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Abstract Successful massively multiplayer online games

(MMOGs) have today millions of registered users and

hundreds of thousands of active concurrent players. To be

able to guarantee quality of service (QoS) to a highly

variable number of concurrent users, game operators stat-

ically over-provision a large infrastructure capable of sus-

taining the game peak load, even though a large portion of

the resources is unused most of the time. To address this

problem, we introduce in this work a new MMOG eco-

system for hosting and provisioning of MMOGs which

effectively splits the traditional monolithic MMOG com-

panies into three main service providers: game providers,

game operators, and resource providers. Their interaction is

regulated through comprehensive service level agreements

(SLA) that establish the price, terms of operation, and

compensation for service violations. In our model, game

operators efficiently provision resources for MMOGs from

multiple cloud providers, based on dynamic load forecasts,

and ensure proper game operation that maintains the

required QoS to all clients under varying resource avail-

ability. Game providers manage multiple distributed

MMOGs for which they lease services under strict opera-

tional SLAs from game operators to satisfy all client

requests. These three self-standing, smaller, more agile

service providers enable access to the MMOG market for

the small and medium enterprises, and to the current

commercial cloud providers. We evaluate, through simu-

lations based on real-life MMOG traces and commercial

cloud SLAs, the impact of resource availability on the QoS

offered to the MMOG clients. We find that our model can

mitigate the negative effects of resource failures within

four minutes and that MMOG server consolidation can

accentuate the negative effects of failures in a resource-

scarce environment. We further investigate different

methods of ranking MMOG operational offers with either

single or multiple (competing) MMOG providers. Our

results show that compensations for SLA faults in the offer

selection process can lead up to 11–16 % gain in the game

providers’ income. We also demonstrate that adequate

ranking of offers can lead to MMOG operational cost

reductions from 20 up to 60 %.

Keywords MMOG � Cloud computing �
Fault tolerance � QoS � SLA

1 Introduction

Massively multiplayer online games (MMOGs) are a new

type of large-scale distributed application characterised by

seamless virtual worlds in which millions of world-wide

players interact in real-time. Although, in the past decade,

the number of MMOG players has grown exponentially to

the current tens of millions, growth may now hamper the

progress of this important branch of the entertainment

business. Figure 1a shows a rapid increase in the peak

number of concurrently connected players to the first five

most popular MMOGs in Asia in the past 8 years,

according to a survey conducted by [1]. The biggest Asian
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MMOG reached a record of 2.5 million concurrent players

in 2009, while the second biggest MMOG registered a

jump of one million in the number of concurrently con-

nected players within only 4 months (December 2008–

March 2009).

Today, most MMOG companies have to be both game

providers by investing in the creative part of games, and

game operators by purchasing and managing an over-

provisioned multi-server infrastructure (to comply with the

quality of service (QoS) requirements of players generating

highly variable computational and latency-sensitive net-

work demands [2]), using for its operation up to 40 % of

the total game revenue in an annual market of over 24

billion dollars. For example, leading MMOGs companies

such as Blizzard (developer of World of Warcraft) and

Jagex Ltd. (RuneScape) own and operate tens of thousands

of cores in hundreds of physical locations across all con-

tinents. The MMORPG World of Warcraft has operational

costs of over $50 million per year. An important reason for

this approach is the lack of middleware and business

models to enable outsourcing the operation of MMOGs,

which should include comprehensive methods for speci-

fying and negotiating operational terms, responsibilities,

and risk-related penalties. Another downside of this

approach is the high initial investment in purchasing and

running the data centres required to join the MMOG

market.

Today, cloud computing promises to solve the infra-

structure problems of the MMOG ecosystem through on-

demand resource leasing under well-defined service level

agreements (SLAs). By leveraging the new on-demand

resource provisioning model, companies such as MMOG

operators may avoid the large costs of buying and main-

taining hardware, and the rapid deprecation of hardware

investments. We have tackled in [2, 3] many of the

technical challenges of on-demand provisioning and allo-

cation of virtualised cloud resources to MMOGs under QoS

constraints.

To enable cloud use, operational MMOG models and

middleware must account for complex SLA and opera-

tional conditions, which raises numerous challenges and

motivates this work. Mapping SLAs to a specific applica-

tion domain remains challenging [4], although SLAs are a

classic and well-studied [5, 6] mechanism for specifying

and managing strict user requirements in distributed sys-

tems. As a consequence, working middleware and adequate

modeling tools for MMOGs do not yet exist. Selecting

among multiple cloud providers with different and com-

plex SLAs remains a distributed systems’ challenge [7, 8],

in particular raising the challenge of mapping various

business-level SLAs to the real-time QoS requirements of

MMOGs. Adapting to varying resource availability due to

variable performance [9] and zonal (correlated resource)

blackouts that occur even for large commercial cloud

providers, such as Amazon and Microsoft, is also crucial.

To address these QoS-related challenges, we introduce

in this work a new MMOG ecosystem for hosting and

operating MMOGs which effectively splits the traditional

monolithic MMOG companies into three lighter and more

focussed service providers: game providers, game opera-

tors, and resource providers. The proposed ecosystem

regulates their interaction through comprehensive SLA

negotiation protocols that establish the price, terms of

operation, and compensation for service violations as

penalties. In our model, game operators efficiently provi-

sion cloud resources for MMOGs based on their dynamic

load and ensure proper game operation that maintains the

required QoS to all clients. Game providers lease operation

SLAs from the game operators to satisfy all client requests

and manage multiple distributed MMOG sessions.

Fig. 1 Top-five MMOGs in number of subscribed and concurrent users. a Top-five Asian MMOGs in the peak number of concurrent users.

b Top-five MMOGs in the total number of subscriptions [1]
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Our new ecosystem enables faster access to the MMOG

market for the small and medium enterprises, and to the

current commercial cloud providers. It equips game oper-

ators with a clear specification of responsibility and of

penalties associated with risks of unavailability, lower

performance, and other QoS violations. It comprehensively

defines the roles of each service provider in the ecosystem,

such that they can be fulfilled by self-standing, smaller,

more agile service providers. This comes in contrast to

today’s practice that considers game providers to also be

operators, and even worse, resource providers. We show in

this work that it is possible for our comprehensive yet

seemingly complex model to be useful in realistic scenar-

ios, and in particular in relationship with a realistic multi-

cloud, multi-priced, dynamically available resources.

Our SLA-based middleware requires few changes to

current commercial MMOG deployments, as we do not

introduce game client changes and only require the game

operators to update their operational approach with mini-

mal intrusion in their deployed gaming platforms. Most

importantly, we do not require resource operators, such as

IaaS clouds, to change their underlying infrastructure to

support our negotiation protocols. Unlike traditional SLAs

considered in grids (e.g. SNAP [7], OGSA, WSRF [10])

and other distributed systems (e.g. Galaxy [11], Oceano

[12]), our proposed SLAs include a comprehensive speci-

fication of compensations for temporary QoS violations.

Thus, our middleware addresses transparently the new

challenges in SLA specification and negotiation introduced

by the stringent QoS requirements and the dynamic nature

of MMOGs. Recently, SLAs adapted to IaaS clouds have

been used by the online gaming company Zynga, but

without a publicly available middleware stack and only for

games that, as essentially non-communicating web appli-

cations, have much lower and less diverse QoS require-

ments than MMOGs. Several research studies related to

games [3, 13, 14], including our pioneering work in the

field of cloud-based MMOGs [15] and of SLAs that include

penalties [3], still lack much in comprehensiveness and

realism.

The remainder of this article is structured as follows.

Section 2 presents the MMOG, business ecosystem, and

QoS models underneath our approach. The following three

sections contain the main contributions of our work:

1. We propose in Sect. 3, a new ecosystem that separates

the problem of provisioning and operation of MMOGs

between two business actors: game providers offering

MMOGs to the clients and game operators leasing

appropriate resources from cloud providers to fulfil

QoS requirements and, as a novel contribution, con-

sidering various elements that affect resource avail-

ability as QoS parameters.

2. We model in Sect. 4, the MMOG QoS parameters as

SLA terms and design a negotiation protocol between

the game providers and the game operators which

includes fitness-based ranking of SLA offers and

penalties (compensations for QoS violations);

3. Based on simulations using real MMOG traces and

multi-cloud, multi-class, dynamically available

resources from ten commercial cloud providers

described in Sect. 5, we analyse in Sect. 6:

• the impact of resource availability on the MMOG

operation in isolated and competition-based envi-

ronments and formulate best practices guidelines

towards game operators for improving client’s

QoS;

• the impact of SLA compensation and fitness

ranking methods on the game provers’ income in

both isolated and competition-based environments,

and formulate again best practices guidelines

oriented towards maximising providers’ income

and maintaining clients’ QoS.

The paper ends with a related work summary in Sect. 7

and concluding remarks in Sect. 8.

2 Model

In this section, we introduce the computational, business

ecosystem, and QoS models underneath our approach.

2.1 Computational model

Online games can be seen as a collection of networked

game servers that are concurrently accessed by a number of

players (or clients). Clients connect directly to one game

server, send their play actions (e.g. movements, collection

of items, shooting), and receive appropriate responses.

Each player is mapped to one avatar located at precise

coordinates in the game world. Based on the actions sent,

the avatar dynamically interacts with other avatars within a

game session, influencing each others’ state. The state

updates must be delivered within a given time frequency to

ensure a smooth and responsive experience.

Most MMOGs share the following computational

model. The game server runs a loop in which the state of all

entities is first computed and then broadcast to the clients.

All entities within a specific avatar’s area of interest are

considered to be interacting with it and have an impact on

its state. The load of the game server is proportional to the

population size in the avatars’ areas of interest and to the

number of interactions between entities. An overloaded

game server delivers state updates to its clients at a lower

frequency than the players expect, which makes the overall
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environment fragmented and unplayable; players may quit

if similar games with better service exist in the market.

