COLUMN: View from the Cloud

e
Serverless is More: From

PaaS to Present Cloud
Computing

Erwin van Eyk
AtLarge Research Team,
TU Delft,

The Netherlands

Lucian Toader
AtLarge Research Team,

VU Amsterdam,
The Netherlands

Sacheendra Talluri
AtLarge Research Team,

TU Delft,
The Netherlands

Laurens Versluis

AtLarge Research Team,

VU Amsterdam,
The Netherlands

Alexandru Uta
AtLarge Research Team,
VU Amsterdam,

The Netherlands
Alexandru Iosup
AtLarge Research Team,

TU Delft & VU Amsterdam,

The Netherlands

In the late-1950s, leasing time on an IBM 704 cost
hundreds of dollars per minute. Today, cloud computing,
that is, using IT as a service, on-demand and pay-per-use,
is a widely used computing paradigm that offers large
economies of scale. Born from a need to make platform as
a service (PaaS) more accessible, fine-grained, and
affordable, serverless computing has garnered interest
from both industry and academia. This article aims to give
an understanding of these early days of serverless
computing: what it is, where it comes from, what is the
current status of serverless technology, and what are its

main obstacles and opportunities.

The 1950s saw the emergence of two technologies that are cur-
rently shaping the world: containerization in shipping and time-
sharing in computing. By allowing shipping to become standard-
ized and automated, the former gave rise to manufacturing and
retail ecosystems, and ultimately to the economic phenomenon
of globalization!. By enabling multiple clients to share the same
physical infrastructure, time-sharing gave rise to cloud comput-
ing and the modern digital ecosystems, which are key drivers for
growth in knowledge-based societies?.

Whereas few could afford the costs of time-sharing services and
paid dearly for simple computer simulations in the late-1950s,
today over 80% of companies use the hundreds of services ac-
cessible as cloud computing (source: Studies by European

Commission? and Cloudability (2018)), along with many private individuals. Following with
remarkable regularity the evolution observed in the history of containerization, cloud services
have adapted to offer better fitting containers that require less time to load (boot) and provide
higher automation in handling (orchestrating) containers on behalf of the client. Serverless com-
puting promises more: to achieve full-automation in managing fine-grained containers. Already,



I\ TERNET COMPUTING

IT spending on serverless computing is expected to exceed $8 billion per year, by 20214. To
understand what serverless is and what it can deliver, we trace the evolution of computing tech-
nology that has given rise to serverless computing, analyze the current status of serverless tech-
nology, and identify the main obstacles and opportunities we see in delivering on its promise.

What is serverless computing? We have proposed the following definition3:

Serverless Computing is a form of cloud computing which allows users to run event-driven and
granularly billed applications, without having to address the operational logic.

This definition places serverless as a computing abstraction, partially overlapping with platform
as a service (PaaS). With serverless, developers focus on high-level abstractions (e.g., functions,
queries, events) and build applications that infrastructure operators map to concrete resources
and supporting services. This effectively separates concerns, with developers focusing on the
business logic, and on ways to interconnect elements of business logic into complex workflows;
meanwhile, service-providers ensure that the serverless applications are orchestrated, that is,
containerized, deployed, provisioned, and available on-demand, while only billing the user for
the resources used. These separated roles have also emerged for physical containers, with manu-
facturers and retailers in the role of developers, and shipping lines in the role of service-
providers.

Clients of serverless computing could use the Function-as-a-Service (FaaS) model, which we
defines as:

Function-as-a-Service (FaaS) is a form of serverless computing where the cloud provider man-
ages the resources, lifecycle, and event-driven execution of user-provided functions.

With FaaS, users provide small, stateless functions to the cloud provider, who manage all the
operational aspects to run these functions. For example, consider the ExCamera$ application:
ExCamera uses cloud functions and workflows to edit, transform, and encode videos with low
latency and cost. A majority of the tasks in these operations can be executed concurrently, allow-
ing the application to improve its performance through parallelizing these tasks. To deploy Ex-
Camera using the traditional infrastructure as a service (IaaS) model, a user needs to spin up
virtual machines (VMs), provision them, orchestrate the workflows, manage resources as need-
ed, and manage the variety of dynamic issues (e.g., faults, inconsistencies). This requires consid-
erable expertise and continuous effort in orchestrating ExCamera, and yet results in significant
amounts of underutilized but paid-for resources. Instead, by leveraging serverless computing,
ExCamera defers the operational complexity to the cloud provider, using FaaS to manage the
operational lifecycle of the individual video tasks.

