
at the energy-efficiency (quantitative) and node-anomaly (qualitative) analy-
sis capabilities of the ODAbler framework as a whole. Currently, the ODAbler
framework is limited to these two quantitative and qualitative capabilities, which
could be enriched with advanced analytical techniques and various other ODA
capabilities as part of future work. In the section 5.2, we discuss how the OD-
Abler client analyser application analyses the energy usage values for each of
the task-scheduling algorithms for a given workload trace file and a given clus-
ter configuration, and highlights the most efficient task-scheduling algorithm
among the three for that specific use-case. We see that there is no single winner
in terms of the most energy-efficient algorithm, which could be attributed to
the lack of energy-aware scheduling policy as part of our experimentation.

– How to validate the node-performance-related benefits realised (if
any) after enabling an ODA framework for a large-scale computing
infrastructure? In the section 5.3, we discuss how the ODAbler client analyser
application analyses the node-anomaly in power usage of hosts by comparing
a standard non-anomalous result set with an anomaly-enabled result set. The
ODAbler analyser is successfully able to visualise and highlight the timestamps
of anomaly, based on our threshold value.

6.2 Limitations
The project has not been free of hiccups, to be honest. There were a lot of challenges
in the implementation, and some of the implementation detail has certain limitations, as
discussed below:

• The very first challenge in this work encountered was the dissimilarity of concepts
between SQL-based relational databases and OWL2 language, which highlighted that
it was pretty much infeasible to model the primary-key relationship for a time-series
database. The concept of relational databases doesn’t fit well in the graph-based
ontology concept. As such, the modelled ontology has only one sample data record for
each of the clusters. The addition of data in the graphical layout within the ontology
is slightly challenging, and data stores or external APIs need to be integrated (in the
form of a binding service).

75

• The choice of Kafka as a cluster to manage the messages has been done as part
of familiarity with the message-brokering framework. At the same time, any other
message brokering framework could have been selected and this option itself is open
for research. The idea of selecting Kafka was driven because of its high popularity
among the message brokering frameworks, as claimed by the Kafka team.

• The power-consumption model selected in OpenDC is a cubic power model based
on CPU, for the sake of these experiments. However, after careful examination of
the OpenDC simulator and the obtained results, it is clearly evident that the power
model used (CPUPowerModel - cubic) is not errorproof, because of very high power
usage results due to the introduced anomaly (which in itself is actually simple in
nature that sets the power usage at discrete times of metric recording to a higher
value of +10 Watts).

• The choice of scheduling algorithms has been done randomly. 2 of the task-scheduling
algorithms (FIFO/STTO and Random) are already available in OpenDC, and the
author extended it by adding HEFT as part of the exercise. The author also added a
couple of others like MinMin and Ant-Colony optimisation (implemented during the
distributed systems course which the author had taken long before), but it turned out
that all of the externally added scheduling algorithms were reporting exactly the same
power values at discrete intervals. In this case, it did not make sense to compare more
scheduling policies, and thus it was decided to include only an additional algorithm
not already available in the OpenDC repo originally: the HEFT algorithm. This
could potentially be a bug to explore if those algorithms are also considered.

6.3 Future Work
Based on the limitations discussed in the previous section, there is a lot of scope for future
research in the current project. In the future, the author aims to refine the integration
between OpenDC and ODAbler. The author proposes some of the key areas which could be
researched in advance, and also proposes some of the functionality-related improvements
related to the current implementation, as outlined below:

• Improved user-friendly ODAbler interface for better visualisation (instead of the
currently-used Python notebooks)

• Comparing advanced energy-aware scheduling (EAS) algorithms after their imple-
mentation in OpenDC instead of the current HEFT, Random and FIFO task-scheduling
algorithms could showcase the advanced capabilities of ODAbler strongly.

• Extension to advanced analytical capabilities of ODAbler (including more ML-based
analytics)

• Incorporation of more ODA functionalities (such as runtime tuning, scalability tun-
ing, and workload modelling to name a few) in ODAbler

• Exploring other ways to contribute to improvement in the ODAbler framework: by
adding value to the ODAbler framework (by tweaking either OpenDC configuration
or ODAbler to generate more meaningful metrics, e.g., workload metrics).

