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ABSTRACT
To sustain the variable load of Massively Multiplayer Online
Games (MMOGs) with guaranteed Quality of Service (QoS),
game operators over-provision a static infrastructure capable
of sustaining the peak load, even though a large portion of
the resources is unused most of the time. This inefficient way
of provisioning resources has negative impacts, leading to in-
efficient resource utilisation, high service prices, and limited
market participation accessible only to the large companies.
We propose a new ecosystem and model for hosting and op-
erating MMOGs based on cloud computing principles involv-
ing four smaller and better focused business actors whose
interaction is regulated through Service Level Agreements
(SLAs): resource provider, game operator, game provider,
and client. In our model, game providers lease operation
SLAs from the game operators to satisfy all client requests
and manage multiple distributed MMOG sessions. In turn,
game operators efficiently lease on-demand cloud resources
based on the dynamic MMOG load and ensure proper game
operation that maintains QoS to all clients. In this paper, we
focus on the business interaction between the game provider
and the game operator by defining the SLA terms and the
underlying negotiation protocol, including a model for com-
pensations for QoS violations. We propose a method for
ranking operational offers based on price, compensation and
resource fitness, and study its impact on game provider’s
profit in an environment with several providers competing
for SLAs from multiple game operators.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Gaming ; K.6.2 [Management of Computing and Infor-
mation Systems]: Installation Management—pricing and
resource allocation, performance and usage measurement
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1. INTRODUCTION
Online entertainment including gaming is a strongly grow-

ing sector world-wide. Massively Multiplayer Online Games
(MMOG) grew from ten thousand subscribers in 1997 to
eight million in 2005 and the rate is accelerating estimated
to 60 million people by 2015. Today, most companies still
take a double role in the MMOG life cycle: game providers
by investing in the development of the creative part of the
game, and game operators by purchasing and managing a
large data centre required for hosting it (using up to 40%
of the total game revenues in an annual market of over 24
billion dollars). The companies providing the top-five most
popular MMOGs in the western market are concrete exam-
ples of such in-house MMOG development, publishing and
operation (see Figure 1). For example, Blizzard (developer
of World of Warcraft) and Jagex Ltd. (RuneScape) own
and operate tens of thousands of cores in hundreds of phys-
ical locations across all continents (World of Warcraft has
operational costs of over $50 million per year). An impor-
tant reason for this approach is the lack of business models
and supporting middleware to enable outsourcing the oper-
ation of MMOGs, which should include methods for specify-
ing and negotiating operational terms, responsibilities, and
risk-related compensations. This approach has an important
downside, the high initial investment in purchasing and run-
ning the data centres required to join the MMOG market.

Cloud computing promises eliminate the burden of per-
manent over-provisioning through on-demand resource leas-
ing under cost and sometimes performance-driven Service
Level Agreements (SLAs). By leveraging this new cloud in-
frastructure model, companies may avoid the large costs of
buying and maintaining depreciable hardware, and can enter
the MMOG operation market with nearly-zero initial invest-
ment. We have tackled in [8, 13, 15] many of the technical
challenges of on-demand provisioning and allocation of cloud
resources to MMOGs under Quality of Service (QoS) con-
straints [18], however, commercial clouds still cannot readily
be used for MMOG operation, as their SLAs mostly focus
on hardware characteristics and lack support for negotiat-
ing MMOG-friendly SLAs. Furthermore, although focused
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Figure 1: Top-five MMOGs in number of subscribed and
concurrent users.

on infrastructure hardware, even large commercial cloud
providers such as Amazon and Microsoft have experienced
black-outs and variable performance over the past years.
Thus, game operators cannot outsource their infrastructure
services without a clear specification of responsibility and of
compensations associated with risks of unavailability, lower
performance, and other QoS violations.

To enable small and medium enterprises join the MMOG
market, we introduce a new MMOG ecosystem that extends
our previous work [15] with a comprehensive SLA specifi-
cation and negotiation mechanism between two actors: (1)
game providers who negotiate operation SLAs with game
operators to satisfy all clients requests, and (2) game opera-
tors who efficiently lease and provision resources to MMOGs
from cloud providers based on their dynamic load so that the
required QoS parameters are maintained to all clients. Since
we covered interaction between the game operator and the
cloud provider in [8], we focus in this paper on the game
SLA-based business interaction between the game provider
and the game operator. Our proposed business model in-
cludes a comprehensive specification of the SLA terms un-
derneath the negotiation protocol, and of compensations for
temporary QoS violations. On top of this, we propose a
method for ranking operational offers based on price, com-
pensation and resource fitness, and study its impact on game
provider’s profit in an environment with several providers
competing for SLAs from multiple game operators.