However promising, serverless computing is still an emerging technology. Understanding how
applications such as ExCamera can leverage it requires finding answers to questions such as:
What are the computer technologies underlying serverless? What is the status of the current
serverless technology? And, what can we expect from the field of the serverless computing in the
foreseeable future?

We address these questions with a threefold contribution: (1) We identify the concepts leading to
serverless computing, with deep historical roots in concrete and abstract innovations in computer
science (see Section 2); (2) We analyze the current state of the technology and the complex tech-
nological ecosystems it consists of (see Section 3); (3) We identify and analyze important obsta-
cles and opportunities (see Section 4) in this emerging field that we — as a community — need to
address to make the serverless promise a reality. We conclude with a forewarning question: can
we reproduce the successes and avoid the downsides of physical containerization?

THE LONG ROAD TO SERVERLESS

In this section, we analyze the evolution of computer technology that led to serverless computing
— going back to the 1960s. All the breakthroughs indicate that serverless computing would not
have been possible a decade ago, when it would have missed enabling technologies such as the
distinction between [aaS and PaaS (standardized by NIST), fine-grained containerization (e.g.,



I\ TERNET COMPUTING

Docker), and even a diverse set of applications3. In Figure 1, we distinguish six main dimensions
of these critical breakthroughs that together led to the emergence of serverless.

Serverless

r
Function-as-a-Service

1
Event-Driven Workflows

Container orchestration

l

Microservices

f

7]
o Containers
s (Docker, 2013) laa$S, Paa$, SaaS
N (NIST Cloud Ref. Archi, 2010)
Google App Engine
Linux Containers SR
& AWS Cloud
1< cgroups (20086)
o
[
OGSA
FreeBSD Jails YMWare ESX
Grid Computing
» A
S
?’_ Virtual Private Server cal
n
(=]
© q
o RPC Implementation
=
A
Remote Procedure Call
® (RFC707, 1976)
[<]
B Virtualization Requirements
- (Popek,1974)
IBM CICS Transactions
an
3
‘m_ IBM VMs

(CP-40/CMS, 1968)

| Code functions '

Resources
(Where to (How to

execute?) | . execute?) !

Containerized Resources

(NCSA, 1993) (RFC1487, 1993)

Stored Procedures

Figure 1: A history of computer science concepts leading to serverless computi

Event-Driven Arch.
A

Workflow orchestration

REST

URI SO,
(RFC1630, 1994)  (Pasik, 1994)

CORBA, DCOM, OSF

Workflows, BoTs

Actor Model
(Hewitt et al., 1973)

Func. Programming Concurrency
(McCarthy, 1960) (Djikstra, Hoare, 1960s)

Event Sourcing
(McCarthy, 1963)

{ ing/registry F i | ] Events
| (How to find the (What to ! (How to model (When to
| executable?) | | execute?) | | theprogram?) !

| execute?)

Complementary to time-sharing, virtualization abstracts away the physical machine to reduce the
operational effort, and to allow the same physical resources to be shared across multiple ap-
plications and users (multiplexing). Although associated in recent memory with VMWare's ESX
technology (2001), virtualization was invented much earlier, and used in production in
late-1960s IBM mainframes. Virtualization was finally conceptualized, nearly a decade later”.
With the emergence of the Internet (1990s), these early concepts of virtualization were intro-
duced online to enable shared hosting through virtual private servers. Soon after the release of
ESX, cloud computing emerged, making virtual resources available over the Internet.

Like their physical counterparts, (digital) containers protect their content from external abuse.
Containers do this by adding a layer of abstraction over the resources provided by the system.
FreeBSD added jails — independent partitions of the system with their own directory subtree,
hostname, IP address, and set of users. Linux followed with cgroups (2006), a mechanism to
group processes and to assign each group separate resources. The Linux Containers project
(LXC, 2008) bundled cgroups and kernel namespaces, along with better tooling. Built upon
LXC, Docker (2013) offered convenient container orchestration, fostering an entire ecosystem

based on digital containers.



I\ TERNET COMPUTING

Serverless computing is the latest result of this long-term process of defining virtualization ab-
stractions, to eliminate concerns related to server provisioning and management. Although it
exposes abstract resources to the user (e.g. functions), these are mapped to concrete resources
(e.g. containers), continuing the transition from "bare metal" to "bare code".

Code as Functions
The ability to execute arbitrary "cloud functions" is essential to serverless computing.