Depending on the game, typical update frequencies for a

fluent play must be of 1–10 Hz for most MMOGs, and

even higher for other game genres.

To concurrently support millions of active players and

many more other server-driven entities (non-playing

characters and other game objects) with guaranteed QoS,

MMOG operators provision a large static infrastructure

with hundreds to thousands of computers hosting a sin-

gle distributed game session. The most common game

session distribution technique is ‘‘zoning’’, which is

based on spatial partitioning of the game world into

geographical zones to be handled independently by

separate machines. Other techniques, such as ‘‘instanc-

ing’’ and ‘‘replication’’, divide the entities contained in a

zone across several machines. Software libraries like the

real time framework (RTF) [16] implement such low

overhead techniques for distributed game operation under

QoS constraints for both client and server. In this work,

we consider the RTF library as a prototypical low-level

software layer which allows for all these load distribu-

tion mechanisms.

2.2 Business ecosystem

To enable small and medium enterprises enter the

MMOG market, we propose a new middleware for dis-

tributed MMOG operation and provisioning that sepa-

rates the responsibilities across three different actors:

game providers, game operators, and resource providers

(see Fig. 2). The interaction between these actors is

negotiated and regulated through bipartite SLAs, repre-

senting wrappers around QoS parameters which they

agree to deliver (e.g. sustained state-update rate for a

specified price). These SLA-based relationships will be

discussed in detail in Sect. 3.

Game providers offer clients a selection of MMOGs by

contracting new games from game developers (the inter-

action provider-developer is not covered in this work).

Based on received requests, game providers assign clients

to game zones, which are then delegated to game operators

for QoS-based execution. The quality of gameplay is

monitored by the MMOG client program and, in case of

SLA faults (e.g. state update rate below the minimum

threshold) corroborated by server-side monitoring, the

client is compensated.

Game operators receive requests from the game pro-

viders for operating zones of different MMOG sessions

with guaranteed QoS. Based on resource utilisation esti-

mations covered in [2] employing a dead reckoning-based

load prediction method [17], the game operators construct

SLA template offers, negotiate SLAs with the game pro-

viders, and allocate resources accordingly (e.g. start new

game zones, allow client connections). This interaction is

detailed in Sects. 3.2 and 4. To fulfil their agreements with

game providers, game operators acquire the correct amount

of resources from cloud providers. At predefined mea-

surement timesteps during the game play, QoS information

from the MMOG servers (e.g. game loop tick rate, utilised

memory and network bandwidth, client-server connection

latency) is analysed. Whenever SLA faults are detected, the

operators compensate the providers.

Resource providers are data centres such as the IaaS

cloud providers available on the market, from which game

operators lease computing and storage resources to run

game servers with guaranteed QoS. We studied in [2, 3],

the opportunity of employing IaaS-based cloud infrastruc-

tures for MMOG hosting with respect to the performance

penalties incurred by the virtualisation overheads. In this

paper, we add an essential new dimension to our previous

work by considering resource availabilities and cost

penalties.

2.3 QoS parameters

In the proposed MMOG operational model, we identify

two principal types of failures that produce disturbances in

the game play for the clients with a negative impact on the

offered QoS: resource and management failures.

2.3.1 Resource failures

The game operator runs the MMOG sessions on distributed

and heterogeneous cloud resources which are subject to a

multitude of unexpected events that can lead to failures. If

a machine crashes, hangs or becomes unreachable through

the network, the MMOG server running on it is compro-

mised disrupting the normal operation of the session. Upon

the detection of this type of failure, the game operatorFig. 2 Layered MMOG ecosystem
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provisions a new resource with the same (or better) char-

acteristics as the failing one, starts a new MMOG server

which is included in the session and to which it instructs

the clients to reconnect. Although the MMOG session is

salvaged, the clients connected to the failing MMOG server

will experience a total interruption in game play for a

certain amount of time.

2.3.2 Management failures

The necessary amount of cloud resources for proper

MMOG session operation is estimated by the game oper-

ator and provisioned from the resource provider. The main

challenge in this architecture is the mapping of the strin-

gent QoS requirements of MMOGs to SLA contracts that

must be honoured at all times, which can only be enforced

through best-effort mechanisms using today’s resource

allocation mechanisms in cloud and Internet-based infra-

structures. In case of erroneous estimations or sudden

surges in the number of clients, the provisioned resources

are not sufficient to handle the generated load, which leads

to the degradation of the QoS (i.e. fragmented, unrealistic

game play) for the clients connected to the overloaded

servers. In this situation, the game operator can either

redistribute the clients to other MMOG servers within the

same session aiming a better load distribution and a more

efficient use of the provisioned resources, or it can provi-

sion more resources to include in the affected session. We

call this type of disturbance, where the clients are not

disconnected from the MMOG session but their game play

experience is degraded, as a partial interruption. In pre-

vious work, we covered several aspects related to the

MMOG QoS topic, such as the impact of the performance

of resources [2] and of the cloud virtualisation overheads

[18]. In this work, we expand our investigation by studying

the effect of the two identified types of disruptions on the

MMOG session QoS.

We define two important QoS metrics that define

MMOG management failures. First, the instantaneous non-

interruption ratio is the ratio between the measured state

update frequency within one measurement timestep and the

required minimal frequency. For example, if the minimal

update frequency given by the game developer is 40 Hz

and the measured update frequency is above 36 Hz in this

measurement step, the instantaneous non-interruption ratio

is: 36
40
¼ 90 %. Second, the total non-interruption ratio is

the percentage of time the MMOG session has been

accessible and the state update frequency equal or greater

than the required frequency, over a given time interval (e.g.

an SLA’s validity time). For example, if the game operator

provided, over the last 24 h, only 23.98 h of accessible

MMOG sessions during which the state update rate was

above the minimal frequency, the total non-interruption

ratio is: 23:98
24
¼ 99:9 %. It is important to mention that the

total and instantaneous non-interruption ratios are high-

level metrics that take into account other lower-level QoS

metrics such as insufficient CPU, memory or network

resources. Concretely, if a set of clients are assigned to an

overloaded resource, they will experience a partial inter-

ruption characterised by its total and instantaneous non-

interruption ratios.

3 SLA-based relationships

We present in this section, the business relationships

between the actors participating in our cloud-based mid-

dleware model.

3.1 Client and game provider

The interaction between the client and the game provider

requires human intervention only from the client. The

relationship is regulated by the client account, created

through a Web portal by the client upon agreeing on a

contract with the game provider. The contract includes

generic mutual obligations valid for all MMOGs, while

further refinements and extensions can be added in the

form of annexes.

Typical client obligations include subscription costs,

client community interaction rules, and costs for accessing

MMOG sessions. Typical game provider obligations

include guaranteed services, such as community support,

player support (player status and achievements, inventory,

and detailed play statistics), mediation of client connec-

tions to MMOGs, access and availability to game world

areas, and compensation (penalties) in case of contract

violations. Client accounts can have unlimited duration,

while MMOG contract annexes have well-defined validity

periods, typically of 1 month.

Initially, the client selects a game provider based on

offered MMOGs and contract terms. The client then

creates an account by accepting (once) the contract

offered by the selected game provider. After accepting

the contract, the client selects the MMOG to play and,

after agreeing upon the presented contract annex (once,

during the first access), is allowed to connect to an

MMOG session. The client may be refused access to an

MMOG session, either because the game provider

underestimated the demand for the requested MMOG, or

because the game operator has not allocated enough

resources for the MMOG session. In these situations, the

game provider compensates the client according to the

terms of the contract.
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3.2 Game provider and game operator

We focus in this paper on formalising a fully automated

interaction between the game provider and the game

operator. To facilitate the read of the underlying formalism,

we summarise in Table 1 the most important symbols used

in this paper. Based on the total number of accounts and its

service policy, the game provider computes the maximum

number of clients for each game zone. We define the

provider’s service policy as a quintuple:

sini; stni; stime;P
ðTÞ;CðTÞ

� �
ð1Þ

composed of five terms: (1) target instantaneous non-

interruption ratio sini that should be minimised, (2) total

non-interruption ratio stni that should also be minimised,

(3) interval of acceptable SLA validity periods stime to

avoid excessively long operation agreements, (4) target

hourly price per client P(T), and (5) target compensation per

client per minute C(T).

Using the estimated client requests (see Fig. 1b), the

game provider negotiates the most appropriate terms for

hosting each zone by establishing O-SLAs with different

operators (see Sect. 4). Based on its policies and available

cloud resources, each operator publishes an O-SLA

template:

O-SLA ¼ G
ðOÞ
type; t

ðOÞ
cli ; t

ðOÞ
ini ; t

ðOÞ
tni ; t

ðOÞ
time; r

ðOÞ;PðOÞ;CðOÞ
� �

;

ð2Þ

consisting of a set of eight terms with either scalar or range

values:

• MMOG name and version Gtype
(O) ;

• client number tcli
(O) (range), the number of clients that the

game operator is ready to service;

• instantaneous non-interruption ratio tini
(O) (range) repre-

senting the minimum percentage from the state update

frequency, the operator guarantees to maintain for all

clients during the O-SLA validity period;

• total non-interruption ratio ttni
(O) (range) representing the

percentage of QoS fulfilment from the entire O-SLA

validity time and evaluated only at the end of the

O-SLA validity period;

• validity period ttime
(O) (range) representing the SLA

lifetime offered by the game operator (with variable

granularity from daily to semestrial);

• geographical area r(O) in which the game operator will

service the clients;

• base price P(O) for accepting an SLA utilising the

lowest values of all terms in the given ranges;

• compensation C(O) for O-SLA faults, defined as the

aggregate penalty:

CðOÞ ¼ P Ccli;Cini;Ctnið Þ; ð3Þ

where P is a polynomial function, the operator has to pay

in case of O-SLA faults, consisting of three QoS terms: (1)

compensation for unserved clients Ccli, (2) compensation

for instantaneous non-interruption ratio Cini, and (3)

compensation for total non-interruption ratio Ctni.

