
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Data Characterization and Anomaly
Detection for HPC Datacenters Using

Machine Learning

Author: Wenjun Liang (2726770)

1st supervisor: Prof. dr. ir. Alexandru Iosup
daily supervisor: Xiaoyu Chu, M.Sc.
2nd reader: Prof. dr. Tiziano De Matteis

September 13, 2023

Abstract

In the domain of High-Performance Computing (HPC), anomaly detection emerges as a

pivotal challenge. This research delves deeply into the architecture of Lisa and presents a

thorough analysis of time-series heatmaps, accentuating anomalies. Diverging from con-

ventional methods that primarily utilize node log data, this study integrates and rigorously

examines both node and job data from slurm. This approach provides a comprehensive

view of HPC clusters, revealing their structure, patterns, and potential anomalies. Rec-

ognizing the inherent challenges of labeled data, this work explores the efficacy of various

unsupervised learning models for anomaly detection. Through established metrics such as

FPR and AUC-ROC, a quantitative evaluation is presented, assisting stakeholders in mak-

ing informed model selections. During the data analysis phase, visualization techniques

are employed to enhance the understanding of HPC datasets, refining the approach to

anomaly detection.

2

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisors, Xiaoyu

Chu and Alexandru Iosup, for their invaluable guidance, patience, and unwavering support

throughout this journey. Their expertise and insights have been instrumental in shaping

this research.

I owe a debt of gratitude to my parents, whose financial support made my academic

pursuits possible. Their belief in my potential has been a constant source of strength and

motivation.

Special thanks go out to my friends, who have been my emotional pillars, always there

to provide encouragement and a listening ear during challenging times.

I would also like to extend my appreciation to the staff of SURFsara for their technical

assistance, which was crucial in the realization of this work.

Lastly, I want to acknowledge my own perseverance. Over the past two years, I have

faced and overcome numerous obstacles, each step bringing me closer to this milestone.

This achievement is a testament to the hard work, dedication, and resilience that I have

mustered.

3

Contents

List of Figures 6

List of Tables 7

1 Introduction 8

1 Problem Statement . 10

2 Research Questions . 10

3 Contributions . 11

4 Significance of the Study . 12

5 Plagiarism Declaration . 12

2 Background 13

1 HPC System Model . 13

2 Unsupervised Machine Learning for Anomaly Detection 14

3 Data Characterization and Integration for Node Data and Job Data 16

1 PROMETHEUS Node-Level Dataset . 16

2 Slurm Job Dataset . 30

3 Additional PROMETHEUS Dataset . 36

4 Comparison First and Additional Prometheus Datasets 41

5 Summary . 42

4 Data Integration 43

1 Integration Background . 43

2 Integrated Data Analysis . 46

3 Summary . 46

4 Unsupervised Machine Learning Models for Anomaly Detection 47

5 Evaluation Metrics . 51

6 Experiment 1: Model Performance on the Continuous Time-Series Dataset . 54

4

7 Experiment 2: Model Performance on the Entire PROMETHEUS Dataset . 57

8 Experiment 3: Model Performance on the Integrated Dataset 59

9 Experiment 4: Model Generalization Across Different Datasets 61

10 Summary . 63

5 Conclusion and Future Work 66

1 Conclusion . 66

2 Future Work . 67

Bibliography 68

5

List of Figures

1.1 ODA architecture. 9

2.1 Architecture of Lisa . 14

3.1 Time-series heatmap with anomalies for PROMETHEUS dataset. 21

3.2 Feature correlation matrix. 22

3.3 Density of data break duration. 29

3.4 Node usage heatmap. 32

3.5 Job hourly submission. 33

3.6 Job state distribution. 34

3.7 The number of submitted jobs on the top 5 nodes by date. 35

3.8 Bottom 5 node submission. 36

3.9 Time-series heatmap with anomalies for the additional PROMETHEUS

dataset. 39

3.10 Densityplot of data break duration for the 2020 PROMETHEUS dataset. . 40

4.1 Example of the process of data integration. 44

4.2 Success rate density plot. 45

4.3 Experiment 1 results. 56

4.4 Experiment 2 results. 58

4.5 Experiment 3 results. 60

4.6 Experiment 4 results. 62

4.7 Experiment results comparison. 64

6

List of Tables

3.1 Hardware information of LISA nodes. 17

3.2 Description of selected metrics in PROMETHEUS dataset. 18

3.3 Summary statistics. 18

3.4 Thresholds for PROMETHEUS metrics. 20

3.5 Cluster data. 24

3.6 Statistics for nodes with and without GPU. 26

3.7 Cluster statistics for nodes. 28

3.8 Description of selected metrics in SLURM dataset. 31

3.9 Summary statistics. 37

3.10 Combined breakdown and anomaly data. 40

4.1 Experiment 1 results. 56

4.2 Experiment 2 results. 58

4.3 Experiment 3 results. 60

4.4 Experiment 4 results. 62

4.5 Best model comparison across experiments. 64

7

Chapter 1

Introduction

High-Performance Computing (HPC) clusters have become increasingly important in var-

ious sectors, from scientific research to industrial applications. However, the complexity

and scale of these systems also make them susceptible to operational anomalies. In the

following subsections, we will delve into the importance of HPC, and how our research

aligns with existing visions and challenges in the field.

0.1 The Growing Importance of High-Performance Computing

High-Performance Computing (HPC) clusters have become indispensable in various fields,

from scientific research to industrial applications [12]. Their capabilities extend to com-

plex simulations, large-scale data analysis, and the development of artificial intelligence

algorithms. However, the increasing complexity and scale of these clusters also make them

susceptible to operational anomalies, which can severely impact their performance and

reliability.

Our research on anomaly detection in High-Performance Computing (HPC) clusters

aligns closely with existing visions in the field. Specifically, the work of Iosup et al. [9] pro-

vides a foundational perspective for our study. By focusing on the reliability and efficiency

of HPC clusters through unsupervised machine learning techniques, our work contributes

to improving the manageability of these complex systems. This focus aligns with the

call for responsible computer infrastructure, as improved anomaly detection enhances the

reliability and dependability of HPC clusters.