Technology has emerged and reemerged often for running domain- and context-specific remote
functions. We can trace this concept to as early as 1968, when, with IBM's Customer Information
Control System (CICS), users were able to associate user-provided programs to transactions. The
remote procedure call (RPC, specification in 1976, implementation in 1984) enabled the invoca-
tion of arbitrary procedures located in remote systems, over a communication network. Derived
from RPC, stored procedures for databases (1980s) and Common Gateway Interface (CGI)
scripts for web servers (1990s) aimed to bring support for executing functions to specific do-
mains. Google App Engine — with other Paa$S platforms following its example — started allowing
users to asynchronously execute arbitrary tasks in the background.

In contrast to these context-specific implementations, serverless computing aims to provide a full
abstraction for arbitrary, event-driven execution of generic functions.

Naming and Discovery

Managing and invoking services, including functions, depends on being able to name and dis-
cover services. Derived from a long line of technological innovations, current approaches follow
the path-breaking concepts of Lightweight Directory Access Protocol (LDAP, 1993) and Uni-
form Resource Identifier (URI, 1994). LDAP uses naming and properties and enables distributed
directory services over TCP/IP. URI provides unique identifiers for resources, encoded as char-
acter-strings.

Serverless extends naming and discovery with function versioning and aliases (e.g., offered by
AWS). With versioning, it is possible to work with different immutable versions of a function
simultaneously. Aliases are mutable pointers to a version and can be used to transition a version
from one stage to another (e.g., from development to production) without changing the deployed
application.

Functions as Computation

Serverless computing relies on the concept of function as computation, which stems from a long
tradition of ever-higher-level abstractions and specialization in computer science.

Functional programming? departed from procedural programs, to allow the developer to manage
abstract data-types and control-flows, instead of the concrete details of memory and processors.
The application of object-oriented principles to distributed systems lead to the creation of
DCOM, CORBA, and OSF (1990s). In the 2000s, we climbed up the specialization ladder by
contextualizing and interconnecting services, e.g., through the Service Oriented Architecture®
(SOA) and REST-based architectures.

These previous developments gradually led to microservices: self-contained applications provid-
ing specific functions over well-defined protocols!?. Continuing this trend, serverless is devel-
opment effectively a hyperspecialization of services.

Execution Flows
Serverless computing depends on the ability to coordinate execution flows.

Concurrency!! has been an early and vital model for the evolution of computing allowing multi-
ple processes to make progress at the same time, while remaining under the developer's control.



I\ TERNET COMPUTING

This model has many applications and many other models are rooted in concurrency, including
generalized processes, threads, and actors!2.

Over the past two decades, we have moved towards a declarative form of expressing concurren-
cy. Workflows declare the structure of applications, leaving the concrete execution and synchro-
nization of workflow-tasks to the runtime system; this model has a multitude of applications!3
and underlies our view of serverless computing.

Events to Trigger Functions

The first computer programs were synchronous, carefully crafted to follow a particular code-
path. This model made programs difficult to create and modify, and less robust to changing con-
ditions. Soon, event sourcing addressed the need to record, order, and respond to requests for
state-changes.

With the proliferation of high-level languages and advanced operating systems, the concept of
linking disparate computation together with special communication constructs took hold — with
device drivers being early examples of this event-driven programming. With the rise of the In-
ternet, event-driven distributed systems became widely used — with events mapped intuitively to
the asynchrony of real-world networks.

Indeed, in modern systems, event-based protocols allow systems within an ecosystem to com-
municate without excessive dependence on the implementation details of each individual system.
Due to its highly networked nature, serverless computing is apt to leverage this idea, through
well-defined event-protocols and ways to manage events, for example, by using message queues.

SERVERLESS NOW

In this section, we discuss how the ExCamera application can be developed to use serverless
computing. We explain the current and emerging technological ecosystem for serverless, and
detail the expected benefits from using serverless: better resource management, scaling, and
more insight and control.

The State of Serverless Technology

To execute parts of the workloads using small serverless functions, ExCamera parallelizes video-
transcoding using AWS Lambda, which is one of the many FaaS platforms!4. These various plat-
forms differ in focus, target domain, assumed model and architectural decisions. Next to the
closed-source FaaS platforms, addressing the lack of insight and vendor lock-in, several open-
source platforms have emerged, including Apache OpenWhisk, Fission, and OpenLambdals.

