
Peer-to-Peer Netw. Appl. (2016) 9:1145–1161
DOI 10.1007/s12083-015-0383-6

Operation analysis of massively multiplayer online games
on unreliable resources

Radu Prodan1 ·Alexandru Iosup2

Received: 30 November 2014 / Accepted: 14 June 2015 / Published online: 4 July 2015
© Springer Science+Business Media New York 2015

Abstract We investigate the use of a new Massively Mul-
tiplayer Online Gaming (MMOG) ecosystem consisting
of end-users, game providers, game operators, and Cloud
resource providers, for autonomous, self-adaptive hosting
and operation of MMOGs on unreliable resources. For this
purpose, we developed anMMOG simulator compliant with
our ecosystem, supported by a dynamic resource provision-
ing and load balancing algorithm. Using our simulator in
which we inject traces collected from a real-world MMOG
and resource characteristics from 16 Cloud providers, we
study the impact on the involved actors by considering dif-
ferent resource availability levels. We highlight the advan-
tages of dynamic resource allocation over the static overpro-
visioning with respect to two types of metrics: QoS offered
to the clients and financial profit of game providers and
operators.

Keywords Massively multiplayer online games · Fault
tolerance · Dynamic resource provisioning · Load
balancing · Cloud computing · Quality of service

� Radu Prodan
radu@dps.uibk.ac.at

Alexandru Iosup
A.Iosup@tudelft.nl

1 Institute of Computer Science, University of Innsbruck,
Innsbruck, Austria

2 Parallel and Distributed Systems, Delft University
of Technology, Delft, Netherlands

1 Introduction

Massively Multiplayer Online Games (MMOGs) are a new
type of large-scale distributed applications characterised by
a real-time virtual world entertaining millions of players
spread across the globe. To concurrently support millions
of active players and many other server-driven entities
(non-playing characters and other game objects) generat-
ing variable computational and latency-sensitive resource
demands, the MMOG operators purchase and overprovision
a multi-server infrastructure with sufficient computational,
network and storage capabilities for guaranteeing the Qual-
ity of Service (QoS) requirements and a smooth gameplay
at all times. This statically provisioned infrastructure has
two major drawbacks: it has high operational costs and
is vulnerable to capacity shortages in case of unexpected
increases in demand. For example, the infrastructure of
the World of Warcraft MMOG has over 10,000 comput-
ers [6]. However, similar to fashion goods, the demand of
a MMOG is highly dynamic and thus, even for the large
MMOG operators that manage several titles in parallel, a
large portion of the resources are unnecessary which leads to
a very inefficient and low resource utilisation. RuneScape’s
(http://www.runescape.com/) infrastructure also comprises
thousands of computers in hundreds of physical locations,
and resource ownership can take up to 40 % of the total
game revenue (see http://www.dfcint.com/).

To address these gaps, we investigated in previous work
[9, 19, 20] the use of Cloud technologies for on-demand
provisioning of virtualised resources to MMOGs based on
their actual variable load. For this purpose, we designed
a new ecosystem for MMOG operation and provision-
ing [20] consisting of four actors with smaller and bet-
ter focused roles that facilitate their market penetration
and chances of business success: clients, game providers,

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s12083-015-0383-6-x&domain=pdf
mailto:radu@dps.uibk.ac.at
mailto:A.Iosup@tudelft.nl
http://www.runescape.com/
http://www.dfcint.com/

1146 Peer-to-Peer Netw. Appl. (2016) 9:1145–1161

game operators, and resource (Cloud) providers. The inter-
action between them is negotiated and regulated through
bipartite Service Level Agreements (SLA), representing
wrappers around QoS parameters they agree to deliver.
In this paper, we extend our framework and ecosystem
for dealing with autonomous, self-adaptive MMOG oper-
ation, with a focus on self-healing in case of unexpected
resource failures. We present an analysis of the impact
of employing real Cloud resources on the QoS offered to
the clients based on a dynamic resource provisioning and
load balancing algorithm. We model the resources offered
by 16 Cloud providers for which we study the result-
ing quality of game-play considering different resource
availability levels, and show that our system can automat-
ically mitigate the negative effect resource failures have
on MMOGs. For this purpose, we developed an MMOG
simulator compliant with our ecosystem capable of emulat-
ing the behaviour of the four actors using traces collected
from a real-life MMOG and resource characteristics from
real-world commercial Cloud providers. Using our simu-
lator, we study the impact of MMOG operation and pro-
visioning on the involved actors by considering different
resource availability levels, and highlight the advantages
of dynamic resource allocation over the static overprovi-
sioning with respect to two metrics types: QoS offered
to the clients and financial profit of the game provider
and operator.

The paper is organised as follows. Section 2 presents our
client-server MMOG model followed by our new ecosys-
tem in Section 3. Section 4 introduces the failures that can
occur during theMMOG operation considered in our model,
followed by the dynamic resource allocation approach and
load balancing algorithm for dealing with them in Section
5. Section 6 presents our MMOG simulation tool used for
evaluation in Section 7 using traces collected from a real-life
MMOG on commercial Cloud resources. Section 8 presents
our simulation results, Section 9 reviews the related work
and Section 10 concludes the paper.

2 MMOG model

Today’s online games operate as client-server architectures
in which the server simulates the game world via comput-
ing and database operations, receives and processes com-
mands from the clients, and interoperates with a billing and
accounting system (depending on the game type) [1, 32].
The players dynamically connect through the game client
program to a joint game session and interact with each other
by sending play actions to the game servers. The vast major-
ity of game servers follow a similar computational model
implementing an infinite loop, each loop iteration consisting
of three main steps:

1. processing events coming from the connected clients
(e.g. avatar movements);

2. computing the new state of the entities as a result of the
clients’ commands and avatar interactions (e.g. trading,
collection of items, battles);

3. broadcasting updated entity states to the clients.

The main characteristic of online games is the fact that
they are soft real-time applications, having to deliver timely
responses to the clients in order to create the needed immer-
sive game-play experience. The resource load generated by
a game server is dependent on the number of connected
clients and, more significantly, on the number of interac-
tions between their respective avatars and between their
avatars and other game entities. A high number of con-
nected clients and interactions can determine an overload
of the state computation step of the main game server
loop (step 2 of the server loop) resulting in a degrada-
tion of the game-play experience for the clients which
makes the game unplayable and unappealing to players who
eventually quit.

MMOGs emerged as a natural evolution of classic online
games, responding to the trend of continuously increasing
number of players within a joint game session. To accom-
modate the tens of thousands of concurrent players into one
single MMOG session, the current practice is to parallelise
the game server code and distribute the load across multiple
resources employing parallelisation techniques. Currently
there exist three such techniques: (1) zoning, which geo-
graphically partitions the game world into disjoint zones,
that can be assigned to different computing resources; (2)
instancing, which consists of creating multiple autonomous
copies of the game world (or zone) and assigning them to
different machines, and (3) replication, which enables load
distribution by maintaining copies of the same game world
(or zone) on multiple resources but distributes the clients
between the resources. These techniques also allow trans-
parent load balancing actions, such as seamless migration of
clients between servers and transparent inclusion/exclusion
of servers into/from a game session, enabling fine grained
load distribution control with virtually no impact on the
QoS. Software libraries such as the Real Time Framework
[7] implement these techniques for distributed game opera-
tion under QoS constraints and with low overhead, for both
the client and the server. Our system relies on such libraries,
as the low-level software layer.

