Efficient Estimation of Read Density when Caching for Big Data Processing

Sacheendra Talluri Alexandru losup

What is Big Data?

Medicine

Search

Finance

Science

- Volume
- Velocity
- Variety
- ...

Processed by multiple machines concurrently.

[1] Human HIV-1 protein interaction network, Wikimedia Commons[3] Samsung Insights[2] Google Inc.[4] LIGO Scientific Collaboration

Scarcity of publicly available information about caching for big data processing

Lack of cache policies for big data processing workloads

This Work	Big Data
Beckmann 2018	Web, Database, Workstation
Einziger 2017	Web, Database, Workstation
Blankstein 2017	Web, Database, Workstation
Berger 2017	Web
Huang 2013	Social Media
	Workloads

Scarcity of publicly available information about caching for big data processing

Lack of cache policies for big data processing workloads

	Workloads
Huang 2013	Social Media
Berger 2017	Web
Blankstein 2017	Web, Database, Workstation
Einziger 2017	Web, Database, Workstation
Beckmann 2018	Web, Database, Workstation
This Work	Big Data

Scarcity of publicly available information about caching for big data processing

Research Question 1

How do existing cache policies perform for big data processing?

Impact

Enables the selection of better policies by system designers and operators

Scarcity of publicly available information about caching for big data processing

Leading to a lack of policies specifically for big data processing systems

Research Question 1

How do existing cache policies perform for big data processing?

Research Question 2

Could a policy be specifically designed with big data processing in mind?

Impact

Improved storage performance for big data processing

Read Density Family of Utility Metrics

Read Density Family of Utility Metrics

Read Density Family of Utility Metrics

Reuse time

Reuse Time Histogram

Keeps track of reads occurring in this time period since the last read

Reuse Time Histogram

Keeps track of reads occurring in this time period since the last read Costly to store a histogram for every object

Approx. 10x less space

Comparison to LHD

- No special categories
 - Keeps track of history of each object
- Less space
- Does not try to evict based on predicted eviction time
 - Simpler to reason about

Experimental Setup - Infrastructure

- Simulation using simulator component of Caffeine
 - Previously used in high quality work
- Two Workloads
 - Databricks[1]
 - Yahoo Webscope 3
- From Two different System Models

YAHOO!

[1] Talluri, et. al., Characterization of a Big Data Storage Workload, ICPE'19 - https://atlarge-research.com/pdfs/db-big-data-characterization-icpe-2019.pdf

databricks^{*}

Model 1: Cluster based Big Data Processing

Model 2: Cloud based Big Data Processing

Simulated Cache Placement

Experimental Setup - Policies

- Traditional policies
 - FIFO
 - LRU, LFU
 - LIRS Uses reuse time
 - SLRU Partitioned cache
 - ARC, CART Adaptive
- Post 2010 algorithms
 - Hyperbolic, W-TinyLFU, LHD
- Representative of different kinds of policies available

Evaluation of Cache Policies for Big Data Workloads Using cloud computing for large scale simulation

Evaluation of Cache Policies for Big Data Workloads

Databricks Trace

Similar performance. No improvement due to recent policies

Evaluation of Cache Policies for Big Data Workloads

Yahoo Trace

Similar performance. No improvement due to recent policies

Take Home Message

- 1. First simulation-based experiments with modern models, real-world big data traces, and traditional and recent caching policies
- 2. Caching for big data processing has not received much attention
- 3. Existing policies all perform about the same

Ideas for future work: Big data storage accesses show some repetition Predict times of use prefetch data or even metadata Reduces time to first byte

Questions?