MicroValid: A Validation Framework for
Automatically Decomposed Microservices

Michel Cojocaru
Universiteit van Amsterdam
michel.cojocaru @student.uva.nl

Abstract—In a dynamic world of software development, the
architectural styles are continuously evolving, adapting to new
technologies and trends. Microservice architecture (MSA) is gain-
ing adoption among industry practitioners due to its advantages
compared to the monolithic architecture. Although MSA builds
on the core concepts of Service Oriented Architecture (SOA),
it pushes for a finer granularity, with stricter boundaries. Due
to cost rationale, numerous companies choose to migrate from
the monolithic style instead of developing from scratch. Recently,
semi-automatic decomposition tools assist the migration process,
yet a crucial part is still missing: validation. The current study
focuses on providing a validation framework for microservices
decomposed from monolithic applications and complete the
puzzle of architectural migrations. From previous work we select
quality attributes of microservices that may be assessed using
static analysis. We then provide an implementation specification
of the validation framework. We use five applications to evaluate
our approach, and the results show that our solution is scalable
while providing insightful measurements of the assessed quality
attributes of microservices.

Index Terms—microservices, decomposition, validation, coeffi-
cient of variation, granularity, coupling, cohesion

I. INTRODUCTION

The current pull in cloud computing is toward the newer
paradigms of serverless or function-as-a-service (FaaS) com-
puting [1]. These paradigms are gaining rapid traction in the
industry, with the FaaS market value estimated at $7 billion by
2021', and the serverless architecture market at $20 billion by
20252. Such cloud computing paradigms rely heavily on large-
scale applications being expressed as microservices instead of
traditional monoliths. As a consequence, both industry and
academia are working toward designing tools that automat-
ically decompose large code monoliths into microservices.
Although several such tools already exist, the community is
still investigating what are the desired properties [2] of the
decomposition tools, and also how to automatically validate
their achieved results. Bridging this gap, in this article we
propose a framework for automatically validating both quali-
tatively and quantitatively the microservices resulted through
automatic decomposition of large-scale code monoliths.

Microservice Architectures (MSA) are constantly increasing
in adoption, and are the most chosen architecture by industry

Thttps://www.marketsandmarkets.com/Market-Reports/
function- as-a-service-market- 127202409.html

Zhttps://www.grandviewresearch.com/press-release/
global-serverless-architecture- market

Alexandru Uta
Vrije Universiteit Amsterdam
a.uta@vu.nl

Ana Oprescu
Universiteit van Amsterdam
a.m.oprescu@uva.nl

practitioners who develop enterprise applications providing
advantages such as agility and maintainability [3]. While new
large scale enterprise applications are increasingly relying on
MSA, there still exist legacy applications. The companies em-
bracing the architectural advantages of MSA are considering
migrating their legacy code. Often the migration process starts
with adding microservices to the monolithic application and
gradually moving functionality to the microservices.

The legacy application is kept in production for the entire
time span of the migration, in parallel with the modules in
development. Along with this architectural shift, the compa-
nies can benefit from code refactorization and new features
without incurring extra costs [3]. Companies are more prone
to choose migration towards MSA rather than rebuilding the
application from scratch mainly due to cost rationale. To aid
this migration process from monoliths to microservices, semi-
automatic decomposition tools have emerged, an example
being the Service Cutter [4]. Using clusterization algorithms,
this tool “cuts” a monolith in microservices suggested to the
architect conducting the migration.

Although recent work attempts automation of the decom-
position processes [5], the lack of unanimously accepted
guidelines for defining a good microservice means there is
a crucial need for the validation of such tools. Therefore,
this study focuses on providing a validation framework for
microservices resulted from migrations from monoliths. Our
solution addressed the need for unbiased validation of the
results of (semi-)automatic decomposition tools. Our contri-
butions are the following:

« We provide an open-source framework® for validating
suggested “cuts” of monoliths obtained via decomposi-
tion with a primary focus on static analysis attributes.

o We consider in our implementation the prospect of future
decomposition tools, therefore striving to provide a uni-
fied format for which the subsequent tools should only
write an integration plugin to extend our framework.

Outline. Section II presents the architecture of MicroValid;
we describe and discuss in detail the results of our extensive
evaluation in Section III, discuss related work in Section IV,
and conclude in Section V.

3https://micro-valid.herokuapp.com/,https://github.com/michelcojocaru/

II. THE MICROVALID ARCHITECTURE

We describe the MicroValid architecture from two perspec-
tives: design choices and assessment algorithms. We discuss
several design choices typical for frameworks in Section II-A.
An important design choice is addressing the need of relative
assessments in contrast to absolute values [2]. Our assessment
algorithms (Section II-B) focus on calculating the coefficient
of variation which identifies outliers in the scores our frame-
work produces, thus revealing possible issues of a component
relative to its peers inside the same system.

A. Design Choices

Our framework allows any user to assess various quality
attributes using various assessment tests for any given OOP
project. The input is a system model specification file. The
output is a mapping of quality attributes and assessments.

Based on previous work [2], we choose the Service Cutter’s
JSON format as input. Their “entities” depict classes, while
the “nanoentities” depict their respective fields/attributes. Rela-
tions depicting the communication paths inside the system are
simple to comprehend, yet descriptive enough to completely
specify the data exchange flows of the system. It provides an
unified format, easily comprehensible by any developer [4].

1) Modularity: The modularity of a software system is
a characteristic describing the separation of functionality in
independent and interchangeable modules, each containing all
the requirements for delivering one aspect of the functionality.
We choose to develop our validation framework by decoupling
the back-end (microservices assessment logic) from the front-
end (user interaction capabilities) and introducing an API via
which the two interchange data through HTTP calls.

2) Extensibility: Software extensibility is the design prin-
ciple which takes into consideration the future growth of the
system. There are two types of extensibility: the extension of
the system via reutilizing modules to build new functionality,
or thorough changes of the codebase that do not alter the exis-
tent functionality but enrich it. Both types focus on minimizing
the impact of changes to existing functionality.