In this work, we consider running MMOG sessions
on heterogeneous resources offered by multiple Cloud
providers distributed around the world, as depicted in Fig. 1.
Resources are virtual machines interconnected through local
networks as well as through Internet. The resource represen-
tation comprises parameters for all the relevant character-
istics for MMOG operation, namely computational power,

Peer-to-Peer Netw. Appl. (2016) 9:1145–1161 1147

Virtualisation Infrastructure

Cloud

Zone 2Zone 1 Zone 1 - Replica

Operating
System

MMOG
Application

Virtual
Machine

Operating
System

MMOG
Application

Virtual
Machine

Operating
System

MMOG
Application

Virtual
Machine

Fig. 1 Players connected to an MMOG session running on distributed
virtualised Cloud resources

amount of installed memory, internal network bandwidth
and Internet connection bandwidth.

3 MMOG ecosystem

We propose in our work a new ecosystem consisting of four
actors, each fulfilling distinct roles (see Fig. 2):

1. the client who connects to the game operator’s MMOG
sessions;

2. the game provider who offer a selection of MMOGs by
contracting new games from development companies
(we do not cover this offline interaction);

3. the game operator who provisions resources from the
resource provider and ensures the autonomous execu-
tion of the MMOG sessions;

4. the resource provider who offers the physical or vir-
tualised Cloud machines on which the game servers
run.

Resource providers are scattered around the world and
aggregate Cloud resources that may serve multiple game
operators simultaneously. Similarly, there are several geo-
graphically distributed game operators offering MMOG
titles to clients and ensuring proper game operation by allo-
cating the correct amount of resources from the providers.

3.1 Clients

Clients can join MMOG sessions offered by game operators
on the basis of MMOG subscriptions. An MMOG sub-
scription represents a contract between a client and a game
operator based on which the client is allowed, under certain

terms and with certain QoS guaranties, to join a MMOG
session managed by the game operator.

3.2 Game providers

Game providers offer a selection of MMOGs by contracting
new games from development companies. Based on clients’
requests, game providers assign clients to game zones del-
egated to game operators for QoS-based execution. The
quality of gameplay is monitored and in case of SLA faults
(e.g. state update rate below minimum threshold), the client
is compensated.

3.3 Game operators

The game operators interact with the clients and offer them
a selection of MMOGs, usually by contracting new games
from game development companies (interaction not mod-
elled in this work). The operators autonomously execute
distributed MMOG sessions with guaranteed QoS compris-
ing interconnected MMOG servers. The game operator runs
four main services.

3.3.1 Capacity management service

This service is responsible for the autonomous MMOG
steering. Using a game state prediction mechanism,
the capacity management service estimates the resource
requirements for short-medium time intervals (order of min-
utes). Based on these load estimates, it instructs the resource
management service to provision the correct amount of
resources in the next allocation cycles. It also decides if
the MMOG server start, stop, and migrate actions are nec-
essary to accommodate and balance the generated load.
For example, by timely foreseeing critical hot-spots in the
game world (i.e. excessively populated areas of the game
world with a large number of interactions), one can dynam-
ically provision additional MMOG servers on newly leased
resources and take proactive load balancing actions that
redistribute the game load before the existing game servers
become overloaded. We investigated viable approaches to
capacity requirement estimation in [27] and no longer con-
sider it in this paper.

3.3.2 Fault tolerance service

This service’s responsibility is to reduce, or ideally elimi-
nate the negative effects of unforeseen failures. We designed
this service to ensure a high level of tolerance to resource
faults which can lead to low QoS or even MMOG session
unavailability. Although the commercial Cloud providers
promise relatively high levels of resource availability, they
are nevertheless subject to a multitude of unexpected events

1148 Peer-to-Peer Netw. Appl. (2016) 9:1145–1161

Fig. 2 Overview of MMOG
ecosystem and SLA
relationships

which can lead to failures. The fault tolerance service is
responsible for maintaining the MMOG sessions’ integrity
in case of faults appearing in resources which host MMOG
servers, such as independent or correlated machine failures,
and local or Cloud site network connectivity loss. These
events result in disruptions in game play which the fault
tolerance service can minimise, or even completely hide to
the clients by timely taking the appropriate counter mea-
sures such as redistributing the clients connected to a failing
server to others within the same MMOG session (trans-
parent measure), or starting other MMOG servers on new
resources with the help of the resource management service
(minimally disrupting measure).

3.3.3 QoS monitoring service

The QoS monitoring service collects and analyses informa-
tion about the state of the MMOG sessions and the QoS
delivered by the running game servers, such as like client
update frequencies, utilised memory and network band-
width, and average client-server connection latency. The
QoS monitor analyses the collected information and aggre-
gates it into monitoring reports which are then utilised
by the other services. In particular, this service repre-
sents a feedback loop for the capacity management service,
supplying the necessary sensor information to enable its
autonomous and self-adaptive operation.

3.3.4 Resource management service

The resource management service interacts with the
resource providers, negotiating for the resources that best
fit the requirements provided by the capacity management
service. The negotiation process takes into account multiple
resource parameters such as computational power, amount
of memory, network bandwidth, geographical location in
relation to the requests, overheads introduced by the virtual-
isation technology, and price. It also provides the necessary
low-level mechanisms for game session management such
as MMOG server start, stop and migrate actions, as well as
high-level paralellisation mechanisms such as zoning, repli-
cation, and instancing which distribute the client-generated
load among computing resources (see Section 2). In previ-
ous work, we thoroughly analysed some of the challenges

of the operator-provider interaction including the underly-
ing resource negotiation process [22] and the effects of
dynamic resource allocation on MMOG hosting [19]. As a
consequence, we will not focus on these aspects of MMOG
operation in this paper.

The game operator is also responsible for running a per-
sistence service which ensures the continuity of the MMOG
session throughout the lifetime of the game, but given that
all MMOG operators already utilise advanced fault toler-
ance mechanisms for this particular service, we leave this
aspect outside the scope of our investigation.

3.4 Resource providers

We consider Cloud providers employing the Infrastructure-
as-a-Service (IaaS) paradigm and offering resources for fine
grained time intervals (i.e. hours) though a virtualisation
platform that allows automated software deployment and
maintenance. The resource providers lease virtual machines
with fuzzy definitions of their characteristics, but with much
more precise guaranties in terms of resource availability. For
example, Amazon (http://aws.amazon.com/ec2/) employs
for the processor performance the “EC2 Compute Units”
defined as “the equivalent CPU capacity of a 1.0-1.2 Giga-
hertz 2007 Opteron or Xeon processor”, while FlexiScale
(http://flexiscale.com/) uses the “vCPU unit” representing
a computational unit of unknown power associated to 0.5
Gigabytes of memory. Conversely, the availability of an
Amazon resource is defined as 99.95 % over a period of
one year, while FlexiScale promises 100 % availability over
one month along with an additional promise that, should
a resource fail, the recovery time will be limited to 15
minutes.

Although security considerations are known to be critical
in public clouds [33], we consider them as outside the scope
of our work and defer them to the related game-specific
middleware technologies [4].

4 Failure model

We identify in our MMOG operational model two principal
types of failures that disturb the users’ gameplay with a
negative impact on the offered QoS, but from which the

http://aws.amazon.com/ec2/
http://flexiscale.com/

Peer-to-Peer Netw. Appl. (2016) 9:1145–1161 1149

system is capable of recovering with no human intervention:
resource failures and management failures.