Also, our research addresses several key challenges outlined in the Manifesto by Iosup

et al. [8]. Effective anomaly detection can optimize resource allocation, contributing to

sustainability goals. Our work also aims to make HPC clusters more reliable and, therefore,

more usable in critical sectors like healthcare and national security. By addressing these

8

Figure 1.1: ODA architecture. Source: [18]

challenges, our research contributes to shaping a national strategy for advancing computer

systems and networking research.

Additionally, Our research aligns closely with the Operational Data Analysis (ODA)

architecture depicted in Figure 1.1. Specifically, the datasets we utilize fit into distinct

layers of the ODA model:

• Layer 0: Infrastructure Facility - The PROMETHEUS dataset, which provides

metrics related to the underlying hardware and software infrastructure, originates

from this layer.

• Layer 3: Resource Manager - The SLURM dataset, which offers insights into job

scheduling and resource allocation, is sourced from this layer.

Both datasets are categorized as operational data and have overlapping collection times,

9

making them complementary for analysis and particularly useful for anomaly detection.

Challenges and Limitations in Anomaly Detection

Anomalies in HPC clusters can lead to a range of adverse effects. For instance, an

undetected anomaly in a weather simulation cluster could result in inaccurate forecasts,

affecting sectors like agriculture, aviation, and public safety. One of the most significant

challenges in anomaly detection is the scarcity of labeled data. This limitation often leads

to imbalanced datasets and makes supervised and semi-supervised learning methods less

suitable. Consequently, there is a growing interest in employing unsupervised learning

techniques for anomaly detection in HPC clusters.

1 Problem Statement

Existing anomaly detection methods in HPC clusters often focus solely on node log data,

neglecting other potentially valuable data sources like workload or job data. Addition-

ally, the requirement for labeled data in supervised and semi-supervised learning models

presents practical challenges. These limitations hinder the development of comprehensive

and interpretable anomaly detection methods. This study aims to address these challenges

by proposing a more holistic approach that integrates multiple types of operational data

and employs unsupervised learning techniques.

2 Research Questions

The overarching research question guiding this study is:

How can we design and evaluate an effective unsupervised machine learning

model for anomaly detection in large-scale HPC clusters by integrating multiple

types of operational data?

To dissect this main question, we formulate the following sub-questions:

RQ1. What are the characteristics of HPC Node data and Job Data?

Understanding the characteristics of HPC Node data and Job Data is foundational for

any subsequent analysis or modeling. This question aims to provide a comprehensive

understanding of the data’s structure, distribution, and inherent patterns.

RQ2. How can node data be integrated with job data for the purpose of anomaly

detection?

The integration of node data with job data represents an innovative approach to

10

creating a more holistic view of the system’s operation. This question is significant

because it explores the synergistic effects of combining different types of data. The

integration could potentially lead to more accurate and reliable anomaly detection

models.

RQ3. How do various unsupervised machine learning models perform in detect-

ing anomalies in large-scale HPC clusters?

This question is crucial for the practical application of our research. Given the

scarcity of labeled data in the domain of HPC anomaly detection, unsupervised

machine learning models offer a viable alternative. This research question aims to

evaluate the performance of various unsupervised models in a real-world setting,

providing insights into their effectiveness, reliability, and limitations. The findings

could guide future research and practical implementations, helping to optimize the

selection of machine learning models for anomaly detection in HPC clusters.

3 Contributions

In the following subsections, we will elaborate on the specific societal and scientific contri-

butions, as well as the innovative approaches that set this work apart from existing studies

in the field.

3.1 Societal and Scientific Contributions

This research aims to make significant contributions both to society and the scientific com-

munity. Effective anomaly detection mechanisms can substantially improve the reliability

and efficiency of various critical infrastructures, such as healthcare systems and financial

institutions. On the scientific front, this work aims to enrich the field of computer sci-

ence by introducing a comprehensive, unsupervised learning-based approach to anomaly

detection in HPC clusters.

3.2 Innovative Approaches

• Comprehensive Data Integration: This study goes beyond traditional methods

that focus solely on node log data. By integrating node log data with Slurm job

data, we offer a more comprehensive understanding of the system’s state.

• Exploration and Assessment of Unsupervised Learning: Given the scarcity of

labeled data, this research employs various unsupervised learning models for anomaly

11

detection. These models are rigorously evaluated using established metrics such as

False Positive Rate (FPR) and Area Under the Receiver Operating Characteristic

Curve (AUC-ROC).

• In-Depth Data Characterization: This work performs an in-depth analysis of

relevant datasets provided by Surfsara. This characterization serves as a foundation

for the subsequent stages of anomaly detection, making our approach more robust

and insightful.

• Visual Analysis: Our work incorporates advanced visualization techniques such as

heatmap, density plot and other kinds of charts to better understand the data’s char-

acteristics and anomalies. These visual insights not only enhance our understanding

of the data but also provide system administrators and researchers with actionable

information.

4 Significance of the Study

This section aims to elucidate the broader implications of our study, breaking them down

into economic and societal benefits as well as technological and academic advancements.

4.1 Economic and Societal Benefits

Effective anomaly detection can prevent costly service disruptions and optimize resource

allocation in HPC clusters. It also has a ripple effect on sectors vital to societal functioning,

such as healthcare and national security, and contributes to energy savings.

4.2 Technological and Academic Advancements

This study contributes to machine learning innovation by promoting unsupervised learning

models and paves the way for more holistic monitoring solutions. The methodologies and

findings serve as a foundation for future research in anomaly detection and HPC.

5 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.

12

Chapter 2

Background

This chapter provides an overview of the foundational concepts and technologies that

underpin this research.

1 HPC System Model

High-performance computing (HPC) clusters refer to a group of interconnected computers

that work together to solve complex computational problems. HPC clusters are commonly

used in scientific research, data centers, and other computing-intensive fields due to their

capability to process large amounts of data and perform computationally intensive tasks

quickly.