We provide extensibility at several levels. The input and
output formats we choose provide extensibility via JSON’s
intrinsic extensibility. This design choice allowed incremental
development of the assessment strategy by using TAR [6].

Our framework can be extended with other quality attributes
assessments. We employed the design pattern ”Chain of re-
sponsibility” [7] to chain the attribute assessment tests and
provide clear guidelines for users who want to extend our
work. The framework uses independent checkers that can be
regarded as links in a chain. Anyone who wants to extend our
validation framework would only need to implement their own
checker (which may assess a new quality attribute or assess
differently an existing quality attribute) and simply register the
checker in the checker chain with one line of code.

Our framework provides a module allowing users to call
external programs or routines irrespective of the programming
language. Our framework also provides a module for remote
installation of external programs for the cases where the

deployment is done on Virtual Machines which allow local
installation of external dependencies.

3) Usability: Usability is the ease of use and comprehen-
sion by its users. By decoupling the front-end from the back-
end we avoid a possible technology lock-in”.

4) Testability: We define testability as the ease of assessing
the correct behaviour and functioning of our framework. By
providing a loosely coupled architecture where the assessment
logic is decoupled from the user interaction (configuration)
with the analyzer, our framework uses an API to communicate
between the front-end and the back-end. The API was aug-
mented with Swagger Editor [8] for easy design and testing.
Our framework is compliant with the OpenApi Specification
standard for APIs.

B. Assessment Algorithms

Our validation approach focuses on three quality attributes
of microservices: granularity, coupling, cohesion. Each quality
attribute is assessed by one checker using at least two metrics.
We avoid setting absolute thresholds for the assessments [2].
We rely on the coefficient of variation to identify outliers
in the results produced by our framework. The coefficient of
variation (C,) is defined as the ratio between the standard
deviation (o) and the average (u).

1) Granularity: The assessment is composed of two tests,
both describing the concept of size: the nanoentities compo-
sition test, which uses as input the system model specification
files, and the Lines of Code (LoC) test, which uses the code
base (possibly in a repository stored on versioning systems
such as GitHub) to count the lines of code.

The nanoentities composition test calculates the number
of nanoentities assigned to each proposed service and stores
the result in the form of a floating point parameterized list.
The length of the list is equal to the number of services
found in the system model specification file. The algorithmic
steps for assessing the size of microservices using the system
specifications file are:

o Calculate the lengths of the nanoentity lists belonging to

each proposed microservice

o Calculate the coefficient of variation for these lengths

e Map result from the [0,1] range to a [0,10] range

The algorithmic steps for assessing the size of microservices
using the code base are:

o Download code base repository

o Match the entities of each microservice to classes from

repository

o Calculate the LoC (of all classes belonging to a microser-

vice) per microservice

o Calculate the coefficient of variation for the LoC list

e Map result from the [0,1] range to a [0,10] range

The flow of using this test requires the initial validation of a
decomposed system, followed by a re-implementation or au-
tomated decomposition of application’s code base. Hence this
test only serves as a final validation for the implementation
decomposition with respect to granularity.

2) Coupling: Low coupling is highly desirable in Microser-
vice Architecture [9]. Similarly to the granularity checker, the
coupling checker contains two tests: dependencies composi-
tion and strongly connected components (SCC).

The dependencies composition test assesses how balanced
outward dependencies are across the microservices, by count-
ing the outward dependencies each microservice has toward its
peers. The algorithm constructs a “dependency graph” of the
system where each dependency represents a communication
path utilised for exchanging data between two components of
the system. The algorithmic steps for assessing the dependen-
cies composition of microservices are:

o Calculate the number of outward dependencies for each
microservice

o Calculate the coefficient of variation for the outward
dependencies

e Map result from the [0,1] range to a [0,10] range

The rationale behind counting only outward dependencies
(ignoring the inward dependencies) is avoiding cycles con-
taining only two components which might incorrectly flag
inconsistencies in the system.

The SCC test uses Tarjan’s algorithm [10] to identify
strongly connected components on the previously mentioned
“dependency graph”. If cycles are detected in the communi-
cation paths, the services in question should be aggregated
together into one microservice. The score is calculated as
the ratio between the number of identified strongly connected
components divided by the total number of microservices in-
side the system. The algorithmic steps for identifying strongly
connected components are:

o Construct “dependency graph” based on services and
relations descriptions

o Run Tarjan’s algorithm on the graph to obtain the con-
nected components (and their sub-components)

o Calculate score € [0,1] by dividing the number of com-
ponents to the number of microservices

e Map result from the [0,1] range to a [0,10] range

Ideally, each microservice would constitute its own strongly
connected component, thus obtaining a maximum score.

3) Cohesion: A high cohesion score is desirable in a
microservices architecture [9]. The cohesion checker contains
tests reflecting four metrics, aggregated to assess this quality
attribute of microservices: nanoentities composition, relation
composition, responsabilities composition, semantic similarity.

The entities composition test assesses whether the
entities are equally distributed among the proposed
microservices and no duplicates, which might break the
cohesion, exist. It uses a strategy similar to the one
employed in the assessment of granularity in nanoentities
composition test, the difference consisting of the data
it is applied on, namely entities instead of nanoentities.
We define an entity as the class, or action of the service.

We may regard the entity as the class of a Java program and
the nanoentities as the attributes (or fields) of that class.

A set of entities is created in form of a floating point
value list for which the coefficient of variation is calculated.
If an entity is detected as belonging to several different
microservices, the test fails, implying a break of cohesion at
component level.

The relation composition test assesses the quantitative
variation in published language per relation. It applies
the concept of relative assessment to entities shared
between the services via their communication paths. The
shared entities, named “published language” by Service
Cutter [4], are extracted from relations which describe the
communication paths in the system model specifications file.

This test is particularly useful for identifying the services
which communicate much more data than their peers, sig-
nalling a possible communication bottleneck.

The responsibilities composition test assesses to which
extent the use case responsibilities are equally distributed
among the proposed microservices. For scoring, it uses the
coefficient of variation between the number of use case
responsibilities of each microservice.

