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ABSTRACT
To support the variable load of Massively Multiplayer On-
line Games (MMOGs) with millions of registered users and
thousands of active concurrent players, game operators over-
provision a large static infrastructure capable of sustaining
the peak load with guaranteed Quality of Service (QoS).
This leads to ine�cient resource utilisation, high service
prices, and limited market participation accessible only to
the large companies. To address this problem, we propose a
new autonomic ecosystem for hosting and operating MMOGs
based on cloud computing principles involving four smaller
and better focused business actors whose interaction is reg-
ulated through Service Level Agreements (SLAs): resource
provider, game operator, game provider, and client. In
our model, game providers acquire operation SLAs from
game operators to satisfy client requests and manage multi-
ple distributed MMOG sessions. Game operators lease on-
demand cloud resources based on the dynamic MMOG load
and guarantee the required QoS to all clients. We evaluate
through simulations based on real MMOG traces and com-
mercial cloud SLAs di↵erent methods of ranking MMOG
operation o↵ers. We show that considering compensations
for SLA faults in the o↵er selection can lead to over 11%
gains in game providers’ income, and that adequate ranking
of o↵ers can reduce operational costs by up to 60%.

Categories and Subject Descriptors
K.6.2 [Management of Computing and Information
Systems]: Installation Management—Pricing and resource
allocation; I.6.8 [Simulation and Modelling]: Types of
Simulation—Gaming

General Terms
Management, Economics
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MMOG, SLA, QoS, autonomic cloud computing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

CAC’13, August 5–9, 2013, Miami, FL, USA.

Copyright 2013 ACM 978-1-4503-2172-3/13/08 ...$15.00.

1. INTRODUCTION
Massively Multiplayer Online Games (MMOGs) are a new

type of large-scale distributed application characterised by
seamless virtual worlds with millions of world-wide players
interacting in real-time. Although for the past decade the
number of MMOG players has grown exponentially to the
current tens of millions, this very growth may now hamper
the progress of this important branch of the entertainment
business. Today, most MMOG companies have to be both
game providers by developing the creative part of games,
and game operators by over-provisioning a multi-server in-
frastructure, using for this operation up to 40% of the total
game revenues in an annual market of over 24 billion dollars.
For example, Blizzard spends approximately $50 million ev-
ery year just for the upkeep of the World of Warcraft infras-
tructure. An important reason for this approach is the lack
of business models and supporting autonomic middleware to
enable outsourcing the operation of MMOGs.

Cloud computing promises to solve the infrastructure prob-
lems of the MMOG ecosystem through on-demand resource
leasing under contractual terms specified in form of Service
Level Agreements (SLAs). By leveraging this new infras-
tructure model, companies such as MMOG operators may
avoid the large costs of buying and maintaining deprecia-
ble hardware, and can join the MMOG operation market
with nearly zero initial investment. Although SLAs are a
classic and well-studied [17, 19] mechanism for specifying
and managing strict user requirements in distributed sys-
tems, an autonomous middleware for MMOGs still does not
exist, as many of the current approaches are complex to
implement and di�cult to map to specific application do-
mains [4]. We have tackled in [11, 12] many of the techni-
cal challenges of on-demand provisioning and allocation of
resources to MMOGs under Quality of Service (QoS) con-
straints. However, commercial clouds still cannot readily
be used for MMOG operation, as their SLAs mostly fo-
cus on hardware characteristics and lack support for negoti-
ating MMOG-friendly SLAs. Moreover, although focused
on infrastructure hardware, even large commercial cloud
providers, such as Amazon and Microsoft, have experienced
black-outs and variable performance over the past years.
Thus, game operators cannot outsource their infrastructure
services without a clear specification of responsibility and of
penalties associated with risks of unavailability, lower per-
formance, and other QoS violations.

We introduce a new autonomic MMOG ecosystem that
extends our previous work [12] with a comprehensive SLA
specification and negotiation mechanism between two ac-



tors: (1) game providers that negotiate operation SLAs with
game operators to satisfy all clients’ requests, and (2) game
operators that e�ciently lease and provision resources to
MMOGs from cloud providers based on their dynamic load
so that the required QoS parameters are maintained to all
clients. Our proposed ecosystem includes a comprehensive
specification of the SLA terms underneath the negotiation
protocol, and of compensations for temporary QoS viola-
tions introduced by the stringent QoS requirements and the
dynamic nature of MMOGs. On top of this, we propose a
method for ranking operational o↵ers based on price, com-
pensation and resource fitness, and study its impact on game
provider’s profit in an environment with several providers
competing for SLAs from multiple game operators.

The main contributions of our work are: (1) we propose a
comprehensive SLA-based middleware for the MMOG appli-
cation domain (in Section 3); (2) we design an SLA-based
negotiation protocol between the game providers, who of-
fer MMOGs to the clients, and the game operators, who
rent appropriate resources to fulfill QoS requirements (in
Section 4); (3) we investigate various SLA-based policies
and the operation of a sample yet complete MMOG ecosys-
tem. Our experimental approach is simulation-based, but
uses real six-month-long MMOG traces and the real SLAs
of over ten commercial clouds (in Section 5).

2. MODEL
In this section, we introduce the computational model,

autonomic ecosystem, and QoS metrics for MMOGs.

2.1 Computational Model
Online games can be seen as a collection of networked

game servers that are concurrently accessed by a number
of players (or clients). Clients connect directly to one game
server and are mapped to one avatar in the game world to
whom they send their play actions and receive appropriate
responses. Based on the actions sent, the avatar dynam-
ically interacts with other avatars within a game session,
influencing each others’ state. The state update responses
must be delivered within a given time frequency to ensure
a smooth and responsive experience. The load of the game
server is proportional to the number of interactions between
entities. An overloaded game server delivers state updates to
its clients at a lower frequency than the players expect which
makes the overall environment fragmented and unplayable.

To concurrently support millions of active players and
many more other server-driven entities (non-playing charac-
ters and other game objects) with guaranteed QoS, MMOG
operators provision a large static infrastructure with hun-
dreds to thousands of computers hosting a single distributed
game session. The most common game session distribution
technique is “zoning”, which is based on spatial partitioning
of the game world into geographical zones to be handled in-
dependently by separate machines. Other techniques, such
as “instancing” and “replication”, divide the entities con-
tained in a zone across several machines.

