
Efficient Estimation of Read Density when
Caching for Big Data Processing

Sacheendra Talluri
AtLarge Research and TU Delft,

Delft, the Netherlands
s.talluri@atlarge-research.com

Alexandru Iosup
Vrije Universiteit,

Amsterdam, the Netherlands
a.iosup@vu.nl

Abstract—Big data processing systems are becoming increas-
ingly more present in cloud workloads. Consequently, they are
starting to incorporate more sophisticated mechanisms from
traditional database and distributed systems. We focus in this
work on the use of caching policies, which for big data raise
important new challenges. Not only they must respond to new
variants of the trade-off between hit rate, response time, and the
space consumed by the cache, but they must do so at possibly
higher volume and velocity than web and database workloads.
Previous caching policies have not been tested experimentally
with big data workloads. We address these challenges in this
work. We propose the Read Density family of policies, which
is a principled approach to quantify the utility of cached
objects through a family of utility functions that depend on
the frequency of reads of an object. We further design the
Approximate Histogram, which is a policy-based technique based
on an array of counters. This technique promises to achieve
runtime-space efficient computation of the metric required by
the cache policy. We evaluate through trace-based simulation
the caching policies from the Read Density family, and compare
them with over ten state-of-the-art alternatives. We use two
workload traces representative for big data processing, collected
from commercial Spark and MapReduce deployments. While
we achieve comparable performance to the state-of-art with less
parameters, meaningful performance improvement for big data
workloads remain elusive.

I. INTRODUCTION

Big data workloads are increasingly more needed in our
professional and personal lives. Their execution in datacenters,
as cloud services, is increasingly required for economic growth
and productivity [1]–[3]. The systems for big data processing
must respond to increasing and more sophisticated demands,
from unprecedented volume and velocity of data, to new ap-
plications and more complex data-storage solutions. Systems
designers achieve this through a variety of approaches, e.g.,
by incorporating increasingly more sophisticated techniques
for managing data, such as dynamic partitioning [4] and
auto-tiering, and by tuning well-known mechanisms, such as
indexing and caching. (Recursively, a cache is fast storage
situated in-between the processor and slower storage. Request-
ing an object that is in cache—a hit—results in a significant
performance improvement, relatively to when the object is not
in cache.) We focus in this work on the challenges raised by
caching for big data workloads, in particular, on the design of
efficient caching policies, and on evaluating these and existing
caching policies against representative big data workloads.

Caches are based on the hypothesis that some objects are
more frequently accessed than others; in general, placing these
objects on fast storage improves performance. Typically, the
popularity of different objects (their frequency of access)
changes throughout their lifetime, and often also throughout
the lifetime of the application accessing the object(s). For a
cache to remain useful, the population of objects in the cache
also needs to change, which happens subject to a cache policy.
Cache policies consist of at least two components: an eviction
policy, which decides which object to remove from the cache
to make room for a new object; and an admission policy, which
decides whether a new object should be stored in the cache.
We focus in this work on eviction policies. We conjecture
the techniques proposed in this paper should also apply to
admission policies, but leave testing this for future work.

The design of cache policies must respond to a complex
trade-off, whose components include at least the hit rate (ratio,
when considered instantaneously), that is, the ratio between the
number of objects found in cache and the number of requested
objects from the cache, the time it takes the policy to take a
decision, and the storage size used by the cache including
its data structures. Consequence of this complex trade-off,
which can change also due to the needs of both datacenter
clients and operators, cache policies are typically simple by
design. Commonly used policies are typically simple and
based on heuristics (e.g., LRU, LFU, LIRS [5]), or are based
on complex mechanisms that manage however collections of
simple policies (e.g., ARC [6], Hyperbolic [7]).

Focusing on the system model introduced in Section II, this
work makes a three-fold contribution to the existing body of
work (see Section VII):

1) We design the Read Density family of caching poli-
cies (Section III). Our approach to design is based on
two core principles, which extend in particular 2018
work on database caching [8] to scenarios where clas-
sification using simple categories can leads to mis-
categorization and where application-specific informa-
tion is unavailable. Our approach also generalizes the Hit
Density metric [8] to an entire family of utility functions.

2) We use the Approximate Histogram in caching for big
data (Section IV). We employ this data structure, which
is used in distributed systems and in networking, to keep
track of reads of an object over time. We use the result



Fig. 1: System architecture of a virtual cluster for big data.

to make the Read Density caching policies usable in
practice for long-running big data workloads.