It is useful to identify the services that have more responsi-
bility compared to others, which might imply low cohesion:
a service providing multiple actions contradicts the single
responsibility principle [11].

The semantic similarity test uses lexical distance
assessment algorithms to flag the services that contain
unrelated components or unrelated actions hindering
cohesion. The test is composed of up to eight different
assessment algorithms that can be chosen by the user in any
desired combination. The similarity algorithms available are:
Hirst & St’Onge, Leacock & Chodorow, Resnik, Jiang &
Conrath, Lin, Path, Lesk, and Wu Palmer provided in WS4J
package [12] and Jaw-Jaw [13]. If multiple algorithms are
selected simultaneously, the overall test score is the average
of the selected similarity algorithms scores. The knowledge
base used is an English and Japanese WordNet database [14].

We use a Java wrapper for Japanese WordNet instead of
using a simple English knowledge base to provide a flexible
framework that can be easily adapted to work with languages
that use different text encodings.

III. EXPERIMENTAL EVALUATION
A. Experimental Workload

We evaluate our validation framework using five appli-
cations inspired from real-world systems: three application
models from Service Cutter [4], and two from the Data-
flow Diagram decomposition research [15]. We focus on data
depicting the services and their respective entities and nanoen-
tities, relations with their direction and published language”,
and respective use case responsibilities per microservice.

Each of the five input applications has at least two de-
composition approaches: deterministic and non-deterministic.
Additionally, two applications were also manually decom-
posed by us according to our best understanding of the
Data-flow Diagram decomposition technique, for comparison

purposes. For the industrial scale application, an ideal manual
decomposition was constructed based on its GitHub repository.
All system specifications files depicting the input applications
and their respective versions are available online *.

1) Cargo Tracker - An Industrial Scale Application:
a well-known example of applied Domain Driven Design
(DDD) [16]. The application consists of an industrial scale
system which manages cargo shipments. Besides the non-
deterministic and deterministic versions of the system model
specifications files, we also created an “ideal” decomposition
of the system. This was done in order to showcase how our
framework would obtain maximum scores for all the tests,
yielding a total of three versions for this input application.

2) Booking System: a synthetic generic example with a
variety of applications in industry ranging from public admin-
istration tasks to commercial movie/theatre ticket reservations.
The system model specifications come from the sample appli-
cations proposed by Service Cutter [4] as non-deterministic
and deterministic decompositions, yielding two versions.

3) Trading System: a financial application synthesised by
the Service Cutter [4] authors both as non-deterministic and
deterministic decompositions, yielding two versions.

4) Movie Crawler System: a business logic module, part
of a movie information crawling project. The system model
comes from a data-flow based decomposition approach [15].
For comparison purposes, we also fed the system model
specifications file to Service Cutter, yielding three versions.

5) Ticket Price Comparator: is a business logic module,
part of the same movie information crawling project as the
Movie Crawler System. The system model come from the
data-flow based decomposition approach [15]. For comparison
purposes, we also fed the system model specifications file to
Service Cutter, yielding three versions of the system.

B. Experimental Results for Static Analysis

We present and discuss the results obtained by employing
static analysis on the workload applications. For each applica-
tion decomposition we assessed three quality attributes using
checkers: granularity, coupling, cohesion. Each checker con-
tains at least two tests, as described in Section II-B. We group
the results by the decomposition type: deterministic, non-
deterministic, manual (according to DFD [15]) and a manually
idealised decomposition. We define three intervals which clas-
sify the score as follows: score € [0.0,5.0] — failed, score €
(5.0, 7.5] — acceptable, score € (7.5,10.0] — good.

1) Non-deterministic decompositions: User cannot control
the number of microservices yielded by Service Cutter [17].

The Cargo Tracker System scores for all attributes are
collected in Table I. Granularity scores 5.4. It contains only
the nanoentities composition test, as no code base is available
and thus no LoC test can be performed. The framework reveals
a high variation in microservices’ sizes as the cause of the
low score. The disproportionate spread of nanoentities across

“https://github.com/michelcojocaru/MasterProject/tree/master/test-
files/service-cuts

the microservices is confirmed by the detailed results: 16
nanoentities in one service, and 9 in another service.

Coupling scores 10.0. The dependencies composition test
scored 10.0 due to a perfect distribution of communication
paths, each microservice having one outward dependency. The
SCC test flagged no strongly connected component maintain-
ing the average for the coupling assessment at 10.

Cohesion scores 6.3. The entities composition scores 4.7
due to an imbalanced entities distribution: 8 entities in one
service and 3 in another service. The responsibilities compo-
sition test scores 4.4 due to a similarly imbalanced use-case
responsibility distribution among the microservices: 2 and 7,
respectively. The relations composition test scores 10.0 due to
only one relation facilitating communication between the only
two microservices of the system. The semantic similarity test
scores 6.2 as the average of all available algorithms enabled.

Checker Checker Score Test Name Test Score
Granularity 54 Nanoentities 54
. Dependencies 10.0
Coupling 10.0 Sce 10.0
Entities 4.7
. Responsibilities 4.4
Cohesion 6.3 Relations 10.0
Semantic 6.2

TABLE I

CARGO TRACKER: NON-DETERMINISTIC DECOMPOSITION SCORES.

Table II shows the Booking System scores. Granularity
scores 5.4. Its only component, the nanoentities composition
test, scores just below the threshold (5.5) due to an imbalance
in nanoentities distribution across services (7 and 9, respec-
tively). With no source code available, the LoC test is absent.

The coupling scored 10.0. The dependencies composition
scored 10 due to the presence of a single relation between
the two microservices of the system. Furthermore, the single
relation also justifies the perfect score of the SCC test due to
the mathematical impossibility of having a cycle in graph with
two nodes and a single, unidirectional communication path.