76

Appendix A

Artefact Reproducibility

This chapter is dedicated to the knowledge base and additional metadata or other impor-
tant pieces of information that could be interesting for the readers, and shares the artefacts
which have been made available for experiments, or as part of the results. There are some
available artefacts from the OWL ontologies in the form of graphical layouts, and then
there are important information available for reproducibility (as part of the contribution
to the FAIR initiative). The details are discussed in respective sections which are as follows.

A.1 Ontograf representation of OWL ontologies
This section shows the screenshot of an interactive visualisation of the relationships

captured using Protégé desktop (or, Protégé), an environment for editing and managing
ontologies [67, 68]. The version of Protégé used for plotting the Ontograf is version 6.5.1.
OntoGraf1 is a Protégé desktop plugin that provides support for visual, interactive naviga-
tion of the relationships in OWL ontologies. The steps to create an OntoGraf visualisation
are listed below:

• Launch Protégé desktop application.

• Download any of the .owl ontology files representing the HPC ontology of an HPC
cluster from the GitHub repo of “hpc-ontology-modeller” project2.

• From the active Protégé window, select the “Direct imports” and upload any *.owl
ontology file.

• Once the selected ontology is made active, navigate to the OWLViz pane for visual-
ising the OWLViz format, or click on OntoGraf for visualising the OntoGraf format
(as shown here). One can further click and expand the relevant classes for exploring
further.

Fig. A.1 shows the OntoGraf visualisation of SURF’s LISA cluster-driven OWL ontology,
and Fig. A.2 shows the OntoGraf visualisation of CINECA’s Marconi 100 cluster-driven
OWL ontology.

1OntoGraf - https://protegewiki.stanford.edu/wiki/OntoGraf
2hpc-ontology-modeller - https://github.com/am-i-helpful/hpc-ontology-modeller.git

77

https://protegewiki.stanford.edu/wiki/OntoGraf
https://github.com/am-i-helpful/hpc-ontology-modeller.git

Figure A.1: SURF’s OWL ontology OntoGraf visualisation (using Protege) showing the
relationships.

Figure A.2: CINECA’s OWL ontology OntoGraf visualisation (using Protege) showing the
relationships.

78

A.2 System setup for ODAbler-based experiments
These projects have been developed and tested on an HP laptop, model “HP Pavilion

15-bc008tx”, running Fedora 38 having kernel ’6.4.15-200’ at the time of experimentation.
The system involves the OpenDC project available in IntelliJ IDE (version 2023.2), OD-
Abler Python-based project available in a Python-platform supported IDE (PyCharm in
this case - version 2023.2), Apache Kafka application local setup (version 2.13-3.4.0), In-
fluxDB container (version 2.7.1), and Telegraf local agent installation (version 1.28.0). The
detailed instructions for setting up OpenDC and ODAbler projects are available at the OD-
Abler GitHub repo. There are detailed video guides explaining the new functionalities too,
inside the “documentation-guide” directory (in addition to the literature study document
for an advanced overview of the ODA framework).

A.3 Projects’ execution
The philosophy is critical to understanding what we mean by running experiments in a

large-scale computing infrastructure within OpenDC and analysing in ODAbler. For using
the OpenDC and ODAbler client (analyser) applications for executing the experiments for
reproducibility, please follow the below instructions:

• Check out the respective project repositories to a location, and open them in IntelliJ
and PyCharm IDE respectively (preferably).

• The main.py file contains the main declaration, where one can decide whether to launch
an "energy-efficiency" analysis experiment or a "node-anomaly" detection experiment. It
is suggested to only launch one experiment at a time, following the architectural flow.
The default experimentation selected is the task scheduling algorithms’ "energy-efficiency"
analysis experiment.

• Make sure that Apache Kafka, and InfluxDB services are available and running on the
system where the experiment is being conducted.

• Once both Kafka and InfluxDB are running, start the Telegraf agent with the con-
figuration available in the key-configuration directory, under the filename telegraf.conf. It
should be copied to the configuration directory located at /etc/telegraf/ on the system
where the Telegraf service is to be started, such that Telegraf launches the service with
expected results at the InfluxDB end.