Although the aggregation function may carry a lot of

weight in the game operators’ policies (e.g. make an

expensive O-SLA template more attractive, if it favours

important compensation terms like Cini), we consider for

the sake of clarity an additive function:

P Ccli;Cini;Ctnið Þ ¼ Ccli þ Cini þ Ctni: ð4Þ

We define these three compensation terms using a

compensation function:

Cx : 0; bðmaxÞ
x

h i
! R

þ; Cx bxð Þ ¼
c
ðuÞ
x � bx

ux

� fx
bx

b
ðmaxÞ
x

 !
;

8x 2 cli; ini; tnif g; ð5Þ

where R
þ denotes the positive real numbers, cx

(u) is the

compensation for an O-SLA fault of one term unit ux (i.e.

one client or 0.1 % of the instantaneous/total non-

interruption ratio), bx is the O-SLA fault severity for

term x (i.e. measured client number or instantaneous/total

non-interruption ratio), bx
(max) is its maximum severity, and

fx is a shape function with the signature:

fx : ½0; 1� ! R
þ; ð6Þ

employed for changing the importance of different fault

classes. A game operator could make its offer more

appealing by employing a shape function offering higher

Table 1 Notation summary

Notation Semantic

O-SLA Operational SLA

tcli Number of clients to service

tini
(O)/tini

(R) Instantaneous non-interruption ratio

ttni
(O)/ttni

(R) Total non-interruption ratio

ttime
(O) /ttime

(R) SLA validity period

P(O)/P(T) Hourly SLA price

Cx
(O)/Cx

(T) Compensation for SLA term x 2 fcli; ini; tnig
bx/bx

(max) O-SLA/maximum O-SLA fault severity for term

x 2 fcli; ini; tnig
fx Shape function for SLA term x 2 fcli; ini; tnig
PO�SLA Pricing rank

CO�SLA Compensation rank

FO�SLA Fitness rank

Ax=AðchÞ
x

Compensation gain/characteristic compensation

gain

O offered, R requested, T targeted
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compensations for most frequent, low-severity faults rather

than for the infrequent, higher severity ones (see Sect. 5.5).

We present and analyse in Sect. 5.6, Eq. 21, two important

shape functions: logarithmic and exponential. Non-nego-

tiable O-SLA terms such as the issuer (i.e. game operator)

and the measurement timestep describing the time interval

between consecutive QoS evaluations are not represented

for simplicity reasons.

3.3 Game operator and resource provider

The interaction between the game operator and the resource

provider is also fully automated. As mentioned in Sect. 2.2,

the game operator selects, from different providers, appro-

priate cloud resources on which to host and run the MMOG

zones. The result of this interaction is a Resource SLA (R-

SLA) with the following terms: (1) issuer or resource pro-

vider; (2) geographical location of the issuer’s data centre;

(3) resource bulk representing the set of rented resources

comprising processor speed, memory size, internal and

external network bandwidth; (4) validity period represent-

ing the availability duration of the resources to the game

operator after accepting an R-SLA (usually hourly grained);

(5) compensation terms in case of resource faults; (6) price

representing the requested non-negotiable price.

The R-SLA terms provided by commercial clouds in

today’s market have fixed, non-negotiable values. Therefore,

no negotiation but a simple request-offer matching algorithm

is employed by the game operator. Another complication is

the fact that the terms offered by cloud providers, such as

Amazon ECU (equivalent CPU capacity of a 1–1.2 GHz

2007 Opteron or Xeon processor) and FlexiScale (vCPU

units), are not precise and difficult to map to finer-grained

agreements and compensations other than for resource

downtime. Our approach to making offers more precise is to

use application-specific benchmarks to quantify the perfor-

mance offered by cloud providers before establishing

R-SLAs, such as the RS unit benchmark employed in Sect.

5.1. We studied the interaction between the game operator

and the resource in [2, 19] and no longer address it here.

4 Game operators–game providers interaction

We define the O-SLA negotiation as a decision process in

which two parties interact with each other for mutual gain

20. (i.e. maximise income and keep expenditures low). The

game provider’s income comprises the MMOG subscrip-

tion sales and the compensations paid by the game operator

in case of O-SLA faults, while its expenditures consist of

the O-SLA acquisitions and the compensations to the cli-

ents for low QoS. The game operator’s income results from

the O-SLAs provisioned to the game provider, and its

expenditures comprise the acquisition of resources from

the cloud providers and the O-SLA compensations to the

game providers. The accounting, billing and auditing

aspects of SLAs fall outside our scope (but solutions exist).

The three negotiation phases depicted in Fig. 3 cover the

game operators generating O-SLA templates based on cloud

resource pricing and availability (phase one), the game

providers instantiating and ranking O-SLA offers (phase

two) and finally, the binding agreement (phase three). A

simpler one-phase request-offer matching algorithm cannot

be employed because it would not be fair towards the game

operators. The resource providers’ pricing policies can

change between the time the operator published an offer

until the game provider accepted it, which would enable a

game provider profit from delaying the answer. Introducing

a validity deadline for offers to prevent this unfair behav-

iour could have negative effects on both game provider and

game operator, as one might not have enough time for the

ranking process, while the other would have to assume the

risk of changes in resource prices (within the offer validity

time). Thus, the proposed negotiation involves dynamic

offers (determined by the available cloud resources) and a

possibility for game operators to propose small changes in

price during the final agreement phase.

4.1 First phase

In the first phase, the game operator checks the resources

offered by different providers and publishes an O-SLA

template, as defined in Eq. 2. The game provider computes

the operational requirements:

R ¼ G
ðRÞ
type; t

ðRÞ
cli ; t

ðRÞ
ini ; t

ðRÞ
tni ; t

ðRÞ
time; r

ðRÞ;PðTÞ;CðTÞ
� �

ð7Þ

based on the current state of its provisioned O-SLAs and

the estimated number of clients for the next provisioning

time frame, where:

Fig. 3 O-SLA negotiation protocol
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• Gtype
(R) is the required MMOG type;

• tcli
(R) is the estimated number of active accounts;

• tini
(R) is the required instantaneous total non-interruption

ratio, initially equal to the minimum instantaneous non-

interruption ratio sini of the game provider’s service

policy (defined in Eq. 1);

• ttni
(R) is the total non-interruption ratio, initially equal to

the minimum total non-interruption ratio stni from the

provider’s service policy;

• ttime
(R) is the estimated time period for these requirements

expressed in hours;

• r(R) is the geographical area;

• P(T) is the target hourly price per client defined by the

game provider’s service policy;

• C(T) is the target compensation per client per minute

defined by the game provider’s service policy.

4.2 Second phase

In the second phase, the game provider gathers O-SLA

templates from all game operators and instantiates them

with the ‘‘best’’ values allowed by the template for the

operational requirements. When instantiating an O-SLA

template, it also calculates the price increase for the client

number Pcli, the instantaneous non-interruption ratio Pini,

and the total non-interruption ratio Ptni:

Px ¼
t
ðRÞ
x � t Ominð Þ

x

ux

� pðuÞx � fx tðOÞx

� �
; 8x 2 cli; ini; tnif g;

ð8Þ

where tx
(R) is the operational requirement for the term

x [ {cli, ini, tni} (see Eq. 7), tx
(min) is the minimum value

of the term x allowed by the operator through an O-SLA,

px
(u) represents the price per term unit ux, and fx(tx

(O)) is a

shape function defined as in Eq. 6. The final price the game

provider is charged when accepting the O-SLA is:

PðOÞ ¼ Pbase þ Pcli þ Pini � tðRÞcli þ Ptni � tðRÞcli

� �
� Tcoeff ; ð9Þ

where Pbase is the base price and Tcoeff is the validity period

coefficient that adjusts the price in case of changes in

validity time requested by the provider:

Tcoeff ¼
t
ðRÞ
time

t
Ominð Þ

time

& ’
� ftime t

ðRÞ
time

� �
; ð10Þ

where d�e is the ceiling function, t
Ominð Þ

time is the lowest O-SLA

validity period allowed by the operator, and ftime is a shape

function defined as in Eq. 6.

Next, the O-SLA instances are grouped by the game

provider into a set of M feasible operational offers:

O ¼
[M
i¼1

O-SLAi; ð11Þ

Consider for example, the operational requirements of 50

thousand clients and three O-SLAs (O-SLA[1;3]) with the

maximum of 25, 20 and 30 thousand clients. The resulting

operational offers are {O-SLA1, O-SLA3} and {O-SLA2,

O-SLA3} (M = 2 in both cases). The combination

{O-SLA1, O-SLA2} is not feasible because it does not meet

the minimum operational requirements of 50 thousand

players (25 ? 20 \ 50).

The game provider assigns to each operational offer an

operational rank computed based on the weighted sum of

three individual ranks: the pricing rank PO�SLA (directly

proportional), the compensation rank CO�SLA (inversely

proportional) and the resource fitness rank FO�SLA

(inversely proportional):

R ¼ kp � PO�SLA � kc � CO�SLA � kf � FO�SLA; ð12Þ

where kp, kc, kf [ [0; 1] and kp ? kc ? kf = 1. The main

goal of this paper is to determine best practices for a game

provider for computing these compensation and fitness

weights in an environment with multiple competing pro-

viders and game operators (we studied the pricing weight

in [3]). We define in the following, the computation of the

pricing, compensation and resource fitness ranks by the

game provider.