Cohesion scores 7.0. The entities composition test scores
5.3 due to a slight imbalance in entities distribution across
services (1 and 2, respectively). The relations composition
test scores 10.0 due to the concise “published language”, the
only relation of the system containing one shared entity. The
responsibilities composition test scores 4.0 due to its uneven
use cases distribution across services: 1 use case for one
service and 4 for another service. The semantic similarity
test score 8.5 due to high entities semantic relatedness, with
examples such as “Article” and “Booking” being part of the
same service, while ”"Customer” is part of the other service,
thus revealing high cohesion inside the microservices.

The Trading System scores are collected in Table III.
The granularity received the overall score of only 1.1 as its
only component, the nanoentities composition test, revealed
a severe imbalance in nanoentities distribution across mi-
croservices: one has 13 nanoentities, while the rest only 3
nanoentities respectively.

The coupling scored the average of 7.1 with dependencies
composition test scoring 4.2, due to one service having no

Checker Checker Score Test Name Test Score Checker Checker Score Test Name Test Score
Granularity 5.4 Nanoentities 54 Granularity 2.9 Nanoentities 2.9
. Dependencies 10.0 . Dependencies 10.0
Coupling 10 Sce 10.0 Coupling 10.0 Sce 10.0
Entities 5.3 Entities 3.7
. Responsibilities 4.0 . Responsibilities 0.0
Cohesion 7.0 Relations 10.0 Cohesion 33 Relations 10.0
Semantic 8.5 Semantic 7.3

TABLE II TABLE IV

BOOKING SYSTEM: NON-DETERMINISTIC DECOMPOSITION SCORES.

outward dependencies while its peers have one respectively.
The SCC test identified no strongly connected components in
the system, thus scoring 10.

The cohesion scored only 2.4. The entities composition test
scored 0.8 as a severe imbalance in entities distribution was
identified with 1,7,3 and 1 respectively. The responsibilities
composition test scored 1.8 due to uneven distribution of use
case responsibilities across the microservice with 1,6,1, and 2
respectively. The relations composition test failed with 0.0 due
to “published language” containing duplicates of the ”Stock™
shared entity. The only good score (7.1) related to cohesion
was obtained by the semantic similarity test due to related
entity names implying acceptable cohesion.

MOVIE CRAWLER: NON-DETERMINISTIC DECOMPOSITION SCORES.

Coupling scored 10.0, as the dependencies composition test
shows each non-terminal node having one outward depen-
dency. The SCC test also scored 10.0, as no strongly connected
components were found in the system.

The cohesion scored the average of 5.1. The entities com-
position test scored 3.0 as an imbalance in entities distribution
was identified with 1,3 and 5 respectively. The responsibilities
composition test scored only 2.9 due to imbalanced distribution
of use case responsibilities: one service has none, while the
rest 2 respectively. The relations composition test passed with
a 6.67 as one relation has one shared entity while the other has
2. The semantic similarity test scored 7.6 as the average of all
similarity algorithms, the results implying cohesion between
the names of the entities belonging to the same microservice.

Checker Checker Score Test Name Test Score
Granularity 1.1 Nanoentities 1.1
. Dependencies 4.2
Coupling 7.1 Sce 10.0
Entities 0.8
. Responsibilities 1.8
Cohesion 2.4 Relations 0.0
Semantic 7.1

TABLE III

TRADING SYSTEM: NON-DETERMINISTIC DECOMPOSITION SCORES.

Table IV collects all the scores for the Movie Crawler
System. Granularity received an overall score of 2.9 as its
only component, the nanoentities composition test, revealed a
severe imbalance in nanoentities distribution across microser-
vices: one has 2 nanoentities, while another has 11.

Coupling scored perfectly as the dependencies composition
test indicated that each non-terminal node has one outward
dependency. The SCC test scored 10 as no strongly connected
components were found inside the system.

Cohesion scored 5.3 with entities composition test scoring
3.7 due to an imbalanced distribution of entities across the
services, with 1 and 4 respectively. The responsibilities compo-
sition test scored 0.0 due to the first service having no use case
responsibilities while the latter has 3. However, the relations
composition test scored perfectly as the only relation between
the two components of the system is publishing only 1 shared
entity. The semantic similarity test increases the average of this
attribute assessment by scoring 7.3, which implies cohesion
between the terms used to represent the entities.

Table V collects the scores for the Ticket Price Compara-
tor. The granularity has an overall score of only 2.9 as its
only component, the nanoentities composition test, reveals an
imbalanced nanoentity distribution among microservices, with
2,7 and 11 respectively.

Checker Checker Score Test Name Test Score
Granularity 2.9 Nanoentities 2.9
. Dependencies 10.0
Coupling 10.0 Sce 10.0
Entities 3.0
. Responsibilities 2.9
Cohesion > Relations 6.7
Semantic 7.6

TABLE V

TICKET PRICE COMPARATOR: NON-DETERMINISTIC DECOMP. SCORES.

2) Deterministic decompositions: User in theory controls
the number of microservices yielded by Service Cutter [18].

All Cargo Tracker scores are collected in Table VI. Gran-
ularity received the overall score of 1.2 from the nanoentities
composition test. The framework identified a high variation
between microservices sizes as the cause for the low score.
This is further backed by the detailed results, showing: 3
nanoentities in services ”’Service A”, ”Service B” and ”Service
C”; 2 nanoentities in “Service D”; and 4 nanoentities in
”Service E” and “Service F’; 5 nanoentities in “Service G”;
1 nanoentity in ’Service H”, thus proving a disproportionate
placement of nanoentities across the microservices.

Coupling scored overall 5.5. The dependencies composition
test scored only 1.1 due to a high variation in outward de-
pendencies with: 5,0,0,0,3,3,2,0 outward communication paths
corresponding respectively to each of the 8 proposed microser-
vices. Similarly to the non-deterministic decomposition of this
workload instance, the SCC test flagged no strongly connected
component increasing the average for the coupling assessment.