Resource failure In our scenario, the game operator runs
the MMOG sessions on distributed heterogeneous resources
provisioned from Cloud providers which are subject to
unexpected events that can lead to failures. If a machine
crashes, hangs or becomes unreachable through the net-
work, the runningMMOG server is compromised disrupting
the normal operation of the session. In existing commer-
cial deployments, such a severe unexpected event typically
requires human intervention and can lead to hours of partial
service unavailability, or even total unavailability in case of
correlated failures. In our proposed architecture, the detec-
tion of this type of failure at the game operator level triggers
a self-healing process consisting of two actions:

1. provisioning of a new resource or set of resources with
the same (or better) characteristics as the failing one;

2. starting a new MMOG server part of the session and to
which the clients are instructed to reconnect.

Thus, the MMOG session is salvaged but, regardless of
these actions, the clients connected to the failing MMOG
server will experience a total interruption in gameplay for a
certain amount of time.

Management failure The game operator automatically
adapts the amount of provisioned resources in a dynamic
fashion to achieve a proper MMOG session operation with
reduced allocation costs while reaching the targeted QoS.
In case of erroneous load estimations or sudden increases
in the number of accessing users, the provisioned resources
are not sufficient to handle the generated load leading to the
degradation of the QoS. The players connected to the over-
loaded servers will experience in this case a fragmented,
unrealistic gameplay. In this situation, the game opera-
tor compensates either by redistributing the users to other
MMOG servers within the same session aiming a better load
distribution and a more efficient utilisation of the already
provisioned resources, or by provisioning more resources
for the affected session. We call this type of disturbance,
where the users are not disconnected from the MMOG ses-
sion but their gameplay experience is degraded, as partial
interruption.

Evaluation metrics In previous work we covered several
interesting QoS aspects of MMOGs, such as the perfor-
mance impact of resources [19] and the Cloud virtualisation
overheads [9]. In this work, we broaden our MMOG QoS
investigation by studying the effects of the two identified
types of disruptions on the QoS of MMOG sessions through
three special metrics:

1. the number of interruptions in a certain time interval
(e.g. the simulation period);

2. the duration of the interruptions, measured from the
start of the event (resource/management failure) to the
moment when all affected clients recover (i.e. when
they are re-connected to the MMOG session in case
of total interruptions, or when the QoS is above the
promised level in case of partial interruptions);

3. the severity of the interruptions, representing the per-
centage of affected players of the MMOG session.

5 Dynamic resource allocation

Based on the predicted session and resource load in the
next time interval (i.e. typically two minutes [19]), the game
operator service arranges for the provisioning of the cor-
rect amount of resources required for a proper execution
that guarantees a good experience to all players. A typi-
cal action is to extend game sessions with new zones or
replication servers to accommodate an increased number of
players during peak hours. Conversely, it may deallocate
and merge multiple under-utilised game servers to improve
the resource utilisation. The resources that need to be pro-
visioned are of four types, as considered by the capacity
planning service: CPU, memory, incoming network, and
outgoing network bandwidth.

After allocating the required resources for a game ses-
sion, the game operator instructs the game servers what par-
allelization strategy to apply and which entities to migrate
to new servers (see Section 2). We designed an event-driven
load balancing solution that receives capacity events from
the capacity planning service, analyses them in the context
of the global state of the game session and of the resources
in question, and directs the resource allocation service in
taking the appropriate measures. A capacity event consists
of:

– the MMOG session and the resource this runs on;
– the event’s status which can be of four types:

– SESSION OVERLOADED meaning that a
server in the game session is becoming over-
loaded and requires a load balancing action,
possibly by adding a new server to the game
session;

– SESSION UNDERUSED meaning that a game
server of a session carries too little load and
can receive more load or even be withdrawn;

– HOST OVERLOADEDmeaning that a resource,
such as a multi-core processor hosting multi-
ple sessions, is becoming overloaded; typical
actions to be performed are to load balance the
sessions or to replicate servers;

1150 Peer-to-Peer Netw. Appl. (2016) 9:1145–1161

– HOST UNDERUSED meaning that a resource
carries too little load and can receive more
through load balancing actions.

– a monitoring “snapshot” with a vector
[LCPU, Lmem, Lint net, Lext net] of four load metrics:
processor, memory, incoming network, and outgoing
network;

– a prediction “snapshot” that estimates the value of these
metrics for the next (two minute) time interval [27].

We evaluate the aggregated load of resources as follows:

Load =
∑

∀l∈L×W
T

l,

where L is the load vector:

L = [
Lcpu Lmem Lint net Lext net

]

and W represents the weight vector:

W = [
Wcpu Wmem Wint net Wext net

]
,

with:

Wcpu + Wmem + Wint net + Wext net = 1.

The weight vector is defined either by the game developer,
or determined in real-time while hosting the MMOG ses-
sions and should be proportional to the resource demand of
the game servers.

The load balancing algorithm displayed in Algorithm 1
requires a complete capacity event as input, analyses its
components, and eventually generates the game session load
balancing actions to be executed. The game session over-
load event (lines 5−16), indicating that the session does not
have enough resources, is addressed differently depending
on whether the session is replicated or not. If the session is
replicated across multiple resources and the load is unevenly
distributed, a load balancing action is triggered (lines 6−8).
Otherwise, if the load is correctly distributed and all game
servers participating in the replication are currently, or the
prediction estimates they will be, overloaded, new resources
are allocated to the game session by creating a replication
action (lines 10− 11). If the overloaded game session is not
distributed, a new replication action is generated (line 15).

The second case handles the game session under-
utilisation events indicating that these sessions are allocated
to many resources (lines 17 − 26). If the game session
is distributed and all involved game servers are currently,
or the prediction estimates they will be, under-utilised, the
resources are deallocated by creating a de-replication action
(lines 18−20). Otherwise, if not all game servers are under-
utilised, a new load balancing action is generated (lines
22 − 23).

The next branch (lines 27 − 41) handles a resource over-
load event. The algorithm checks whether the respective

machine has previous similar events to ensure that this event
is not the result of an isolated load spike only. Next, in case
the resource in question is hosting game servers involved
in replications, load balancing actions are created for all
unbalanced replications (lines 30 − 35). Otherwise, when
the overloaded resource is not hosting any replicated ses-
sion, a replication action is generated for the game session
responsible for the most load (lines 36 − 40).

Finally, when the received event signals an under-utilised
resource (lines 42 − 50), the algorithm generates load bal-
ancing actions for all game session replications showing
uneven load distributions, if any are locally hosted.

6 MMOG simulator

To ensure a flexible and complete validation of our MMOG
research, we developed a trace-based MMOG simulation
tool displayed in Fig. 3 that implements our MMOG archi-
tecture and failure model.

Coordinator is the central part in charge of initialising the
simulation according to the input configuration and manag-
ing the whole execution of the simulation through the fol-
lowing tasks: (1) calculation of the game load and required
resources; (2) checking of the current simulation state;
(3) negotiation of new SLAs; (4) generation of resource
requests and offers; (5) dynamic resource allocation; (6)
creation output files for experimental evaluation.

Game traces are the central element of every MMOG sim-
ulation, consisting of a data file for every active game zone,
and containing the number of currently active clients and
the corresponding timestamps. Based on these data, we sim-
ulate the same amount of game zones distributed over the
world together with their related number of players using
a configurable simulation time step. The total simulation
duration can be reduced by truncating the trace files.

User information is extracted from the trace files by a spe-
cial service of the simulator based on the connected user
accounts, necessary for the calculation of the subscription
fees. To create a correct geographic mapping of the captured
game, the simulator also uses the location of each individual
client.