In an HPC cluster, each computer is referred to as a node, and each node can handle

multiple job submissions, which are computational tasks assigned to the node. Nodes are

interconnected through a high-speed network, allowing for efficient communication and

data exchange. The resource manager software, such as SLURM, is used to manage and

schedule jobs across the cluster based on the available resources. As the HPC cluster

becomes larger and more complex, it becomes increasingly difficult to ensure its reliability

and availability.

Figure 2.1 [3] illustrates the system model referenced. Jobs characterized in the study

were submitted to the Lisa HPC cluster. This HPC cluster consists of several racks,

with each rack housing multiple servers. These servers are interlinked using a high-speed

network connection

13

Figure 2.1: Architecture of Lisa, Source: [3]

2 Unsupervised Machine Learning for Anomaly Detection

Anomaly detection in High-Performance Computing (HPC) data modeling is a pivotal

research area focusing on identifying unexpected patterns or outliers in data that might

indicate incidents like cyber-attacks, system faults, or performance issues. Given the com-

plexity and voluminous data generated by HPC systems, automated anomaly detection

algorithms are indispensable for spotting abnormal patterns that suggest potential prob-

lems or improvement areas. Various techniques, from statistical methods leveraging data

distribution for identifying significant deviations to machine learning to approaches such

as supervised, unsupervised, and semi-supervised learning, encompassing clustering, clas-

sification, and neural networks, are employed. This anomaly detection plays a crucial

role in maintaining the efficiency, reliability, and security of HPC systems by enabling

system administrators to proactively deal with potential issues, enhancing overall system

performance, and facilitating predictive maintenance to preempt system breakdowns.

Unsupervised learning does not rely on pre-labeled datasets. Unsupervised learning mod-

els try to identify anomalies that deviate from these patterns by learning patterns of normal

behavior. The advantage of this approach is that it can handle new, unlabeled anomalies

because it does not require the labeling of the anomalies. However, it may misrepresent

14

some atypical normal behaviors as anomalies. Typical techniques used by unsupervised

learning methods in HPC anomaly detection include clustering, isolated forests, and self-

encoders (Autoencoders) in deep learning. Unsupervised learning is characterized by its

independence from existing labeled data for anomaly identification. In large-scale comput-

ing systems, abnormal events are usually rare. This means it’s difficult to obtain sufficient

labeled data to train a supervised learning model, where unsupervised learning plays an

important role.

First, research by Morrow et al. explored the application of unsupervised clustering

in HPC sensor data[14]. They focused on a DBSCAN algorithm to filter out normal

behavior in large-scale data and sort out anomaly points based on the distance from the

nearest normal cluster. Their results showed that DBSCAN outperforms other clustering

algorithms, such as k-means and Gaussian kernel density estimation.

Molan et al. proposed a neural network-based framework RUAD, bringing a new per-

spective to anomaly detection in HPC [13]. Their neural network framework includes Long

Short Term Memory (LSTM) units to explicitly consider the time series of the data.

In the anomaly detection of HPC, privacy protection is another important consideration.

To address this issue, Ghiasvand proposed a method called uPAD, an unsupervised and

privacy-preserving approach[5]. This method generates models representing normal system

behavior by processing anonymous syslog entries using neural networks. These models are

used to monitor and evaluate system behavior to detect anomalies at an early stage.

In addition to anomaly detection, the interpretability of the algorithms is also an impor-

tant research direction. In this regard, Carletti et al. introduced a method called DIFFI,

providing interpretability for the Isolation Forest (IF) algorithm[1]. The DIFFI method

provides a quantitative measure of feature importance for anomaly detection tasks, which

better helps understand the underlying data generation process and perform root cause

analysis.

Finally, Wang et al. researched online anomaly detection methods for web applications

under the impact of dynamic workloads [20]. This research introduces a workload-aware

anomaly detection framework that combines incremental clustering, Local Outlier Factor

(LOF), and the t-test method.

15

Chapter 3

Data Characterization and Integration for Node Data
and Job Data

This chapter aims to address the first research question (RQ1): "What are the characteris-

tics of HPC Node data and Job Data?" By exploring the characteristics of both Node and

Job data, we seek to provide a foundational understanding that will inform subsequent

analyses and modeling efforts. We will delve into the structure, distribution, and inherent

patterns of the data.

1 PROMETHEUS Node-Level Dataset

In this section, we are going to characterize the PROMETHEUS Node-Level Dataset.

1.1 Dataset Introduction

The first dataset used in this study was collected from the LISA National Computing Clus-

ter in the Netherlands, hosted at SURFsara [?]. Table 3.1 showcases the diverse hardware

information of selected nodes currently operational in the data center.This dataset con-

sists of software and hardware trace data, which are real-time data generated during the

operation of the nodes [10]. The data was collected by the PROMETHEUS time-series

monitoring system [10].

PROMETHEUS is an open-source monitoring system and time series database that

serves as a robust tool for collecting metrics in real-time. Its capabilities for scraping

metrics at regular intervals make it particularly suitable for monitoring large-scale, dynamic

systems like HPC clusters [16].

The dataset under consideration is extensive, both in terms of time span and granularity.

It covers a period of nearly 145 days, providing a rich temporal context that is invaluable

16

CPU Quantity Memory GPU Model GPU Quantity
24 191,488 Titan RTX 4
12 257,024 Titan V 4
40 1,481,024 Titan RTX 2
16 93,184 N/A N/A
48 2,049,024 N/A N/A
52 300,544 N/A N/A

Table 3.1: Hardware information of LISA nodes.

for understanding long-term trends and patterns. The data is collected every 30 seconds,

offering high granularity that allows for detailed analysis of system behavior at any given

moment.

The dataset’s size of 43 GB and its structure—comprising 129,546,553 rows and 63

columns—indicate the complexity and high dimensionality of the data. This makes it a

rich source for extracting meaningful features but also poses challenges in terms of com-

putational resources required for analysis.