3) We employ trace-based simulation to analyze the
caching policies proposed in this work, and to compare
them Performance evaluation of cache policies for big
data storage workloads (Section VI). Ours are the first
experiments to quantify the performance of state-of-the-
art caching policies for big data workloads.

II. SYSTEM MODEL

We use in this work the system model for the operation
of (Spark-based) big data workloads in the cloud that we
have introduced in our previous work [9]. This model is
common in practice across many organizations, in particular,
for commercial big data operations at Yahoo (MapReduce) and
Databricks (Spark). Figure 1 depicts the system model.

Job stream: jobs are submitted by users or created by
events, and arrive for execution in the system as a stream.
Each job (component 2 in Figure 1) is structured as a directed
acyclic graph of inter-dependent tasks. It reads input from the
persistent storage, processes it, and produces output.

System Architecture: a big data system running on one or
more virtual clusters, comprised of virtual machines (VMs)
that are organized into a logical group and communicate using
a virtual network. The big data system is composed of typical
software that runs big data tasks and that coordinates the
execution (components 4 and 5, respectively). The VMs are
leased, from a cloud provider such as Amazon Web Services
or from a private cloud.

The virtual cluster is connected at runtime to a source
of incoming data, from which it reads. In our model, a
typical source of data is a cloud-based, persistent, object-
store (component 6), for example, Amazon S3.

Cache workload: We focus in this work on caching for the
workload of requests issued to the storage layer, between the
system workers (component 4 in the figure) and the system
storage (6). The cache workload is comprised of all the data-
requests across all jobs that try to reach the storage system.

III. DESIGN OF THE READ DENSITY FAMILY

We propose in this section the principled design of the
Read Density family of caching policies. Today’s storage
systems deployed in the cloud or on-premises commonly treat
applications as black-boxes. Reasons relate to business (e.g.,
different vendors), operations (e.g., no access to application
code or large variety of applications), and regulations (e.g.,
the EU-law GDPR and other privacy-related aspects). Thus,
the first principle of our design is: (P0) Caching policies have
no access to application-specific information.

We use two more principles: (P1) Objects with a high
number of reads are more valuable, and (P2). Objects read
earlier are more valuable. Principle P1 focuses on cache hits.
Principle P2 focuses on resource-use. Each object in the cache
uses a resource (a slot), accumulating resource-use over time.
An object which maximizes the number of hits, while using a
slot for the least amount of time, has the highest read density.
Focusing on read density has an added benefit: the system
does not try to predict the time to eviction, and thus avoids
the second-order effect of evicting an object based on the
prediction of when it will be evicted; we conjecture that such
an effect can increase rapidly with the volume of objects in a
big data system.

Family of Caching Policies: To design policies related to
these principles, we start from the common assumption that
past IO-behavior of an object is indicative of its future IO-
behavior. Thus, we use quantities (metrics) that consider the
reuse time, that is, the time elapsed between two consecutive
reads of an object. Based on reuse time, we propose in
this section a mechanism and two utility functions, that is,
functions that quantify the value of keeping an object in the
cache. For any caching policy using reuse-time to decide
about object-eviction, and in particular for any heuristic that
uses this information straightforwardly, the designer can use
the mechanism and the proposed utility functions (and others
similarly defined) to create a family of caching policies.

Mechanism: For each object in the cache workload (see
Section II), the caching policy considers the histogram with
reuse time on the horizontal axis and the read count (the
popularity) on the vertical axis. The histogram is updated every
time a read operation occurs. Dividing the popularity of an
object at a particular reuse time by the total number of reads
gives the empirical probability that the object is read after that
(reuse) time, as in Equation 1:

P (R = o|I = t) =
N(R = o|I = t)

T
(1)

where P is the probability computed for object o and reuse
time t, T is the total number of reads of that object, N is the
empirical popularity, and R is the random variable of reads of
objects and I is the random variable of reuse times.

The policy can now compute the expectation of a read for
a given object, taking into account the time since the object
was last accessed—the age of the object (a), in Equation 2:

E(R = o) =

n∑
i=a

1× P (R = o|I = i) (2)



Reuse Time Category kk - 1 k + 1

Row 2 Row j

Hash fun. 1 Hash fun. 2 Hash fun. j
Approximate Counter

Obj1: 10 Obj2: 5 Obj3: 3
Exemplary

Data 

Row 1 0 10 0 7 0

Fig. 2: Example of an approximate histogram.