Game providers are in charge of managing the MMOG
load models, connections to the user accounts, and provi-
sioning of offers from the game operator to the customers.
Based on the number of user access requests and their geo-
graphical origin, the game providers estimate the demand
for each geographical area and construct operational SLA
templates negotiated with the game operators. The SLA

Peer-to-Peer Netw. Appl. (2016) 9:1145–1161 1151

negotiation strategy and other provisioning variables can be
altered in special configuration files. Additionally, the game
providers manage the simulated game sessions by mapping
the input traces to game zones.

Game operators are in charge of predicting and balanc-
ing of the load of the game sessions and zones by changing
the properties for the respective services and algorithms. An
essential part of the setup is the configuration of the SLA
templates that manage the business transactions between
the game operators and the game providers with variables
such as base price, duration, and number of serviced play-
ers. Based on historical data and the currently assigned
users, the operator predicts the load for predetermined

time intervals (shorter for dynamic MMOGs and longer
otherwise) using the method presented in [19]. The predic-
tion consists of the user distribution in the MMOG world
and a load model for translating it into resource require-
ments. At each prediction interval, the operator evaluates
the provisioned resources and makes adjustments by allo-
cating or releasing resources and redistributing the load.
Other configuration files allow controlling the penalties
for QoS violations, resource unavailability, as well as sort-
ing and ranking resource offers or the desired allocation
time.

Data centre emulates a configurable network of Cloud
providers with resources and services spread across the

1152 Peer-to-Peer Netw. Appl. (2016) 9:1145–1161

Fig. 3 Schematic MMOG
simulation tool architecture

globe. To configure the resource providers, each setup con-
figuration has a folder for every simulated data center con-
taining information such as location, network bandwidth,
and machines defined by their number of cores, processing
speed and memory or disk size.

Failure traces are files containing the resource failures
occurring during the simulated MMOG sessions. The for-
mat of the traces is inspired from the Failure Trace Archive,
with a simplified format consisting of only three columns:
the host name of the failing resource and the associated
start and end (UNIX epoch) timestamps. Our resource avail-
ability model is based on three important parameters: (1)
inter-arrival time (IAT) between two consecutive failures,
(2) duration of each individual failure, and (3) size or num-
ber of the affected resources. Other parameters required for
the failure generation are the number of available resources
in the MMOG environment, the total duration of one simu-
lation period, and the percentage of resource availability.

7 Simulation setup

For evaluating the impact of the resource and of the manage-
ment failures, we use our MMOG simulator and six months
of trace data collected from a real-world MMOG called
RuneScape (http://www.runescape.com/).

We collected traces from 150 RuneScape servers with
a sampling rate of two minutes, containing the number of
players over time for each server group, aggregating approx-
imately 40 million metric samples per simulation. Based
on the number of concurrently active accounts from the
RuneScape traces, we approximate the actual number of
connected clients using the concurrent active account ratio
metric approximated at around 15 % for RuneScape. We use
a prediction interval and a simulation step of two minutes,

which proves to be adequate for this type of games and the
collected traces. Since we also study the financial impact
of resource unavailability on the MMOG actors, we mod-
elled the client accounts with different monthly, bimonthly,
trimestrial and semestrial subscription types based on the
real subscription and payment methods of Jagex Ltd. (the
developer and publisher of RuneScape) as of August 2010
(see Table 1). We employ a setup with one game operator
and one game provider since their number does not impact
the QoS metrics for the clients targeted by our experiments.

The traces contain the maximum load of approximately
150 concurrent game zones spread all across the globe,
where every zone needs one virtual machine (VM) instance
to be properly executed. For this purpose, we model a dis-
tributed heterogeneous environment with 16 commercial
Cloud providers aggregating 70 different VM types (see
Table 2) and providing a large enough resource pool for
the game operator of approximately 3500 concurrent VM
instances for running all game zone instances. The parame-
ters that model each VM type include the number of cores
(1 to 12), CPU speed, RAM size (1 to 48 GB), and in- and
outbound network bandwidth. While most of the parameters
are clearly defined in the specifications of the commer-
cial Cloud providers, the processing power of the VMs
is not concretely quantified. Thus, we express it using an
appropriate metric called RS unit representing the equiva-
lent computational requirements of one RuneScape server
servicing 2000 concurrent clients. We compute this metric
based on existing benchmarks1,2 and our previous perfor-
mance investigations [10]. We evaluated the quality of our
simulator with respect to user load in [27], resource provi-
sioning in [19], virtualization overheads in [9] and business

1http://blog.cloudharmony.com/2010/05/
what-is-ecu-cpu-benchmarking-in-cloud.html
2http://www.chadkeck.com/2010/05/cloud-hosting-provider-hardware
-benchmarks/

http://www.runescape.com/
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://www.chadkeck.com/2010/05/cloud-hosting-provider-hardware-benchmarks/

Peer-to-Peer Netw. Appl. (2016) 9:1145–1161 1153

Table 1 RuneScape subscription plans for monthly, bimonthly, trimestrial, and semestrial payments

Plan Payment
Subscription price [USD]

Monthly Bimonthly Trimestrial Semestrial

SCC Credit card 5.95 11.9 17.85 35.7

SPP PayPal 7.5 12.99 18.15 36.1

SBT Bank transfer 7.99 14.59 19.99 37.99

relationships in [21] which gives us high confidence on the
accuracy of the obtained results.

Since one of our goals is to also show the impact of
resource unavailability in a sparse resource environment, we
derive six additional synthetic setups by gradually removing
machines from the original VM instance pool to increase the
resource utilisation, as illustrated in Table 3. In this table, the
utilisation describes the percentage of machines to be allo-
cated for a proper execution of all game zones at maximum
load. In addition to the sparse resource environment, we
introduce a controlled resource unavailability to our envi-
ronment by associating to Cloud providers failure traces
with tunable availability. We employ the resource availabil-
ity model proposed in [8] and generate failure traces with
average availabilities ranging from 99.5 % to 99.9 %. The
traces are characterised through their failures’ duration, size
and IAT, each modelled through a statistical distribution.
The distributions’ parameters are presented in Table 4, along
with the statistical properties of the resulting traces, where
Q1, Q2 and Q3 represent the lower, the median, and the

Table 2 Summary of Cloud providers

Provider
VM

Location
Allocation

types time [hours]

Amazon 6 4 (Asia, UK, USA (E, W)) 1

CloudCentral 5 1 (AUS) 1

ElasticHosts 4 1 (UK) 1

FlexiScale 4 1 (UK) 1

GoGrid 4 1 (USA (E)) 1

Linode 5 1 (USA (E)) 24

NewServers 5 1 (USA (E)) 1

OpSource 6 1 (USA (E)) 1

RackSpace 4 2 (USA (E, C)) 1

ReliaCloud 3 1 (USA (C)) 1

SoftLayer 4 3 (USA (E, C, W)) 1

SpeedyRails 3 1 (CAN W) 24

Storm 6 2 (USA (E, W)) 1

Terremark 5 1 (USA E) 1

Voxel 4 3 (USA (E), NED, AUS) 1

Zerigo 2 1 (USA (C)) 1

upper quartiles. For all traces, we employ the same distri-
bution for the failure duration and size, but we vary the
resource availability by adjusting the failure IAT. We gener-
ate both independent and correlated failures with a the ratio
of 3 : 2.