Cohesion scored overall 3.1. The entities composition test
has a score of 1.1 due to an imbalance in entities distribution:
3,2,1,1,1,1,2,1. The responsibilities composition test scored
4.4 due to a similarly imbalanced use case responsibility
distribution among the microservices: 5,0,0,0,1,1,2,0 use cases

corresponding respectively to each of the 8 proposed mi-
croservices. The relations composition test failed completely
(score 0.0) due to the abundance of duplicates in the published
language with ”Cargo” and Itinerary” appearing in two re-
lations, “RouteSpecification”, ”Voyage”, “Location” having 3
duplicates respectively and lastly the “Delivery” shared entity
having 4 duplicates. The semantic similarity test scored 6.8 as

The SCC test scored 10 maintaining the perfect average as no
strongly connected components were found inside the system.
Cohesion scored 2.4, similarly to the non-deterministic
version. For the Trading application, we observe that the
deterministic and non-deterministic decompositions yielded
similar results (Tables III and VIII), for similar reasons.

the average of all available algorithms. Checker Checker Score Test Name Test Score
Granularity 1.1 Nanoentities 1.1
Checker Checker Score Test Name Test Score . Dependencies 10.0
Coupl 10.0
Granularity 1.2 Nanoentities 1.2 oupng Scc 10.0
Coupli 56 Dependencies 1.1 Entities 0.8
oupiing) Scc 10 . Responsibilities 1.8
e Cohesion 2.4 .
Entities 1.1 Relations 0.0
Cohesion 3] Responsibilities 44 Semantic 7.1
' Relations 0 TABLE VIII
Semantic 6.8 TRADING SYSTEM: DETERMINISTIC DECOMPOSITION SCORES.
TABLE VI

CARGO TRACKER: DETERMINISTIC DECOMPOSITION SCORES.

The Booking System scores are shown in Table VII. Gran-
ularity scored overall 2.3 as its only component, nanoentities
composition test, revealed a severe imbalance in nanoentities
distribution across the proposed microservices with 2 entities
belonging to the first and last service, 5 nanoentities to the
second service and 7 to the third service.

Coupling scored only 6.5 as one of its components, depen-
dencies composition test, scored 2.9 due to each microservice
having 0,1,1 and 2 outward dependencies respectively. Sim-
ilarly to the non-deterministic decomposition, the SCC test
flagged no strongly connected component.

Cohesion has an overall score of 3.4, as three out of four
component tests did not scored a passing mark (5.5). The
semantic similarity test is the only one to pass with a score
of 9.3 due semantically related entities belonging to the same
service. The entities composition test scored only 3.1 due to
an imbalance in entities distribution across microservices with
1,1,2 and 1 respectively. A similar situation is recorded for
the responsibilities composition test in which the third service
has two more use case responsibilities than its peers leading
to a score of 1.3. Moreover, the relations composition test
failed completely due to the ”Customer” shared entity being

The scores for the Movie Crawler System are shown in
Table IX Granularity has an overall score of only 3.4 as its only
component, nanoentities composition test, revealed a severe
imbalance in nanoentities distribution across microservices,
with 4,7, and 2 nanoentities per microservice.

Coupling scored 7.1 as the dependencies composition test
scored 4.1 due to the fact that only one service has 2 outward
dependencies while its peers have none. The SCC test scored
10 as no strongly connected components were found.

Cohesion scored the average of 6.2 with entities composition
test scoring 6.5 due to a slight imbalance in entities distribution
with 2, 2 and 1 respectively. The responsibilities composition
test scored only 1.8 as one service has 1 use case responsibility
while another 2 use cases and the last one, none. However, the
relations composition test scored perfectly due to each of the
two relations publishing 1 shared entity, thus ensuring equal
distribution of published language. The semantic similarity test
scores 6.5 as the terms used for entities are deemed cohesive
by the underlying similarity algorithms.

published by several microservices.

Checker Checker Score Test Name Test Score
Granularity 2.3 Nanoentities 2.3
. Dependencies 2.9
Coupling 6.5 Sce 10.0
Entities 3.1
. Responsibilities 1.3
Cohesion 3.4 Relations 0.0
Semantic 9.3

TABLE VII

BOOKING SYSTEM: DETERMINISTIC DECOMPOSITION SCORES.

The scores for the Trading System are shown in Table VIII.
Similarly to the non-deterministic version of this workload
instance, the granularity checker retrieved an overall score of
1.1 due to one service having 13 nanoentities, while the rest
have 3 nanoentities respectively.

Coupling scored perfectly as the dependencies composition
test as each non-terminal node has one outward dependency.

Checker Checker Score Test Name Test Score
Granularity 34 Nanoentities 34
. Dependencies 4.1
Coupling 7.1 Sce 10.0
Entities 6.5
. Responsibilities 1.8
Cohesion 62 Relations 10.0
Semantic 6.5

TABLE IX

MOVIE CRAWLER: DETERMINISTIC DECOMPOSITION SCORES.

The scores for the Ticket Price Comparator are shown
in Table X. Granularity has the overall score of only 1.0 as
its only component, nanoentities composition test, revealed
an imbalanced nanoentity distribution among microservices,
one having 5 nanoentities, two having a single nanoentity, 2
nanoentities for each of the two and 3 nanoentities for the rest.

Coupling scored 7.1. The dependencies composition test
scored 4.1 due to only three out of eight services having
outward dependencies. The first and last services have 1 out-
ward dependency respectively, another service has 2 outward
dependencies, while the rest have none. The SCC test scored
10 as no strongly connected components were found.

The cohesion scores 2.9. The entities composition test
scores 1.7 as a slight imbalance in entities distribution was
identified: one service has 2 entities, while the rest have
only one respectively. The responsibilities composition test
failed completely due to imbalanced distribution of use case
responsibilities: only four services out of eight have one use
case responsibility respectively. The relations composition test
failed completely (with 0.0) due to the "Movie” entity being
identified as having duplicates. The semantic similarity test
scored 9.8 as the average of all similarity algorithms toggled
on, the results implying high cohesion between the names of
the entities belonging to the same microservice.

Checker Checker Score Test Name Test Score
Granularity 1.0 Nanoentities 1.0
. Dependencies 4.1
Coupling 7.1 Sce 10.0
Entities 1.7
. Responsibilities 0.0
S 29 Relations 0.0
Semantic 9.8

TABLE X

TICKET PRICE COMPARATOR: DETERMINISTIC DECOMPOSITION SCORES.