The paper is organised as follows. Section 3 presents the
MMOG, business ecosystem, and QoS models underneath
our approach. Section 4 describes the operational SLAs be-
tween the game provider and the game operator, followed by
the negotiation protocol (including ranking of operational
offers and compensations for QoS violations) in Section 5.
We study in Section 6 the impact of ranking operational of-
fers on game provider’s profit in an environment with several
providers competing for SLAs from multiple game operators.
The paper ends with a related work summary in Section 2
and concluding remarks in Section 7.

2. RELATED WORK
We survey in this section three large bodies of related

work: traditional SLA stacks for large-scale systems, SLA-
based operational models for MMOGs, and cloud-based op-
eration of services with millions of customers.

2.1 SLA stacks for large-scale systems
Much work has focused on this SLA stacks since at least

the early 1980s [19], wizh two recent surveys focusing on
SLA stacks for grids [20] and clouds [22]. Complete SLA
stacks have been implemented, for example, by Globus [5],
NextGrid [6], and SLA@SOI [4]. In contrast to these ap-
proaches, we focus on a (popular) domain-specific applica-
tion, for which we extend traditional approaches with MMOG-
specific considerations, propose a comprehensive SLA for-
malism, and investigate specific operational policies.

2.2 SLA-based operation of MMOGs
Recent work focuses on (soft) QoS guarantees for MMOG

operation [3, 10, 21]. Wong [21] proposes a resource provi-
sioning algorithm with QoS guarantees, but considers only
networking aspects, whereas we consider here more resource
types and a more realistic cloud model [15]. Briceno et al. [3]
study resource allocation for MMOGs but, unlike our work,
consider only computational requirements and use a simpli-
fied workload model (not traces from a real MMOG). Lee
and Chen [10] investigate MMOG server consolidation tech-
niques, focusing on the energy consumption; our study com-
plements theirs. We also extend our previous work [15] with
the formulation, negotiation, and use of SLAs for MMOGs.
Several market-based operational models for MMOGs have
been recently investigated. Our business model for MMOGs
is closest in concept to the four-actor business model pro-
posed in [12], but our work also studies the connection be-
tween the business and hosting models, and methods for
controlling the provided QoS. Complex business models are
proposed in [1, 2], but focus only on higher-level business
interactions and goals for MMOG operation; in contrast, we
study a novel operation model and its effects on the profits
of both game and resource operators. Complementing our
work, Nojima [16] studies the relationship between pricing
models and MMOG player motivation, and Oh and Ryu [17]
analyse different pricing models for the gaming service.

2.3 Cloud operation of multi-customer services
The entertainment industry has already started to migrate

from the in-house to cloud-based infrastructure. Zynga,
which in 2011 operated online gaming services for over 250
million users, uses Amazon EC2 resources for operating games
up to several months after their launch; the games supported
by Zynga require much less computational and network re-
sources than MMOGs. On-demand gaming, which offloads
gaming computation to the cloud and streams back to re-
mote clients the video output of the game, is provided by
companies such as Geelix [7], OnLive, Gaikai, and OTOY;
we do not consider this game operation model in this work,
because major MMOG operators have yet to switch to this
model, in part because of the high network requirements
imposed on the players. Since late- 2011, Amazon WS has
been used for video-streaming by Netflix, and for off-loading
web browsing for mobile devices with Android OS. In con-
trast with these approaches, our work adapts this model to
the specifics of MMOGs, and proposes an in-depth study of
a variety of scenarios with application to other branches of
the entertainment industry.

3. MODEL
We present in this section the computational, business

ecosystem, and QoS models underneath our approach.
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3.1 MMOG Computational Model
Online games can be seen as a collection of networked

game servers that are concurrently accessed by a number
of players (or clients). Clients connect directly to one game
server and are mapped to one avatar in the game world to
whom they send their play actions and receive appropriate
responses. Based on the actions sent, the avatar dynam-
ically interacts with other avatars within a game session,
influencing each others’ state. The state update responses
must be delivered within a given time frequency to ensure
a smooth and responsive experience. The load of the game
server is proportional to the number of interactions between
entities. An overloaded game server delivers state updates to
its clients at a lower frequency than the players expect which
makes the overall environment fragmented and unplayable.

To concurrently support millions of active players and
many more other server-driven entities (non-playing charac-
ters and other game objects) with guaranteed QoS, MMOG
operators provision a large static infrastructure with hun-
dreds to thousands of computers hosting a single distributed
game session. The most common game session distribution
technique is “zoning”, which is based on spatial partitioning
of the game world into geographical zones to be handled in-
dependently by separate machines. Other techniques, such
as “instancing” and “replication”, divide the entities con-
tained in a zone across several machines.

3.2 MMOG Business Ecosystem

Game Provider

Game Operator

Client

Cloud Provider

O-SLA

R-SLA

Account
User: player1

********Pass:

Figure 2: MMOG
ecosystem.