8 Simulation results

We evaluate the advantage of dynamic resource alloca-
tion over the static one with respect to two metrics: QoS
and financial impacts. In case of static allocation, resource
provisioning is performed once the zone is registered for
operation, and the session does not get additional resources
upon a failure but waits for the failure to end when the
machine becomes operational again.

8.1 Impact of resource availability on MMOGs’ QoS

In the first experiment, we investigate the impact of resource
failures on the quality of game play under different resource
availability conditions. We run one experiment for each
average resource availability and evaluate the experienced
QoS through the total interruptions metric.

Figure 4 depicts the number, the average duration and
the severity of the total interruptions registered in the
MMOG sessions over the six months simulation, as a func-
tion of resource availability. We observe stable, constant
values for the severity and duration of total interruptions
(the two bottom graphs) across all resource availability
values, which indicates a proper recovery from resource

Table 3 Number of machines for a given utilisation

Utilisation Number of

[%] machines

5 2120

20 520

40 280

60 190

80 150

95 140

1154 Peer-to-Peer Netw. Appl. (2016) 9:1145–1161

Table 4 Resource availability parameters and statistical characterisation

Failure
Distribution Scale Shape

Statistical properties Avail-

metric Min Max Average Q1 Q2 Q3 bility

Duration [min.] Log-Normal 2.12 0.306 1 37 8 6 8 10 –

Size [machines] Weibull 4 5 0 6 3 3 3 4 –

IAT [sec.] Weibull 13600 7 2073 19668 12722 11381 12906 14254 99.5 %

IAT [sec.] Weibull 7000 7 888 10123 6548 5860 6645 7336 99.6 %

IAT [sec.] Weibull 4750 7 535 6988 4443 3976 4509 4977 99.7 %

IAT [sec.] Weibull 3550 7 476 5146 3320 2971 3370 3720 99.8 %

IAT [sec.] Weibull 2830 7 341 4119 2647 2369 2686 2965 99.9 %

failures. The median duration of a total interruption is two
minutes and just below four minutes (i.e. approximately
two resource allocation cycles) for more than 75 % of
the events. The median percentage of affected players is
below 2 %, as shown by the bottom interruption severity
plot. The trend in the number of total interruptions (top
graph) is inversely proportional to the average resource
availability. This could be alleviated by a fault prediction
method [19] that migratesMMOG servers away from failing
resources.

Running MMOGs on real, limited availability cloud
resources can potentially have a strongly negative impact
the QoS for the clients due to prolonged recovery times
and the need for human intervention for restoring the game
session. However, we conclude based on this first experi-
ment that this performance degradation can be mitigated by
employing our proposed recovery techniques, which effec-
tively limits the duration of the resulting interruptions to
a constant value (lower than four minutes for 75 % of the
events in our concrete scenario) independent of the duration
of the underlying resource failure.

8.2 MMOG QoS in competition-based environments

The goal of the second experiment is to analyse the impact
of resource failures on MMOGs in resource scarcity scenar-
ios. We add this new dimension to our study by generating
an increasing resource contention through gradually reduc-
ing the amount of resources in our setup. Thus, we run
a set of simulations employing the same six month long
RuneScape traces, but varying the amount of resources so
that the peak load requires between 5 % and 95 % of the
available resources. Concretely, for example, the setup in
which the RuneScape peak load requires 60 % of the total
amount of resources has a resource contention value of
60 %. As in the previous experiment, we shape the availabil-
ity of the resources from 99.5 % to 100 % by employing the
traces presented in Table 4. We cover these two dimensions
with six values each, for a total of 36 simulations.

Figure 5 shows the number of interruptions experienced
by the clients during the six-months simulation in the dif-
ferent resource availability and contention scenarios. We
observe a slanting in the number of total interruptions

Fig. 4 Total interruptions under
different resource availability
conditions (all graphs show
resource availability on
horizontal axis with the bottom
values)

 0

 200

 400

 600

 800

 1000
Dynamic llocation

Static llocation

 0

 4

 8

 12

 99.5 99.6 99.7 99.8 99.9 100

Resource availability [%]

Total interruption severity (min,max,med,Q1,Q3)
 0

 4

 8

 12

S
ev

er
ity

 [%
]

D
ur

at
io

n
[m

in

Total interruption duration (min,max,med,Q1,Q3)

Peer-to-Peer Netw. Appl. (2016) 9:1145–1161 1155

 99.5 99.6 99.7 99.8 99.9 100
 5

 20

 40

 60

 80
 95

 0
 300
 600
 900

 1200

Resource availability [%]

Res. contention [%]

 0
 300
 600
 900
 1200

 99.5 99.6 99.7 99.8 99.9 100
 5

 20

 40

 60

 80
 95

 4
 6
 8

 10
 12

Resource availability [%]

Res. contention [%]

 4
 6
 8
 10
 12

Fig. 5 Number of interruption events for varying resource availability
and resource contention

(seen in Fig. 5a), which is consistent with the decrease
in availability for all resource contention values, confirm-
ing the previous experiment’s conclusions. The central
positive finding of this investigation is the fact that the
number of total interruptions remains constant with increas-
ing resource contention, even in the limit case of 95 %
resource contention. The only observed particularity is the
lower number of total interruptions for the other limit
case with an extreme resource abundance (5 % resource
contention) over all availability values. The number of
partial interruptions (Fig. 5b) appears to not be impacted
either by the competition for resources, or by the resource
availability.

For a complete assessment of the effectiveness of our
MMOG operational model, the number of interruptions in
isolation is not sufficient, as it does not concretely present
the extent to which these failures impact the game ses-
sion. We therefore present in Fig. 6a statistical analysis of
all interruptions for two metrics: their duration and sever-
ity. Regarding the duration of the total interruptions (Fig.
6a, top), we notice a step-wise increase proportional to the
resource contention, but a very stable behaviour with chang-
ing resource availability. Overall, the median time needed
for recovery from a total resource failure is of two minutes
(i.e. one resource allocation step) for a resource contention
of up to 40%, and four minutes (i.e. two allocation steps) for
higher resource contention. The step-wise variation is due
to the cyclic nature of the recovery evaluation. More pre-
cisely, an MMOG session might recover, for example, in 90

seconds, but the evaluation of the resource allocation state
is only done every 120 seconds. Thus, the reported duration
of recovery will be 120 seconds. In a real implementation,
this issue would be easily circumvented by employing an
event-driven monitoring system. Regarding the severity of
the total interruptions (Fig. 6a, bottom), we notice a grad-
ual increase proportional to the resource contention, from a
median of approximately 0.7 % to 1.4 % correlated with an
increase of resource contention from 5 % to 95 %. This vari-
ation is similar across different resource availability levels
and, regardless of the individual configuration, at least 75 %
for the events affect less than 2 % of the clients. In contrast
to the total interruptions, the behaviour of the partial inter-
ruptions’ duration and severity, shown in Fig. 6b, is clearly
not dependent on either of the studied metrics (resource
availability and contention). The recovery time is for the
vast majority of events one allocation cycle long (i.e. two
minutes), with only some outliers (less than 5 % of events)
reaching 12 minutes. The severity of the partial interruptions
is also very steady at 0.01 % of the number of clients for
95 % of the events, regardless of resource availability and
contention. However, a general growing trend of the out-
liers coherent with the increase of resource contention can
be observed.

We conclude that clouds can be used for MMOG host-
ing with high QoS, even in cases of resource contention, as
summarised in Table 5. Concretely:

1. Resource availability strongly impacts the number of
total interruptions, but does not influence their duration
and severity;

2. Contention for resources has a low negative impact on
the number of total interruptions, but strongly affects
their duration and severity;

3. Resource availability has little or no visible impact on
partial interruptions, while an increased resource con-
tention might lead to a slight increase in the severity of
the partial interruptions.