3) Data-flow Diagram decompositions (DFD): Table XI
shows the scores for the Movie Crawler System. Granularity
and coupling score 3.4 and 7.1 respectively, similarly to the
deterministic version (Table IX), and the same discussion
applies here. In contrast, cohesion scores 8.3 due to the
responsibilities composition test scoring 10.0 as each service
has exactly one use case responsibility.

Checker Checker Score Test Name Test Score
Granularity 34 Nanoentities 3.4
Counlin 71 Dependencies 4.1
pung : Scc 10.0
Entities 6.5
. Responsibilities 10.0
Cohesion 8.3 Relations 10.0
Semantic 6.5

TABLE XI

MOVIE CRAWLER: DFD DECOMPOSITION SCORES.

Table XII shows the scores for the Ticket Price Com-
parator. Granularity scores 3.1, as its only component, the
nanoentities composition test reveals an imbalanced nanoentity
distribution across microservices: 4,4,5 and 7 nanoentities,
respectively. Coupling scores 10.0. The dependencies composi-
tion test scores 10 as each non-terminal node has one outward
dependency, thus being evenly distributed. The SCC test scores
10 as no strongly connected components were found.

Cohesion scores 7. The entities composition test scores 5.5
as a slight imbalance in entities distribution was identified: 2
services contain 2 entities each, while the other two services
have 3 entities each. The responsibilities composition test
scores 10.0 due to each service having one use case respon-
sibility. The relations composition test scores 6.5 due to un-
equally distributed “published language” among the relations:
one has 2 shared entities, the rest have only one respectively.
The semantic similarity scores 6.1 as the average of all
similarity algorithms results, implying an acceptable level of
cohesion across the entities names of the same microservice.

Checker Checker Score Test Name Test Score
Granularity 3.1 Nanoentities 3.1
. Dependencies 10.0
Coupling 10.0 Sce 10.0
Entities 5.5
. Responsibilities 10.0
Cohesion 7.0 Relations 6.5
Semantic 6.1

TABLE XII

TICKET PRICE COMPARATOR: DFD DECOMPOSITION SCORES

4) Manual decomposition (Ideal): The scores are shown in
Table XIII. For the Custom Cargo Tracker Adaptation, since
the input file containing the system model specifications for
this validation experiment was manually idealised, we expect
perfect scores (10.0) for all the tests contained in granularity
checker, except the LoC test. This test was applied on a
Cargo Tracker DDD example repository [19] and resulted in
a low score due to its high variation in microservices’ sizes:
314, 1020, and 97 lines of code, respectively. By following
the cargo-ideal® system model we observe that the equal
distribution of nanoentities (4) per microservice leads to a
score of 10.0 for the nanoentities composition.

Coupling scores 10.0. The dependencies composition test
scored 10.0 due to each non-terminal microservice having only
one outward dependency. The SCC test flagged no strongly
connected components in the system’s dependency graph.

Cohesion scores 10.0, the entities composition test reporting
equal distribution of entities with one per microservice. The
responsibilities composition test scores 10.0 due to a balanced
use case responsibilities distribution with 3 for each mi-
croservice respectively. The relations composition test scored
perfectly with 2 relations distributed among 3 microservices
which share only one entity as “published language” for each
relation. The semantic similarity test scores 10.0, the average
of all available algorithms, due to strong semantic closeness
in the names the entities and nanoentities.

Checker Checker Score Test Name Test Score

. Nanoentities 10.0
Granularity 6.7 Loc 33
. Dependencies 10.0
Coupling 10.0 Sce 10.0
Entities 10.0
. Responsibilities 10.0
Cohesion 10.0 Relations 10.0
Semantic 10.0
TABLE XIII

CARGO TRACKER: IDEAL DECOMPOSITION SCORES.

C. MicroValid Performance Analysis Results

For each test currently implemented in MicroValid: na-
noentities, dependencies, entities, relations, responsibilities,
and semantic, we conduct performance analysis experiments.
We report the time complexity of the algorithm, possible
correlations between the input file sizes (ordered ascending)
and runtimes, together with their explanation.

Shttps://github.com/michelcojocaru/MasterProject/blob/master/test-
files/service-cuts/cargo-tracker/cargo-tracker_ideal.json

1) Nanoentities composition test: has a low variation in
runtimes per input file. The mean runtimes do not exceed
0.05 (ms), except the deterministic decomposition of Cargo
Tracker. This workload instance runs up to 0.15 (ms) with the
mean approximately 0.1 (ms).

0.20 5
n i
gos
e :
8
e o o o
g o o o
@ 0.10 — [
8 o
£ o - - -
o T o
- - - -
s | (3 Do —
= = ‘
/= — — — i
T T T T T T T T T T T T T
°F 27 55 25 25 25 55 9?5 95 §5 55 T35 53
€8 S8 §g %2 5% %§{ §§ 58 S8 ¥ I8 38 %3
2O @ L®m JLw v & z v p© £© £O TN L£®©
SR 8% §8 58 2t $8 £3 £8 8¢ §% &R TE 58
5~ &- T % 3¢ €2 FZ dr s T T ST T8
£ £ § §F LT AT 2T BT ET 2T 87 ET 5
£ . £ £ 27 8 g
£ 7
g 8§ § ©° =& € 8 g § &8 °©° g
s 2 5 2 = £

Fig. 1. Nanoentities test runtimes statistics.

The correlation coefficient R = 0.81 with p — values <
0.05 indicates a slight dependency between the runtimes and
the file sizes, which can be explained by the algorithm com-
plexity of O(N), where N = number of microservices. The
file size grows with the number of microservices contained
in the system specifications model. These two observations
indicate that the runtimes are more correlated to the number
of microservices in the system, rather than the input file size.

0.11 .
»
R=0.81, p=0.00074
= 0.100 =
2 2 0.09
<] 5]
@ @
E E
E 0.075 E 0.07 .
= =
2 2
= =
5 2 >
& 0.050 & 0.05 >
1000 2000 3000 -1 0 1

Workioad file (bytes) Theoretical

Fig. 2. Nanoentities test run times vs. file sizes correlation.