We propose a new ecosystem for
MMOG operation and provisioning
consisting of four actors: clients,
game providers, game operators,
and resource (cloud) providers (see
Figure 2). The interaction between
them is negotiated and regulated
through bipartite SLAs, represent-
ing wrappers around QoS parame-
ters which they agree to deliver (see
Section 3.3). Since we introduce no
change to the client and its interac-
tion with the provider, we no longer mention it in this paper.

Game providers offer a selection of MMOGs by contract-
ing new games from development companies (we do not
cover this offline interaction). Based on clients’ requests,
game providers assign clients to game zones delegated to
game operators for QoS-based execution. The quality of
game play (see Section 3.3) is monitored by and, in case of
SLA faults (e.g. state update rate below minimum thresh-
old), the client is compensated.

Game operators receive requests from the game providers
for operating zones of different MMOG sessions with guar-
anteed QoS. Based on resource utilisation estimations (cov-
ered by us in [13]), the game operators construct Opera-
tion SLA (O-SLA) offers, negotiate SLAs with the game
providers, and allocate resources accordingly (i.e. start new
zones, allow client connections). We detail this interaction
in Sections 4 and 5. To fulfill their agreements with game
providers, game operators acquire the correct amount of re-
sources by establishing Resource SLA (R-SLA) with cloud
providers. We covered this interaction in [8, 15] and there-
fore no longer address it here. At predefined measurement
timesteps during the game play, the game provider analyse
the QoS information from the MMOG servers is analysed

(see Section 3.3) and, whenever SLA faults are detected,
they are compensated by the operators.

Resource providers are cloud data centres from which game
operators lease computing resources and use them to run
game servers with guaranteed QoS. We studied in [8] the
opportunity of employing cloud infrastructures for MMOG
hosting and no longer discuss it here.

3.3 MMOG QoS Metrics
A challenge in our architecture is mapping of the MMOG

QoS requirements [18] to SLA terms that must be hon-
oured at all times by the business actors. Unfortunately,
this can only be enforced through best-effort resource allo-
cation mechanisms in today’s distributed computing infras-
tructures, which requires the introduction of compensation
mechanisms in case of QoS violations. We define two im-
portant QoS metrics that characterise the quality of game
play.

First, instantaneous non-interruption ratio represents the
ratio between the measured state update frequency within
one measurement timestep and the required minimal fre-
quency. For example, if the minimal update frequency given
by the game developer is 40 Hz and the measured update
frequency is above 36 Hz in this measurement step, the in-
stantaneous non-interruption ratio is: 36

40
= 90%;

Second, total non-interruption ratio (similar to the gen-
eral ITIL availability definition [11]) is the percentage of
time over a given time interval (e.g. an SLA’s validity time)
the MMOG session has been accessible, and the state up-
date frequency has been equal or greater than the required
frequency. For example, if the game operator provided, over
the last 24 hours, only 23.98 hours of game play during which
the MMOG session was accessible and the state update rate
was above the minimal frequency, the total non-interruption
ratio is: 23.98

24
= 99.9%.

4. OPERATIONAL SLAS
From the ecosystem presented in Section 3.2 and Figure 2,

we focus in this paper on the interaction between the game
provider and the game operator which is automatic and re-
quires no human intervention. Based on the total number of
accounts and its service policy, the game provider computes
the maximum number of clients for each game zone. We
define the provider’s service policy as a quintuple:(

sini , stni , stime , P
(T ), C(T )

)
(1)

with five terms: (1) target instantaneous non-interruption
ratio sini that should be minimised, (2) total non-interruption
ratio stni that should also be minimised, (3) interval of ac-
ceptable SLA validity periods stime to avoid excessively long
operation agreements, (4) target hourly price per client P (T ),

and (5) target compensation per client per minute C(T ).
Using the estimated client requests (see Figure 1), the

game provider negotiates the most appropriate terms for
hosting each zone by establishing O-SLAs with different op-
erators (see Section 5). Based on its policies and available
cloud resources, each operator publishes an O-SLA template:

O-SLA =
(
G

(O)
type , t

(O)
cli , t

(O)
ini , t

(O)
tni , t

(O)
time , σ

(O), P (O), C(O)
)
,

(2)
consisting of eight terms with either scalar or range values:

• MMOG name and version G
(O)
type ;
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• client number t
(O)
cli (range) the game operator is ready

to service;

• instantaneous non-interruption ratio t
(O)
ini (range) rep-

resenting the minimum percentage from the state up-
date frequency the operator guarantees to maintain for
all clients during the O-SLA validity period;

• total non-interruption ratio t
(O)
tni (range) representing

the percentage of QoS fulfilment from the entire O-SLA
validity time and evaluated only at the end of the
O-SLA validity period;

• validity period t
(O)
time (range) representing the SLA life-

time offered by the game operator (with variable gran-
ularity from daily to semestrial);

• geographical area σ(O) in which the game operator will
service the clients;

• base price P (O) for accepting an SLA utilising the low-
est values of all terms in the given ranges;