8.3 Status versus dynamic allocation

Comparing static with the dynamic allocation strategies, it
it was already visible in Fig. 4 that the number of total inter-
ruptions is increasing with higher resource unavailability
for static allocation, leading to an average of 30 % increase
for a resource availability of 99.5 %. Despite the higher
count of events and their prolonged duration, the median
percentage of affected players (i.e. the severity) remains
almost constant below 2 % across all availability values,
and is only slightly higher in case of the static allocations
(see Fig. 7).

The impact of the different allocation strategies can be
best noticed in the analysis of the partial interruption events

1156 Peer-to-Peer Netw. Appl. (2016) 9:1145–1161

Fig. 6 Event duration and
severity QoS analysis in
competition-based conditions
with increasing resource
availability and resource
contention

 0
 1
 2
 3
 4
 5
 6
 7
 8

 99.5 99.6 99.7 99.8 99.9 100

S
ev

er
ity

 [%
]

Resource availability [%]

 0
 2
 4
 6
 8

 10
 12
 14
 16

D
ur

at
io

n
[m

in
ut

es
] Contention

5%
20%
40%
60%
80%
95%

 0

 5

 10

 15

 20

 25

 99.5 99.6 99.7 99.8 99.9 100

S
ev

er
ity

 [%
]

Resource availability [%]

 0

 2

 4

 6

 8

 10

 12

D
ur

at
io

n
[m

in
ut

es
] Contention

5%
20%
40%
60%
80%
95%

in Fig. 8. While the number of partial interruptions increases
with the decreasing resource availability for static allo-
cations, they remain relatively constant for the dynamic
allocation strategy for all availabilities and utilisations. On
average, the number of partial interruptions for an availabil-
ity of 99.5 % is 4.5 times lower using dynamic allocations.
With the dynamic allocation of resources, the partial inter-
ruption events have little to no impact on the QoS offered
to the end-users (i.e. the severity) since our system can
mitigates the effects by allocating additional resources or
balancing the load. With static resource allocations, the par-
tial interruption events affect on average about 1 % of the
connected players.

8.4 Financial impact

Following the hierarchical architecture presented in Section
1, the first actors to analyse are the end-users who pay
a subscription fee that allows them to enter gaming ses-
sions provided by the game providers. Employing the static
resource allocation approach not only leads to a degrada-
tion of the offered QoS, but also introduces a linear increase
in the amount of QoS compensations paid to the users for
lower availability and higher utilisation, as displayed in Fig.
9a. While the compensation payments lower the monthly
costs for most of the clients, their overall play experience
will suffer.

Table 5 Impact of resource availability and contention on MMOG QoS

Metric

Impact on QoS

Total interruptions Partial interruptions

Number Duration Severity Number Duration Severity

Resource availability Strong None None None None None

Resource contention Light Strong Strong None None Light

Peer-to-Peer Netw. Appl. (2016) 9:1145–1161 1157

Fig. 7 Total interruption
analysis for static and dynamic
resource allocations for different
resource availabilities

 0

 3

 6

 9

 12

 99.5 99.6 99.7 99.8 99.9 100

S
ev

er
it

y
[%

]

Resource availability [%]

 0
 2
 4
 6
 8

 10
 12

D
u

ra
ti

o
n

 [
m

in
] allocation

allocation

The impact of the static allocation on the QoS can also
be noticed in the financial situation of the game provider
who earns money from penalties paid by the game operator
for SLA violations (part of which it transfers to the client as
QoS compensations). Figure 9b shows the drop of the game
providers’ profit for using the static allocation approach
in the different resource availabilities, averaged across all
resource utilisation scenarios.

In the lowest tier, the game operator is directly affected
by machine failures that occur in the data centres of the
resource provider, where static allocation has a strong neg-
ative impact on the QoS. In case of a resource failure,
the dynamic allocation mechanism provisions additional
machines to ensure that no SLAs with the game provider
are violated. Since it is not possible to allocate additional
resources with the static allocation, almost every resource
failure leads to a violation of an SLA, accompanied penalty
fees. Figure 9c shows increasing compensation fees to be
paid by the game operator to the provider with increasing
unavailability and utilisation of resources.

The financial situation of the resource providers is gen-
erally not affected by the static allocation since the negative
impacts of this approach are mostly restricted to the three
higher tiers of the architecture.

9 Related work

9.1 Dynamic resource provisioning

Much recent work focuses on (soft) QoS guarantees for
MMOG operation [12, 16, 34]. Wong [34] proposes a
resource provisioning algorithm with QoS guarantees, but
considers only networking aspects, whereas we focus
on maintaining QoS even during total resource failures.
Complementary to our study, Lee and Chen [12] inves-
tigate MMOG server consolidation techniques, focusing

on energy consumption. There have been a number of
research activities in assessing the performance of virtu-
alised resources in Cloud computing environments [25] and
in general [28], some also considering the availability of
Cloud resources [23]. In contrast to these studies, ours tar-
gets realistic Cloud resources with limited availability for
a new application class (MMOG). Regarding the resource
and MMOG deployment models, one study [29] comes
close to our approach by proposing virtual machines for
multi-player game operation. However, our work focuses on
MMOGs which, in contrast to classic multi-player games,
are distributed applications (multiple MMOG servers inter-
connected in a single session) serving a several orders
of magnitude higher number of clients. Additionally, we
also consider the virtualised resources as part of commer-
cial Cloud computing platforms. Complementary to our
work, [15] proposes a dynamic provisioning algorithm for
a MMOG that maintains the response time below a given
threshold based on a Queueing Network performance model
used within a greedy algorithm. The work in [5] proposes an
integrated approach which combines resource provisioning
algorithms (such as static ones based on analytical queuing
models, and dynamic on-demand ones) with scheduling dis-
ciplines (both QoS-aware and simple first come-first-serve
ones) for revenue-cost optimisation of latency-sensitive
applications, such as online games, in IaaS Clouds. The
work is evaluated on a smaller-scale battle game called
BZflag.

In the area of reliability, there are studies which inves-
tigate the characteristics of resource and workload fail-
ures, but do not assess their effects on the underlying
systems’ performance [24, 31]. Other efforts consider
uncorrelated failures in distributed systems [2] and eval-
uate the resulting performance of the affected systems
[8], but only for high-performance computing applica-
tions. In contrast, we employ the failure model intro-
duced by [8], but apply it to Cloud resources and evaluate

1158 Peer-to-Peer Netw. Appl. (2016) 9:1145–1161

Fig. 8 Partial interruption
analysis for dynamic and static
resource allocations for different
resource availabilities

 99.5 99.6 99.7 99.8 99.9 100
 5

 20

 40

 60

 80
 95

 4
 6
 8

 10
 12

Resource availability [%]

Resource

Resource

utilisation [%]

 4

 6

 8

 10

 12

 99.5 99.6 99.7 99.8 99.9 100
 5

 20

 40

 60

 80
 95

 0
 10
 20
 30
 40
 50
 60

Resource availability [%]

utilisation [%]

 0
 10
 20
 30
 40
 50
 60

 0

 3

 6

 9

 12

 99.5 99.6 99.7 99.8 99.9 100

S
ev

er
ity

 [%
]

Resource availability [%]

allocation
Dynamic allocation

Static

the consequences of utilising such resources on the QoS
of MMOGs.