The pricing rank PO�SLA of an operational offer is a

quantification of the resources’ price, determined as the

ratio between the aggregated hourly price
P
ðOÞ
i

t
ðOÞ
timei

of all

M O-SLAs of an operational offer and the target price

P(T)�tcli_i
(O) for servicing all clients in all M O-SLAs (see

O-SLA definition in Eq. 2):

PO�SLA ¼

PM
i¼1

P
ðOÞ
i

t
ðOÞ
timei

PðTÞ �
PM

i¼1 t
ðOÞ
clii

: ð13Þ

The compensation rank quantifies the penalties the

operator pays for O-SLA faults, based on a compensation

gain metric representing the area of the compensation

function Cx within its definition interval [0; bx
(max)] (see

Eq. 5):

Ax ¼
ZbðmaxÞ

x

0

Cx bxð Þ � dbx ¼
c
ðuÞ
x

ux

�
ZbðmaxÞ

x

0

bx � fx

bx

b
ðmaxÞ
x

 !
� dbx:

ð14Þ

By substituting y ¼ bx

b
ðmaxÞ
x

in Eq. 14, we obtain:
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Ax ¼
c
ðuÞ
x � b

ðmaxÞ
x

� �2

ux

�
Z1

0

y � fxðyÞ � dy: ð15Þ

While the compensation gain completely characterises the

compensation function for uniformly distributed SLA

faults, it does not accurately reflect its behaviour in a

realistic system with a non-uniform fault distribution. To

compensate for this drawback, we introduce an SLA fault

distribution function:

dx : 0; bðmaxÞ
x

h i
! 0; Dmax½ �; ð16Þ

where Dmax is the maximum value of the SLA fault

distribution function. We dynamically compute the SLA

fault distribution for each MMOG zone by continuously

monitoring the game play and recording each fault. By

superimposing dx to the compensation gain, we compute an

adjusted metric called characteristic compensation gain as

the compensation function for an MMOG:

AðchÞ
x ¼

c
ðuÞ
x � b

ðmaxÞ
x

� �2

ux

�
Z1

0

y � dx bðmaxÞ
x � y

� �
� fxðyÞ � dy:

ð17Þ

We approximate the characteristic compensation gain

through a finite sum:

AðchÞ
x �

c
ðuÞ
x � b

ðmaxÞ
x

� �2

ux

�
XN

i¼1

i

N
� dx

b
ðmaxÞ
x � i

N

 !
� fx

i

N

� �
;

ð18Þ

where N is the integration granularity representing the

number of interval partitions. In Sect. 6.4, we evaluate the

impact of the integration granularity on the game pro-

vider’s yield from compensations and its effects on the

QoS.

Using the term AðchÞ
x , we can finally compute the com-

pensation rank of an operational offer as the sum as the

weighted sum of the normalised characteristic compensa-

tion gains for all O-SLA terms x [ {cli, ini, tni}:

CO�SLA ¼
XM

i¼1

X
x2 cli;ini;tnif g

wx �
AðchÞ

xi

AðREFÞ
x

; ð19Þ

where AðREFÞ
x represents a reference compensation gain

considered ideal by the game provider (e.g. minimum

compensation function from all operators), and wcli, wi-

ni, wtni [ [0; 1] indicate the provider’s preference for each

specific O-SLA term, where wcli ? wini ? wtni = 1. Sec-

tion 6.3 and Fig. 9 give examples and evaluate several

compensation ranking alternatives.

The fitness rank reflects how well the operational offer

matches the requirements, computed as a weighted sum of

the ratio between the offered tx
(O) and the requested tx

(R)

O-SLA terms (i.e. tcli, tini, ttni, and ttime—see Eq. 2):

FO�SLA ¼
X

x2 cli;ini;tni;timef g
/x �

Sx t
ðOÞ
xi

� �

t
ðRÞ
x

;

where Sx tðOÞxi

� �
¼

PM
i¼1 t

ðOÞ
xi ; x ¼ cli;PM

i¼1
t
ðOÞ
xi

M
; x 2 fini; tnig;

min
i2½1;M�

t
ðOÞ
xi

n o
; x ¼ time;

8>>><
>>>:

ð20Þ

/cli, /ini, /tni, /time [ [0;1] indicate again the provider’s

preference for each O-SLA term (/cli ? /ini ? /tni ? /-

time = 1) and Sx is an aggregation function (i.e. sum for

number of clients, average for instantaneous and total non-

interruption ratios, and minimum for validity period). The

offer is unfit if the fitness rank is lower than one, is a

perfect match if equal to one, or contains too many

resources if higher than one.

Finally, the operational offers are sorted in ascending

order by their rank. It is worth noting that, although the

price ranking is relatively static between successive nego-

tiations (provided that the operators do not adjust their

offers dynamically), the fitness and compensation rankings

constantly vary based on the current operational demands

and the operators’ SLA fault history (see characteristic

compensation gain function in Eq. 17). This ensures that

game providers do not reach the same apparently optimal

operator, but are able to discover those whose offers most

accurately match their needs.

4.3 Third phase

In the third phase, the game provider attempts to accept an

operational offer starting with the best ranked one, and

continues through the list in case other competing provid-

ers already provisioned it. At this stage, the operators are

allowed to propose small updates in the O-SLA terms to

compensate for changes in the cloud providers’ R-SLAs. In

turn, the game providers will either recompute the rank for

the O-SLA in question, or will simply skip to the next best

offer according to their internal policy. After the negotia-

tion, the provider tries to enforce the accepted O-SLA for

the entire interaction with the clients and the game oper-

ator. To achieve this, the game provider collects and

aggregates data from two sources: the game operator’s QoS

data collected from MMOG servers and the client that

regularly reports (in the background) on the quality of

game play. The game provider enforces the O-SLAs by

compensating the clients according to their contractual
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terms (not covered here) and by penalising the game

operators in case of QoS violations.

5 Experimental setup

We present in this section, the experimental setup used for

evaluating our MMOG middleware stack focussed on the

O-SLA-based negotiation process between the game pro-

viders and the game operators. We conduct our evaluation

in simulation, but use as input real data corresponding to

MMOG workloads (number of players online) and real

commercial IaaS cloud SLAs.

5.1 RuneScape

We use traces from RuneScape, a real MMOG ranked

second after World of Warcraft by the number of active

paying customers in the US and European markets. We

collected execution traces from the official RuneScape web

page for a period of 6 months from over 130 servers spread

across five geographical regions by sampling the number of

players every two minutes (see Table 2). Our traces contain

the number of players over time for each server group used

by the RuneScape operators. These numbers are used by

the game providers to provision O-SLAs according to the

number of active client accounts. Since the total number of

MMOG subscriptions is only occasionally published by the

game provider, we approximate it from the total number of

active accounts using the concurrent active account ratio

(around 15 % in case of RuneScape), computed at each

moment of time when the total number of MMOG sub-

scriptions is publicly known (see Fig. 4). We need this

metric in our experiments for computing the game pro-

vider’s income from client subscriptions. For the client–

game provider interaction, we use the real monthly sub-

scription model of RuneScape (e.g. $5.95 as of August

2012).

5.2 MMOG simulator

To validate our theory, we developed an MMOG simulator

based on the model proposed in Sect. 3. While the simu-

lator considers many relevant computing and resource-

level parameters of an MMOG (e.g. load computation for

CPU, memory, multiple network connections), we focus its

presentation on the business relationships targeted in this

paper. Figure 5 presents an overview of the simulation

process centred around the three main actors: game pro-

vider, game operator and resource provider. The simulator

uses MMOG traces (such as the RuneScape ones) as input

to simulate the clients.

We configured the game providers through two inputs: the

service policy (PP) parameters from Eq. 1 and the opera-

tional ranking policy (RK) parameters from Eq. 12. Each

game provider is assigned a subset of the RuneScape traces.

Based on the number of client access requests and their

geographical origin, the game providers estimate the demand

for each geographical area. Based on the estimated demand,

the providers construct their operational requirements (R)

which, along with the operational ranking policies, represent

their basis for negotiating with the game operators.

We configured the game operators through O-SLA

templates as the basis for their O-SLA offers. The negoti-

ation with the game providers results in some O-SLAs

being accepted and, as a consequence, in game providers

assigning clients to be serviced by the operators. Based on

historical data and the currently assigned clients, each

operator predicts the load for predetermined time intervals

(shorter for dynamic MMOGs and longer otherwise) using

the method presented in [17]. The prediction consists of the

distribution of the clients in the MMOG world and a load

model for translating it into resource requirements. In case

of RuneScape, we determined that a prediction interval of

two minutes is adequate. At each prediction interval, the

operators evaluate their provisioned resources and make

adjustments if necessary by allocating/releasing resources

and redistributing the load using the RTF [16] mechanisms

(e.g. game zone replication and clients migration).

The role of the resource providers in the simulation is to

periodically evaluate their allocated resources and to

eventually offer new R-SLAs based on the remaining free

resources.

Each prediction/negotiation step of the simulation is

preceded by an evaluation of the state of the allocated

resources, the QoS provided to the clients, and an analysis

of the SLA faults. The output of this step consists of O-SLA

and R-SLA (de-)allocation traces, along with accounting

traces of all financial transactions between the three actors,

including all compensations. This output is logged and

represents the simulation output (not shown in Fig. 5).

5.3 Cloud providers’ R-SLAs

We employ 115 R-SLAs based on the resources provided

by 16 commercial cloud providers, described in Table 3.