2.2 Autonomic MMOG Ecosystem
We propose a new autonomic business ecosystem for dis-

tributed MMOG operation and provisioning consisting of
three actors: game providers, game operators, and resource
providers (see Figure 1). The interaction between these ac-
tors is negotiated and regulated through bipartite SLAs, rep-

resenting wrappers around QoS parameters which they agree
to deliver (e.g. state-update rate for a certain price).

Game ProviderGame Operator
Client

Cloud Provider
O-SLAR-SLA
AccountUser: player1********Pass:

Figure 1: Auto-
nomic MMOG
ecosystem.

Game providers o↵er a selec-
tion of MMOGs by contracting new
games from development companies
(this o✏ine interaction is not cov-
ered here). Based on the clients’ re-
quests, game providers assign clients
to game zones, which are delegated
to game operators for QoS-based ex-
ecution. The quality of game play
(see Section 2.3) is monitored by the
MMOG client program and, in case
of SLA faults (e.g. state update rate
below the minimum threshold), the
client is compensated.

Game Operators receive requests from the game providers
for operating zones of di↵erent MMOG sessions with guaran-
teed QoS. Based on resource utilisation estimations covered
in [11], the game operators construct SLA templates, nego-
tiate SLAs with the game providers, and allocate resources
accordingly (i.e. start new zones, allow client connections).
This interaction is detailed in Sections 3.2 and 4. To fulfill
their agreements with game providers, game operators ac-
quire the correct amount of resources from cloud providers.
At predefined measurement timesteps during the game play,
the game provider analyses the QoS information from the
MMOG servers (see Section 2.3) and, whenever SLA faults
are detected, they are compensated by the operators.

Resource Providers are data centres such as Infrastructure-
as-a-Service (IaaS) clouds that lease computing and stor-
age resources to game operators for running game servers
with guaranteed QoS. We studied in [11, 12] the opportunity
of employing IaaS clouds for MMOG hosting with respect
to the performance penalties incurred by the virtualisation
overheads. In this paper, we add an essential new dimension
to our previous work by considering cost penalties.

2.3 QoS Metrics
One main challenge in our ecosystem is mapping the QoS

requirements of MMOGs to SLA contracts which can only be
enforced through best-e↵ort mechanisms using today’s cloud
or Internet-based resource allocation mechanisms. We define
two important QoS metrics for the quality of game play.

Instantaneous non-interruption ratio represents the ratio
between the measured state update frequency within one
measurement timestep and the required minimal frequency.
For example, if the minimal update frequency given by the
game developer is 40 Hz and the measured update frequency
is above 36 Hz in this measurement step, the instantaneous
non-interruption ratio is: 36

40

= 90%.
Total non-interruption ratio is the percentage of time the

MMOG session has been accessible and the state update fre-
quency equal or greater than the required frequency, over a
given time interval (e.g. an SLA’s validity time). For exam-
ple, if the game operator provided, of 24 hours, only 23.98
hours of game play during which the MMOG session was ac-
cessible and the state update rate was above the minimal fre-
quency, the total non-interruption ratio is: 23.98

24

= 99.9%.

3. SLA-BASED RELATIONSHIPS
We present now the business relationships between the

actors in our MMOG operational model.



3.1 Client and Game Provider
The interaction between the client and the game provider

requires human intervention only from the client. The rela-
tionship is regulated by the client account, created through
a Web portal upon agreeing on a contract with the game
provider. The contract includes generic mutual obligations
valid for all MMOGs, while further refinements and exten-
sions can be added for particular MMOGs in the form of an-
nexes. Typical client obligations include subscription costs,
client community interaction rules, and costs for accessing
MMOG sessions. Typical game provider obligations include
guaranteed services, such as community support, player sup-
port (player status and achievements, inventory, and de-
tailed play statistics), mediation of client connections to
MMOGs, access and availability to game world areas, and
compensation in case of contract violations.

3.2 Game Provider and Game Operator
The interaction between the game provider and the game

operator is fully automated. Based on the total number of
accounts and its service policy, the game provider estimates
the maximum number of clients for each game zone. We
define the provider’s service policy as a quintuple:

⇣

sini , stni , stime , P
(T ), C(T )

⌘

(1)

with the terms: target instantaneous non-interruption ratio
sini , the total non-interruption ratio stni , the interval of ac-
ceptable SLA validity periods stime to avoid excessively long
operation agreements, target hourly price per client P (T ),
and target compensation per client per minute C(T ).

To implement their service policies, the game providers ne-
gotiate the most appropriate terms for hosting each zone by
establishing Operation SLAs (O-SLA) with di↵erent opera-
tors (see Section 4). In turn, operators publish comprehen-
sive O-SLA templates, which provide detailed operation in-
formation, and compete for selection by the game providers:

O-SLA =
⇣

G
(O)

type , t
(O)

cli , t
(O)

ini , t
(O)

time , t
(O)

tni ,�
(O), P (O), C(O)

⌘

,

(2)
consisting of eight terms with scalar or range values: (1)

MMOG name and version G
(O)

type ; (2) client count t
(O)

cli (range)
that the game operator is ready to service; (3) instantaneous

non-interruption ratio t
(O)

ini (range); (4) validity period t
(O)

time

(range) representing the SLA lifetime o↵ered by the game
operator, with typical granularity from daily to semestrial;
(5) total non-interruption ratio t

(O)

tni (range) representing the
percentage of QoS fulfillment for the entire O-SLA validity
time, to be evaluated only after the O-SLA validity period;
(6) geographical area �(O) in which the game operator will
service the clients; (7) base price P (O) for accepting an SLA
supporting the lowest values of terms 2–5; (8) the compensa-

tion C(O) for violating an SLA temporarily. For simplicity,
non-negotiable O-SLA terms such as the issuer (i.e. game
operator) and the measurement timestep describing the time
interval between consecutive QoS evaluations are not repre-
sented here.