9.2 Load balancing

A few alternative load balancing techniques for game
servers and for MMOG servers in particular exist with no
regard to fault tolerance. Several provide dynamic control
over their load distribution algorithms to a certain extent,
others do not, but can be extended to support dynamic
adjustments to the number of utilised servers. [13] presents
a load distribution approach for MMOG servers which
involves fine grained management of the game entities, each
server being capable of managing an arbitrary subset of
the clients. The load balancing is thus realised by adjust-
ing the number of clients assigned to each server. However,
the complexity of such fine grained client management
makes this approach unsuited for fast-paced FPS games.
Another load balancing method introduced in [18] relies on

a dynamic adjustment of zone borders. In this approach the
load is distributed by dividing the two-dimensional game
world in vertical zones with mobile boundaries, the load
balance being reached by moving these borders. Because of
the resulting zone deformation, this method has the disad-
vantage that it does not scale to a high number of servers.
Similar to our solution, the approach in [3] is based on
a static partitioning of the game world and tries to obtain
a sufficiently fine load granularity by using a high num-
ber of small zones. Additionally, it maps adjacent zones on
topologically nearby nodes in order to reduce the commu-
nication overhead. However, this method assumes that the
network load represents the bottleneck when provisioning
games, while for the fast-paced games considered by our
solution, the processor requirements are most critical. The
Real-Time Framework [7] has been developed as a portable
library to support the development of game servers using
the zoning and replication parallelization techniques, used
in [17] for load balancing of a multi-player online game in a

Peer-to-Peer Netw. Appl. (2016) 9:1145–1161 1159

Fig. 9 Financial impact on
involved actors for static
resource allocations

 99.5 99.6 99.7 99.8 99.9 100
 5

 20

 40

 60

 80
 95

 0
 20
 40
 60
 80

 0

 20

 40

 60

 80

 0

 5

 10

 15

 20

 25

 99.5 99.6 99.7 99.8 99.9 100

 99.5 99.6 99.7 99.8 99.9 100
 5

 20

 40

 60

 80
 95

 0
 10
 20
 30
 40
 50

Resource availability [%]

utilisation [%]

Resource availability [%]

Resource availability [%]

Resourse
utilisation [%]

 0
 10
 20
 30
 40
 50

Cloud environment using a dynamic resource management
system.

9.3 Peer-to-peer computing

Peer-to-peer computing has emerged as a scalable and
low-cost technology, and as a potential alternative to tra-
ditional on-demand resource provisioning. When employ-
ing peer-to-peer technology, the game operators make use
of the resources of their clients instead of renting them
from hosters. The NPSNET project [14] uses a peer-
to-peer approach in which all the game computation is
performed on client resources. The SimMud [11] project
uses a similar approach to NPSNET, but also balances
and optimises the use of resources. However, three prob-
lems have prevented so far the adoption of peer-to-peer
technology for MMOGs: the lack of appropriate business
models, the wide-spread attempts of cheating, and the low
availability of peers observed for other peer-to-peer sys-
tems (such as the Gnutella and the BitTorrent file sharing
networks [26, 30].

10 Conclusions

We presented a simulator that implements a new ecosys-
tem for operating MMOGs on Cloud infrastructures which
effectively splits the traditional monolithic MMOG compa-
nies into three smaller and better focused actors whose inter-
action is regulated through bipartite SLAs: game providers,
game operators, and resource providers. In our model, game
operators dynamically provision resources from Cloud
resource providers based on the MMOG load so that the
QoS to the end-users is guaranteed at all times. Game
providers lease operation SLAs from the game operators to
satisfy all client requests and manage multiple distributed
MMOG sessions. These three self-standing, smaller, more
agile service providers enable access to the MMOG market
for the small and medium enterprises, and to the cur-
rent commercial Cloud providers. We evaluated in this
paper using traces collected from a real-life MMOG the
impact of resource availability and utilisation on the QoS
and financial situation of the involved actors by compar-
ing our novel dynamic resource allocation method with

1160 Peer-to-Peer Netw. Appl. (2016) 9:1145–1161

the traditional static allocation strategy. We found out that
our MMOG ecosystem successfully mitigates the perfor-
mance degradation of running MMOGs on real commercial
Cloud resources with limited availability to gameplay dis-
ruptions of less than four minutes, independently of the
duration of the underlying resource failure. The majority of
resource failures affect less than 2 % of the users partici-
pating in autonomously operated MMOG sessions. A low
resource availability increases the number of gameplay dis-
ruptions, while a high resource contention results in longer
disruptions affecting more clients. Finally, static resource
allocation has a negative impact on the financial situa-
tion of the involved actors due to high compensation and
penalty fees for QoS and SLA breaches upon low resource
availability and high utilisation.

References

1. Bartle R (2003) Designing Virtual Worlds. New Riders
2. Bhagwan R, Savage S, Voelker G (2003) Understanding availabil-

ity. In: Peer-to-Peer Systems II, LNCS, vol. 2735, pp 256–267.
Springer

3. Chen J, Wu B, DelapM, Knutsson B, Lu H, Amza C (2005) Local-
ity aware dynamic load management for massively multiplayer
games. In: 10th SIGPLAN Symposium on Principles and Practice
of Parallel Programming. ACM, pp 289–300

4. Diao Z, Schallehn E (2013) Towards cloud data manage-
ment for mmorpgs. In: 3rd International Conference on
Cloud Computing and Services Science. CLOSER 2013.
Springer

5. Duong TNB, Li X, Goh RSM, Tang X, Cai W (2012) Qos-aware
revenue-cost optimization for latency-sensitive services in iaas
clouds. In: 16th International Symposium on Distributed Sim-
ulation and Real Time Applications. IEEE Computer Society,
pp 11–18

6. Gamasutra: GDC Austin: An inside look at the universe of
Warcraft., http://www.gamasutra.com/php-bin/news index.php?
story=25307

7. Glinka F, Ploss A, Müller-Iden J, Gorlatch S (2007) RTF: A real-
time framework for developing scalable multiplayer online games.
In: 6th ACM SIGCOMM Workshop on Network and System
Support for Games. ACM, pp 81–86

8. Iosup A, Mathieu J, Sonmez O, Epema DHJ (2007) On the
dynamic resource availability in grids. In: 8th IEEE/ACM Inter-
national Conference on Grid Computing. IEEE Computer Society,
pp 26–33

9. Iosup A, Nae V, Prodan R (2011) The impact of virtualization on
the performance and operational costs of massively multiplayer
online games. Int J Adv Media Commun 4(4):364–386

10. Iosup A, Ostermann S, Yigitbasi N, Prodan R, Fahringer T, Epema
D (June 2011) Performance analysis of Cloud computing services
for many-tasks scientific computing. IEEE Trans Parallel Distrib
Syst 22(6):931–945

11. Knutsson B, Lu H, Xu W, Hopkins B (2004) Peer-to-peer support
for massively multiplayer games. In: INFOCOM. IEEE, pp 96–
107

12. Lee YT, Chen KT (2010) Is server consolidation beneficial to
MMORPG? A case study of World of Warcraft. In: 3rd Interna-
tional Conference on Cloud Computing. IEEE Computer Society,
pp 435–442

13. Lu F, Simon P, Graham M (2006) Load balancing for massively
multiplayer online games. In: 5th ACM SIGCOMMWorkshop on
Network and System Support for Games. ACM, p 1

14. Macedonia MR, Brutzman DP, Zyda MJ, Pratt DR, Barham PT,
Falby J, Locke J (1995) NSPNET: A multiplayer 3D virtual
environment over the internet. In: Symposium on Interactive 3D
Graphics, pp 93–94