We present the hourly prices relative to the processing

Table 2 Number of server groups in different regions

Region Server groups

Europe 40

North America East Coast 37

North America Continental 12

North America West Coast 39

Australia 6
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power and the memory capacity, including the upstream

and downstream network traffic which may have an

important impact on the final R-SLA prices, as in the case

of the CloudCentral provider. For each cloud provider, we

use its geographical location, memory size, and price. We

express the VM processing power using an MMOG-ori-

ented metric called RS unit (RSU), representing the

equivalent maximum computational requirements of one

Fig. 4 Total number of

RuneScape client subscriptions

aggregated for all servers in

each region

Fig. 5 MMOG simulation architecture
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RuneScape server servicing 2000 clients. We compute this

metric, including the virtualisation overheads, based on

benchmarking and analysis data from our previous work

[20]. We quantified in our simulation, the entire traffic

generated by the RuneScape servers on external networks

and included its costs in the hourly RSU presented in

Table 3 (fourth column). The VM instantiation overhead is

the variable duration of instantiating a new VM.

Table 3 Summary of

commercial cloud R-SLAs
Cloud provider VM types Locations Price [$/.. Validity (h) VM instantiation

(seconds)
RSU/h] GB/h]

Amazon 6 4 1.21 0.81 1 [65; 105]

CloudCentral 5 1 11.07 35.25 1 [50; 120]

ElasticHosts 4 1 1.22 2.73 1 [45; 120]

FlexiScale 4 1 0.72 1.46 1 [40; 50]

GoGrid 4 1 2.07 7.15 1 [60; 120]

Linode 5 1 0.67 2.37 24 [45; 120]

NewServers 5 1 0.38 0.71 1 [30; 120]

OpSource 6 1 0.09 0.15 1 [300; 540]

RackSpace 4 2 1.54 5.56 1 [100; 300]

ReliaCloud 3 1 0.96 1.04 1 [45; 60]

SoftLayer 4 3 0.70 1.75 1 [180; 300]

SpeedyRails 3 1 1.76 8.43 24 [80; 120]

Storm 6 2 0.99 1.54 1 [600; 900]

Terremark 5 1 1.40 6.14 1 [40; 60]

Voxel 4 3 0.83 0.94 1 [300; 600]

Zerigo 2 1 1.96 3.16 1 [60; 120]

Table 4 Resource availability parameters and statistical characterisation

Metric Distribution Statistical properties of failure trace Avail-ability (%)

Min Max Average Q1 Q2 Q3

DURa LNb (2.12, 0.31) 1 37 8 6 8 10 –

SIZEc Wd (4, 5) 0 6 3 3 3 4 –

IATe W (13600, 7) 2073 19668 12722 11381 12906 14254 99.5

IAT W (7000, 7) 888 10123 6548 5860 6645 7336 99.6

IAT W (4750, 7) 535 6988 4443 3976 4509 4977 99.7

IAT W (3550, 7) 476 5146 3320 2971 3370 3720 99.8

IAT W (2830, 7) 341 4119 2647 2369 2686 2965 99.9

a Failure duration (in minutes)
b Log-Normal distribution
c Failure size (in number of machines)
d Weibull distribution
e Inter-arrival time (in seconds)

Table 5 Game providers’ service policies, defined in bold by (min; max; step) value ranges; stochastic parameters are defined by [min; max]

intervals

Policy sini stni stime (hours) P(T) ($) C(T) ($)

PP1 0.9 0.99 12; 168½ � 0.01 0.05

PP2-PP6 (0.86; 0.98; 0.03) 0.992 [168; 336] 0.002 0.05

PP7-PP11 0.92 (0.986; 0.998; 0.003) [168; 336] 0.002 0.05

PP12-PP16 0.92 0.992 [(24; 312; 72); (336; 624; 72)] 0.002 0.05
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5.4 Resource availability

We associated each of the modelled Cloud providers’ data

centres with generated failure traces with tunable avail-

ability. We employ the resource availability model pro-

posed in [21] and generate failure traces with average

availabilities ranging from 99.5 to 99.9 %. The traces are

characterised through their failures’ duration, size and

inter-arrival time (IAT), each modelled through a statistical

distribution. The distributions’ parameters are presented in

Table 4, along with the statistical properties of the result-

ing traces. For all traces, we employ the same distribution

for the failure duration and size, but we vary the resource

availability by adjusting the failure IAT. We generated

both independent and correlated failures, the ratio between

the two being 3:2.

5.5 Game provider’s service policies

We characterise the client-game provider contracts through

the service policies displayed in Table 5 (see terms in

Eq. 1). We further sample the design space of operational

ranking functions through the 45 functions summarised in

Table 6, by varying the class of the compensation ranking

function in RK1–RK6 (see Sect. 6.3), the computational

complexity of the compensation ranking function in RK7–

RK17 (see Sect. 6.4), the fitness ranking function (Sect.

6.5) in RK18–RK37, and the complete operational ranking

function (Sect. 6.6) in RK38–RK45.

5.6 O-SLA templates

We employ an extensive set of O-SLAs designed to

cover all aspects of the negotiation described in Sect. 4,

based on the three O-SLA templates presented in

Table 7 and generated by varying one or more of their

term values. We keep the pricing functions constant,

since we covered them in previous work [3]. As com-

pensation functions (see Eq. 5 in Sect. 3.2), we use two

classes of parameterised shape functions (logarithmic

and exponential):

Table 6 Operational ranking configuration parameters [sets of functions defined in bold by the min; max; stepð Þ value ranges]

Ranking acronym

(function)

CO�SLA Fitness rank ðFO�SLAÞ Oper. rank ðRÞ

Type N /cli /ini /tni /time kf kb

RK1(max) max – 0.2 0.5 0.2 0.1 0.1 0.8

RK2(avg-3) avg 3 0.2 0.5 0.2 0.1 0.1 0.8

RK3(avg-9) avg 9 0.2 0.5 0.2 0.1 0.1 0.8

RK4(gain) Ax – 0.2 0.5 0.2 0.1 0.1 0.8

RK5(cgain-9) AðchÞ
x

9 0.2 0.5 0.2 0.1 0.1 0.8

RK6(cgain-30) AðchÞ
x

30 0.2 0.5 0.2 0.1 0.1 0.8

RK[7; 17] (cgain-[1;30]) AðchÞ
x

1, (3; 30;
3)

0.2 0.5 0.2 0.1 0.1 0.8

RK[18; 22](cli-[10;90]) Aðch
x Þ 30 (0.1; 0.9;

0.2)

1�/cli

3
0.6 0.2

RK[23; 27](ini-[10;90]) AðchÞ
x

30 1�/ini

3
(0.1; 0.9;

0.2)

1�/ini

3
0.6 0.2

RK[28; 32](tni-[10;90]) AðchÞ
x

30 1�/tni

3
(0.1; 0.9;

0.2)

1�/tni

3
0.6 0.2

RK[33; 37](time-[10;90]) AðchÞ
x

30 1�/time

3
(0.1; 0.9;

0.2)
0.6 0.2

RK[38; 45](or-[1;8]) AðchÞ
x

30 0.1 0.3 0.3 0.3 (0.1; 0.8;
0.1)

(0.8; 0.1;
20.1)

Table 7 RuneScape-related O-SLA templates

Name tcli
(O)(x103) tini

(O) ttime
(O) ttni

(O) Ccli Cini Ctni

fcli a fini a ftni a

OSLA-1 [2; 20] [0.85; 0.95] [24; 168] [0.99; 0.999] exp 1.5 exp 1.3 exp 1.3

OSLA-2 [3; 10] [0.90; 0.98] [144; 336] [0.99; 0.999] log 15 exp 1.3 exp 1.3

OSLA-3 =OSLA-1 =OSLA-1 =OSLA-1 =OSLA-1 log 10 log 10 log 10
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f ðlogÞ
x bxð Þ ¼

log a � bx þ 1ð Þ
log aþ 1ð Þ ;

f ðexpÞ
x bxð Þ ¼

ea�bx � 1

ea � 1
;

ð21Þ

where a 2 R
þ is the shape coefficient. We adjust this

coefficient for different O-SLAs and evaluate the resulting

compensation functions using the compensation gain

defined in Eq. 15. Finally, we use a uniform distribution of

the serviced geographical areas.

5.7 Evaluation metrics

We evaluate our new model using several metrics for QoS,

cost, and SLA. First, we define three important QoS met-

rics that define MMOG management failures, alongside the

instantaneous non-interruption ratio tini and the total non-

interruption ratio ttni defined in Sect. 2.3:

1. number of interruptions in a time interval (e.g. the

simulation period);

2. duration of the interruptions measured from the start of

the event (resource/management failure) to the

moment when all affected clients recover (i.e. when

they are reconnected to the MMOG session in case of

total interruptions, or when the QoS is above the

promised level in case of partial interruptions);

3. severity of the interruptions, which represents the

percentage of affected players of the MMOG session.

For a better understanding of ttni, we also analyse the

average non-serviced clients as the average number of

clients who were denied service within a measurement

timestep because of improper O-SLA provisioning by the

game provider, or because of improper resource allocation

by the game operator.

Second, we analyse the financial MMOG operation

using three metrics:

1. gross profit representing the difference between the

actor’s revenue and the cost of providing its services,

excluding taxation and other overheads;

2. total compensation (fraction of gross profit) represent-

ing the cost paid by an actor as compensation for any

SLA fault for the entire simulation period;

3. compensation events representing a breakdown of the

total compensation for all faults. The sum of all

compensation events is the total compensation.

6 Experimental results

We presents in this section, the results of our evaluation.

We cover an evaluation space with four dimensions

explored in the following subsections: (1) MMOG QoS in

Sects. 6.1 and 6.2, (2) compensation rank function in Sects.

6.3 and 6.4, (3) fitness rank function in Sect. 6.5, and (4)

operational ranking function with multiple game providers

competing for resources in Sect. 6.6. Table 8 shows an

overview of the experiments.