• compensation C(O) for O-SLA faults, defined as the
aggregate penalty:

C(O) = P (Ccli ,Cini ,Ctni) , (3)

where P is a polynomial function the operator has to pay
in case of O-SLA faults, consisting of three QoS terms: (1)
compensation for unserved clients Ccli , (2) compensation for
instantaneous non-interruption ratio Cini , and (3) compen-
sation for total non-interruption ratio Ctni . Although the
aggregation function may carry a high weight in the opera-
tors’ policies (e.g. make an expensive O-SLA template more
attractive if it favours important compensation terms like
Cini), we consider for clarity reasons an additive function:

P (Ccli ,Cini ,Ctni) = Ccli + Cini + Ctni . (4)

We define these three terms using a compensation function:

Cx :
[
0; b(max)

x

]
→ R+, Cx (bx) =

c
(u)
x · bx
ux

· fx
(

bx

b
(max)
x

)
,

(5)
∀x ∈ {cli , ini , tni}, where R+ denotes the set of positive

real numbers, c
(u)
x is the compensation for an O-SLA fault

of one term unit ux (i.e. one client or 0.1% of the instan-
taneous/total non-interruption ratio), bx is the O-SLA fault

severity for term x, b
(max)
x is its maximum severity, and fx is

a shape function with the signature:

fx : [0; 1]→ R+, (6)

employed for changing the importance of different fault classes.
A game operator could make its offer more appealing by em-
ploying a shape function offering higher compensations for
most frequent, low-severity faults rather than for the infre-
quent, higher-severity ones. For example, we can define a
class of logarithmic parameterised shape functions:

fx (bx) =
log (a · bx + 1)

log (a+ 1)
, (7)

where a ∈ R+ is a coefficient shaping the distribution of
compensations for different fault severities attempting to
make the O-SLAs more appealing to the game providers.
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For example, Figure 3a plots the parameterised logarith-
mic function for a few values of a, while Figure 3b shows
two sample compensation functions for the client number
O-SLA term, both considering a term unit of one client
(ucli = 1) and a maximum fault severity of 2000 clients

(b
(max)
cli = 2000). C

(ex1)
cli employs a 0.6 ¢ compensation per

term unit (c
(u)
cli = $0.006) and fcli with a=5, while C

(ex2)
cli

offers c
(u)
cli = $0.005 and fcli with a=100:

C
(ex1)
cli (bcli) =

0.006 · bcli

1
·

log(5 · bcli
2000

+ 1)

log(6)
;

C
(ex2)
cli (bcli) =

0.005 · bcli

1
·

log(100 · bcli
2000

+ 1)

log(101)
.

Figure 3b shows that C
(ex2)
cli offers higher compensations for

low severity faults (bcli < 1050 clients), while C
(ex1)
cli offers

higher compensations for the high severity faults (bcli > 1050
clients). Thus, a game provider which expects more low

severity faults might prefer C
(ex2)
cli . Analogously, a game

provider predicting high severity faults might choose C
(ex1)
cli .

Non-negotiable O-SLA terms such as the issuer (i.e. game
operator) and the measurement timestep describing the time
interval between consecutive QoS evaluations are not repre-
sented for simplicity reasons.

5. O-SLA NEGOTIATION
We define the O-SLA negotiation between the game oper-

ator and the game provider as an decision process in which
two parties interact with each other for mutual gain (i.e.
maximise income and keep expenditures low). The game
provider’s income comprises the MMOG subscription sales
and the compensations paid by the game operator in case of
O-SLA faults, while its expenditures consist of the O-SLA
acquisitions and the compensations to the clients for low
QoS. The game operator’s income results from the O-SLAs
provisioned to the game provider, and its expenditures com-
prise the acquisition of resources from the cloud providers
and the O-SLA compensations to the game providers. The
accounting, billing and auditing aspects of SLAs fall outside
the scope of this work (but solutions exist).

The three negotiation phases depicted in Figure 4 cover
the game operators generating O-SLA templates based on
cloud resource pricing and availability (phase one), the game
providers instantiating and ranking O-SLA offers (phase two)
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Figure 4: O-SLA negotiation protocol.

and finally, the binding agreement (phase three). A sim-
pler one-phase request-offer matching algorithm, although
desirable, cannot be employed because it would not be fair
towards the game operators. The resource providers’ pric-
ing policies can change between the time the operator pub-
lished an offer until the game provider accepted it, which
would enable a game provider profit from delaying the an-
swer. Introducing a validity deadline for offers to prevent
this unfair behaviour could have negative effects on both
game provider and game operator, as one might not have
enough time for the ranking process, while the other would
have to assume the risk of changes in cloud resource prices
(within the offer validity time). Thus, the proposed negoti-
ation involves dynamic offers (determined by the available
cloud resources) and a possibility for game operators to pro-
pose small changes in price during the final agreement phase.