The inclusion of data from 343 nodes provides a comprehensive view of the system,

allowing for node-specific as well as system-wide analyses. This is particularly important

for anomaly detection, where understanding the behavior of individual nodes can be as

crucial as understanding the overall system dynamics.

The PROMETHEUS dataset encompasses a wide array of metrics that capture the

operational state and performance of each node in the HPC system. These metrics can be

broadly classified into several categories:

• System Metrics: These provide information about the system’s operational status,

boot time, load averages, and the number of processes in different states.

• Disk Metrics: These offer insights into the disk activity of the node, including the

number of I/O operations and the total number of bytes read and written.

• Filesystem Metrics: These provide information about the filesystem, including

available and total space, the number of files, and any device errors.

• Network Metrics: These capture the network activity of the node, including the

total number of bytes and packets received and transmitted, and the total number

of dropped and multicast packets received.

17

• Memory Metrics: These provide information about the memory usage of the node,

including active and dirty memory, free memory, and per-CPU memory.

• GPU Metrics: These provide information about the GPU status and performance

of the node, including duty cycle, fan speed, used memory, power usage, and tem-

perature.

• Other Metrics: These include various other metrics such as time, temperature,

power usage, and various network statistics.

The metrics presented in the Table 3.2 have been specifically selected for their significant

influence on determining the anomaly status of a node in the HPC system.

Table 3.2: Description of selected metrics in PROMETHEUS dataset.

Metrics Description
id Measurement ID
timestamp Time of the measurement
node The number of rack and node
node_load1 CPU utilization load average (1 minute)
node_load15 CPU utilization load average (15 minutes)
node_load5 CPU utilization load average (5 minutes)
node_memory_Active_bytes Memory
nvidia_gpu_power_usage_milliwatts Power usage of the GPU device in milliwatts
nvidia_gpu_temperature_celsius Temperature of the GPU device in Celsius

1.2 Statistical Analysis

The Table 3.3 shows the overall statistics.

Table 3.3: Summary statistics.

Metric Mean Std. Dev. 25% 50% 75% Max
node_load15 11.01 50.60 0.05 4.74 16.00 4905.28
node_load5 11.03 50.83 0.06 4.28 16.02 4908.67
node_load1 11.04 50.96 0.07 4.09 16.00 4910.27
node_memory
Active_bytes

1.13× 1010 1.68× 1010 1.59× 109 3.87× 109 1.43× 1010 2.10× 1012

18

1.2.1 Node Memory Active

The node_memory_Active_bytes metric, representing active memory bytes, averaged around

11.25 TB. However, the considerable standard deviation of 16.81 TB indicates a wide spread

in memory usage, ranging from a minimum of 0 bytes to a substantial 2.10 PB.

Analysis: The high standard deviation suggests that memory usage is highly variable

across different nodes or time periods. This could indicate inconsistent workload distri-

bution or varying job requirements, which may require further investigation for optimiza-

tion.ad in memory usage, ranging from a minimum of 0 bytes to a substantial 2.10 PB.

1.2.2 Node Load Over Time

Table 3.3 presents the node load statistics over different intervals. The analysis of the node

load over varying time intervals reveals interesting patterns:

15 minutes (node_load15) : The mean load across all nodes over this interval was

11.01. However, a substantial standard deviation of 50.60 indicates significant variability

in the load across nodes. The load values spanned a broad range, from a negligible 0.00 to

a peak of 4905.28.

5 minutes (node_load5) : For this shorter interval, the average load was marginally

higher at 11.03, accompanied by a similar standard deviation of 50.83. The load ranged

between 0.00 and 4908.67.

1 minute (node_load1) : The most immediate load average, taken over the last

minute, was 11.04, with the highest observed value being 4910.27.

Analysis: The high standard deviation suggests that some nodes might be under heavy

load while others are underutilized. This could point to inefficient resource allocation

strategies.

1.3 Anomaly Analysis

In this stage of the study, the datasets were annotated to identify anomalies. The criteria

for determining whether a data point is an anomaly were based on a meeting interview

with Duncan Kampert, a staff member at SURFsara. The thresholds used for annotation

are presented in the Table 3.4:

19

Table 3.4: Thresholds for PROMETHEUS metrics.

Metrics Threshold
node_load1 2 x Total CPU Amounts
node_load15 2 x Total CPU Amounts
node_load5 2 x Total CPU Amounts
node_memory_Active_bytes Memory of the node
nvidia_gpu_power_usage_milliwatts Standard power usage of the GPU device
nvidia_gpu_temperature_celsius Standard Temperature of the GPU device

After applying these thresholds to the datasets, a total of 3558579 anomalies were iden-

tified. This represents approximately 2.88% of the total data points in the datasets.The

standard deviation of 0.17 suggests that these anomalies are not uniformly distributed,

either across nodes or temporally.

Figure 3.1 presented encapsulates all the time series data from the PROMETHEUS

dataset, with the temporal scope aggregated on a daily basis. The x-axis represents the

date, while the y-axis denotes the names of the nodes, specifically the days. In the heatmap,

the color of each cell corresponds to the level of anomalies detected for a particular node

on a given day: blue indicates a low level of anomalies, yellow signifies a medium level, and

red represents a high level of anomalies. A deeper, more intense red color signifies a higher

number of anomalies, indicating a day with more irregularities in the node’s operation.

It’s important to note that the process of anomaly detection is not always straightfor-

ward. The thresholds used in this study were determined based on expert knowledge from

Surfsara and may not capture all possible anomalies. However, they provide a starting

point for identifying patterns that deviate from the norm and can be refined in future

work.

1.4 Metric Correlation

In this section, we delve into understanding the relationships between the various features

in our dataset. Specifically, we examine how each feature correlates with others and aim

to decipher patterns that can offer insights into the nature of the data, especially in the

context of anomaly detection.