• When all the pre-requisite services (Kafka, InfluxDB, and Telegraf) are running suc-
cessfully, launch the OpenDC socket server (ODAExperimentListener) such that it can
accept connection requests and experiment-related messages to kickstart the production
of power and energy usage-related metrics, which can be shipped to Kafka, and then to
InfluxDB via Telegraf. This process might take some time (2-5 minutes) depending on
the experiment and the trace file executing at the moment.

• Please note that all sorts of configurations are automatically taken care of by the OpenDC
server itself. ODAbler only needs to send either the experiment-type, and then wait for
the response from OpenDC about the final status of the corresponding experiment.

79

• Once the metrics data is available at InfluxDB, the ODAbler client will start the analysis
online (if there is no timeout). IMPORTANT - It is critical to note the time of starting
the experiment (Flux uses UTC time standard to store the datetime; other time zones
need to take care of the UTC conversion while querying in the on-demand mode of ODA
analysis), as the same can be used later in Flux query for on-demand analysis (if needed).
Otherwise, the options are to go through the InfluxDB "data explorer" and search for data
points using the available filter, or install the InfluxDB tools (more details can be found
here - https://awesome.influxdata.com/docs/part-1/introduction-to-influxdb-tools/).

• On-demand ODA analysis can always be done by triggering the analysis manually by in-
voking the opendc_energy_experiment_runner.py or opendc_anomaly_experiment_runner.py
file inside the opendc_experiment_runner directory (and not using the main.py file).

• The runner modules call the already created template Python notebooks available in-
side the opendc_experiment_analyser directory, which has all desired notebooks ready for
analysis within the respective experiment-named directory. Another important piece of in-
formation is that the template notebooks available inside the opendc_experiment_analyser
directory are currently configured to search for a specific time duration (filtering on the
start and stop time of the data available in InfluxDB, which is basically the timestamp
of execution of the experiment; unless if the trace execution lasts longer writing a lot of
data over a long range of time). More details about the time range can be read here -
https://docs.influxdata.com/flux/v0/stdlib/universe/range/.

•MOST IMPORTANT: These template Python notebooks located in opendc_experiment_analyser
directory, inside the directory /*experiment_name*/ - *.ipynb are copied to the gener-
ated_notebooks directory, and then executed for performing the desired ODA analysis.
So, when the ODAbler has been set up for the first time, please make sure that the times-
tamp of the experiment execution is noted, converted to UTC format, and then the required
changes are done to ensure that the data is filtered and analysed suitably.

• Lastly, please go through the individual Python notebooks to understand the analy-
sis done, as they are self-explanatory and documented.

• Please use PyCharm IDE for setting up the ODAbler project and IntelliJ IDEA for
the OpenDC project (if possible), as the author has not tested any other IDE/editor setup
for executing the experiments.

80

Appendix B

Source Codes

B.1 HPC Ontology Modeller application
The source code for the "HPC Ontology modeller" application can be found on GitHub

at the project-URL: hpc-ontology-modeller. This project consists of a README (docu-
mentation) file which describes the ontology modelling approach in detail.

B.2 ODAbler (ODA framework)
The ODA framework project consists of 2 components: the ‘OpenDC’ simulator (en-

abled with ODAbler design to export relevant monitoring metrics), and the corresponding
ODA analyser engine - the ‘ODAbler’ client (analyser). Both together constitute what we
call the ODAbler framework, which provides us with meaningful insights related to energy
efficiency and anomaly identification in the trace execution in a given cluster environment.
Both application’s documentation (README file) is available on their respective GitHub
pages respectively.

• The source code for the forked "OpenDC" application can be found on GitHub at
the project-URL: opendc(forked).

• The source code for the "ODAbler" analyser application can be found on GitHub at
the project-URL: ODAbler.

81

https://github.com/am-i-helpful/hpc-ontology-modeller
https://github.com/am-i-helpful/opendc
https://github.com/am-i-helpful/ODAbler

Bibliography

[1] N. Bourassa, W. Johnson, J. Broughton, D. M. Carter, S. Joy, R. Vitti, and P. Seto,
“Operational data analytics: Optimizing the national energy research scientific com-
puting center cooling systems,” in Proceedings of the 48th International Conference
on Parallel Processing: Workshops, pp. 1–7, 2019.