5.1 First Phase
In the first phase, the game operator checks the resources

offered by different providers and publishes an O-SLA tem-
plate, as defined in Equation 2. The game provider computes
the operational requirements:

R =
(
G

(R)
type , t

(R)
cli , t

(R)
ini , t

(R)
tni , t

(R)
time , σ

(R), P (T ), C(T )
)

(8)

based on the current state of its provisioned O-SLAs and the
estimated number of clients for the next time frame, where:

• G(R)
type is the required MMOG type;

• t(R)
cli is the estimated number of active accounts;

• t(R)
ini is the required instantaneous total non interrup-

tion ratio, initially equal to the minimum instanta-
neous non-interruption ratio sini of the game provider’s
service policy defined in Equation 1;

• t(R)
tni is the total non-interruption ratio, initially equal

to the minimum total non-interruption ratio stni from
the provider’s service policy;

• t(R)
time is the estimated time period for these require-

ments expressed in hours;

• σ(R) is the geographical area;

• P (T ) is the target hourly price per client defined by
the game provider’s service policy;

• C(T ) is the target compensation per client per minute
defined by the game provider’s service policy.

5.2 Second Phase
In the second phase, the game provider gathers the O-SLA

templates from all the game operators and instantiates them
with the “best” values permitted by the O-SLA template for
the operational requirements. When instantiating an O-SLA
template, it also calculates the price increase for the client
number Pcli , the instantaneous non-interruption ratio Pini ,
and the total non-interruption ratio Ptni :

Px =
t
(R)
x − t(Omin)

x

ux
· p(u)x · fx

(
t(O)
x

)
, ∀x ∈ {cli , ini , tni} ,

(9)

where t
(R)
x is the operational requirement for the term x ∈

{cli , ini , tni} (see Equation 8), t
(min)
x is the minimum value

of the term x allowed by the operator through an O-SLA,

p
(u)
x represents the price per term unit ux, and fx

(
t
(O)
x

)
is

a shape function defined as in Equation 6. The final price
the game provider is charged when accepting the O-SLA is:

P (O) = Pbase +
(
Pcli + Pini · t(R)

cli + Ptni · t(R)
cli

)
· Tcoeff , (10)

where Pbase is the base price and Tcoeff is the validity period
coefficient that adjusts the price in case of changes in validity
time requested by the provider:

Tcoeff =

⌈
t
(R)
time

t
(Omin)
time

⌉
· ftime

(
t
(R)
time

)
, (11)

where d·e is the ceiling function, t
(Omin)
time represents the lowest

O-SLA validity period allowed by the operator, and ftime is
a shape function defined as in Equation 6.

Next, the O-SLA instances are grouped by the game provider
into a set of M feasible operational offers:

O =

M⋃
i=1

O-SLAi, (12)

Consider for example the operational requirements of 50
thousand clients and three O-SLAs (O-SLA[1;3]) with the
maximum of 25, 20 and 30 thousand clients. The resulting
operational offers are {O-SLA1, O-SLA3} and {O-SLA2,
O-SLA3} (M = 2 in both cases). The combination {O-SLA1,
O-SLA2} is not feasible because it does not meet the mini-
mum requirements of 50 thousand players (25 + 20 < 50).

The game provider assigns to each operational offer an op-
erational rank based on the weighted sum of three individual
ranks: the pricing rank PO-SLA (directly proportional), the
compensation rank CO-SLA (inversely proportional) and the
resource fitness rank FO-SLA (inversely proportional):

R = λp · PO-SLA − λc · CO-SLA − λf · FO-SLA, (13)

where λp, λc, λf ∈ [0; 1] and λp + λc + λf = 1. The main
goal of this paper is to determine best practices for a game
provider for computing these compensation and fitness weights
in an environment with multiple competing providers and
game operators (we studied the pricing weight in [15]). We
define in the following the computation of the pricing, com-
pensation and resource fitness ranks by the game provider.

108



The pricing rank PO-SLA of an operational offer is a quan-
tification how expensive a resource is, determined as the

ratio between the aggregated hourly price
P

(O)
i

t
(O)
timei

of all M

O-SLAs of an operational offer and the target price P (T )·t(O)
clii

for servicing all clients in all M O-SLAs (see Equation 2):

PO-SLA =

∑M
i=1

P
(O)
i

t
(O)
timei

P (T ) ·
∑M

i=1 t
(O)
clii

. (14)

The compensation rank quantifies the penalties the oper-
ator pays for O-SLA faults based on a compensation gain
metric representing the area of the compensation function

Cx within its definition interval
[
0; b

(max)
x

]
(see Equation 5):

Ax =

∫ b
(max)
x

0

Cx (bx)·dbx =
c
(u)
x

ux
·
∫ b

(max)
x

0

bx·fx
(

bx

b
(max)
x

)
·dbx .