2) LoC test: We present the statistical analysis of runtimes
for the Cargo Tracker application codebase [19]. The mean
runtime over 10 iterations is 70 (ms), the values generally
varying between 65 (ms) and 75 (ms) with a minimum of
57 (ms) and maximum of 94 (ms). The variation across mean
runtime values for this test across the rest of the files is small,
between 0.08 (ms) and 0.1 (ms).

3) SCC test: Recorded consistently runtimes under
0.1 (ms), disregarding 4 outliers which are ceiling at
0.13 (ms). Most of the values are between 0.02(ms)
and 0.06 (ms), a correlation between the running
times and workload file sizes being identified. This is
due to Tarjan’s algorithm [10] employed in searching
strongly connected components being linear to the

Q -
0
0.25 90 | i
|
= 85 :
z m :
£ 020 E go '
g 5 i
- :
c —_- | € 75 -
g 015+ | - | g
2 | - b
© o I L s 70 o
E o | - o i o T _E
- 1 |
= B >
- -
;
JemH=HE=00=H
Eraraar et - 4 60 ‘
0.05 o - o
T T T T T T T T T T T T
[e R e ol] [i il Pl e T 5
ERSR/ELT IS SFERS8 385888 38
= N c sWp0IoZo @ oA
2rlogaeood onLnls T o~ on ©
S22 b I 52
o 2 5 |3 2 o— g —2—o—8—0— o=
T £ 2 & = S £ 5 £ g @ ®
g § F ° = £ 8 8 § &8 8 ©
5 g g g
a o 8 B

Fig. 3. LoC test running times statistics.

number of microservices and their communication paths
O(|N| + |E]), where N = number of microservices, and E =
number of communication paths.

o

e 2 e
=3 =
» ® =)
1 1 1
o

crawler-leung _| Dj1
(708b)
I+

miliseconds (ms)

0.04 4

0.02

-
1 JH
]

J D]q
i D]{
ot oom L[]
-

T
cargo-leung _|
(1353b)

k-

A= H

o= c= D= o= D= co o= c= 5= c=
S8 I8 Te 3% 3§ i8 58 28 88 28
28 53 58 2- 88 53 23 CI Y
o~ I'Y T 94T £ 5T o 6 o &2
£ K % o a 2 c 3 2 S

T ; 8 & 2 g & ° 8

K 5 2 =

Fig. 4. SCC test running times statistics.

We identified a positive correlation between the runtimes
and the input file sizes of R = 0.85 with p — values < 0.05,
which can be explained by algorithm complexity. This relies
on the number of microservices and relations specified in the
system model, thus implying a stronger linear dependency with
the file sizes compared to the nanoentities composition test.

0.09 .
0.08

R=0.85, p=0.00023

o
=]
&

Running Time (miliseconds)
Running Time (miliseconds)

1000 2000 3000 -1 0 1
Workload file (bytes) Theoretical

Fig. 5. SCC test run times vs. file sizes correlation.

4) Semantic Similarity test: Recorded runtimes under
450 (s) with 10 out 13 workload files running under 100 (s).
The 3 remaining workload files yielded runtimes from 100 (s)

to 300 (s), with the non-deterministic decomposition of the
Trading application setting the maximum at approximately
450 (s). Per workload application, the runtime is calculated as
the sum of all eight semantic similarity assessment algorithms.

w
S
=]

1

seconds (s)

[
D“
[k

price-dfd _|
(1322b)

i
||
]
I

1l
1

(951b) | |D

crawler-leung
(708b)
booking-leung
(853b)
crawler-girvan
(937b)
crawler-dfd
price-leung
(1114b)
booking-girvan
(1344b)
cargo-leung
(1353b)
trading-leung
(1465b)
trading-girvan
(1468b)
price-girvan
(1705b)
cargo-ideal
(1825b)
cargo-girvan
(3566b)

Fig. 6. Semantic test running times statistics.

Without information about the internal logic of the semantic
algorithms, we could not identify dependencies between run-
times and the number of microservices, entities, nanoentities
and relations. The correlation coefficient between the input file
sizes and the runtimes for this test is R = —0.062 with p —
values > 0.84. Since the significance level exceeds 0.05, we
assume no correlation between the input file sizes and the
semantic similarity test runtimes.

200 200
. .
R=-0.062¢p=0.84 .

—_ . —_—
7 7
2 100 2 100
8 g
3 . &
g 3
= s 5
2 04 e e . e . 2 o
£ £
g €
S S
& 4

-100 -100

1000 2000 3000 -1 0 1

Workload file (bytes) Theoretical

Fig. 7. Semantic test run times vs. file sizes correlation.

D. Discussion

Although they are highly debated, issues such as a high
variation in lines of code per microservice that may arise when
assessing granularity [20] can be circumvented [21] by using
relativity between the components of the same system. We
argue that in industry it is often the case that developers adhere
to a strict coding style guideline which aids similar writing
further supporting the relativity approach.

The LoC test is highly dependent on users internet down-
stream bandwidth due to the actual download of the remote
repository locally taking the majority of time for this test. Due
to the fact that we managed to gather only one repository,
the statistical correlation is not feasible. For calculating the
correlation between the run times of this test against the input

file sizes would imply to possess repositories for each of the
13 versions of the considered applications, which is not the
case. The run times on different codebases might have shown
correlations between the running time and the size of the
repository (as number of classes) together with the number
of microservices and communication paths.

Although we could not identify correlations between the
runtimes of the semantic similarity test and the system model
specifications, we found that eliminating the Hirst St’Onge
from the semantic algorithms selection leads to a steep correc-
tion of runtimes, consistently dropping by 95%. We present
no data backing this matter due to our focus being on the
performance analysis of our framework and not on semantic
similarity algorithms.

I'V. RELATED WORK

We identify related research on two main topics: the migra-
tion process, and validation techniques or tools.