[2] F. Cappello, G. Al, W. Gropp, S. Kale, B. Kramer, and M. Snir, “Toward exascale
resilience: 2014 update,” Supercomputing Frontiers and Innovations: an International
Journal, vol. 1, no. 1, pp. 5–28, 2014.

[3] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens,
N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero, et al., “Scaling the power
wall: a path to exascale,” in SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 830–841, IEEE,
2014.

[4] TOP500.org, “Green500 List - November 2022 | TOP500.” https://www.top500.org/
lists/green500/list/2022/11/, 2022. [Online; accessed 11-February-2023].

[5] A. Netti, D. Tafani, M. Ott, and M. Schulz, “Correlation-wise smoothing: Lightweight
knowledge extraction for hpc monitoring data,” in 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 2–12, IEEE, 2021.

[6] W. W. Eckerson, Performance dashboards: measuring, monitoring, and managing
your business. John Wiley & Sons, 2010.

[7] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, and J. Saraiva,
“Energy efficiency across programming languages: how do energy, time, and mem-
ory relate?,” in Proceedings of the 10th ACM SIGPLAN international conference on
software language engineering, pp. 256–267, 2017.

[8] A. Iosup, F. Kuipers, A. L. Varbanescu, P. Grosso, A. Trivedi, J. Rellermeyer,
L. Wang, A. Uta, and F. Regazzoni, “Future computer systems and networking re-
search in the netherlands: A manifesto,” arXiv preprint arXiv:2206.03259, 2022.

[9] G. Andreadis, L. Versluis, F. Mastenbroek, and A. Iosup, “A reference architecture
for datacenter scheduling: design, validation, and experiments,” in SC18: Interna-
tional Conference for High Performance Computing, Networking, Storage and Analy-
sis, pp. 478–492, IEEE, 2018.

[10] J. Banks, Discrete event system simulation. Pearson Education India, 2005.

[11] F. Mastenbroek, G. Andreadis, S. Jounaid, W. Lai, J. Burley, J. Bosch, E. Van Eyk,
L. Versluis, V. Van Beek, and A. Iosup, “Opendc 2.0: Convenient modeling and simula-
tion of emerging technologies in cloud datacenters,” in 2021 IEEE/ACM 21st Interna-

82

https://www.top500.org/lists/green500/list/2022/11/
https://www.top500.org/lists/green500/list/2022/11/

tional Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 455–464,
IEEE, 2021.

[12] A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J. Rellermeyer, C. Maltzahn, R. Ricci,
and A. Iosup, “Is big data performance reproducible in modern cloud networks?,” in
17th USENIX symposium on networked systems design and implementation (NSDI
20), pp. 513–527, 2020.

[13] E. VanDerHorn and S. Mahadevan, “Digital twin: Generalization, characterization
and implementation,” Decision support systems, vol. 145, p. 113524, 2021.

[14] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Software: Practice and experience, vol. 41, no. 1,
pp. 23–50, 2011.

[15] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A toolkit for
modeling and simulation of resource management techniques in the internet of things,
edge and fog computing environments,” Software: Practice and Experience, vol. 47,
no. 9, pp. 1275–1296, 2017.

[16] W. Chen and E. Deelman, “Workflowsim: A toolkit for simulating scientific workflows
in distributed environments,” in 2012 IEEE 8th international conference on E-science,
pp. 1–8, IEEE, 2012.

[17] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst: A cloudsim-
based visual modeller for analysing cloud computing environments and applications,”
in 2010 24th IEEE international conference on advanced information networking and
applications, pp. 446–452, IEEE, 2010.

[18] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Versatile, scalable,
and accurate simulation of distributed applications and platforms,” Journal of Parallel
and Distributed Computing, vol. 74, no. 10, pp. 2899–2917, 2014.

[19] A. Iosup, O. Sonmez, and D. Epema, “Dgsim: Comparing grid resource management
architectures through trace-based simulation,” in Euro-Par 2008–Parallel Processing:
14th International Euro-Par Conference, Las Palmas de Gran Canaria, Spain, August
26-29, 2008. Proceedings 14, pp. 13–25, Springer, 2008.

[20] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer, “Groudsim: An event-
based simulation framework for computational grids and clouds,” in Euro-Par 2010
Parallel Processing Workshops: HeteroPar, HPCC, HiBB, CoreGrid, UCHPC, HPCF,
PROPER, CCPI, VHPC, Ischia, Italy, August 31–September 3, 2010, Revised Selected
Papers 16, pp. 305–313, Springer, 2011.