(15)
By substituting y = bx

b
(max)
x

in Equation 15, we obtain:

Ax =
c
(u)
x ·

(
b
(max)
x

)2
ux

·
∫ 1

0

y · fx (y) · dy . (16)

While the compensation gain completely characterises the
compensation function for uniformly distributed SLA faults,
it does not accurately do it in a real system with a non-
uniform SLA fault distribution. To compensate for this
drawback, we introduce an SLA fault distribution function:

δx :
[
0; b(max)

x

]
→ [0; ∆max] , (17)

where ∆max represents the maximum value of the SLA fault
distribution function. We dynamically compute the SLA
fault distribution for each MMOG zone by continuously mon-
itoring the game play and recording each SLA fault. By su-
perimposing δx to the compensation gain, we compute an ad-
justed metric called characteristic compensation gain which
defines the compensation function for a specific MMOG:

A(ch)
x =

c
(u)
x ·

(
b
(max)
x

)2
ux

·
∫ 1

0

y · δx

(
b(max)
x · y

)
· fx (y) · dy .

(18)

Using A(ch)
Cx

, we can finally compute the compensation
rank of an operational offer as the sum as the weighted sum
of the normalised characteristic compensation gains for all
O-SLA terms x ∈ {cli , ini , tni}:

CO-SLA =

M∑
i=1

∑
x∈{cli,ini,tni}

ψx ·
A(ch)

xi

A(REF)
x

, (19)

where A(REF)
x represents a reference compensation gain con-

sidered ideal by the game provider (e.g. minimum com-
pensation function from all operators), and ψcli , ψini , ψtni ∈
[0; 1] indicate the provider’s preference for each O-SLA term,
where ψcli + ψini + ψtni = 1.

The fitness rank reflects how the operational offer matches
the operational requirements, computed as a weighted sum

of the ratio between the offered t
(O)
x and the requested t

(R)
x

O-SLA terms (i.e. tcli , tini , ttni , and ttime – see Equation 2):

FO-SLA =
∑

x∈{cli,ini,tni,time}

φx ·
Sx

(
t
(O)
xi

)
t
(R)
x

, (20)

Sx

(
t(O)
xi

)
=


∑M

i=1 t
(O)
xi , x = cli ;∑M

i=1 t
(O)
xi

M
, x ∈ {ini , tni};

min
i∈[1;M ]

{
t
(O)
xi

}
, x = time,

(21)

φcli , φini , φtni , φtime ∈ [0; 1] indicate the provider’s preference
for each O-SLA term (φcli + φini + φtni + φtime = 1) and Sx

is an aggregation function (i.e. sum for number of clients,
average for instantaneous and total non-interruption ratios,
and minimum for validity period). The offer is unfit if the
fitness rank is lower than one, is a perfect match if equal to
one, or contains too many resources if higher than one.

As a final step, the operational offers are sorted in as-
cending order by their rank. It is worth mentioning that,
although the price ranking is relatively static between suc-
cessive negotiations (provided that the operators do not ad-
just their offers dynamically), the fitness and compensation
rankings constantly vary based on the current operational
demands and the operators’ SLA fault history (see charac-
teristic compensation gain function in Equation 18). This
ensures that game providers do not constantly reach the
same apparently-optimal operator, but are able to discover
those whose offers most accurately match their needs.

5.3 Third Phase
In the third phase, the game provider attempts to accept

an operational offer starting with the best ranked one, and
continues through the list in case other competing providers
already provisioned it. At this stage, the operators are al-
lowed to propose small updates in the O-SLA terms to com-
pensate for changes in the cloud providers’ R-SLAs. In turn,
the game providers will either recompute the rank for the
O-SLA in question, or will simply skip to the next best of-
fer according to their internal policy. After the negotiation,
the provider tries to enforce the accepted O-SLA for the en-
tire interaction with the clients and the game operator. To
achieve this, the game provider collects and aggregates data
from two sources: the game operator’s QoS data collected
from MMOG servers and the client that regularly reports
(in the background) on the quality of game play. The game
provider enforces the O-SLAs by compensating the clients
according to their contractual terms (not covered here) and
by penalising the game operators in case of QoS violations.

6. EXPERIMENTS
In the limited space available, we focus our experiments

on the impact of the operational offer ranking on the game
providers’ gross profit in an environment with multiple game
providers competing for O-SLAs from multiple game oper-
ators (see Equation 13). We performed further evaluation
of our method in [14]. Our aim is to determine best prac-
tices for a provider in selecting the compensation and fit-
ness weights for ranking operational offers that maximise
the profit. We ignore the pricing weight studied in [15].

6.1 Experimental Setup
Our evaluation is based on simulation using traces from

RuneScape, a real MMOG ranked second after World of
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Table 1: Service policies of game providers.