From Figure 3.2, a few noteworthy observations surface immediately:

20

06-30 07-10 07-20 07-30 08-09 08-19 08-29 09-08 09-18 09-28 10-08 10-18 10-28 11-07 11-17
Date (MM-DD)

r10n1
r10n13
r10n17
r10n20
r10n24
r10n28
r10n31

r10n6
r11n1

r11n13
r11n17
r11n20
r11n24
r11n28
r11n31

r11n6
r12n1

r12n13
r12n17
r12n20
r12n24
r12n28
r12n32

r12n7
r13n10
r13n14
r13n18
r13n21
r13n25
r13n29
r13n32

r13n7
r14n10
r14n14
r14n18
r14n21
r14n25
r14n29
r14n32

r14n7
r15n10
r15n14
r15n18
r15n21
r15n25
r15n29
r15n32

r15n7
r25n10
r25n14
r25n18
r25n22
r25n26

r25n3
r25n4
r25n8

r26n12
r26n16

r26n2
r26n23
r26n27
r26n30

r26n5
r26n9

r27n13
r27n17
r27n20
r27n24
r27n28
r27n31

r27n7
r28n3
r29n2
r33n6
r34n4
r35n2
r36n1
r36n5
r37n4
r38n2

No
de

Low Medium High
Anomaly Level

Figure 3.1: Time-series heatmap with anomalies for PROMETHEUS dataset, blue indicates
low anomaly level, yellow indicates medium and red indicates high.

21

no
de

_lo
ad

15

no
de

_lo
ad

5

no
de

_lo
ad

1

no
de

_m
em

or
y_

Ac
tiv

e_
by

te
s

nv
id

ia
_g

pu
_p

ow
er

_u
sa

ge
_m

illi
wa

tts
-m

ax

nv
id

ia
_g

pu
_t

em
pe

ra
tu

re
_c

el
siu

s-
m

ax

isA
no

m
al

y

node_load15

node_load5

node_load1

node_memory_Active_bytes

nvidia_gpu_power_usage_milliwatts-max

nvidia_gpu_temperature_celsius-max

isAnomaly

1.00 1.00 0.99 0.10 -0.02 -0.02 0.43

1.00 1.00 1.00 0.10 -0.02 -0.02 0.43

0.99 1.00 1.00 0.10 -0.02 -0.02 0.43

0.10 0.10 0.10 1.00 0.20 0.17 0.23

-0.02 -0.02 -0.02 0.20 1.00 0.94 -0.00

-0.02 -0.02 -0.02 0.17 0.94 1.00 -0.00

0.43 0.43 0.43 0.23 -0.00 -0.00 1.00

Feature Correlation Matrix

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.2: Feature correlation matrix.

22

1.4.1 Load Metrics Correlation

node_load15, node_load5, and node_load1 are highly correlated with each other, with

correlation values close to 1. This suggests that they carry similar information. Intuitively,

this makes sense as they represent the load average of the system over different time

intervals, and are expected to be closely aligned in behavior.

1.4.2 GPU Metrics Correlation

Both nvidia_gpu_power_usage_milliwatts-max and nvidia_gpu_temperature_celsius-max

have a high correlation of 0.94. This indicates that as power usage in the GPU rises, there’s

a corresponding increase in GPU temperature. This is an expected relationship as higher

workloads would generate more heat.

1.4.3 Memory and GPU Metrics

node_memory_Active_bytes has a modest correlation with nvidia_gpu_power_usage_milliwatts-max

(0.20) and nvidia_gpu

temperature_celsius-max (0.17). This implies that while active memory usage might

have some relation to GPU activities, it’s not as tightly bound as the GPU metrics them-

selves.

1.4.4 Anomaly Correlations

:The isAnomaly column, which represents whether a data point is anomalous (with 1)

or normal (with 0), has strong positive correlations with the load metrics (node_load15,

node_load5, node_load1) with a correlation value of 0.43. However, it’s interesting to note

that it has negligible correlations with GPU related metrics and a moderate correlation

with node_memory_Active_bytes (0.23).

Having drawn initial observations from the correlation matrix, it is crucial to further

analyze these relationships to comprehend their implications on the dataset and how they

could influence potential modeling decisions.

• Load Metrics: Given the high degree of correlation between the load metrics, it

may be redundant to use all three for predictive modeling or anomaly detection.

Reducing the dimensionality by selecting one of these could simplify models without

sacrificing significant information.

23

• GPU Metrics and Memory: The relationship between GPU metrics and ac-

tive memory bytes isn’t robust, suggesting that memory usage and GPU activities

might be somewhat independent. In a practical scenario, it’s possible that high

GPU activity (like deep learning model training) might not necessarily coincide with

memory-intensive operations.

• Anomaly Correlations: The strong positive correlation of the isAnomaly column

with the load metrics suggests that anomalies are heavily influenced by system load.

This could be indicative of scenarios where the system becomes overloaded, leading

to anomalous behavior. On the other hand, GPU metrics, despite their importance

in the dataset, do not strongly indicate anomalies on their own.

1.5 K-Means Cluster Distribution

The analysis was underpinned by the KMeans clustering algorithm, a widely-used method

for partitioning a dataset into a set of distinct [21], non-overlapping subgroups or clusters.

KMeans aims to minimize the within-cluster sum of squares, ensuring that data points in

the same cluster are close to each other while being far from points in other clusters [21]

The clustering of data points into distinct groups was achieved using the KMeans clus-

tering algorithm. KMeans works by partitioning the dataset into a predefined number of

clusters. It does this by minimizing the sum of squared distances between data points

and their respective cluster centroids. The centroids are recalculated iteratively until the

algorithm converges to an optimal solution [21]. In this analysis, the majority of the data

points, approximately 99.76 million, were categorized under Cluster 0. Cluster 3 followed

with around 20.12 million data points, Cluster 1 had 3.62 million, and Cluster 2 was the

smallest with just over 60,000.This Table3.5 details the key characteristics of each cluster-

ing center.

1.5.1 Cluster Characteristics

Table 3.5: Cluster data.