The compensation term C(O) is an important contribu-
tion of this work. We define compensation as the aggre-
gate penalty C(O) = P (Ccli ,Cini ,Ctni), where P represents
a polynomial aggregation function that the operator has to
pay in case of O-SLA faults. C(O) consists of three QoS-
related components: client number compensation Ccli , in-

stantaneous non-interruption ratio compensation Cini , and
total non-interruption ratio compensation Ctni . O-SLA poli-
cies can be made more attractive through C(O), for example,
expensive O-SLAs can make the Cini compensation term
more significant. In this work, we only consider the ad-
ditive function P (Ccli ,Cini ,Ctni) = Ccli +Cini +Ctni with
each term is expressed through a compensation function:

Cx :
h

0; b(max)

x

i

! R+, Cx (bx) =
c
(u)
x · bx
ux

· fx
✓

bx

b
(max)

x

◆

,

(3)
where x 2 {cli , ini , tni}), R+ is the set of positive real num-

bers, c(u)x the compensation for an O-SLA fault of one term

unit ux, bx represents the fault severity for the term x, b(max)

x

is its maximum possible fault severity, and fx is a shape func-
tion with the signature:

fx : [0; 1] ! R+, (4)

employed for changing the importance of di↵erent fault classes.
A game operator could make its o↵er more appealing by em-
ploying a shape function o↵ering higher compensations for
most frequent, low-severity faults rather than for the infre-
quent, higher-severity ones. For example, we can define a
class of logarithmic parameterised shape functions:

fx (bx) =
log (a · bx + 1)
log (a+ 1)

, (5)

where a 2 R+ is a coe�cient shaping the distribution of com-
pensations for di↵erent fault severities attempting to make
the O-SLAs more appealing to the game providers.

3.3 Game Operator and Resource Provider
The business interaction between the game operator and

the resource provider is also fully automated. As men-
tioned in Section 2.2, the game operator selects from di↵er-
ent resource providers appropriate cloud resources to run the
MMOG zones. The result of this interaction is a Resource
SLA (R-SLA) with six terms: (1) issuer or the resource
(cloud) provider; (2) geographical location of the issuer’s
data centre; (3) resource bulk representing the set of rented
resources comprising processor speed, memory size, internal
and external network bandwidth; (4) validity period repre-
senting the time for which the resources are available to the
game operator from the time the R-SLA is accepted (usu-
ally hourly-grained and seldom weekly or monthly-grained);
(5) compensation terms in case of resource faults; (6) price
representing the requested non-negotiable price.

The R-SLA terms provided by commercial clouds in to-
day’s market have fixed, non-negotiable values. Therefore,
the game operator employs a simple request-o↵er match-
ing algorithm instead of a complex negotiation. However,
the terms o↵ered by current cloud providers, such as the
Amazon “ECU” defined as “the equivalent CPU capacity of
a 1 � 1.2 Gigahertz 2007 Opteron or Xeon processor”, or
the FlexiScale “vCPU” units, are not precise. Thus, the
resource descriptions in the R-SLA resource bulk term can-
not be precise too. In turn, we cannot define finer-grained
compensation terms other than for resource downtime, for
example for lower processor performance or network band-
width. Our approach to making o↵ers more precise is to use
application-specific benchmarks, such as the RS unit bench-
mark employed in Section 5.1, to quantify the performance
o↵ered by new cloud providers before establishing R-SLAs.
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Figure 2: O-SLA negotiation protocol.

4. O-SLA NEGOTIATION
A key component of our middleware model is the nego-

tiation between game operators and game providers, which
we design as a decision process in which two parties interact
with each other for mutual gain. The goal of game providers
and operators is to maximise income and keep expenditures
low. The game provider’s income includes the MMOG sub-
scription sales and the compensations paid by the game op-
erator in case of O-SLA faults, while its expenditures consist
of the O-SLA acquisitions and the compensations paid to the
clients when providing low QoS. Conversely, the game op-
erator’s income results from the O-SLAs provisioned to the
game provider. Operator expenditures include the renting
of resources from the cloud providers and the O-SLA com-
pensations to the game providers. The accounting, billing
and auditing aspects of SLA management fall outside the
scope of this work, but solutions already exist.

The three negotiation phases depicted in Figure 2 cover
the game providers specifying their operational requirements
(phase 1), the game providers instantiating and ranking
O-SLA o↵ers (phase 2), and the binding agreement (phase
3). A simpler approach like a one-phase request-o↵er match-
ing algorithm, although desirable, cannot be employed be-
cause it would not be fair towards the game operators. The
resource providers’ pricing policies can change during the
time between the operator publishing an o↵er and the game
provider accepting it, which would enable a game provider
to profit from delaying the answer to an o↵er. Introducing a
validity deadline for o↵ers to prevent this unfair behaviour
could have negative e↵ects on both game provider and game
operator actors, as one might not have enough time for the
ranking process, while the other would have to assume the
risk of the cloud resources price changes (within the o↵er
validity time). Thus, the proposed negotiation involves dy-
namic o↵ers (determined by the available cloud resources)
and a possibility for game operators to propose final adjust-
ments in price during the second O-SLA instantiation phase.

4.1 Phase 1: Operational Requirements
In the first phase of the negotiation, the game provider

computes the operational requirements:

R =
⇣

G
(R)

type , t
(R)

cli , t
(R)

ini , t
(R)

tni ,�
(R), P (T ), C(T )

⌘

(6)

for each geographical area �(R) based on the current state of

its provisioned O-SLAs and the estimated number of clients
for the next provisioning time frame, where: (1) G

(R)

type is

the MMOG type; (2) t(R)

cli is the estimated number of active

accounts; (3) t
(R)

ini is the required instantaneous total non
interruption ratio, initially set to the game provider’s service
policy value, sini (defined in Section 3.2); (4) t(R)

tni is the total
non-interruption ratio, initially set to stni , the provider’s
service policy value; (5) t(R)

time is the estimated time period for
these requirements expressed in hours; (6) P (T ) is the target
hourly price per client defined by the game provider’s service
policy; and (7) C(T ) is the target compensation per client
per minute defined by the game provider’s service policy.