To address the complexity of working with many different FaaS platforms and their incompati-
ble APIs, the community has focused on informal standardization. Serverless frameworks, e.g.,
Apex or the Serverless Framework provide a common programming model that enable easier,
platform-agnostic development, along with better interoperability of functions.

Much serverless tooling already exists to allow developers to defer non-essential tasks, sparking
the emergence of a diverse ecosystem of (serverless) services, from serverless databases to moni-
toring to security. For example, workflow engines, such as Azure Logic Apps, Fission Work-
flows, and PyWren!¢, abstract away the complexity of networking in the compositions of higher-
order functions and services.



I\ TERNET COMPUTING

Resource usage in the cloud Resource usage with VMs Resource usage with Serverless
4
T
“
t '
5
3 g 8
3 £ 2
o =1 - |
by ) 2
/' ZoomIn ]
& o
No Insight Into Insight Into
Individual Services Individual Services
Time -
On Premises Overprovisioned VMs - - - - Serverless
Underprovisioned VMs = Workload Time - Time -
’ Over- Under- prcvisioning]

(a) (b) (c)

Figure 2: A case for serverless computing: higher utilization, finer granularity, and more detailed
control than with container-based, or self-hosted computing.

Benefits of Current Serverless Technology

Serverless computing promises more value than other cloud operations: equal or better perfor-
mance while reducing the operational costs of applications. This has led industry — rather than
academia — to drive the initial development and adoption of this paradigm. Figure 2 illustrates
the main case for serverless computing.

Benefit 1. Improved resource management: In the traditional cloud model, the user is respon-
sible for selecting and deploying the concrete resources. To avoid overburdening the user with
options, the range of options is generally limited to large, multi-functional resource types (e.g.,
VMs or containers). Applications rarely fit these resources, and, to mitigate the overhead in-
curred by the large, general-purpose resources, applications are coarse-grained. As illustrated in
Figure 2a, coarse-grained applications lead to inaccurate autoscaling decisions, causing severe
under- or over-provisioning. In contrast, serverless computing means applications are fine-
grained, which means the cloud provider can more closely match abstract resource-demand to
actual system-resources.

Benefit 2. More insight and control: In the traditional model, the user is responsible for de-
ploying, monitoring, and other operational tasks related to the lifecycle of coarse-grained ap-
plications (see Figure 2b), but many cloud-users do not have the necessary expertise. Moreover,
the operators lack context, so they have to take autoscaling decisions without accurate profiling
or insights from the deployed applications. With serverless, the increased responsibility for the
operator gives more insight and control. Operators select the resources; deploy and provision
resources; implement and control the monitoring of resource usage, workload intensity, and ap-
plication behavior; and can auto-scale or migrate the application. They can profile and model the
granular services comprising the serverless application (Figure 2c), offer this information to
users, and improve the decisions made with these insights.

Benefit 3. Granular scaling: In the traditional model, applications consist of large, multi-func-
tional VMs with multi-minute provisioning times. These VMs act as black-boxes, and thus are
difficult to model and predict for operators. Although applications are typically bottlenecked by
only one of the resources in one part of the application, the operators can only scale the entire
application to resolve the bottleneck. Eliminating some of these issues is possible, but requires
the user to re-architect the application, typically as microservices. The effectiveness depends
highly on the user's expertise!0— most cannot benefit. With serverless, the operator can better
scale the individual, granular services or functions, using deep insights. The contrast between
Figures 2b and 2c illustrates this situation.

Other benefits: Other reasons promote the adoption of serverless computing: the shift from
capital expenses to operational expenses more accurately aligns the costs to the actual business
processes; the independent services allow teams to choose the right tools, and dependencies for a



I\ TERNET COMPUTING

use case without impacting other parts of the system and organization; and, the high-level ab-
straction allows software developers to iterate on these distributed systems faster while limiting
the need for extensive expertise of distributed systems.

PERSPECTIVES ON SERVERLESS

Although serverless computing already offers many benefits (see previous section), many obsta-
cles could inhibit further adoption. In joint work with the SPEC RG Cloud Group!’, we have
identified over twenty detailed challenges and opportunities for serverless computing>. 18. Here,
we identify the top-five obstacles and opportunities arising from them (Table 1).

First, the fine-granularity for expressing computation adds significant overhead to the resource
management and scheduling layers. To overcome this, we envision significant research efforts
invested in co-scheduling and orchestration for workflows of functions. Moreover, from a user
perspective, we need new tools for navigating the cost-performance trade-offs to explore the
complexity of fine-grained pricing models.