Migrations. Many cloud-based companies chose to migrate
towards MSAs due to their benefits [22]. Additionally, many
non-cloud enterprises started similar migrations, ranging from
finance critical systems [23], database as service [24], to cloud-
based applications [25]. The most adopted migration approach
relies on Domain Driven Design (DDD) for partitioning com-
plex models into bounded contexts scoping their relations
[25]-[27]. The most employed pattern in migration process
is the ”Strangler” pattern [28].

Validation. The previously mentioned decomposition tech-
niques produce service “cuts” of the original monoliths. Cur-
rent work provides only limited and often subjective decompo-
sition validation, such as [4], [15]. Other approaches focus on
the core architectural principles of MSA. Characteristics drawn
from the definition such as small sized, independent, loosely
coupled, cohesive and programming language agnosticism are
used in [15] to validate their resulted microservices. Team size
reduction and structural improvements are synthesized via the
Team Reduction Metric [20] which uses algorithmic contrib-
utors information extraction from version control systems.

V. CONCLUSIONS

As companies choose to migrate from monolithic appli-
cations to Microservice Architecture rather than rebuild the
entire application from scratch, the scene of (semi-)automatic
decomposition tools is expected to expand. The migration
process generally implies decomposition and validation of the
result. Yet, a missing piece in this puzzle is automatic valida-
tion. We provide an easily extensible microservice validation
framework which tests the quality of the microservices resulted
from semi-automatic decomposition processes with emphasis
on static analysis quality attributes.

In this work we provide a reference implementation together
with the methodology for implementing additional tests for a
validation framework. We evaluate our reference implementa-
tion for a validation framework using the results of a semi-
automatic decomposition tool (the Service Cutter [4]) and of
an established technique for decomposing monoliths (the Data-
Flow Diagram [15]).

[1]

[2]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

E. Van Eyk, L. Toader, S. Talluri, L. Versluis, A. Uta, and A. Iosup,
“Serverless is more: From paas to present cloud computing,” [EEE
Internet Computing, vol. 22, no. 5, pp. 8-17, 2018.

M.-D. Cojocaru, A. Oprescu, and A. Uta, “Attributes assessing the
quality of microservices automatically decomposed from monolithic
applications,” in 2019 18th International Symposium on Parallel and
Distributed Computing (ISPDC). 1EEE, 2019, pp. 84-93.

P. D. Francesco, P. Lago, and 1. Malavolta, “Migrating towards microser-
vice architectures: An industrial survey,” pp. 29-2909, April 2018.

G. W. Z. O. Gysel M., Klbener L., “Service cutter: A systematic
approach to service decomposition,” Lecture Notes in Computer Science,
vol. 9846, 8 2016.

D. Kruidenberg, “From monoliths to microservices the decomposition
process,” Ph.D. dissertation, Universiteit van Amsterdam, 2018.
“Technical Action Research,” http://rcis-conf.com/rcis2012/document/
slides/RCIS12_Technical ActionResearch.pdf, [Online; accessed
27.03.2019].

“Chain of Responsibility Pattern,”
chain-of-responsibility-design-pattern-in-java,
25.03.2019].

“Swagger,” https://swagger.io, [Online; accessed 25.03.2019].

M. Kalske, N. Mkitalo, and T. Mikkonen, Challenges When Moving
from Monolith to Microservice Architecture, 02 2018, pp. 32-47.
“Tarjan algorithm,” https://github.com/thai321/
Algorithm-Problems-Java/tree/master/Strongly\ %20Connected\
%?20Components\ %20(SCC), [Online; accessed 11.04.2019].
“Understanding SOLID Principles: Sin-
gle Responsibility,” https://codeburst.io/
understanding-solid-principles-single-responsibility-b7c7ecObf80,
[Online; accessed 27.02.2019].

“WordNet Similarity for Java,” https://code.google.com/archive/p/ws4j/,
[Online; accessed 25.03.2019].

“Java Wrapper for Japanese WordNet,” https://code.google.com/archive/
p/jawjaw/, [Online; accessed 25.03.2019].

“NICT Japanese WordNet,” https://github.com/Sciss/jawjaw, [Online;
accessed 25.03.2019].

https://www.journaldev.com/1617/
[Online; accessed

[15]
[16]

(17]

[18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

R. Chen, S. Li, and Z. Li, “From monolith to microservices: A dataflow-
driven approach,” pp. 466—475, Dec 2017.

“Domain-driven design: Tackling complexity in the heart of software,”
2003.

I. X. Leung, P. Hui, P. Lio, and J. Crowcroft, “Towards real-time
community detection in large networks,” Physical Review E, vol. 79,
no. 6, p. 066107, 2009.

M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical review E, vol. 69, no. 2, p. 026113,
2004.

“CargoTracker domain-driven design blueprints for Java EE Repository,”
https://github.com/javaee/cargotracker, [Online; accessed 11.05.2019].
G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices from
monolithic software architectures,” pp. 524-531, June 2017.

A.Z.]. Bogner, S. Wagner, “Automatically measuring the maintainabil-
ity of service and microservice-based systems - a literature review,” pp.
107-115, 2017.

D. Francesco, I. Malavolta, and P. Lago, “Research on architecting
microservices: Trends, focus, and potential for industrial adoption,” pp.
21-30, 4 2017.

M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen,
and S. Dustdar, “Microservices: Migration of a mission critical system,”
IEEE Transactions on Services Computing, pp. 1-1, 2018.

A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to cloud-
native architectures using microservices: An experience report,” Springer
International Publishing, pp. 201-215, 2016.

A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: an experience report on migration to a cloud-native
architecture,” IEEE Software, vol. 33, pp. 1-1, 05 2016.

J. Thnes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116-116,
Jan 2015.

O. Mustafa, J. Marx Gmez, M. Hamed, and H. Pargmann, “Granmi-
cro: A black-box based approach for optimizing microservices based
applications,” pp. 283-294, 01 2018.

“Strangler pattern,” https://docs.microsoft.com/nl-nl/azure/architecture/

patterns/strangler, [Online; accessed 03.03.2019].