[21] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Carretero, and
I. M. Llorente, “icancloud: A flexible and scalable cloud infrastructure simulator,”
Journal of Grid Computing, vol. 10, pp. 185–209, 2012.

[22] M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, P. R. Inácio, and M. M. Freire,
“Cloudsim plus: a cloud computing simulation framework pursuing software engi-
neering principles for improved modularity, extensibility and correctness,” in 2017
IFIP/IEEE symposium on integrated network and service management (IM), pp. 400–
406, IEEE, 2017.

83

[23] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-complexity
task scheduling for heterogeneous computing,” IEEE transactions on parallel and dis-
tributed systems, vol. 13, no. 3, pp. 260–274, 2002.

[24] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehensive survey for
scheduling techniques in cloud computing,” Journal of Network and Computer Appli-
cations, vol. 143, pp. 1–33, 2019.

[25] D. Fernández-Baca, “Allocating modules to processors in a distributed system,” IEEE
Transactions on Software Engineering, vol. 15, no. 11, pp. 1427–1436, 1989.

[26] T. Wilde, A. Auweter, and H. Shoukourian, “The 4 pillar framework for energy efficient
hpc data centers,” Computer Science-Research and Development, vol. 29, pp. 241–251,
2014.

[27] A. Netti, W. Shin, M. Ott, T. Wilde, and N. Bates, “A conceptual framework for
hpc operational data analytics,” in 2021 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 596–603, IEEE, 2021.

[28] “Gartner it glossary.” https://www.gartner.com/en/information-technology/
glossary. Accessed: 2023-09-23.

[29] E. Bautista, M. Romanus, T. Davis, C. Whitney, and T. Kubaska, “Collecting, moni-
toring, and analyzing facility and systems data at the national energy research scien-
tific computing center,” in Workshop Proceedings of the 48th International Conference
on Parallel Processing, pp. 1–9, 2019.

[30] E. Bautista, N. Sukhija, M. Romanus, T. Davis, and C. Whitney, “Omni at the edge,”
Cybersecurity and High-Performance Computing Environments. Chapman and Hal-
l/CRC, pp. 63–84, 2022.

[31] A. Netti, M. Müller, C. Guillen, M. Ott, D. Tafani, G. Ozer, and M. Schulz, “Dcdb
wintermute: Enabling online and holistic operational data analytics on hpc systems,”
in Proceedings of the 29th International Symposium on High-Performance Parallel and
Distributed Computing, pp. 101–112, 2020.

[32] A. Netti, M. Müller, A. Auweter, C. Guillen, M. Ott, D. Tafani, and M. Schulz,
“From facility to application sensor data: modular, continuous and holistic monitor-
ing with dcdb,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–27, 2019.

[33] D. Locke, “Mq telemetry transport (mqtt) v3.1 protocol specification,” tech. rep., IBM,
August 2010.

[34] R. Tracey, L. Hoang, F. Subelet, and V. Elisseev, “Ai-driven holistic approach to
energy efficient hpc,” in High Performance Computing: ISC High Performance 2020
International Workshops, Frankfurt, Germany, June 21–25, 2020, Revised Selected
Papers 35, pp. 267–279, Springer, 2020.

[35] C. Liao, P.-H. Lin, G. Verma, T. Vanderbruggen, M. Emani, Z. Nan, and X. Shen,
“Hpc ontology: Towards a unified ontology for managing training datasets and ai
models for high-performance computing,” in 2021 IEEE/ACM Workshop on Machine
Learning in High Performance Computing Environments (MLHPC), pp. 69–80, IEEE,
2021.

84

https://www.gartner.com/en/information-technology/glossary
https://www.gartner.com/en/information-technology/glossary

[36] A. Iosup, L. Versluis, A. Trivedi, E. Van Eyk, L. Toader, V. Van Beek, G. Fras-
caria, A. Musaafir, and S. Talluri, “The atlarge vision on the design of distributed
systems and ecosystems,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pp. 1765–1776, IEEE, 2019.