6.1 Impact of resource availability on MMOGs’ QoS

In the first experiment, we investigate the impact of

resource failures on the quality of game play under dif-

ferent resource availability conditions. We employ the

cloud resources and failure traces introduced in Sect. 5.4.

We run one experiment for each average resource avail-

ability and evaluate the experienced QoS through the total

interruptions metric, defined in Sect. 5.7.

Figure 6 depicts the number, the average duration and

the severity of the total interruptions registered in the

MMOG sessions over the 6 months simulation, as a func-

tion of resource availability. We observe stable, constant

values for the severity and duration of total interruptions

(the two bottom graphs) across all resource availability

values, which indicates a proper recovery from resource

failures. The median duration of a total interruption is two

minutes and just below four minutes (i.e. approximately

two resource allocation cycles) for more than 75 % of the

events. The median percentage of affected players is below

2 %, as shown by the bottom interruption severity plot. The

Table 8 The evaluation space (the focus of each section is in bold)

Section QoS Ranking function Game providers

Availability Contention Pricing Compensation Fitness

6.1 Yes No No No No Single

6.2 Yes Yes No No No Single

6.3 No No Yes Yes No Single

6.4 No No Yes Yes, details No Single

6.5 No No Yes No Yes Single

6.6 No No All yes Multiple
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trend in the number of total interruptions (top graph) is

inversely proportional to the average resource availability.

This could be alleviated by a fault prediction method [2]

that migrates MMOG servers away from failing resources.

Running MMOGs on real, limited availability cloud

resources can potentially have a strongly negative impact

on the QoS for the clients due to prolonged recovery times

and the need for human intervention for restoring the game

session. However, we conclude based on this first experi-

ment that this performance degradation can be mitigated by

employing our proposed recovery techniques, which

effectively limits the duration of the resulting interruptions

to a constant value (lower than four minutes for 75 % of

the events in our concrete scenario) independent of the

duration of the underlying resource failure.

6.2 MMOG QoS in competition-based environments

The goal of the second experiment is to analyse the impact

of resource failures on MMOGs in resource scarcity sce-

narios. We add this new dimension to our study by gen-

erating an increasing resource contention through gradually

reducing the amount of resources in our setup. Thus, we

run a set of simulations employing the same 6 month long

RuneScape traces, but varying the amount of resources so

that the peak load requires between 5 and 95 % of the

available resources. Concretely, for example, the setup in

which the RuneScape peak load requires 60 % of the total

amount of resources has a resource contention value of

60 %. As in the previous experiment, we shape the avail-

ability of the resources from 99.5 to 100 % by employing

the traces presented in Table 4. We cover these two

dimensions with six values each, for a total of 36

simulations.

Figure 7 shows the number of interruptions experienced

by the clients during the 6-month simulation in the dif-

ferent resource availability and contention scenarios. We

observe a slanting in the number of total interruptions (seen

in Fig. 7a), which is consistent with the decrease in

availability for all resource contention values, confirming

the previous experiment’s conclusions. The central positive

finding of this investigation is the fact that the number of

total interruptions remains constant with increasing

resource contention, even in the limit case of 95 %

resource contention. The only observed particularity is the

lower number of total interruptions for the other limit case

with an extreme resource abundance (5 % resource con-

tention) over all availability values. The number of partial

interruptions (Fig. 7b) appears not to be impacted either by

the competition for resources, or by the resource

availability.

For a complete assessment of the effectiveness of our

MMOG operational model, the number of interruptions in

isolation is not sufficient, as it does not concretely present

the extent to which these failures impact the game ses-

sion. We therefore present, in Fig. 8, a statistical analysis

of all interruptions for two metrics: their duration and

severity. Regarding the duration of the total interruptions

(Fig. 8a, top), we notice a step-wise increase proportional

to the resource contention, but a very stable behaviour

with changing resource availability. Overall, the median

time needed for recovery from a total resource failure is

of two minutes (i.e. one resource allocation step) for a

Fig. 6 Total interruptions under different resource availability con-

ditions (all graphs show resource availability on horizontal axis with

the bottom values)

Fig. 7 Interruption events in varying resource availability and contention. (a) Total interruptions. (b) Partial interruptions
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resource contention of up to 40 %, and four minutes (i.e.

two allocation steps) for higher resource contention. The

step-wise variation is due to the cyclic nature of the

recovery evaluation. More precisely, an MMOG session

might recover, for example, in 90 s, but the evaluation of

the resource allocation state is only done every 120 s.

Thus, the reported duration of recovery will be 120 s. In a

real implementation, this issue would be easily circum-

vented by employing an event-driven monitoring system.

Regarding the severity of the total interruptions (Fig. 8a,

bottom), we notice a gradual increase proportional to the

resource contention, from a median of approximately 0.7

to 1.4 % correlated with an increase of resource conten-

tion from 5 to 95 %. This variation is similar across

Table 9 Impact of resource availability and contention on MMOG QoS

Metric Impact on QoS

Total interruptions Partial interruptions

Number Duration Severity Number Duration Severity

Resource availability Strong None None None None None

Resource contention Light Strong Strong None None Light

Fig. 8 Event duration and

severity QoS analysis in

competition-based conditions

with increasing resource

availability and resource

contention. (a) Total

interruptions. (b) Partial

interruptions

Fig. 9 max versus avg-3 compensation ranking methods: max ranks

by the compensation value Cx(K) of the most frequent O-SLA fault K;

avg-3 ranks by the average compensation values of three uniformly

distributed SLA faults
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different resource availability levels and, regardless of the

individual configuration, at least 75 % for the events

affect \2 % of the clients. In contrast to the total inter-

ruptions, the behaviour of the partial interruptions’ dura-

tion and severity, shown in Fig. 8b, is clearly not

dependent on either of the studied metrics (resource

availability and contention). The recovery time is for the

vast majority of events one allocation cycle long (i.e. two

minutes), with only some outliers (\5 % of events)

reaching 12 minutes. The severity of the partial inter-

ruptions is also very steady at 0.01 % of the number of

clients for 95 % of the events, regardless of resource

availability and contention. However, a general growing

trend of the outliers coherent with the increase of resource

contention can be observed.

We conclude that clouds can be used for MMOG host-

ing with high QoS, even in cases of resource contention, as

summarised in Table 9. Concretely:

1. Resource availability strongly impacts the number of

total interruptions, but does not influence their duration

and severity;

2. Contention for resources has a low negative impact on

the number of total interruptions, but strongly affects

their duration and severity;

3. Resource availability has little or no visible impact on

partial interruptions, while an increased resource

contention might lead to a slight increase in the

severity of the partial interruptions.

6.3 Selecting the compensation ranking method

The goal of this next experiment is to study how game

providers can select operational offers (sets of O-SLA

instances, see Sect. 4) from game operators based on

compensation terms. We study six compensation ranking

methods. First, max (RK1) (see Table 6; Fig. 9) ranks

offers by the compensation value Cx Kð Þ (see Eq. 5) cor-

responding to the most frequent O-SLA fault K for which

dx Kð Þ ¼ Dmax (see Eq. 16):

CðmaxÞ
O�SLA ¼

XM

i¼1

X
x2 cli;ini;tnif g

wx �
CxðKÞ
CðTÞ

; ð22Þ

where dxðKÞ ¼ Dmax;M is the total number of O-SLAs in

an operational offer, C(T) is the target minutely

compensation per client (see Eq. 7), and wcli;wini;wtni 2
½0; 1� indicate the provider’s preference for each O-SLA

term (/cli ? /ini ? wtni = 1, see Eq. 19). Second and

third, avg-3 (RK2) and avg-9 (RK3) rank based on the

average of the compensation values:

Cðavg�NÞ
O�SLA ¼

XM

i¼1

X
x2 cli;ini;tnif g

wx �
PN

k¼1 Cx � k
Nþ1
� b maxð Þ

x

� �

N � CðTÞ ;

ð23Þ

for N = 3 and N = 9, with uniformly distributed SLA

faults (see Fig. 9). Fourth, gain (RK4) is based on Eq. 19,

in which the compensation gain is defined as in Eq. 15 (and

not 17). Fifth and sixth, cgain-9 (RK5) and cgain-30 (RK6)

are variants of the compensation rank proposed in Eq. 19

with N = 9 and N = 30, where N is the integration gran-

ularity (i.e. number of partitions in the Riemann sum

approximation) of Eq. 17. We define a separate game

provider for each of the six compensation ranking methods

and the same PP1 service policy (see Table 5). We further

use 65 game operators, each offering a different O-SLA

based on the OSLA-1 template (Table 7) differentiated by

their compensation function, its shape and other parame-

ters, as defined in Sect. 5.5. We evaluate the total com-

pensation, representing the fraction of compensation

obtained by game providers from their gross profit.

The top graph of Fig. 10 depicts the total compensa-

tion of all game providers relative to the total compen-

sation of game providers using the basic max method.

We observe that, while the max, avg and gain perform

roughly the same (variation \3 %), the cgain class leads

to 11–16 % increases in income from compensations. As

each MMOG exhibits an individual load pattern which

results in a particular fault distribution (as exemplified in

Fig. 9), game providers automatically tune their offer

selection using the characteristic gain ranking method to

favour the O-SLAs bringing the highest compensations.

We further analyse the impact of employing these

methods on the QoS offered by game providers. The

results depicted in the bottom graph of Fig. 10 indicate

only slight QoS variations for all methods: the instan-

taneous non-interruption ratio tini is above the target

value sini = 0.9 of the game providers’ service policy

PP1 between the first and third quartiles and the median

value is nearly one (optimal). Furthermore, the average

number of non-serviced clients is around eight (out of a

2,000 maximum).