Cluster Count node_load15 node_load5 node_load1 node_memory Anomalies
0 9.98× 107 6.64 6.61 6.60 4.93× 109 0.00
1 3.62× 106 7.99 8.02 8.03 3.16× 1010 0.03
2 6.05× 104 1,946.39 1,950.55 1,951.67 2.23× 109 1.00
3 2.01× 107 27.42 27.69 27.75 3.89× 1010 0.17

24

Cluster 0 : This cluster predominantly consists of nodes with lower loads and memory

activities. The nodes here exhibited a 15-minute load average of 6.64, a 5-minute load

average of 6.61, and a 1-minute load average of 6.60. The average active memory stood at

about 4.93 GB.

Analysis: This cluster seems to represent the "baseline" or "normal" behavior of the

system, with low loads and memory usage. The absence of anomalies suggests that these

nodes are operating within expected parameters. However, the low memory usage might

indicate underutilization, which could be investigated for resource optimization.

Cluster 1 : Nodes in this cluster demonstrated slightly elevated loads compared to

Cluster 0. The average loads over 15 minutes, 5 minutes, and 1 minute were 7.99, 8.02,

and 8.03, respectively. Notably, the active memory was significantly higher, averaging

around 31.59 TB.

Analysis: The elevated load and significantly higher memory usage suggest that these

nodes are handling more complex or numerous tasks. The slight presence of anomalies

could indicate that this cluster is more susceptible to issues and might benefit from closer

monitoring.

Cluster 2 : This cluster is particularly intriguing. It showcased a very high average load

over 15 minutes (1946.39), 5 minutes (1950.55), and 1 minute (1951.67). Despite these high

loads, the memory activity was relatively low, averaging around 2.23 TB. Furthermore, this

cluster had a 100% anomaly rate, pinpointing a potential area of concern.

Analysis: The extremely high load averages and 100% anomaly rate make this cluster

a critical focus for further investigation. The low memory usage despite high loads could

indicate bottlenecks or misconfigurations that are leading to inefficiencies and anomalies.

Cluster 3 : Nodes in this cluster displayed moderate loads with averages of 27.42, 27.69,

and 27.75 over 15 minutes, 5 minutes, and 1 minute, respectively. The active memory was

substantial, averaging around 38.94 TB.

25

Analysis: This cluster seems to represent a "middle ground" between the low-load Clus-

ter 0 and the high-load Cluster 2. The moderate but substantial memory usage suggests

that these nodes are well-utilized but not overburdened. The presence of some anomalies

could indicate that there are occasional issues that might require attention.

1.5.2 K-means Clustering Insights

From the provided analysis, it’s evident that while a majority of nodes operate under

standard conditions (as seen in Clusters 0 and 1), there are specific nodes, especially

within Cluster 2, that appear to be under significant stress. Cluster 3 represents nodes

with moderate loads but heightened memory activity. It is imperative to identify and

monitor the nodes that frequently fall into Cluster 2, as they could be crucial for preventive

maintenance or to ensure they don’t evolve into performance bottlenecks.

1.6 Analysis and Comparations of GPU Nodes and non-GPU Nodes

PROMETHEUS data provides insights into the performance and utilization of nodes, both

with and without GPUs. This section delves into the descriptive statistics, extreme values,

and clustering results of these nodes. The Table 1.6 shows the statistics of nodes with and

without GPU

Table 3.6: Statistics for nodes with and without GPU.

mean std 25% 50% 75% max

Nodes with GPU
Node Load15 5.05 10.94 0.02 2.20 4.98 482.62
Node Load5 5.07 11.11 0.04 2.16 4.94 803.62
Node Load1 5.07 11.29 0.02 2.12 4.87 1967.07
Memory Active 1.89× 1010 2.55× 1010 2.47× 109 1.17× 1010 2.47× 1010 2.42× 1011

GPU Power Max 1.34× 105 1.10× 105 3.18× 104 7.97× 104 2.67× 105 4.22× 105

GPU Temp Max 57.56 22.39 36.00 50.00 84.00 93.00
IsAnomaly 0.02 0.15 0.00 0.00 0.00 1.00

Nodes without GPU
Node Load15 11.40 52.09 0.06 6.01 16.01 4905.28
Node Load5 11.41 52.32 0.07 5.41 16.03 4908.67
Node Load1 11.42 52.46 0.08 5.02 16.00 4910.27
Memory Active 1.08× 1010 1.60× 1010 1.57× 109 3.71× 109 1.36× 1010 2.10× 1012

IsAnomaly 0.03 0.17 0.00 0.00 0.00 1.00

26

1.6.1 Descriptive Statistics

Nodes with GPU: The load averages, namely node_load15, node_load5, and node_load1,

provide insights into the system load over the last 15, 5, and 1 minutes respectively. The

mean values for these loads are approximately 5, with some extreme outliers. Active mem-

ory on these nodes averages around 18 GB, with a large variance. GPU power usage

and temperature also exhibit significant variances. Only about 2% of the data points are

labeled as anomalies.

Nodes without GPU: These nodes have significantly higher load averages, averaging

around 11.4. Memory utilization is approximately half of that in nodes with GPUs. As

expected, GPU metrics are absent. Anomalies constitute a slightly higher percentage of

the data at 3%.

1.6.2 Extreme Values

Nodes with GPU: Node r38n4 consistently shows high values for load and memory,

suggesting it’s heavily utilized. Conversely, nodes like r28n5 and r35n3 indicate lesser

utilization.

Nodes without GPU: Node r11n29 consistently exhibits high values for load metrics.

Several metrics have uniform values across these nodes, such as GPU metrics, which are

expectedly zero.

1.6.3 K-means Clustering

Using the k-means clustering algorithm, as previously mentioned, nodes were segmented

based on their resource utilization patterns. The Table 3.7 shows cluster statistics.

Nodes with GPU: Cluster 1 is the largest, representing nodes with low resource uti-

lization. Cluster 0 and Cluster 3 represent nodes with moderate resource usage, while

Cluster 2 represents heavily burdened nodes, often flagged as anomalies.