Policy sini stni stime [hours] P (T )[$] C(T )[$]

PP1-PP5 (0.86; 0.98; 0.03) 0.992 [168; 336] 0.002 0.05
PP6-PP10 0.92 (0.986; 0.998; 0.003) [168; 336] 0.002 0.05
PP11-PP15 0.92 0.992 [(24; 312; 72); (336; 624; 72)] 0.002 0.05
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Figure 5: Concurrent RuneScape clients aggregated for all
servers in each region.

Table 2: Commercial cloud R-SLAs.

Cloud VM Loca- Price [$/ Valid.Resource
provider types tions RSU/h]GB/h] [h] [seconds]

Amazon 6 4 1.21 0.81 1 [65; 105]
CloudCentral 5 1 11.07 35.25 1 [50; 120]
ElasticHosts 4 1 1.22 2.73 1 [45; 120]
FlexiScale 4 1 0.72 1.46 1 [40; 50]
GoGrid 4 1 2.07 7.15 1 [60; 120]
Linode 5 1 0.67 2.37 24 [45; 120]

NewServers 5 1 0.38 0.71 1 [30; 120]
OpSource 6 1 0.09 0.15 1 [300; 540]
RackSpace 4 2 1.54 5.56 1 [100; 300]
ReliaCloud 3 1 0.96 1.04 1 [45; 60]
SoftLayer 4 3 0.70 1.75 1 [180; 300]

SpeedyRails 3 1 1.76 8.43 24 [80; 120]
Storm 6 2 0.99 1.54 1 [600; 900]

Terremark 5 1 1.40 6.14 1 [40; 60]
Voxel 4 3 0.83 0.94 1 [300; 600]
Zerigo 2 1 1.96 3.16 1 [60; 120]

Warcraft by the number of active paying customers in the
US and European markets. We collected execution traces
for a period of six months from 150 servers on four conti-
nents by sampling the number of players every two minutes
(ranging between 0 and 2000, the maximum capacity of one
RuneScape server [13]) (see Figure 5). For the client – game
provider interaction, we use the real monthly subscription
model of RuneScape ($5.95 as of August 2010).

We employed 115 R-SLAs based on the resources offered
by 16 commercial cloud providers summarised in Table 2.
The hourly-based prices are first presented relative to the
processing power and second relative to the memory avail-
ability. The prices include the upstream and downstream
network traffic which may have an important impact on the
final R-SLA prices, as in the case of CloudCentral. The
geographical location, memory size, and price are clearly
specified by all providers. We express the resource process-
ing power using an MMOG-specific metric called RS unit,

Table 3: RuneScape-related O-SLA template.

Template t
(O)
cli t

(O)
ini t

(O)
tni t

(O)
time

Cx

fx a

O-SLA [2000; 20000][0.85; 0.95][0.99; 0.999][24; 168]log[1; 100]

Table 4: Operational ranking configuration parameters.

Ranking Fitness rank (FO-SLA) Operational rank(R)
acronym φcliφiniφtni φtime λf λb
or-[1;8] 0.1 0.3 0.3 0.3 (0.1;0.8;0.1)(0.8;0.1;−0.1)

representing the equivalent requirements of one RuneScape
server servicing 2000 clients. We compute this metric based
on benchmarking and analysis data from existing investiga-
tions [13, 9]. We consider 100% resource uptime because
most cloud providers have very high resource availabilities,
only a few specifying concrete compensation terms.

We simulated 15 game providers that compete for op-
erational offers based on the number of RuneScape active
clients (see Figure 5) by employing one of the service poli-
cies PP1-PP15 defined in Table 1 (see Equation 1). Each
group of five providers, namely the groups employing the
policies PP1-PP5, PP6-PP10, and PP11-PP15, runs the com-
plete set of RuneScape MMOG traces. We run eight sim-
ulations labelled or-1 to or-8 in Table 4, each changing
the operational ranking configuration employed by all the
game providers by varying the weights for the compensation
(λc) and fitness (λf ) ranks (see Equation 13). We set the
weight of the price rank to a fixed value of λp = 0.1 based on
our previous study [15]. We start with a high emphasis on
the importance of the compensation ranking (and implicitly
a low importance on the fitness ranking) and continue by
gradually changing the weights until reaching the opposite
scenario, i.e. from λb = 0.8 and λf = 0.1, to λb = 0.1 and
λf = 0.8 (see Equation 13 and Table 4).

We further simulated 74 game operators employing O-SLAs
based on the template in Table 3, offering game providers
an operation market with high diversity of operational and
compensation terms. For the compensation function (see
Equation 5), we used the logarithmic class of parameterised
shape functions defined in Equation 7. We imposed an uni-
form distribution of the serviced geographical areas.

We analysed the financial aspect of the MMOG operation
using two metrics: (1) gross profit representing the difference
between the business actor’s revenue and the cost of provid-
ing its services (excluding taxation and other overheads),
and (2) total compensation (a fraction of gross profit) rep-
resenting the total cost a business actor pays as a compen-
sation for any SLA fault for the entire simulation period.