We conclude that for an optimal selection of

MMOG operational offers: (1) it is necessary to

employ a method that accurately captures the charac-

teristics of the offered compensations; (2) it is essen-

tial to account for the dynamic behaviour of the

O-SLA faults; and (3) it is possible to significantly

increase the providers’ income (up to 16 %) through

these offer selection methods without negative effects

on the QoS.
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6.4 Tuning the compensation ranking method

The goal of this experiment is to quantify the impact of the

integration granularity N of the characteristic compensa-

tion granularity ranking method cgain on the efficiency of

the operational offer selection, by evaluating the game

provider’s income from total compensations for different

values of N. The experimental setup is similar to the one in

the previous experiment, except for the game provider’s

offer ranking configurations. We use in this experiment the

RK7 configuration (N = 1) and ten other configurations

(i.e. RK8–RK17), whose integration granularity ranges

from 3 to 30 with a step of 3 (see Table 6). We run a

separate simulation for each ranking configuration and

compute the fraction of game provider’s profit representing

compensations for O-SLA faults.

We observe in Fig. 11, that the compensation has a

logarithmic increase with the integration granularity. This

trend is not strictly monotonous because, as the integration

granularity is increased, game providers select other game

operators using different cloud resources, which influence

the number and severity of faults leading to variations in

the total compensation. Over the 6-month simulation, the

RK17 provider with the highest integration granularity

(N = 30) registered an income of approximately $10 mil-

lion from O-SLA fault compensations, which is 12 %

higher than by employing RK7 (N = 1).

The findings of this experiment show that the best per-

forming O-SLA ranking method, the proposed character-

istic compensation gain, can be further tuned to obtain a

logarithmic increase in total compensation income by

increasing the integration granularity.

6.5 Weighting the fitness ranking components

In this experiment, we analyse techniques for maximising

the game providers’ profit by proper operational offer

selection based solely on the fitness ranking. Concretely,

we determine how the game operators can weight each of

the four negotiable O-SLA terms in the fitness ranking

process (/x weights in Eq. 20). The setup for this experi-

ment differs from previous setups by effectively exploring

the much larger space of RK-PP policy pairs without

exhaustively considering each possible pair, as follows.

The game operators offer different O-SLAs generated

starting from the OSLA-2 template (see Table 7) and vary

the ranges of the four negotiable terms t
ðOÞ
x ; x 2 fcli; ini;

tni; timeg. We use five game providers and vary the ranking

configuration for all involved game providers from RK18

to RK37 (described in Table 6) over 20 simulations. We

designed each of the 20 configurations to gradually

increase the weight /x of one of the four negotiable O-SLA

terms. For each simulation, the game providers employ

different service policies, as follows. For cli-[10;90] and

ini-[10;90] ranking configurations, each game provider

uses one of the service policies PP2-PP6 defined in

Table 5 (for the tcli
(O) term, there is no corresponding service

policy term). For tni-[10;90] ranking configurations, each

game provider uses one of the service policies PP7-PP11.

Finally, for time-[10;90] ranking configurations, each

game provider uses one of the service policies PP12-

PP16. The fitness ranking process considers only those

offers which meet at least the minimum operational

requirements. Thus, expenses are the key part to analyse in

the game providers’ budget. An improper offer selection

leads to over-provisioning and consequently, to higher

expenses.

Figure 12 shows that the fitness ranking configuration

has a significant impact on the expenses of the game pro-

viders. We observe a reduction in expenses of $14.5

Fig. 10 Comparison of compensation ranking methods

Fig. 11 Increase in provider’s income from better offer compensa-

tion ranking with increasing integration granularity
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million for the case of the ttime validity period term

(ranking configurations time-[10;30]) or about 60 % from

the maximum expenses. In contrast, the game providers’

income is approximately $37.8 million for all simulations

(not shown in the graph). We further observed that an

increase in the weight of the other QoS terms, namely tini
(O)

and ttni
(O), leads to a decrease in the game providers’

expenses. Conversely, increasing of the weight of the client

number tcli
(O) leads to an increase of the game providers’

expenses. During all simulations, the QoS provided to the

clients was constantly high due to the wide range of O-SLA

templates, which effectively accommodate most of the

game providers’ needs. The increased client compensation

expenses that appear exclusively for the tni-[10;90] rank-

ing configurations is also notable. Even though the O-SLA

faults are not severe [see Fig. 12 (bottom)], they often

account for over 0.4 % of the total O-SLA duration, which

forces the game providers with the PP10-PP11 service

policies promising a high total non-interruption

(stni C 0.996) to compensate the clients.

We conclude that for maximising their profit, the game

providers should attempt to find an optimal, Pareto-efficient

balance between the client number tcli
(O) and the other three

negotiable terms. In our experiments, the optimal weights are

/cli = 0.1, /ini = 0.3, /tni = 0.3 and /time = 0.3; however,

the actual weights depend on the available O-SLA templates.

6.6 Configuring operational offer ranking

in a competitive environment

The goal of this experiment is to evaluate the impact of the

operational offer ranking on the game providers’ gross

profit in a competitive environment, that is, when multiple

game providers compete for operational offers (O-SLAs).

We aim at determining best practices guidelines for

maximising the profit of game providers in a realistic setting

involving competition. The setup for this experiment differs

from previous setups as follows. A set of 15 game providers

compete for operational offers, each employing one of the

service policies PP2-PP16 (defined in Table 5). Each

group of five providers employing the policies PP2-PP6,

PP7-PP11, and PP12-PP16 runs a part of the RuneScape

MMOG traces. We run eight simulations, each changing the

ranking configuration employed by all the game providers

from RK38 to RK45 (also or-[1;8] in Table 6). The com-

pensation ranking and fitness ranking parameters are fixed

to the optimal values determined in the previous experi-

ments. By employing the or-[1;8] ranking configurations,

we start with a high emphasis on the importance of the

compensation ranking, and implicitly a low importance on

the fitness ranking, and continue by gradually changing the

emphasis until reaching the opposite scenario (from

kc = 0.8 and kf = 0.1 to kc = 0.1 and kf = 0.8—see

Eq. 12 and Table 6). The setup also considers a number of

74 game operators employing O-SLAs based on the OSLA-

3 template (shown in Table 7), which cover the whole value

range of each parameter (operational and compensation

terms) and effectively offering to game providers an oper-

ator market with maximum offer diversity.

Figure 13a shows the variation of three gross profit

fractions: the MMOG operation expenses, client compen-

sation expenses, and the income from O-SLA fault com-

pensations. The top chart presents the trend of the

aggregated profit fractions for all game providers, while the

bottom chart shows their proportional composition. The

income from client subscriptions of all game providers is

constant throughout all runs at around $113.67 million (not

shown in the graphs). The increasing trend of the game

providers’ gross profits from or-1 to or-4 is due to a

decrease in the expenses caused by client compensations

and resulting from a better selection of operational offers, a

consequence of the increased weight of fitness ranking. The

descending trend from or-4 to or-6 is due to increased

expenses with operational offers, which is a consequence

of further increasing the weight of fitness ranking. These

expenses are slowly being compensated by further

decreases in client compensations, which eventually lead to

another increasing trend for or-6 to or-8. Overall, the best

gross profit value is reached when employing or-4. We

observe that increasing the weight of fitness ranking leads

to an increase of the operational offer expenses and to a

decrease in the client compensations. Conversely,

increasing the weight of the compensation rank leads to

higher operational expenses, but also to an increase of the

income from O-SLA fault compensations.

To analyse the impact of the operational rank weights on

the game providers employing different service policies, we

group them into two classes: (1) the Low sini class, offering

Fig. 12 Game providers expenses for different fitness ranking

configurations: expenditure fraction of the game providers gross

profit (top); instantaneous non-interruption ratio (bottom)
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the clients low QoS, in terms of the targeted instantaneous

non-interruption ratio (employing PP1 and PP2 with low

sini), and (2) the High sini class, targeting a high QoS by

employing PP4 and PP5 with high values for the same

term. The Low stni and High stni classes and, respectively,

the Low stime and High stime classes are constructed simi-

larly for the other QoS term and the targeted SLA validity.

Figure 13b shows the gross profit variation of the game

provider classes reported to an average of the or-4 and or-5

runs. We observe that the Low sini class favours the lower

fitness rank and higher compensation rank weights, while

High stni is only marginally affected by changes in the

operational ranking weights. The Low stni slightly favours

lower fitness rank weights, while the High stni is positively

influenced by the increased fitness rank and lower com-

pensation rank weights. The strongest impact of the oper-

ational ranking weights is observed for the stime term:

Low stime favours lower fitness rank weights and has a

strong negative reaction to higher compensation ranking

weights, while High stime performs best when the two

weights are balanced and significantly worse otherwise.

We conclude that the game providers’ profit can be

maximised in a competition-based environment by bal-

ancing the fitness and compensation ranking weights.

However, the game providers’ service policies strongly

impact the influence of the operational rank weights on the

profit, as summarised in Table 10.

7 Related work

We survey in this section five large bodies of related work:

cloud-based resource provisioning, SLA-based operational

models for MMOGs, traditional SLA stacks for large-scale

systems, reliability, and cloud-based operation of services

with millions of customers.

7.1 Cloud-based resource provisioning for MMOGs

The problem of operating MMOGs in distributed com-

puting environments with recent focus on cloud infra-

structures is receiving increasing interest in the parallel and

distributed systems community. Existing efforts focus on

increasing the scalability of FPS games [16], latency fair-

ness to players [22], dynamic provisioning and load bal-

ancing on distributed grid resources [2, 15], or the impact

of virtualisation overheads on MMOG operation.