Nodes without GPU: Cluster 0 dominates, representing nodes with moderate resource

utilization. Cluster 3 and Cluster 2 represent nodes with increasing levels of resource usage,

while Cluster 1 represents the most heavily loaded nodes, often flagged as anomalies.

Summary: Nodes equipped with GPUs exhibit varied utilization patterns, with some

nodes being heavily loaded and others showing moderate to low loads. Memory and GPU

usage also vary significantly. Nodes without GPUs tend to have higher load averages. The

27

Table 3.7: Cluster statistics for nodes.

Cluster Count Load15 Load5 Load1 Memory Power Max Temp Max

Nodes with GPU
0 2.69× 106 5.00 4.99 4.98 2.36× 1010 2.52× 105 81.57
1 3.94× 106 1.26 1.25 1.24 6.03× 109 4.07× 104 38.09
2 1.50× 105 67.90 68.74 69.11 3.81× 1010 1.59× 105 67.91
3 6.25× 105 14.07 14.20 14.23 7.50× 1010 2.15× 105 74.40

Nodes without GPU
0 9.62× 107 6.85 6.82 6.81 4.96× 109 0.00 0.00
1 5.68× 104 2006.42 2010.72 2011.86 2.27× 109 0.00 0.00
2 3.34× 106 107.98 109.39 109.64 3.36× 1010 0.00 0.00
3 1.66× 107 11.45 11.48 11.51 3.99× 1010 0.00 0.00

clusters have effectively segmented the nodes based on their resource utilization patterns.

Monitoring and managing the heavily loaded nodes, especially those flagged as anomalies,

should be prioritized to ensure stable system performance.

1.7 Time Block Analysis

In the context of our dataset, a time block refers to a continuous segment of time during

which the PROMETHEUS system was operational and collecting data. These time blocks

are separated by periods of interruption, where no data was collected. These interruptions

pose a unique challenge in the analysis of our dataset.

The distribution of time blocks in the dataset is not uniform. Figure 3.1, which was

previously introduced to illustrate the distribution of anomalies, also provides insights

into the continuity of the data. In this heatmap, In this heatmap, the presence of blue

color indicates that the majority of the data for that day is continuous. Conversely, white

areas signify days where the majority of data collection was interrupted. This visualization

provides a clear overview of the distribution of time blocks and interruptions in the dataset.

Figure 3.1 revealed that the highest number of interruptions occurred in July 2022,

with 5,479 interruptions affecting 280 nodes. The average interruption duration was 6,149

seconds, with the longest interruption lasting 85,140 seconds and the shortest lasting 60

seconds. The node with the longest interruption time was r13n3 (449,580 seconds), while

the node with the shortest interruption time was r35n5 (65,190 seconds).

28

0 2500 5000 7500 10000 12500 15000
Data Break Duration (Sec)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007
De

ns
ity

Figure 3.3: Density of data break duration.

A box plot was also created to visualize the distribution of all time block interruptions.

The plot revealed that the majority of interruptions (approximately 73.64%) lasted 7,230

seconds. The remaining data points were sparsely distributed between 50,000 and 80,000

seconds. These interruptions in data collection can potentially impact the performance of

unsupervised anomaly detection models, especially those that are sensitive to the temporal

sequence of the data, such as LSTM autoencoders. For such models, it is crucial to ensure

that the input data is from a continuous time block.

Given the frequency of data collection (every 30 seconds), most interruptions are too

long to be filled using interpolation methods. For models that are not sensitive to the

temporal sequence of the data, such as the Isolation Forest model, these interruptions can

be ignored. However, for models that are sensitive to the temporal sequence of the data,

it is important to ensure that the input data is from a continuous time block.

In the future, it may be beneficial to explore deep learning-based anomaly detection

methods for time-series data, as these methods are capable of learning representations of

large-scale sequences in an unsupervised manner and identifying anomalies from the data.

However, these methods often require domain knowledge for appropriate deployment and

may not be suitable for all use cases.

29

2 Slurm Job Dataset

In this section, we are going to characterize the SLURM dataset.

2.1 Dataset Node-Level Introduction

The second dataset used in this study also originates from the LISA National Computing

Cluster, hosted at SURFsara [10]. Unlike the first dataset, this one focuses on job-related

information.

The data was collected by the SLURM Workload Manager [19], a free and open-source

job scheduler for Linux and Unix-like kernels, used by many of the world’s supercomputers

and computer clusters. The dataset various metrics that provide insights into the job-

related information in the HPC system. These metrics can be broadly categorized into the

following groups:

• Job Metrics: These include metrics such as ’id’, ’start_date’, ’end_date’, ’submit’,

’start’, ’end’, ’state’, and ’exitcode’. These metrics provide information about the

job’s ID, start and end dates, submission time, start and end times, state, and exit

code.

• Node Metrics: These include ’node’, ’nodetypes’, ’numnodes’, ’numcores’, and

’sharednode’. These metrics provide information about the node or nodes on which

the job was run, the type of nodes, the number of nodes and cores used, and whether

the node was shared with other jobs.

• Reservation Metrics: These include ’researvation’ and ’partprepaid’. These met-

rics provide information about any reservations associated with the job and whether

a part of the job was prepaid.

Collectively, these metrics provide a detailed picture of the job-related information in the

HPC system, making them valuable for understanding the job execution and performance.

Stored in the Parquet format, the dataset is significantly smaller than the first one, with

a size of 52 MB. It comprises 1,596,965 rows and 15 columns, each row representing a

unique job and each column representing a different attribute of the job.

Table 3.8 displays the description of important metrics in this dataset.

30

Table 3.8: Description of selected metrics in SLURM dataset.