Utility Functions: Equation 2 does not penalize reads with
long reuse time and do not reward reads with short reuse time.
We need to include these to support P2. A penalty can be
applied in two main ways. One is to divide the expectation of
a read by the expected reuse time [8]. The other is to divide
the probability of a read at a particular reuse time, by that
reuse time. We give two utility functions of the latter kind.

(1) Using Expected Reuse Time replacing in Equation 2
the value one with the expected reuse time (i), the expected
reuse time of a particular object is given by:

EI(R = o) =

n∑
i=a

i× P (R = o|I = i) (3)

Using Equations 2 and 3, Equation 4 gives the value of
keeping an object in the cache, D1. Intuitively, D1 uses the
expected reuse time to quantify the reward for letting an item
stay in the cache.

D1(R = o) =

∑n
i=a 1× P (R = o|I = i)∑n
i=a i× P (R = o|I = i)

(4)

(2) Using Division by Reuse Time
Instead of calculating the expected reuse time, we can

penalize the probability of a read directly during the expected
probability calculation, by dividing it by the reuse time.
Equation 5 quantifies this penalty:

D2(R = o) =

n∑
i=a

1× P (R = o|I = i)

i
(5)

IV. APPROXIMATE HISTOGRAM

We propose in this section to use Approximate Histograms
for keeping track of object reuse-time. In Section III, ranking
objects for eviction is based on histograms used to calculate
utility functions, one per object. At big-data scale, keeping
complete histograms for each object is not feasible, due to
space constraints. A mitigating approach is to categorize items
by fine-grained features, such as the application type and
the reuse time of the last read [8], and to keep histograms
per category instead of per object. However, this forces the
policy designer to decide on (optimal) categories, based on
information that may not be available at design time or even
at all; for example, a file-system cache may not know the
application type of a given IO-request. Instead, we propose to
use Approximate Histograms to keep track of every object, but
without the space requirements of storing whole histograms.
Approximate Histograms operate on coarse-grained features,

so they also requires less parameter-tuning than using hand-
picked categories.

Overview: An Approximate Histogram is an array of ap-
proximate counters coupled with a decay function. Figure 2
depicts an example. Each approximate counter in the array
keeps the counts of objects accessed in a reuse-time category.
The whole range of the reuse-time needs to be split into
coarse-grained categories, to limit memory usage and to
make the histogram immune to noise. The split, linear or
logarithmic, designer-defined or auto-tuned, and results in a
number of adjacent ranges (categories). For example, a time
range of 0 to 1000 milliseconds can be divided into adjacent
categories of 100 milliseconds each: 0-99 for category 1, 100-
199 for category 2, and so on.

Approximate Counters: Each category has an approximate
counter (sketch). Examples of approximate counting data
structures include count-min sketch [10], cuckoo filter [11],
and counting quotient filter [12]. They have different properties
related to performance, storage size, and other maintenance
aspects such as duplication resistance. When an object is
read, the counter in the corresponding reuse time category is
incremented for that object.

In this work, we use the count-min sketch as approximate
counter. A count-min sketch consists of several arrays (rows),
each associated with its own hash function. The hash function
takes the identifier (key) of an object and returns a position
in the array (the column). Whenever an object is read, the
positions with the minimum value across all rows for this
object are incremented by one; this means that the count-min
sketch can only return the minimum number of times an object
has been read. The size of the count-min sketch, that is, the
number of rows and columns, is decided at design time, and
gives known time-space properties and a bounded probability
of error.

Approximate Histogram for Big Data Processing: Big
data processing involves many repeated operations, where the
iterations commonly reuse old data. Thus, caches can serve the
same application for a long period of time. During this period,
the counters of the Approximate Histogram can get saturated.
To prevent saturation, periodically, the counters can be reset
to zero or they can be decayed (e.g., divided by a constant).
Because there are relatively few approximate counters, and
they are placed in memory contiguously, decaying them is
relatively inexpensive. We use for this the technique presented
in TinyLFU [13]: all counters are reset periodically, with the
period determined from a scalar time that is incremented
by one for every increment of the approximate counter; for
example, the period can be set such that the counters are
decayed every 10000 reads.

V. EXPERIMENT SETUP

We design in this section a set of experiments, with two
main goals. First, we aim to conduct the first analysis of the
Approximate Read Density (ARD) policy, which combines the
family of caching policies based on Read Density (Section III)
and using the Approximate Histogram (Section IV). Second,



TABLE I: List of experiments and their configurations.