15. Marzolla M, Ferretti S, D’Angelo G (2012) Dynamic resource
provisioning for cloud-based gaming infrastructures. Comput
Entertain 10(1):4:1–4:20

16. Briceño LD et al (2009) Robust resource allocation in a mas-
sive multiplayer online gaming environment. In: 4th International
Conference on Foundations of Digital Games. ACM, pp 232–239

17. Meilnder D, Ploss A, Glinka F, Gorlatch S (2012) A dynamic
resource management system for real-time online applications on
clouds. In: Euro-Par 2011: Parallel Processing Workshops, Lec-
ture Notes in Computer Science Volume, vol 7155. Springer,
pp 149–158

18. Min D, Lee D, Park B, Choi E (1999) A load balancing algo-
rithm for a distributed multimedia game server architecture. In:
International Conference on Multimedia Computing and Systems,
vol 882. IEEE Computer Society

19. Nae V, Iosup A, Prodan R (2011) Dynamic resource provision-
ing in massively multiplayer online games. IEEE Trans Parallel
Distrib Syst 22(3):380–395

20. Nae V, Prodan R, Iosup A (2013) SLA-based operation of mas-
sively multiplayer online games in competition-based environ-
ments. In: Proceedings of the International C* Conference on
Computer Science & Software Engineering. ACM, pp 104–112

21. Nae V, Prodan R, Iosup A (2014) SLA-based operations of
massively multiplayer online games in Clouds. In: Multime-
dia Systems, vol 20, pp 521–544. https://www.springer.com/
pay+per+view?SGWID=0-1740713-3131-0-0

22. Nae V, Prodan R, Iosup A, Fahringer T (2011) A new business
model for Massively Multiplayer Online Games. In: Proceeding
of the second joint WOSP/SIPEW international conference on
Performance engineering. ACM, New York, USA, pp 271–282

23. Nagarajan AB, Mueller F, Engelmann C, Scott SL (2007) Proac-
tive fault tolerance for hpc with xen virtualization. In: 21st Annual
International Conference on Supercomputing. ACM, pp 23–32

24. Nurmi D, Brevik J, Wolski R (2005) Modeling machine avail-
ability in enterprise and wide-area distributed computing environ-
ments. In: Euro-Par 2005 – Parallel Processing, LNCS, vol 3648.
Springer, pp 612–612

25. Palankar MR, Iamnitchi A, Ripeanu M, Garfinkel S (2008)
Amazon S3 for science grids: a viable solution? In: Interna-
tional Workshop on Data-aware Distributed Computing. ACM,
pp 55–64

26. Pouwelse J, Garbacki P, Epema D, Sips H (2005) The bittorrent
p2p file-sharing system: Measurements and analysis. In: Castro
M, Van Renesse R (eds) Peer-to-Peer Systems IV, Lecture Notes in
Computer Science, vol 3640. Springer Berlin Heidelberg, pp 205–
216. doi:10.1007/11558989 19

27. Prodan R, Nae V (2009) Prediction-based real-time resource
provisioning for massively multiplayer online games. Futur
Gener Comput Syst (FGCS) 25(7):785–793. http://www.
sciencedirect.com/science/article/B6V06-4V0MJ6H-1/2/
45b9cd3f8de8d176aebbeb9594231a1d

28. Quétier B, Neri V, Cappello F (2007) Scalability comparison of
four host virtualization tools. J Grid Comput 5:83–98

29. Reed D, Pratt I, Menage P, Early S, Stratford N (1999)
Xenoservers: Accountable execution of untrusted programs. In:
Seventh Workshop on Hot Topics in Operating Systems, pp 136–
141

30. Ripeanu M, Iamnitchi A, Foster IT (2002) Mapping the gnutella
network. IEEE Internet Comput 6(1):50–57

http://www.gamasutra.com/php-bin/news_index.php?story=25307
http://www.gamasutra.com/php-bin/news_index.php?story=25307
https://www.springer.com/pay+per+view?SGWID=0-1740713-3131-0-0
https://www.springer.com/pay+per+view?SGWID=0-1740713-3131-0-0
http://dx.doi.org/10.1007/11558989_19
http://www.sciencedirect.com/science/article/B6V06-4V0MJ6H-1/2/45b9cd3f8de8d176aebbeb9594231a1d
http://www.sciencedirect.com/science/article/B6V06-4V0MJ6H-1/2/45b9cd3f8de8d176aebbeb9594231a1d
http://www.sciencedirect.com/science/article/B6V06-4V0MJ6H-1/2/45b9cd3f8de8d176aebbeb9594231a1d

Peer-to-Peer Netw. Appl. (2016) 9:1145–1161 1161

31. Schroeder B, Gibson G (2010) A large-scale study of failures
in high-performance computing systems. IEEE Trans Dependable
Secure Comput 7(4):337–351

32. Shaikh A, Sahu S, Rosu MC, Shea M, Saha D (2006) On demand
platform for online games. IBM Syst J 45(1):7–20

33. Winkler VJ (2011) Securing the Cloud. Cloud Computer Security
Techniques and Tactics. Elsevier

34. Wong KW (2008) Resource allocation for massively multi-
player online games using fuzzy linear assignment technique. In:
Consumer Communications and Networking Conference. IEEE,
pp 1035–1039

Radu Prodan is Associate
Professor at the Institute of
Computer Science, University
of Innsbruck, Austria. He has
over 15 years of research
experience in the parallel and
distributed computing areas.
He earned his Ph.D. in 2004
from the Vienna University of
Technology and his Habilita-
tion in 2009 from the Uni-
versity of Innsbruck. Pro-
dan coordinated and partic-
ipated in numerous national
and European projects and is
currently scientific coordina-

tor of the H2020 project ENTICE. He authored over 100 conference
and journal publications (including one IEEE best paper award) and
one book in the areas of parallel and distributed computing. The IEEE
Transactions on Cloud Computing journal ranked him recently as
the 11th most productive researcher worldwide in the area of Cloud
computing.

Alexandru Iosup received his
Ph.D. in Computer Science in
2009 from the Delft University
of Technology (TU Delft), the
Netherlands. He is currently
an Assistant Professor with
the Parallel and Distributed
Systems Group at TU Delft.
He is the cofounder of the
Grid Workloads, the Peer-to-
Peer Trace, and the Failure
Trace Archives, which provide
open access to workload and
resource operation traces from
large-scale distributed com-
puting environments. He is the

author of over 50 scientific publications and received several awards
and distinctions, including best paper awards at IEEE CCGrid 2010,
Euro-Par 2009, and IEEE P2P 2006.

	Operation analysis of massively multiplayer online games on unreliable resources
	Abstract
	Introduction
	MMOG model
	MMOG ecosystem
	Clients
	Game providers
	Game operators
	Capacity management service
	Fault tolerance service
	QoS monitoring service
	Resource management service

	Resource providers

	Failure model
	Resource failure
	Management failure
	Evaluation metrics

	Dynamic resource allocation
	MMOG simulator
	Coordinator
	Game traces
	User
	Game providers
	Game operators
	Data centre
	Failure traces

	Simulation setup
	Simulation results
	Impact of resource availability on MMOGs' QoS
	MMOG QoS in competition-based environments
	Status versus dynamic allocation
	Financial impact

	Related work
	Dynamic resource provisioning
	Load balancing
	Peer-to-peer computing

	Conclusions
	References

