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What is Big Data?

● Volume
● Velocity
● Variety
● ...

Processed by multiple machines concurrently.
[1] Human HIV-1 protein interaction network, Wikimedia Commons
[2] Google Inc.

[3] Samsung Insights
[4] LIGO Scientific Collaboration

Medicine Search Finance Science
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Scarcity of publicly available information about caching for big data processing

Lack of cache policies for big data processing workloads

Motivation
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Scarcity of publicly available information about caching for big data processing

Motivation

How do existing cache policies perform for big data processing?

Research Question 1

Impact
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Scarcity of publicly available information about caching for big data processing

Leading to a lack of policies specifically for big data processing systems

Motivation

How do existing cache policies perform for big data processing?

Research Question 1
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Could a policy be specifically designed with big data processing in mind?

Research Question 2

Impact
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Reuse time
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Design of the Approximate Read Density Cache Policy
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Design of the Approximate Read Density Cache Policy
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Reuse Time 
Category 1

0 - 500

Reuse Time 
Category 2
500 - 1,000

Reuse Time 
Category 20

9,500 - 10,000
. . .

Keeps track of reads occurring in this time period since the last read
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Reuse Time 
Category 1

0 - 500

Reuse Time 
Category 2
500 - 1,000

Reuse Time 
Category 20

9,500 - 10,000
. . .

Keeps track of reads occurring in this time period since the last read
Costly to store a histogram for every object
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Experimental Setup - Infrastructure
● Simulation using simulator component of Caffeine

○ Previously used in high quality work

● Two Workloads
○ Databricks[1]
○ Yahoo Webscope 3

● From Two different System Models
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16[1] Talluri, et. al., Characterization of a Big Data Storage Workload, ICPE'19 - https://atlarge-research.com/pdfs/db-big-data-characterization-icpe-2019.pdf



Model 1: Cluster based Big Data Processing
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Model 2: Cloud based Big Data Processing
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Experimental Setup - Policies
● Traditional policies

○ FIFO
○ LRU, LFU
○ LIRS - Uses reuse time
○ SLRU - Partitioned cache
○ ARC, CART - Adaptive

● Post 2010 algorithms
○ Hyperbolic, W-TinyLFU, LHD

● Representative of different kinds of policies available
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Take Home Message
1. First simulation-based experiments with modern models, real-world 

big data traces, and traditional and recent caching policies
2. Caching for big data processing has not received much attention
3. Existing policies all perform about the same

Questions?
24

Ideas for future work:
Big data storage accesses show some repetition
Predict times of use prefetch data or even metadata
Reduces time to first byte