Subsection Goal Workload Policy Parameters Varied Cache Size [K]

VI-B Compare Read Density based
eviction metrics

Spark
(Databricks) ARD eviction metric 5–625

VI-B1 Analyze sensitivity of
approximate histogram

Spark
(Databricks) ARD max count,

num. time categories 5–625

VI-C1 Compare eviction policies for
Databricks workload

Spark
(Databricks) All None 5–625

VI-C2 Compare eviction policies for
Yahoo workload

MapReduce
(Yahoo) All None 5–625

we aim to conduct the first comprehensive comparison of
caching policies for big data workloads.

A. Overview of the Setup

Table I summarizes the experiment design. The experiments
first focus on the ARD policy, for which they focus on the
Read Density and the Approximate Histogram aspects, and
then proceed to compare eviction policies for two big data
workloads.

Workloads: We use real traces collected from commercial
big data deployments. The Spark workload trace is a subset
of trace W2 analyzed in [9]. The MapReduce trace is a subset
of the publicly available Yahoo Webscope 3 dataset1.

Cache Size: We experiment with the cache size set between
5,000 and 625,000 objects, which are in line with real-world
usage of caches for big data processing. For these values, the
ratio of the working set size to the cache size is in the range
of around 10,000 to under 10, respectively.

Key performance metric: The performance metric mea-
sured in all experiments is the hit rate, which refers to the
total fraction of reads that were hits. All experiments were
run ten times and the mean hit rate for each configuration was
used. The standard deviation of the results was less that 1%.

Simulator: We use for experiments the simulation frame-
work of Caffeine2, a popular in-memory cache library for Java.
This simulator comes equipped with the policies described
in Section V-B and has been previously used in at least one
other high-quality peer-reviewed study [13]. We implement
our ARD policy in this simulator.

Parameters: The Approximate Histogram has a pre-
configured number of approximate counters—all are count-
min sketches. The number and length of the arrays (“max
count” and “num time categories” in Table I, respectively) is
decided from the values configured for epsilon and confidence,
which are the same as in the original count-min sketch
paper [10].

B. Tested Policies

We compare ARD with over 10 state-of-the-art caching
policies, and with the Random policy (evicting a random
object). Next to the commonly used FIFO, LFU, and LRU, we

1https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=57
2https://github.com/ben-manes/caffeine

consider all the policies described and contrasted conceptually
with ARD in Section VII-A.

CLOCK is similar to FIFO, but an object is not evicted the
first time it reaches the highest priority for eviction; instead, it
gets evicted the second time it is considered in such a position.

Segmented LRU (SLRU) divides the cache into two parti-
tions. Both partitions use the LRU eviction policy. An object
is evicted from the first into the second partition. We set the
second partition to take 90% of the cache space.

Adaptive Replacement Cache (ARC) [6] partitions the
cache into two parts, which compete for space based on hit
rate. They use the LRU and LFU for eviction, respectively.

CART [14] combines ARC two-partition dynamics with
CLOCK second-hit eviction.

LIRS [5] evicts object based on their last reuse time.
Hyperbolic [7] evicts object based on utility, which is hits

divided by time in cache.
W-TinyLFU [13] divides the cache into two partitions and

uses the TinyLFU policy for controlling admission to the
second partition. It uses LRU and SLRU as eviction policies
for the first and second partition respectively.

VI. EXPERIMENT RESULTS

We summarize in this section the main experimental results,
obtained using the experiment design from Section V.

A. Parameter Sweep of Approximate Read Density Policy

The Approximate Read Density (ARD) policy has few
parameters, in particular, fewer than LHD. We analyze and
show evidence about the insensitivity of the hit rate to the
ARD parameters, when the parameters are set to reasonable
ranges. A policy is insensitive to its parameters means that
its performance doesn’t change when the parameters change.
Reasonable ranges means that the parameters should not be
set to absurd values such as zero or extremely large values.

B. Eviction Metric Comparison

We proposed two metrics belonging to the Read Density
family in Section III: 1. Using expected reuse time (D1(R)),
and 2. Using division by reuse time (D2(R)). We compare the
hit rate performance the these two metrics along with just a
metric based on expectation of read (E(R)). We compare their
performance on the Databricks trace using a cache with entry
and admission metrics set to allow all. The results are depicted



Fig. 3: Comparison of eviction metrics. Each panel corre-
sponds to a different cache size (number of objects).