[37] G. G. Castañé, H. Xiong, D. Dong, and J. P. Morrison, “An ontology for heteroge-
neous resources management interoperability and hpc in the cloud,” Future Generation
Computer Systems, vol. 88, pp. 373–384, 2018.

[38] A. Zhou, K. Ren, X. Li, W. Zhang, and X. Ren, “Building quick resource index list
using wordnet and high-performance computing resource ontology towards efficient re-
source discovery,” in 2019 IEEE 21st International Conference on High Performance
Computing and Communications; IEEE 17th International Conference on Smart City;
IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCi-
ty/DSS), pp. 885–892, IEEE, 2019.

[39] Y. Zhao, C. Liao, and X. Shen, “An infrastructure for hpc knowledge sharing and
reuse,” tech. rep., Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), 2017.

[40] A. Tenschert, “Ontology matching in a distributed environment,” 2016.

[41] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified ontology of cloud comput-
ing,” in 2008 Grid Computing Environments Workshop, pp. 1–10, IEEE, 2008.

[42] F. T. Imam, “Application of ontologies in cloud computing: The state-of-the-art,”
arXiv preprint arXiv:1610.02333, 2016.

[43] W. Shin, V. Oles, A. M. Karimi, J. A. Ellis, and F. Wang, “Revealing power, energy
and thermal dynamics of a 200pf pre-exascale supercomputer,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14, 2021.

[44] M. Terai, F. Shoji, T. Tsukamoto, and Y. Yamochi, “A study of operational impact on
power usage effectiveness using facility metrics and server operation logs in the k com-
puter,” in 2020 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 509–513, IEEE, 2020.

[45] A. Borghesi, M. Molan, M. Milano, and A. Bartolini, “Anomaly detection and antici-
pation in high performance computing systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 4, pp. 739–750, 2021.

[46] N. F. Noy, D. L. McGuinness, et al., “Ontology development 101: A guide to creating
your first ontology,” 2001.

[47] L. Jean-Baptiste, “Ontologies with python,” Apress, Berkeley, CA, 2021.

[48] J.-B. Lamy, “Owlready: Ontology-oriented programming in python with automatic
classification and high level constructs for biomedical ontologies,” Artificial intelligence
in medicine, vol. 80, pp. 11–28, 2017.

[49] C. A. Henson, H. Neuhaus, A. P. Sheth, K. Thirunarayan, and R. Buyya, “An onto-
logical representation of time series observations on the semantic sensor web,” 2009.

85

[50] A. Borghesi, C. Di Santi, M. Molan, M. S. Ardebili, A. Mauri, M. Guarrasi, D. Galetti,
M. Cestari, F. Barchi, L. Benini, et al., “M100 exadata: a data collection campaign on
the cineca’s marconi100 tier-0 supercomputer,” Scientific Data, vol. 10, no. 1, p. 288,
2023.

[51] A. Borghesi, C. D. Santi, M. Molan, M. S. Ardebili, A. Mauri, M. Guarrasi, D. Galetti,
M. Cestari, F. Barchi, L. Benini, F. Beneventi, and A. Bartolini, “M100 dataset 7:
22-04,” Feb. 2023.

[52] S. Lohmann, V. Link, E. Marbach, and S. Negru, “Webvowl: Web-based visualization
of ontologies,” in Knowledge Engineering and Knowledge Management: EKAW 2014
Satellite Events, VISUAL, EKM1, and ARCOE-Logic, Linköping, Sweden, November
24-28, 2014. Revised Selected Papers. 19, pp. 154–158, Springer, 2015.

[53] M. Á. Rodríguez-García and R. Hoehndorf, “Inferring ontology graph structures using
owl reasoning,” BMC bioinformatics, vol. 19, pp. 1–9, 2018.

[54] J. Wu, F. Orlandi, D. O’Sullivan, and S. Dev, “An ontology model for climatic data
analysis,” in 2021 IEEE International Geoscience and Remote Sensing Symposium
IGARSS, pp. 5739–5742, IEEE, 2021.

[55] R. Prodan, D. Kimovski, A. Bartolini, M. Cochez, A. Iosup, E. Kharlamov, J. Rožanec,
L. Vasiliu, and A. L. Vărbănescu, “Towards extreme and sustainable graph processing
for urgent societal challenges in europe,” in 2022 IEEE Cloud Summit, pp. 23–30,
IEEE, 2022.