6.2 Results
Figure 6 shows the variation of three gross profit frac-

tions: the MMOG operation expenses, client compensation
expenses, and the income from O-SLA fault compensations.
The top chart presents the trend of the aggregated profit
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Figure 6: Variation of expenses and income from O-SLA
compensations (top); profit breakdown (bottom).

fractions for all game providers, while the bottom chart
shows their proportional composition. The income from
client subscriptions of all game providers is constant through-
out all runs at around $113.67 million (not shown in the
graphs). The increasing trend of the game providers’ gross
profits from or-1 to or-4 is due to a decrease in the ex-
penses caused by client compensations and resulting from a
better selection of operational offers, a consequence of the
increased weight of fitness ranking. The descending trend
from or-4 to or-6 is due to increased expenses with opera-
tional offers, which is a consequence of further increasing the
weight of fitness ranking. These expenses are slowly being
compensated by further decreases in client compensations,
which eventually lead to another increasing trend for or-6

to or-8. Overall, the best gross profit value is reached when
employing or-4. We observe that increasing the weight of
fitness ranking leads to an increase of the operational of-
fer expenses and to a decrease in the client compensations.
Conversely, increasing the weight of the compensation rank
leads to higher operational expenses, but also to an increase
of the income from O-SLA fault compensations.

To analyse the impact of the operational rank weights on
the game providers employing different service policies, we
group them in two classes: (1) the Low sini class, offering the
clients low QoS, in terms of the targeted instantaneous non-
interruption ratio (employing PP1 and PP2 with low sini),
and (2) the High sini class, targeting a high QoS by employ-
ing PP4 and PP5 with high values for the same term. The
Low stni and High stni classes and respectively the Low stime

and High stime classes are constructed similarly for the other
QoS term and the targeted SLA validity. Figure 7 shows the
gross profit variation of the game provider classes reported
to an average of the or-4 and or-5 runs. We observe that the
Low sini class favours the lower fitness rank and higher com-
pensation rank weights, while High stni is only marginally
affected by changes in the operational ranking weights. The
Low stni slightly favours lower fitness rank weights, while
the High stni is positively influenced by the increased fitness
rank and lower compensation rank weights. The strongest
impact of the operational ranking weights is observed for
the stime term: Low stime favours lower fitness rank weights
and has a strong negative reaction to higher compensation
ranking weights, while High stime performs best when the
two weights are balanced and significantly worse otherwise.
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Figure 7: Gross profit variation in percentage to the average
of or-4 and or-5

.

Service policy term Low High

sini λf ↓ λc ↑ λf = λc =
stni λf = λc = λf ↑ λc ↓
stime λf ↓ λc ↑ λf = λc =

Table 5: Best practice rank weight configurations for max-
imising game providers’ profit: ’↑’ represents a high value,
’↓’ a low one, and ’=’ balanced.

We summarise these best-practice guidelines in Table 5,
which defines the ranking weight configurations the game
providers should use for different service policies. We con-
clude that the game providers’ gross profit can be maximised
in a competitive environment by balancing the fitness and
compensation operational ranking weights. However, the
game providers’ service policies strongly impact the way
in which the operational rank weights influence their gross
profit, as summarised in Table 5.

7. CONCLUSION
The current MMOG ecosystem comprising tens of millions

of players across hundreds of games forces game providers to
also become game and infrastructure operators, leading to
inefficient resource utilisation, high service prices, and limits
market participation to only the largest game providers. We
proposed a new ecosystem and business model for hosting
and operating MMOGs which effectively splits the tradi-
tional monolithic MMOG companies into three main service
providers: game providers, game operators, and resource
providers, whose interactions are regulated through SLAs.
In our model, game operators efficiently provision cloud re-
sources for MMOGs based on their dynamic load and ensure
proper game operation that maintains the required QoS to
all clients. Game providers lease operation SLAs from the
game operators to satisfy all client requests and manage mul-
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tiple distributed MMOG sessions. These three self-standing,
smaller, more agile service providers enable access to the
MMOG market for the small and medium enterprises, and
to the current commercial cloud providers. We focused in
this paper on the business interaction between the game op-
erator and the game provider by defining the negotiation
protocol and the underlying O-SLA terms. Our model pro-
poses a comprehensive MMOG operational ranking mecha-
nism that considers and balances among three criteria: pric-
ing, compensation, and resource fitness. We studied the im-
pact of ranking operational offers on the game provider’s
gross profit in an environment with several providers com-
peting for SLAs from multiple game operators through real-
istic simulations using traces from real MMOGs and SLAs
from over ten commercial cloud providers We provide guide-
lines for balancing the three criteria and find that their im-
pact depends on the service terms used in the game provider
– client relation. In the future, we plan to investigate the
impact of resource failures on QoS and compensation.
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