4.2 Phase 2: Ranking Offers
In the second phase, the game provider gathers the O-SLA

templates from all the game operators and instantiates them
with the “best” values permitted by the O-SLA template for
the operational requirements. When instantiating an O-SLA
template, it also calculates the price increase for the client
number Pcli , the instantaneous non-interruption ratio Pini ,
and the total non-interruption ratio Ptni :

Px =
t
(R)

x � t
(O

min

)

x

ux
· p(u)x · fx

⇣

t(O)

x

⌘

, 8x 2 {cli , ini , tni} ,
(7)

where t
(R)

x is the operational requirement for the term x 2
{cli , ini , tni} (see Equation 6), t(min)

x is the minimum value
of the term x allowed by the operator through an O-SLA,

p
(u)
x represents the price per term unit ux, and fx

⇣

t
(O)

x

⌘

is

a shape function defined as in Equation 4. The final price
the game provider is charged when accepting the O-SLA is:

P (O) = Pbase +
⇣

Pcli + Pini · t(R)

cli + Ptni · t(R)

cli

⌘

· Tcoe↵ , (8)

where Pbase is the base price and Tcoe↵ is the validity period
coe�cient that adjusts the price in case of changes in validity
time requested by the provider:

Tcoe↵ =

&

t
(R)

time

t
(O

min

)

time

'

· ftime

⇣

t
(R)

time

⌘

, (9)

where d·e is the ceiling function, t(Omin

)

time represents the lowest
O-SLA validity period allowed by the operator, and ftime is
a shape function defined as in Equation 4.

Next, the O-SLA instances are grouped by the game provider
into a set of M feasible operational o↵ers:

O =
M
[

i=1

O-SLAi, (10)

Consider the operational requirements of 50 thousand clients
and three O-SLAs (O-SLA[1;3]) with the maximum of 25,
20 and 30 thousand clients. The resulting operational o↵ers
are {O-SLA1, O-SLA3} and {O-SLA2, O-SLA3} (M = 2
in both cases). The combination {O-SLA1, O-SLA2} is not
feasible because it does not meet the minimum operational
requirements of 50 thousand players (25 + 20 < 50).

The game provider assigns to each operational o↵er an
operational rank computed based on the weighted sum of
three individual ranks: pricing rank PO-SLA (directly propor-
tional), compensation rank CO-SLA (inversely proportional)
and resource fitness rank FO-SLA (inversely proportional):

R = �p · PO-SLA � �c · CO-SLA � �f · FO-SLA, (11)



where �p,�c,�f 2 [0; 1] and �p + �c + �f = 1. We define in
the following the computation of the pricing, compensation
and resource fitness ranks by the game provider.

The pricing rank PO-SLA of an operational o↵er is a quan-
tification how expensive a resource is, determined as the

ratio between the aggregated hourly price
P

(O)

i

t
(O)

timei

of all M

O-SLAs of an operational o↵er and the target price P (T )·t(O)

clii

for servicing all clients in all M O-SLAs (see Equation 2):

PO-SLA =

PM
i=1

P
(O)

i

t
(O)

timei

P (T ) ·
PM

i=1

t
(O)

clii

. (12)

The compensation rank quantifies the penalties the oper-
ator pays for O-SLA faults computed based on a compensa-
tion gain representing the area of the compensation function

Cx within its definition interval
h

0; b(max)

x

i

(see Equation 3):

Ax =

Z b
(max)

x

0

Cx (bx)·dbx =
c
(u)
x

ux
·
Z b

(max)

x

0

bx·fx
✓

bx

b
(max)

x

◆

·dbx .

(13)
By substituting y = bx

b
(max)

x

in Equation 13, we obtain:

Ax =
c
(u)
x ·

⇣

b
(max)

x

⌘

2

ux
·
Z

1

0

y · fx (y) · dy . (14)

While compensation gain characterises the compensation
function for uniformly distributed SLA faults, it does not
accurately reflect its behaviour in a realistic system with a
non-uniform SLA fault distribution. To compensate for this
drawback, we introduce an SLA fault distribution function:

�x :
h

0; b(max)

x

i

! [0;�
max

] , (15)

where �
max

represents the maximum value of the SLA fault
distribution function. We dynamically compute the SLA
fault distribution for each MMOG zone by continuously mon-
itoring the game play and recording each SLA fault. By su-
perimposing �x to the compensation gain, we compute an ad-
justed metric called characteristic compensation gain which
defines the compensation function for a specific MMOG:

A(ch)
x =

c
(u)
x ·

⇣

b
(max)

x

⌘

2

ux
·
Z

1

0

y · �x
⇣

b(max)

x · y
⌘

· fx (y) · dy .

(16)
We compute the characteristic compensation gain through
a finite sum approximation:

A(ch)
Cx

⇡
c
(u)
x ·

⇣

b
(max)

x

⌘

2

ux
·

N
X

i=1

i

N
· �x

 

b
(max)

x · i
N

!

· fx
✓

i

N

◆

,

(17)
where N is the integration granularity representing the num-
ber of interval partitions. Using A(ch)

Cx
, we can finally com-

pute the compensation rank of an operational o↵er as the
sum as the weighted sum of the normalised characteristic
compensation gains for all O-SLA terms x 2 {cli , ini , tni}:

CO-SLA =
M
X

i=1

X

x2{cli,ini,tni}

 x · A(ch)
xi

A(REF)

x

, (18)

where A(REF)

x represents a reference compensation gain con-
sidered ideal by the game provider (e.g. minimum com-
pensation function from all operators), and  cli , ini , tni 2
[0; 1] indicate the provider’s preference for each specific O-SLA
term, where  cli +  ini +  tni = 1.
The fitness rank reflects how well the operational o↵er

matches the requirements, computed as a weighted sum of
the ratio between the o↵ered t

(O)

x and the requested t
(R)

x

O-SLA terms (i.e. tcli , tini , ttni , and ttime – see Equation 2):

FO-SLA =
X

x2{cli,ini,tni,time}

�x ·
Sx

⇣

t
(O)

xi

⌘

t
(R)

x

, where (19)

Sx

⇣

t(O)

xi

⌘

=

8

>

>

<

>

>

:

PM
i=1

t
(O)

xi , x = cli ;
PM

i=1

t
(O)

xi
M

, x 2 {ini , tni};
min

i2[1;M ]

n

t
(O)

xi

o

, x = time,

(20)

�cli ,�ini ,�tni ,�time 2 [0; 1] indicate again the provider’s pref-
erence for each O-SLA term (�cli+�ini+�tni+�time = 1) and
Sx is an aggregation function (i.e. sum for client number,
average for instantaneous and total non-interruption ratios,
and minimum for validity period). The o↵er is unfit if the
fitness rank is lower than one, is a perfect match if equal to
one, or contains too many resources if higher than one.