[56] A. Iosup, R. Prodan, A.-L. Varbanescu, S. Talluri, G. Magalhaes, K. Hokstam,
H. Zwaan, V. Van Beek, R. Farahani, and D. Kimovski, “Graph greenifier: Towards
sustainable and energy-aware massive graph processing in the computing continuum,”
in Companion of the 2023 ACM/SPEC International Conference on Performance En-
gineering, pp. 209–214, 2023.

[57] A. Netti, Holistic and Portable Operational Data Analytics on Production HPC Sys-
tems. PhD thesis, Technische Universität München, 2022.

[58] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed messaging system for log
processing,” in Proceedings of the NetDB, vol. 11, pp. 1–7, Athens, Greece, 2011.

[59] N. Garg, Apache kafka. Packt Publishing Birmingham, UK, 2013.

[60] S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi, “Time series databases and influxdb,”
Studienarbeit, Université Libre de Bruxelles, vol. 12, 2017.

[61] N. Chan, “A resource utilization analytics platform using grafana and telegraf for
the savio supercluster,” in Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (learning), pp. 1–6, 2019.

[62] P. Rattanatamrong, Y. Boonpalit, S. Suwanjinda, A. Mangmeesap, K. Subraties,
V. Daneshmand, S. Smallen, and J. Haga, “Overhead study of telegraf as a real-
time monitoring agent,” in 2020 17th International Joint Conference on Computer
Science and Software Engineering (JCSSE), pp. 42–46, IEEE, 2020.

[63] C. Saad-Eddine and B. Younes, “Performance & energy consumption metrics of a data
center according to the energy consumption models cubic, linear, square and square
root,” in 2019 7th Mediterranean Congress of Telecommunications (CMT), pp. 1–5,
IEEE, 2019.

86

[64] S. Ma, A. Ilyushkin, A. Stegehuis, and A. Iosup, “Workflow trace archive shell trace,”
June 2019.

[65] P. Team, “Workflow trace archive pegasus_p2 trace,” June 2019.

[66] L. Versluis, R. Mathá, S. Talluri, T. Hegeman, R. Prodan, E. Deelman, and A. Iosup,
“The workflow trace archive: Open-access data from public and private computing in-
frastructures,” IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 9,
pp. 2170–2184, 2020.

[67] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriks-
son, N. F. Noy, and S. W. Tu, “The evolution of protégé: an environment for
knowledge-based systems development,” International Journal of Human-computer
studies, vol. 58, no. 1, pp. 89–123, 2003.

[68] N. F. Noy, M. Crubézy, R. W. Fergerson, H. Knublauch, S. W. Tu, J. Vendetti, and
M. A. Musen, “Protégé-2000: an open-source ontology-development and knowledge-
acquisition environment.,” in AMIA... annual symposium proceedings. AMIA Sympo-
sium, pp. 953–953, 2003.

87

	Introduction
	Context
	Problem Statement
	Research Questions
	Research Methodology
	Thesis Contributions
	Plagiarism Declaration
	Open Science
	Thesis Structure

	Background/Literature Review
	Large-scale Computing Infrastructure/Ultra-large-scale systems (ULSS)
	Data Centre Simulation
	ODA: Operational Data Analytics
	Ontology for HPC
	Design process of the @Large Research team
	Related work

	Ontology modelling to drive the ODA design
	Overview
	Requirements analysis
	HPC ontology modelling
	Experimental validation
	Summary

	Design of `ODAbler': an ODA framework for a data centre simulator (OpenDC)
	Why is an ODA framework needed?
	Requirements analysis
	Proposed Architecture
	Design elements overview
	Summarised technical implementation
	Summary

	Results: Experimental evaluation of `ODAbler'
	Experimental setup
	Scheduling policies' energy-efficiency analysis
	Node-based anomaly detection
	ODA analysis' discussion
	Summary

	Conclusion and Future Work
	Conclusion
	Limitations
	Future Work

	Artefact Reproducibility
	Ontograf representation of OWL ontologies
	System setup for ODAbler-based experiments
	Projects' execution

	Source Codes
	HPC Ontology Modeller application
	ODAbler (ODA framework)

	References