Second, data privacy is of importance for the clients and non-trivial to offer by the providers, for
example, ensuring full GDPR-compliance!®. With the fine-grained nature, serverless computing
allows for more enhanced access control, function-level auditing and provenance for seamless
and efficient GDPR-compliance.

Third, in modern clouds performance suffers from significant variability due to resource con-
tention, virtualization and congestion overheads; Issues which are — with its granular nature —
only amplified in serverless computing. However, the increased insight and control over the
operational lifecycle, provides cloud providers with opportunities to minimize these performance
issues by being able to more accurately monitor, profile, and schedule these fine-grained ser-
vices.

Fourth, data-intensive applications are not naturally expressed in the — stateless — FaaS par-
adigm. We envision for the future the design and implementation of fine-grained, data-centric,
serverless programming models. One promising research direction is investigating distributed
promises in serverless environments.

Finally, the API jungle generated by the fast-evolving serverless APIs, frameworks, and libraries
represents an important obstacle for software lifecycle management, and service discovery and
brokering. To overcome this, significant effort must be invested in multi-cloud API standardiza-
tion, interoperability, and portability to avoid lock-in and to enable seamless service discovery.

Obstacle Opportunity
Fine-granularity and Non-trivial resource management, workflows of
cost functions, orchestration, fine-grained "pay-per-use"

pricing, optimizing cost-performance trade-offs.

Data Privacy Fine-grained access control and function-level auditing
and provenance, full GDPR compliance.

Performance Fine-grained scheduling and resource management, new
performance models and fairness mechanisms that help
reduce resource contention and performance variability.

Data-intensive Fine-grained data-centric programming models.
applications
API jungle Service discovery and brokering, fine-grained software

life-cycle management, standardized multi-cloud APIs,
interoperability, portability, multi-modal services.

Table 1: Obstacles and opportunities for serverless computing.



I\ TERNET COMPUTING

CONCLUSION

Serverless computing is a promising technology, with a burgeoning market already formed
around it. By analyzing the computer technology leading to it, we conclude that this model could
not have appeared even a decade ago. Instead, it is the result of many incremental advances,
spanning diverse domains: from the increasingly more granular resource abstractions, to the
emergence of abundant amounts of resources available near-instantly, to the reduction of costs
and complexity of distributed applications.

Current serverless technology offers its customers fine billing granularity, detailed insight and
control, and the affordable ability to run arbitrary functions on-demand. However, this technolo-
gy has not been demonstrated beyond selected, convenient applications. We identify several
obstacles and opportunities, and argue that industry and academia must work together. Can we
make serverless computing available for many, without the drawbacks of the technology and
processes underlying physical containerization?

ACKNOWLEDGMENTS

This work is supported by the Dutch projects Vidi MagnaData, by the Dutch Commit and the
Commit project Commissioner, and by generous donations from Oracle Labs, USA.

REFERENCES

1. M. Levinson. The Box: How the Shipping Container Made the World Smaller and
the World Economy Bigger. Princeton University Press, 2016. Second Edition.

2. http://business.nasdaq.com/marketinsite/2017/Cloud-Computing-Industry-Report-
and-Investment-Case.html

3. European Commission. Uptake of Cloud in Europe. Digital Agenda for Europe
report. Publications Office of the European Union, Luxembourg., Sep 2014.

4. https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-
market-127202409.html

5. E. van Eyk, A. losup, S. Seif, and M. Thommes. The SPEC cloud group’s
research vision on FaaS and serverless architectures. In Proceedings of the 2nd
International Workshop on Serverless Computing (WoSC '17). ACM, New York,
NY, USA, 1-4. DOI: https://doi.org/10.1145/3154847.3154848.

6. S. Fouladi, R. S. Wahby, B. Shacklett, K. Balasubramaniam, W. Zeng, R.
Bhalerao, A. Sivaraman, G. Porter, and K. Winstein. Encoding, fast and slow:
Low-latency video processing using thousands of tiny threads. In Proceedings of
the 14th USENIX Conference on Networked Systems Design and Implementation
(NSDI'17). USENIX Association, Berkeley, CA, USA, 363-376.

7. G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third
generation architectures. Commun. ACM, 17(7):412—421, 1974.

8. J. McCarthy. Recursive functions of symbolic expressions and their computation
by machine, part I. Commun. ACM, 3(4):184-195, 1960.