Fig. 4: Comparison of different parameter sets. Each panel
corresponds to a different cache size (number of objects). M
is the maximum count per category of the histogram. N is the
number of time categories in a histogram.

in Figure 3. We observe that all three eviction policies perform
equally well at all measured cache sizes.

1) Insensitivity to Parameters of Eviction Policy: Our evic-
tion policy takes two parameters: maximum count and number
of categories. Maximum count is the maximum count of the
number of reads of an object stored per time category in the
approximate histogram. Any reads higher than that are not
counted till the histogram is reset. The number of categories
refers to the number of categories of reuse time.

The results are depicted in Figure 4. We observe that
the parameters don’t have any effect on the performance of
the cache policy as long as they are reasonable. Too few
categories, 1 for example, and the algorithm degenerates to
LFU. Too many, 1,000 for example, and the policy starves for
data. The reset interval is the number of reads after which the
counters in the histogram are reset. This generally corresponds
to the size of the working set. We use a value of 10,000. We
find that a reasonable interval functions well. Too low, and
the policy doesn’t have enough time to gather information.
Too high, and all the counters are saturated leading to loss of
information.

C. Cache Policy Comparison

We compare eviction policies using two traces: Databricks
and Yahoo. The policies with randomization elements were
run ten times and the results were averaged. The standard
deviation was less than 1%. The policies are first compared at
large cache sizes, 5,000 to 625,000.

1) Databricks Trace: The results of simulating the
Databricks trace are depicted in Figure 5. The only policy
that performs significantly worse at all cache sizes is LFU. All
policies which focus on temporal locality or have a component
focused on it perform well. We conjecture that this is due to
the peculiar usage pattern of big data workloads. A file is read
many times in a short interval because it is being processed.

Fig. 5: Comparison using the Databricks trace. Each panel
corresponds to a different cache size (number of objects).
Policies published after 2010 are in blue.

Fig. 6: Comparison using the Yahoo trace. Each panel corre-
sponds to a different cache size (number of objects). Policies
published after 2010 are in blue.

Then, it is not read again for long period of time till it is
required again. So, unless an object remains in the cache for
days, it is unlikely that algorithms based solely on popularity
perform well.

2) Yahoo Trace: The results of simulating the Yahoo trace
are depicted in Figure 6. The results are similar the Databricks
trace. All policies which take temporal locality into account
perform well, but the difference isn’t significant. It seems that
there is more opportunity for algorithms which take popularity
into account to perform well here. This is evident from the
success of ARC and CART. It is also evident by LFU perform
better that it did with the Databricks trace.

We observe that the performance of ARD is similar to state-
of-the-art work on caching policies, when applied to big data
workloads. But, we do not see the gains we expect. Almost
all cache policies perform similarly with recent policies (those
published after 2010) performing slightly worse. We conjec-
ture that this is due to the fact that new policies search for
patterns to optimize themselves and are unable to find them.
This might be due the extremely long length of the patterns.
For example, some big data workloads repeat every day. In
that period, the metadata collected about the pattern is already
forgotten.

VII. RELATED WORK

We report here the results of a systematic survey [15] of 18
high quality venues focusing on large-scale systems (HPDC,
SC, etc.), systems and operating systems (NSDI, OSDI, etc.),
and performance (SIGMETRICS, ICPE, etc.), starting in 2010.



TABLE II: Workloads used in cache-policy evaluations.

Workloads

Huang 2013 [19] Social Media
Berger 2017 [20] Web
Blankstein 2017 [7] Web, Database, Workstation
Einziger 2017 [13] Web, Database, Workstation
Beckmann 2018 [8] Web, Database, Workstation

This Work Big Data

We also compare with prior work which has been highly cited
by publications studied in our systematic survey.

A. Cache Policy Design

Caching is a well studied problem with a long history. We
trace the lineage of the concepts used in this work. We also
compare our work to recent studies on cache policy design.

LIRS [5] is one of the first algorithms to use reuse-distance
as a metric. Hyperbolic caching [7] also divides popularity
by time. LRU-K [16] remembers the K most recent reads of
each object. The concept of using multiple approximate data
structures in storage related scenarios has been introduced
in counter stacks [17]. Databases have recently started to
use multiple approximate data structures to keep track of
histograms [18].

W-TinyLFU [13] and LHD [8] are the most closely related
works to this one. W-TinyLFU uses approximate counters.
Our eviction policy, also based on approximate counters, takes
into account reuse time and is thus novel. LHD takes into
account reads at different reuse times. For each reuse time
category, object are further categorized based on features such
as application name and database column. In many caching
applications, such features are not available. Our work uses
approximate counters instead of categories, which sidesteps
the decision of choosing good categories and thus has less
parameters to tune.