As a final step, the operational o↵ers are sorted in as-
cending order by their rank. It is worth mentioning that,
although the price ranking is relatively static between suc-
cessive negotiations (provided that the operators do not ad-
just their o↵ers dynamically), the fitness and compensation
rankings constantly vary based on the current operational
demands and the operators’ SLA fault history (see charac-
teristic compensation gain function in Equation 16). This
ensures that game providers do not constantly reach the
same apparently-optimal operator, but are able to discover
those whose o↵ers most accurately match their needs.

4.3 Phase 3: Binding Agreement
In the third phase, the game provider attempts to accept

an operational o↵er starting with the best ranked one, and
continues through the list in case other competing providers
already provisioned it. At this stage, the operators are al-
lowed to propose small updates in the O-SLA terms to com-
pensate for changes in the cloud providers’ R-SLAs. In turn,
the game providers will either recompute the rank for the
O-SLA in question, or will simply skip to the next best of-
fer according to their internal policy. After the negotiation,
the provider tries to enforce the accepted O-SLA for the en-
tire interaction with the clients and the game operator. To
achieve this, the game provider collects and aggregates data
from two sources: the game operator’s QoS data collected
from MMOG servers and the client that regularly reports
(in the background) on the quality of game play. The game
provider enforces the O-SLAs by compensating the clients
according to their contractual terms (not covered here) and
by penalising the game operators in case of QoS violations.

5. EXPERIMENTAL RESULTS
We present in this section an evaluation of our MMOG

middleware stack focused on the O-SLA-based negotiation
process between the game providers and the game operators.
We conduct our evaluation in simulation, but use as input



Table 1: Summary of commercial cloud R-SLAs.
Cloud VM Loca- Price [$/.. Valid. VM inst.

provider types tions RSU/h] GB/h] [h] [seconds]

Amazon 6 4 1.21 0.81 1 [65; 105]
CloudCentral 5 1 11.07 35.25 1 [50; 120]
ElasticHosts 4 1 1.22 2.73 1 [45; 120]
FlexiScale 4 1 0.72 1.46 1 [40; 50]
GoGrid 4 1 2.07 7.15 1 [60; 120]
Linode 5 1 0.67 2.37 24 [45; 120]

NewServers 5 1 0.38 0.71 1 [30; 120]
OpSource 6 1 0.09 0.15 1 [300; 540]
RackSpace 4 2 1.54 5.56 1 [100; 300]
ReliaCloud 3 1 0.96 1.04 1 [45; 60]
SoftLayer 4 3 0.70 1.75 1 [180; 300]

SpeedyRails 3 1 1.76 8.43 24 [80; 120]
Storm 6 2 0.99 1.54 1 [600; 900]

Terremark 5 1 1.40 6.14 1 [40; 60]
Voxel 4 3 0.83 0.94 1 [300; 600]
Zerigo 2 1 1.96 3.16 1 [60; 120]

real data corresponding to MMOG workloads (number of
players online) and real commercial IaaS cloud SLAs. We
cover an evaluation space with two dimensions: the com-
pensation rank function CO-SLA (Sections 5.2 and 5.3), and
the fitness rank function FO-SLA (Section 5.4). The pricing
rank is employed in the O-SLA negotiation, but is not a focal
point of our evaluation as we covered it in [12]. Our aim is to
demonstrate that considering compensations is paramount
when ranking SLAs for reducing the operational cost and
maintaining QoS, and to determine guidelines for balanc-
ing the operational terms of FO-SLA (see Equation 19) for
maximising the provider’s profit.

5.1 Experimental Setup
We use traces from RuneScape, a real MMOG ranked sec-

ond after World of Warcraft by the number of active paying
customers in the US and European markets. We have col-
lected execution traces for a period of six months from 150
servers on four continents by sampling the number of play-
ers every two minutes. The number of players ranges from 0
to 2000, the maximum capacity of a RuneScape server [11].
We simulate game providers that provision O-SLAs accord-
ing to the number of active client accounts. For client–
game provider interaction, we use the real player subscrip-
tion model of RuneScape ($5.95 per month, August 2012).

We employ 115 R-SLAs based on the resources provided
by 16 real commercial cloud providers, described in Table 1.
The hourly prices are presented based on the processing
power and memory availability. The prices include the up-
stream and downstream network tra�c which may have an
important impact on the final R-SLA prices, as in the case
of CloudCentral. For each cloud provider we use its geo-
graphical location, memory size, and price. We express the
VM processing power using an MMOG-centric metric called
RS unit, representing the equivalent computational require-
ments of one RuneScape server servicing 2000 clients. We
compute this metric, including the virtualisation overheads,
based on benchmarking and analysis data from our previ-
ous work [8]. The VM instantiation overhead (column “VM
inst.”) is the variable duration of instantiating a new VM
instance. We consider a 100% resource uptime because most
cloud providers promise very high resource availability.

We characterise the client – game provider contracts through
the service policies displayed in Table 2. We further sample
the design space of operational ranking functions through

Table 2: Service policies of game providers, where
sets of policies are defined (min;max; step) triplets and
stochastic values by [min;max] interval ranges.

Policy sini stni stime [hours] P (T )[$]C(T )[$]

PP1 0.9 0.99 [12; 168] 0.01 0.05

PP2-PP6
(0.86; 0.98;

0.992 [168; 336] 0.002 0.05
0.03)

PP7-PP11 0.92
(0.986; 0.998;

[168; 336] 0.002 0.05
0.003)

PP12-PP16 0.92 0.992
[(24; 312; 72);

0.002 0.05
(336; 624; 72)]

Table 4: RuneScape-related O-SLA templates.

Name t(O)

cli (x103) t(O)

ini t(O)

time t(O)

tni

Ccli Cini Ctni

fcli a fini a ftni a

OSLA-1 [2; 20] [0.85; 0.95] [24; 168] [0.99; 0.999]exp1.5exp 1.3 exp 1.3
OSLA-2 [3; 10] [0.90; 0.98][144; 336][0.99; 0.999] log 15 exp 1.3 exp 1.3
OSLA-3 =OSLA-1 =OSLA-1 =OSLA-1 =OSLA-1 log 10 log 10 log 10

the 45 functions summarised in Table 3, by varying in RK1–
RK6 the class of the compensation ranking function (results
in Section 5.2), in RK7–RK17 the computational complexity
of the compensation ranking function (Section 5.3), and in
RK18–RK37 the fitness ranking function (Section 5.4).