Closest to our work, [13] proposes a greedy dynamic

provisioning algorithm for resizing the resource pool of a

MMOG service to react to workload variability. In con-

trast, our model is more realistic in that it considers mul-

tiple clouds as resource providers, resources with different

costs and capabilities, and particularly important, resources

that can be unavailable. Conceptually, we consider com-

pensation terms and their operational impact, without

which we believe the use of clouds in commercial gaming

Table 10 Best practice rank weight configurations for maximising

game providers’ profit

Service policy term Low High

sini kf; kc: kf= kc=

stni kf= kc= kf: kc;

stime kf; kc: kf= kc=

‘:’, represents a high value; ‘;’, a low value; and ‘=’, balanced

Fig. 13 Gross profit variation with different operational ranking

configurations (the constant $113.67 million profit fraction from

client accounts is not shown). a Variation of expenses and income

from compensations (top); breakdown of profit fractions (bottom).

b Gross profit variation in percentage to the average of or-4 and or-5
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is made difficult or even impossible. Also conceptually, we

consider a hybrid pro-active (prediction-based) and reac-

tive (monitoring-based) approach to trigger system recon-

figuration, whereas Marzolla et al. consider only a

monitoring-based approach.

Also, close to our work is the study on QoS-aware

revenue-cost optimisation algorithm for latency-sensitive

services in clouds [14]. The authors consider a model

similar, but more restricted (e.g. less realistic modeling of

cloud resources, no period of validity for offers, no com-

prehensive modeling of QoS aspects besides latency and

response time) than the one proposed by us in an early

work on this topic [3]. They do not consider any of the

specific improvements we made in this work to our pre-

vious model, including penalties for breaches of services or

resource availability. The experiments in [14] consider

only a single cloud and no cost variation. In contrast, our

results indicate that significant cost differences can be

observed in a multi-cloud environment due to various

resource capabilities and pricing.

To conclude: in contrast to previous work on cloud-

based MMOG operation, ours is the first to study

MMOG-related SLA terms as a basis for the negotiation

and QoS-based provisioning of resources to MMOG

servers, including compensations (penalties) for QoS

violations and fitness ranking of SLA offers, and across

an ecosystem that includes multiple service providers at

each level. Several specific advances, both conceptual

(the complex O-SLA relationship between the game

provider and the game operator, the hybrid reactive-

proactive reconfiguration, etc.) and technical (the exper-

imental study in a multi-cloud setting, including

unavailability of resources), significantly differentiate

our work from previous studies. Last, but not least, we

are the first to evaluate comprehensively both the tech-

nical operation of MMORPGs (with various metrics

related to game-level QoS) and the financial operation of

these games (with profit- and compensation-related

metrics). Our comprehensive approach shows evidence of

the complexity of interactions in a realistic, competitive,

multi-service provider environment.

7.2 SLA-based operational models for MMOGs

Much recent work focusses on (soft) QoS guarantees for

MMOG operation [23–25]. Wong [23] proposes a resource

provisioning algorithm with QoS guarantees, but considers

only networking aspects, whereas we consider here more

resource types and a more realistic cloud model (including

cloud and virtualisation overheads [3]). Briceno et al. [24]

study resource allocation for MMOGs but, unlike our work,

consider only computational requirements and use a sim-

plified workload model (not traces from a real MMOG).

Lee and Chen [25] investigate MMOG server consolidation

techniques focussing on complementary energy consump-

tion issues. We also extend our previous work [3] with the

formulation, negotiation, and use of SLAs for MMOGs.

Several market-based operational models for MMOGs

have been recently investigated. Our proposed business

model for MMOGs is closest in concept to the four-actor

business model of Middleton et al. [26], but studies in

addition the connection between the business and hosting

models, and methods for controlling the provided QoS.

Complex business models are proposed by Alves et al. [27]

and by Andersson et al. [28, 29], but focus only on higher

level business interactions and goals for MMOG operation.

In contrast, we study a novel operational model and its

effects on the profits of both game and resource operators.

Complementary to our work, Nojima [30] studies the

relationship between pricing models and MMOG player

motivation, and Oh and Ryu [31] analyse different pricing

models for the gaming service.

7.3 Traditional SLA stacks for large-scale systems

Much work has focussed on SLA stacks since at least the

early 1980s [32]. Two recent surveys focus on SLA stacks

for grids [5] and clouds [6]. Complete SLA stacks have

been implemented, for example, by Galaxy [11], Oceano

[12], Globus [7], NextGrid [33], and SLA@SOI [4]. Close

to our work is also the study of Wu et al. [8]. In contrast to

these approaches, we focus on a (popular) domain-specific

application, for which we extend traditional approaches

with MMOG-specific considerations, propose a compre-

hensive SLA formalism, and investigate specific opera-

tional policies.

The formulation of SLAs has received considerable

attention, notably from standardisation bodies such as W3C,

OASIS, and OGF. The resulting formalisms OGSA [7],

WSLA [34], and WS-Agreement [10] and its extensions are

general but, due to size and complexity, difficult to implement

and map to each other [4]. We believe that our SLA for-

malism offers a better tradeoff between coverage and

implementation that eases the MMOG operation by omitting

elements that are not essential in this context. Our work also

differs from previous negotiation approaches [7, 35–38]

through a focus on MMOGs: detailed SLA key performance

indicators, a mechanism for ranking offers based on several

elements including penalties, and several classes of MMOG

service and compensation policies. Similar to the previous

work on SLA-based scheduling [8, 39–43], our work con-

siders a three-stage mechanism: the MMOG operator first

auto-generates SLAs, then finds and ranks game operator

offers (also considering penalties for SLA violation), and

finally renegotiates with the game operator. In addition, our

work proposes a new ranking mechanism adapted to MMOGs
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and non-uniform SLA violations, investigates multiple game

and multiple cloud operators, and focusses on various com-

pensation and other SLA policies.

7.4 Reliability

There have been a number of research activities in

assessing the performance of virtualised resources in cloud

computing environments, some also considering the

availability of cloud resources [44]. In contrast to these

studies, ours targets realistic computational cloud resources

with limited availability for a new application class

(MMOG). In the area of reliability, there are studies which

investigate the characteristics of resource and workload

failures, but do not assess their effects on the underlying

systems’ performance [45, 46]. Others consider uncorre-

lated failures in distributed systems [47] and evaluate the

resulting performance of the affected systems [21], but

restricted to high-performance computing jobs. In contrast,

we employ the failure model introduced in [21], apply it to

cloud resources, and evaluate the consequences of utilising

such resources on the QoS of MMOGs.

7.5 Cloud-based operation of services with millions

of customers

The entertainment industry has already started to migrate

from the in-house to cloud-based infrastructure. Zynga,

which operated in 2011 online gaming services for over

250 million users, uses Amazon EC2 resources for oper-

ating games up to several months after their launch. Nev-

ertheless, the games supported by Zynga require much less

computational and network resources than MMOGs. On-

demand gaming, which offloads gaming computation to the

cloud and streams back to remote clients the video output

of the game, is provided by companies such as Geelix [48],

OnLive, Gaikai, and OTOY. We do not consider this game

operational model because major MMOG operators have

yet to switch to this model, in part due to the high network

requirements imposed on the players. Since late 2011,

Amazon Web Services has been used by Netflix for video

streaming and for offloading web browsing for mobile

devices with Android operating system. In contrast to these

approaches, our work adapts this model to the specifics of

MMOGs and proposes an in-depth study of a variety of

scenarios applicable to other branches of the entertainment

industry.

8 Conclusion

The current MMOG ecosystem, which includes tens of

millions of players across hundreds of games, forces game

providers to also become game and infrastructure opera-

tors. This leads, in general, to inefficient resource utilisa-

tion, high service prices, and limits market participation to

only the largest game providers. In this work, we proposed

a new ecosystem and middleware model for hosting and

operating MMOGs based on cloud-computing principles,

focussing on the formulation and negotiation of SLAs that

encompass price, operational terms and novel compensa-

tion policies. In our model, game operators efficiently

provision cloud resources for MMOGs based on their

dynamic load and ensure proper game operation that

maintains the required QoS to all clients. Game providers

lease operation SLAs from the game operators to satisfy all

client requests and manage multiple distributed MMOG

sessions. These three self-standing, smaller, more agile

service providers enable access to the MMOG market for

the small and medium enterprises, and to the current

commercial cloud providers. For ranking MMOG opera-

tional offers, our model balances among three criteria:

pricing, fitness for operation, and compensation. For each

criterion, we provided comprehensive ranking mecha-

nisms. We evaluated the operation of the proposed MMOG

ecosystem, which can include multiple service providers of

various kinds, in a variety of scenarios through realistic

simulations using traces collected from real MMOGs and

real SLAs from over ten commercial clouds. Our main

findings in this paper are:

1. Regarding the QoS impact of unreliable resources on

MMOG operation:

(a) Our MMOG ecosystem successfully mitigates the

performance degradation of running MMOGs on

cloud resources with limited availability to game

play disruptions of \4 min, independently of the

duration of the underlying resource failure;

(b) The majority of resource failures affect \2 % of

the clients participating in autonomously oper-

ated MMOG sessions;

(c) A low resource availability increases the number

of game play disruptions, while a high resource

contention results in longer disruptions affecting

more clients.

2. Regarding the business impact of resource and alloca-

tion failures:

(a) For the compensation criterion, a ranking method

which considers the yield from compensations in

the given environment is necessary. Our proposed

approach to this problem called characteristic

compensation gain leads to 11–16 % higher

financial gain without QoS deterioration;

(b) For the fitness of operation criterion, tuning the

four operational terms to reflect the MMOG
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generated load can lead to a 20–60 % reduction

in the operational expenses compared to the non-

tuned approach;

(c) For the overall ranking of operational offers, we

provide guidelines for balancing the three criteria

and find that their impact depends on the service

terms used in the MMOG provider–client

(player) relation.
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