B. Cache Policy Evaluation

No independent benchmarking activity for caching policies
exists for big data workloads. Instead, recent evaluations of
cache policies are paired with either a new policy design or
the new characterization of a workload. We summarize the
type of workloads used in such recent studies in Table II. Most
evaluations use workloads related to caching for: (1) servers
like nginx or application caches like memcached (“Web”
in the table), (2) SQL databases used in web applications
(“Database”), and (3) regular files of users (“Workstation”).
This is the first study to evaluate the efficacy of cache policies
for big data workloads.

VIII. CONCLUSION

The use of caching for big data workloads is both of great
importance and understudied. Designs of caching policies are
either very general, or still assume the availability of fine-
grained, application-specific information. We propose in this
work to use read density for the principled design of an entire
family of caching policies. We further add to this design a

data structure, the Approximate Histogram, to keep track of
the behavior of objects over time, efficiently.

We further design and conduct comprehensive experiments
with the family of caching policies we have proposed, which
we contrast to over 10 caching policies. Our experiments use
simulation based on two real traces collected from commercial
big data environments that use the widely popular big data
processing systems Spark and MapReduce, respectively. We
find that our policy is competitive while needed fewer pa-
rameters than the state-of-the-art, but also that most policies
perform approximately the same when using hit rate as the
metric. The latter indicates obtaining meaningful performance
improvements when caching for big data workloads remains
elusive.

ACKNOWLEDGMENTS
Work supported by the project Vidi MagnaData. We thank the

AtLarge Research team, Databricks Amsterdam, and Yahoo; Laurens
Versluis for proofreading.

REFERENCES

[1] European Commission, “Big Data and data analytics,” EU Parliament,
Sep 2016.

[2] Gartner Inc., “Infrastructure and Operations (I&O) Leadership Vision
for 2017, section CIO Technology Priorities,” Tech.Rep., 2017.

[3] D. Reinsel et al., “Data age 2025. the digitization of the world from
edge to core,” IDC White Paper US44413318., Nov 2018.

[4] Y. Guo et al., “Modeling, analysis, and experimental comparison of
streaming graph-partitioning policies,” JPDC, vol. 108, 2017.

[5] S. Jiang et al., “LIRS: an efficient low inter-reference recency set
replacement policy to improve buffer cache performance,” in SIGMET-
RICS 2002.

[6] N. Megiddo et al., “ARC: A self-tuning, low overhead replacement
cache,” in FAST 2003.

[7] A. Blankstein et al., “Hyperbolic caching: Flexible caching for web
applications,” in USENIX AT 2017.

[8] N. Beckmann et al., “LHD: improving cache hit rate by maximizing hit
density,” in NSDI 2018.

[9] S. Talluri et al., “Characterization of a big data storage workload in the
cloud,” in ICPE, 2019, (in print).

[10] G. Cormode et al., “An improved data stream summary: the count-min
sketch and its applications,” J. Algorithms, vol. 55, no. 1, 2005.

[11] B. Fan et al., “Cuckoo filter: Practically better than bloom,” in CoNEXT
2014.

[12] P. Pandey et al., “A general-purpose counting filter: Making every bit
count,” in SIGMOD 2017.

[13] G. Einziger et al., “Tinylfu: A highly efficient cache admission policy,”
TOS, vol. 13, no. 4, 2017.

[14] S. Bansal et al., “CAR: clock with adaptive replacement,” in FAST 2004.
[15] B. Kitchenham et al., “Guidelines for performing systematic literature

reviews in software engineering,” EBSE Technical Report EBSE-2007-
01, 2007, updated, version 2.3.

[16] E. J. O’Neil et al., “The LRU-K page replacement algorithm for database
disk buffering,” in SIGMOD 1993.

[17] J. Wires et al., “Characterizing storage workloads with counter stacks,”
in OSDI 2014.

[18] E. Gan et al., “Moment-based quantile sketches for efficient high
cardinality aggregation queries,” PVLDB, vol. 11, no. 11, 2018.

[19] Q. Huang et al., “An analysis of facebook photo caching,” in SOSP
2013.

[20] D. S. Berger et al., “Adaptsize: Orchestrating the hot object memory
cache in a content delivery network,” in NSDI 2017.