Finally, we employ an extensive set of O-SLAs designed
to cover all aspects of the negotiation described in Section 4,
based on the three O-SLA templates presented in Table 4
and generated by varying one or more of their term values.
We keep the pricing functions constant, since we covered
them in [12]. We present the compensation functions Cx

introduced in Equation 3 as a set of two parameters: the
shape function type fx and its shape coe�cient a. We use
two classes of parameterised shape functions: logarithmic
defined as in Equation 5 and exponential defined as:

f (exp)

x (bx) =
ea·bx � 1
ea � 1

, (21)

We adjust the shape coe�cient for di↵erent O-SLAs and
evaluate the resulting compensation functions using the com-
pensation gain metric defined in Equation 14. We use a
uniform distribution of the serviced geographical areas.

We consider metrics for both cost and performance (SLA).
We analyse the financial aspect of our MMOG operation us-
ing two metrics: (1) gross profit representing the di↵erence
between the business actor’s revenue and the cost of provid-
ing its services, excluding taxation and other overheads; (2)
total compensation (a fraction of the gross profit) represent-
ing the total cost a business actor pays as a compensation for
any SLA fault for the entire simulation period. We analyse
the QoS through two O-SLA metrics defined in Section 2.3:
the instantaneous non-interruption ratio tini and the total
non interruption ratio ttni . For a better understanding of
ttni , we also analyse the average non-serviced clients repre-
senting the average number of clients who were denied ser-
vice within a measurement time step because of improper
O-SLA provisioning by the game provider, or because of im-
proper resource allocation by the game operator.

5.2 Compensation Ranking Selection
The goal of this first experiment is to study how game

providers can select operational o↵ers (sets of O-SLA in-
stances, see Section 4) from game operators based on com-
pensation terms. We study six di↵erent compensation rank-



Table 3: Operational ranking configurations, where sets of functions are defined as (min;max; step) value ranges.
Ranking acronym Compensation rank (CO-SLA) Fitness rank (FO-SLA)

(function) Type Integration granularity (N) �cli �ini �tni �time

RK1(max) max - 0.2 0.5 0.2 0.1
RK2(avg-3) avg 3 0.2 0.5 0.2 0.1
RK3(avg-9) avg 9 0.2 0.5 0.2 0.1
RK4(gain) ACx - 0.2 0.5 0.2 0.1

RK5(cgain-9) A(ch)
Cx

9 0.2 0.5 0.2 0.1

RK6(cgain-30) A(ch)
Cx

30 0.2 0.5 0.2 0.1

RK[7;17] (cgain-[1;30]) A(ch)
Cx

1,(3; 30; 3) 0.2 0.5 0.2 0.1

RK[18;22](cli-[10;90]) A(ch)
Cx

30 (0.1; 0.9; 0.2)
1��cli

3

RK[23;27](ini-[10;90]) A(ch)
Cx

30
1��ini

3

(0.1; 0.9; 0.2)
1��ini

3

RK[28;32](tni-[10;90]) A(ch)
Cx

30
1��tni

3

(0.1; 0.9; 0.2)
1��tni

3

RK[33;37](time-[10;90]) A(ch)
Cx

30
1��time

3

(0.1; 0.9; 0.2)

ing methods. First, max (RK1) (see Table 3 and Figure 3)
ranks o↵ers by the compensation value Cx (k) correspond-
ing to the most frequent O-SLA fault (i.e. most frequent
fault k for which �x (k) = �

max

, defined in Equation 15):

C(max)

O-SLA =
M
X

i=1

X

x2{cli,ini,tni}

 x · Cx (k)

C(T )

, (22)

where �x(k) = �
max

, M is the total number of O-SLAs
in an operational o↵er, C(T ) is the target minutely com-
pensation per client (see Section 6), and  x 2 [0; 1] with
P

x2{cli,ini,tni}  x = 1. Second and third, avg-3 (RK2) and
avg-9 (RK3) rank based on the average compensation values:

C(avg-N)

O-SLA =
M
X

i=1

X

x2{cli,ini,tni}

 x ·

PN
k=1

Cx ·
⇣

k
N+1

· b(max)

x

⌘

N · C(T )

,

(23)
for N = 3 and N = 9 with uniformly distributed SLA
faults (see Figure 3). Fourth, gain (RK4) is based on Equa-
tion 18 with the compensation gain defined as in Equation 14
(not 16). Fifth and sixth, cgain-9 (RK5) and cgain-30 (RK6)
are variants of the compensation rank proposed in Section 4
with N = 9 and N = 30, where N is the integration gran-
ularity (i.e. the number of partitions in the Riemann sum
approximation) of Equation 16. We defined a separate game
provider for each of the six compensation ranking methods
and the same PP1 service policy (see Table 2). We further use
65 game operators, each o↵ering a di↵erent O-SLA based on
the OSLA-1 template (see Table 4) and di↵erentiated by their
compensation function, its shape and other parameters, as
defined in Section 5.1. We run simulations and evaluate the
total compensation, representing the fraction of compensa-
tion obtained by game providers from their gross profit.

The top graph of Figure 4 depicts the total compensation
of all game providers relative to the total compensation when
using the basic max method. We observe that while the max,
avg and gain perform roughly the same (variation less than
3%), cgain leads to 11–16% increases in income from com-
pensations. As each MMOG exhibits an individual load pat-
tern, which, in turn, results in a particular fault distribution
(as exemplified in Figure 3), by employing the characteris-
tic gain ranking method game providers automatically tune
their o↵er selection process to favour the O-SLAs bringing
the highest compensations from these unique fault distri-
butions. We further analyse the impact employing these
methods has on the QoS o↵ered by game providers and de-
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Figure 3: max versus avg-3 compensation ranking.
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Figure 4: Compensation ranking comparison.

pict the results in the bottom graph of Figure 4. The results
indicate only slight QoS variations for all methods: the in-
stantaneous non-interruption ratio tini is above the target
value sini = 0.9 of the game providers’ service policy PP1

between the first and third quartiles, and the median value
is near 1 (optimal). The average number of non-serviced
clients is around 8 (from a maximum of 2000).