9. N. Josuttis. SOA in Practice: The Art of Distributed System Design, chapter 1,
page 7. O’Reilly Media, Inc., 2007.

10. R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl, S.
Schulte, and J. Wettinger. Performance engineering for microservices: Research
challenges and directions. In ACM/SPEC ICPE Workshops 2017, pages 223-226,
2017.

11. E. Dijkstra. Cooperating Sequential Processes. Department of Mathematics,
Eindhoven Technological University, 1965.



I\ TERNET COMPUTING

12. C. Hewitt, P. B. Bishop, and R. Steiger. A universal modular ACTOR formalism
for artificial intelligence. In Proceedings of the 3rd international joint conference
on Artificial intelligence (IJCAI'73). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 235-245.

13. N. Russell, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Workflow Patterns:
The Definitive Guide. MIT Press, 2016.

14. Survey of the CNCF serverless WG: https://github.com/cncf/wg-serverless

15. S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Serverless computation with openLambda.
In Proceedings of the 8th USENIX Conference on Hot Topics in Cloud
Computing (HotCloud'16). USENIX Association, Berkeley, CA, USA, 33-39.

16. E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud:
distributed computing for the 99%. In Proceedings of the 2017 Symposium on
Cloud Computing (SoCC '17). ACM, New York, NY, USA, 445-451. DOI:
https://doi.org/10.1145/3127479.3128601.

17. https://research.spec.org/working-groups/rg-cloud.html

18. E. V. Eyk, A. Tosup, C. L. Abad, J. Grohmann, and S. Eismann. A SPEC RG cloud
group’s vision on the performance challenges of FaaS cloud architectures. In
ICPE, pages 21-24, 2018.

19. https://www.eugdpr.org

ABOUT THE AUTHORS

Erwin van Eyk is an M.Sc. student at the Delft University of Technology, the Netherlands,
where he works on serverless function and workflow scheduling. He is leading the Server-
less working group of the SPEC RG Cloud Group focussing on performance evaluation and
comparison of FaaS platforms. Contact him at E.vanEyvk@atlarge-research.com or https://
erwinvaneyk.nl.

Lucian Toader is an M.Sc. student at Vrije Universiteit Amsterdam, the Netherlands, where
he studies modern distributed systems. His work on massivizing computer systems led him
to serverless. Contact him at L.Toader@atlarge-research.com.

Sacheendra Talluri is an M.Sc. student at the Delft University of Technology, the Nether-
lands. In the spring of 2018, he was a research intern at big data company Databricks, work-
ing on resource management and scheduling across the memory-storage stack. Contact him
at S.Talluri@atlarge-research.com.

Laurens Versluis is an Ph.D. student at Vrije Universiteit Amsterdam, the Netherlands,
where he studies modern distributed systems. His work on massivizing computer systems
focuses on resource management and scheduling, with applications in cloud computing.

Contact him at L.E.D.Versluis@vu.nl.

Dr. Alexandru Uta is a post-doctoral researcher at Vrije Universiteit Amsterdam, the
Netherlands, where he studies modern distributed systems. His work on massivizing com-
puter systems focuses on resource management and scheduling, with applications in cloud
computing and big data. Contact him at A.Uta@vu.nl.

Prof.dr.ir. Alexandru losup is a tenured Full Professor and University Research Chair at
the Vrije Universiteit Amsterdam, the Netherlands, where he leads the Massivizing Com-
puter Systems group. He is also Associate Professor with the Distributed Systems group at
TU Delft, the Netherlands, where he received his Ph.D. in 2009. His work has received
numerous awards, including the Netherlands ICT-Researcher of the Year (2016), Nether-
lands Teacher of the Year (2015), and several SPEC SPECtacular community-awards (the
last in 2017). He is a member of the Young Academy of the Royal Academy of Arts and
Sciences of the Netherlands. He is elected Chair of the SPEC Research Cloud Group. In his
spare time, he contributes to training legal refugees in the Netherlands. You can contact
Alexandru by email [ A.losup@vu.nl ], visiting (check http://atlarge.science), or via Twitter
[ @Alosup ].



mailto:E.vanEyk@atlarge-research.com
https://erwinvaneyk.nl
https://erwinvaneyk.nl
mailto:L.Toader@atlarge-research.com
mailto:S.Talluri@atlarge-research.com
mailto:L.F.D.Versluis@vu.nl
mailto:A.Uta@vu.nl
mailto:A.Iosup@vu.nl
http://atlarge.science