We conclude that for an optimal selection of MMOG op-
erational o↵ers: (1) it is necessary to employ a method that
accurately captures the characteristics of the o↵ered com-
pensations; (2) it is essential to account for the dynamic
behaviour of the O-SLA faults, and (3) that it is possible
to significantly increase the providers’ income (up to 16%)
through these o↵er selection methods without negative ef-
fects on the QoS o↵ered to the clients.
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Figure 5: Increase in the game provider’s income re-
sulting from better o↵er compensation clause rank-
ing, with increasing integration granularity(N).

5.3 Tuning the Compensation Ranking
As depicted in Figure 4, the characteristic compensation

granularity ranking cgain involving the integration granu-
larityN as a tuning parameter (see Equation 17), leads to an
increase of the game provider’s income from total compensa-
tion with increasing values ofN . The goal of this experiment
is to quantify the impact of this integration granularity N
on the e�ciency of the operational o↵er selection by evalu-
ating the game provider’s income from total compensations
for di↵erent values of N . The experimental setup is similar
to the one used in the previous experiment, except for the
game provider’s o↵er ranking configurations. From Table 3,
we use in this experiment the RK7 configuration (N = 1)
and ten other configurations (i.e., RK8 to RK17), whose in-
tegration granularities range from 3 to 30 with a step of 3.
We run a separate simulation for each ranking configura-
tion and compute the fraction of the game provider’s profit
representing compensations for O-SLA faults.

We observe in Figure 5 that the compensation increases
logarithmically with the integration granularity. The iden-
tified trend is not strictly monotonous because, as the inte-
gration granularity is increased, game providers select other
game operators which use di↵erent cloud resources, which,
in turn, influence the number and intensity of faults, leading
to variations in the total compensation. Over the six-month
period we simulated, the RK17 provider with the highest in-
tegration granularity (N = 30) registered an income of ap-
proximately $10 million from O-SLA fault compensations,
which is 12% higher than by employing RK7 (N = 1).

The findings of this experiment show that the best per-
forming O-SLA ranking method, the proposed characteristic
compensation gain, can further be tuned to obtain a loga-
rithmic increase in total compensation income through the
increase of the integration granularity parameter.

5.4 Weighting the Fitness Ranking
In this experiment we analyse techniques for maximising

the game providers’ profit by proper operational o↵er se-
lection based solely on the fitness ranking. Concretely, we
determine how the game operators can weight each of the
four negotiable O-SLA terms in the fitness ranking process
(�x weights in Equation 19). In our experimental setup,
the game operators o↵er di↵erent O-SLAs, generated start-
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Figure 6: Game provider expenses for di↵erent fit-
ness rankings.

ing from the OSLA-2 template (see Table 4) and varying

in turn the ranges of the four negotiable terms t
(O)

x , x 2
{cli , ini , tni , time}. We use five game providers and vary
over 20 simulations the ranking configuration for all involved
game providers from RK18 to RK37 (described in Table 3).
Each of the 20 configurations is designed to gradually in-
crease the weight �x of one of the four negotiable O-SLA
terms. In each simulation, the game providers employ di↵er-
ent service policies. For the cli-[10;90] and ini-[10;90]

ranking configurations, each game provider uses one of the
service policies PP2-PP6 defined in Table 2 (note that for

t
(O)

cli there is no corresponding service policy term). For
the tni-[10;90] ranking configurations, each game provider
uses one of the service policies PP7-PP11. Finally for the
time-[10;90] ranking configurations, each game provider
uses one of the service policies PP12-PP16. This experi-
mental setup e↵ectively explores the much larger space of
RK-PP policy pairs without exhaustively considering each
possible pair. The fitness ranking considers only those of-
fers which meet at least the minimum operational require-
ments. Thus, expenses are the key part to analyse in the
game providers’ budget. An improper o↵er selection leads
to over-provisioning and consequently, to higher expenses.

Figure 6 shows that the fitness ranking configuration has
a significant impact on the expenses of the game providers.
The maximum di↵erence we observed in this experiment is
a $14.5 million reduction of expenses for the case of the
ttime validity period (ranking configurations time-[10;30]),
or about 60% from the maximum expenses. In contrast, the
game providers’ income is approximately $37.8 million for all
simulations (not shown in the graph). We further observed

that an increase in the weight of the t(O)

ini and t
(O)

tni QoS terms
leads to a decrease in the game providers’ expenses. Con-
versely, increasing of the weight of the client number term
t
(O)

cli leads to an increase of the game providers’ expenses.
During all simulations, the QoS provided to the clients was
constantly high due to the wide range of O-SLA templates,
which e↵ectively accommodate most of the game providers’
needs. The increased client compensation expenses that ap-
pear exclusively for the tni-[10;90] ranking configurations
is also notable. Even though the O-SLA faults are not severe



(see Figure 6 (bottom)), they often account for over 0.4% of
the total O-SLA duration, which forces the game providers
with the PP10-PP11 service policies promising a high total
non-interruption (stni � 0.996) to compensate the clients.

We conclude that for maximising their profit, the game
providers should attempt to find the optimal balance be-
tween the client number t(O)

cli and the other three negotiable
terms. In our experiments, the optimal weights are �cli =
0.1, �ini = 0.3, �tni = 0.3 and �time = 0.3. However, the
actual weights depend on the available O-SLA templates.

6. RELATED WORK
We survey three large bodies of related work: SLA-based

operation of MMOGs, SLA stacks for large-scale systems,
and cloud operation of services with millions of customers.

6.1 SLA-based operation of MMOGs
Wong [18] proposed a resource provisioning algorithm fo-

cused on network QoS guarantees, whereas we considered
more resource types, including virtualised cloud-based [12].)
Briceno et al. [3] studied resource allocation for MMOGs
but, unlike our work, considered a simplified workload model
(not traces from a real MMOG). Complementary to our
study, Lee and Chen [9] investigate MMOG server consolida-
tion techniques focusing on the energy consumption. Mid-
dleton et al. [10] proposes a four-actor business model for
online games, but does not consider its mapping to QoS
models and cloud hosting. Complex business models are
also proposed by Alves et. al [1] with focus on higher-level
business interactions and goals for MMOG operation only.
In contrast, we study a novel operation model and its ef-
fects on the profits of both game and resource operators.
Complementing our work, Nojima [13] studies the relation-
ship between pricing models and MMOG player motivation,
while Oh and Ryu [14] analyse di↵erent pricing models for
gaming service.

6.2 SLA stacks for large-scale systems
There has been a lot of work researching SLA stacks since

at least the early 1980s [15], with recent focus on grids [17]
and clouds [19]. Despite the large amount of work, existing
SLA stacks cannot be directly employed for MMOG opera-
tion because the mapping of business SLA terms to resource-
centric real-time operational terms required by MMOGs was
missing. Unlike traditional SLAs considered in grids (e.g.
SNAP [5], NextGrid [6], SLA@SOI [4]) and other distributed
systems (e.g. Galaxy [16], Oceano [2]), our proposed SLAs
include a comprehensive specification of compensations for
temporary QoS violations introduced by the stringent QoS
requirements and the dynamic nature of MMOGs. Never-
theless, our negotiation protocol is inspired from previous
work on SLA-based scheduling [17] by considering a three-
stage negotiation mechanism: SLA generation, ranking op-
erational o↵ers (also considering penalties for SLA viola-
tion), and renegotiation. In addition, our work proposes
a new ranking mechanism adapted to MMOGs and non-
uniform SLA violations, and focuses on various compensa-
tion and other SLA policies.

6.3 Cloud operation of services with millions
of customers

The entertainment industry has already started to migrate
from the in-house to a cloud-based infrastructure. Zynga for

example uses Amazon EC2 resources for operating online
gaming services for over 250 million users in 2011. However,
the games supported by Zynga require much less compu-
tational and network resources than MMOGs. On-demand
gaming is provided by companies such as Geelix [7], On-
Live, Gaikai, and OTOY by o✏oading their computation to
the cloud and streaming back the video output to remote
clients. This model is not (yet) considered by MMOG op-
erators, in part because of the high network requirements
imposed on the players. Since late 2011, Amazon Web Ser-
vices has been used for video streaming by Netflix, and for
o✏oading web browsing on mobile devices with Android OS.
Our work adapts this model to the specifics of MMOGs and
proposes an in-depth study of a variety of scenarios with
application to other branches of the entertainment industry.

7. DISCUSSION
Although designed for MMOGs, the autonomic ecosystem

and underlying SLA mechanisms proposed in this paper can
generalised and applied to other scientific and industrial ap-
plication domains in response to their ever larger demand in
computing and storage resources. Similar to MMOG com-
panies, research institutes have to take a triple role to con-
duct scientific computing research: providers by developing
new domain-specific research applications (or purchasing re-
quired software licences), operators by running the appli-
cations on own resources so that user-centric QoS require-
ments are fulfilled, and data centres by purchasing expen-
sive high-performance hardware including its hosting, main-
tenance, and periodic renewal. The new autonomic SLA-
driven ecosystem proposed in this paper can represent useful
input for research institutes or industrial companies to focus
their activities based on their needs, interest, and size. Do-
main scientists as application providers can outsource their
codes to computer scientists specialised in middleware tools
capable of running them with guaranteed QoS. Similarly,
computer scientists can delegate the application hosting to
on-demand to specialised cloud providers owning modern
hardware infrastructure facilities. The interaction of the
three actors is regulated through SLA negotiation protocols
such as the one proposed in this paper that establish the
price, terms of operation, and compensation for service vio-
lations. The MMOG ecosystem proposed in this paper can
be adapted to new scenarios by specifying new provider-
specific service policies, operational terms, and compensa-
tion functions for O-SLA faults, and mapping them onto the
generic O-SLA negotiation protocol, including a mechanism
for building and ranking operational o↵ers.

Finally, although designed for MMOGs, our autonomic
ecosystem and its underlying SLA negotiation and compen-
sation mechanism is valid for game genres such as First Per-
son Shooter (FPS) action games. Due to their highly dy-
namic nature and more stringent QoS requirements, FPS
games scale to a small number of users and may have more
severe compensation consequences than MMOGs. We have
studied in [11] the QoS-based resource and scalability re-
quirements of a real-world FPS game, and plan to study its
impact on the operational and compensation terms in future
work. Moreover, we believe that our proposed ecosystem
presents great potential of being employed by the next gen-
eration massively multiplayer online FPS games (MMOFPS)
that are being released right now, for example Planteside 2
with more titles being currently in development.



8. CONCLUSION
The current MMOG ecosystem with tens of millions of

players across hundreds of games forces game providers to
also become game and infrastructure operators, leading to
ine�cient resource utilisation, high service prices, and lim-
its market participation to only the largest companies. We
proposed a new ecosystem based on cloud computing princi-
ples for hosting and operating MMOGs, and focused on the
formulation and negotiation of SLAs encompassing price,
operational terms, and compensation policies. For ranking
MMOG operational o↵ers, our model considers and balances
among three criteria: pricing, fitness for operation, and com-
pensation. For each criterion, we provided comprehensive
ranking mechanisms. We evaluated the operation of the pro-
posed MMOG ecosystem in a variety of scenarios using op-
erational traces collected from a real MMOG and SLAs from
over ten commercial cloud providers. We demonstrated that
a ranking method which considers the yield from compensa-
tions in the given environment is necessary. We approached
this through a new metric called characteristic compensa-
tion gain that leads to 11� 16% higher financial gain with-
out QoS deterioration, and is logarithmic improved by its
approximation precision. Furthermore, tuning the O-SLA
terms in the fitness rank to reflect the MMOG load can lead
to a 20� 60% reduction in the operational expenses.

In the future we intend to generalise this work and apply it
to other domains such as FPS games or other computationally-
intensive scientific and industrial applications.

9. ACKNOWLEDGMENTS
Austrian Science Fund project TRP 72-N23 funded this

research.

10. REFERENCES
[1] T. Alves and L. Roque. Using value nets to map

emerging business models in massively multiplayer
online games. In 9th Pacific Asia Conference on
Information Systems. AIS Electronic Library, 2005.

[2] K. Appleby, S. A. Fakhouri, L. Fong, G. S.
Goldszmidt, M. H. Kalantar, S. M. Krishnakumar,
D. P. Pazel, J. A. Pershing, and B. Rochwerger.
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