Metrics Description
id Job ID
start_date Start date of job
end_date End date of job
node Rack and node of the job
nodetypes Type of node
numnodes Number of nodes used for the job
numcores Number of cores used for the job
state ’TIMEOUT’, ’COMPLETED’, ’CAN-

CELLED’, ’FAILED’, ’OUT_OF_MEMORY’,
’NODE_FAIL’

exitcode Exit code of job

2.2 Overall Analysis

Figure 3.4 provides a visualization of the overall job distribution across different nodes and

dates. Each cell in the heatmap corresponds to a specific combination of a date (X-axis)

and a node name (Y-axis), and the color intensity of each cell indicates the number of jobs

executed on that particular node on that specific date.

The color mapping ranges from light green to dark green, where light green represents

a relatively low number of jobs and dark green represents a high number of jobs. In other

words, the darker the color, the higher the job count for that node on the corresponding

date. This logarithmic representation enhances the color contrast and hence makes it easier

to observe patterns and anomalies.

On average, the system managed by Slurm handles 5,134.93 jobs daily. Intriguingly,

the busiest day was on June 14, 2022, with a staggering 162,004 jobs. In contrast, the

least activity was observed on December 25, 2021, with only 2 jobs, possibly due to the

Christmas holiday leading to a significant reduction in computational tasks.

2.3 Hourly Job Submissions

Figure 3.5 showcases a notable trend in job submissions throughout the day. From mid-

night until the early morning (0:00 to 3:00), we observe a relatively low number of job

submissions, with the trough at 1.0% around 3:00. However, from 6:00 in the morning,

there’s a steep ascent, reaching a zenith at 15:00 with a whopping 190,682 submissions,

31

2021-12-26 2022-01-25 2022-02-24 2022-03-26 2022-04-25 2022-05-25 2022-06-24 2022-07-24 2022-08-23 2022-09-22 2022-10-22
Date

r10n1

r10n18

r10n26

r10n5

r11n13

r11n21

r11n3

r11n9

r12n17

r12n25

r12n5

r13n13

r13n21

r13n3

r13n9

r14n17

r14n25

r14n4

r15n12

r15n20

r15n29

r15n8

r25n16

r25n25

r25n4

r26n13

r26n21

r26n3

r26n9

r27n18

r27n26

r27n6

r29n1

r30n5

r32n1

r33n6

r35n2

r37n1

r38n4

No
de

Low Medium High
Job Count Level

Figure 3.4: Node usage heatmap, blue indicates low workload level, yellow indicates medium,
red indicates high.

32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Submit Time

0

25000

50000

75000

100000

125000

150000

175000

200000
Nu

m
be

r o
f J

ob
s

Figure 3.5: Job hourly submission.

accounting for 11.94% of the day’s total. Subsequently, the numbers start to wane in the

evening, hitting the trough again in the early morning.

These patterns could be influenced by the user behaviors, such as initiation of compu-

tational tasks in the morning and a reduced activity during nighttime. Such insights are

critical for system administrators to optimize resource allocation during peak times.

2.4 Job State Distribution

Examining the state distribution of the jobs in Figure 3.6, the majority of them were

found to be completed successfully, accounting for approximately 74.96% of the total jobs.

This translates to 1,197,035 successful job completions out of the total 1,596,965 tasks.

However, failed jobs aren’t rare, with a significant 15.36% experiencing failure. Other

states like cancelled and timeout constituted 6.13% and 2.88% respectively. Jobs that ran

out of memory were comparatively fewer, approximately 0.57%, and node failures were the

least common, with a minimal 0.11%.

This information underscores the efficiency and reliability of the system managed by

Slurm, but also pinpoints areas of improvement, especially in mitigating the number of

failed jobs.

33

COMPLETED FAILED CANCELLED TIMEOUT OUT_OF_MEMORY NODE_FAIL
Job State

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Co

un
t

1e6
1197035

245301

97877
45918

9064 1768

Job State Distribution

Figure 3.6: Job state distribution.

2.5 Node Analysis

The node analysis in Figure 3.7 provides insight into the performance of specific nodes.

Among all, nodes ‘r37n1‘, ‘r37n2‘, ‘r37n3‘, ‘r37n4‘, and ‘r10n30‘ received the most job

counts, ranging from 16,221 to 30,502. Their peak times mostly fell in May and August

2022, suggesting heightened computational activities during these periods.

34

2022-01 2022-02 2022-03 2022-04 2022-05 2022-06 2022-07 2022-08 2022-09 2022-10 2022-11
Date

0

2000

4000

6000

8000
Nu

m
be

r o
f J

ob
s S

ub
m

itt
ed

r37n1
r37n2
r37n3
r37n4
r10n30

Figure 3.7: The number of submitted jobs on the top 5 nodes by date.

On the other hand, Figure 3.8 shows that nodes ‘r30n5‘, ‘r15n32‘, ‘r38n3‘, ‘r38n4‘, and

‘r38n5‘ experienced the least job counts, ranging from just 18 to 1,041. Their success rates

were unfortunately found to be zero, indicating potential issues with these nodes that

demand further investigation by the system administrators.

35

2022-01 2022-02 2022-03 2022-04 2022-05 2022-06 2022-07 2022-08 2022-09 2022-10 2022-11
Date

0

10

20

30

40
Nu

m
be

r o
f J

ob
s S

ub
m

itt
ed

r30n5
r15n32
r38n3
r38n4
r38n5

Figure 3.8: Bottom 5 node submission.

In conclusion, this Slurm job data analysis provides invaluable insights into the job

submission patterns, job states, daily job counts, and performance on a node-specific level.

These findings can guide optimizations, resource allocation, and troubleshooting efforts,

ensuring the seamless operation of the computing system managed by Slurm.

3 Additional PROMETHEUS Dataset

In this section, we turn our attention to characterizing an additional PROMETHEUS

dataset.

3.1 Dataset Introduction

The third dataset employed in this study is also sourced from the LISA National Computing

Cluster in the Netherlands, similar to the first dataset. This dataset, however, has some

distinct characteristics that set it apart from the initial one.

The dataset encompasses time-series data from 341 nodes. The data collection started

on December 31, 2019, at 23:00:00 and concluded on April 2, 2020, at 21:59:45, covering

36

a span of 92 days, 22 hours, and 59 minutes. In total, the dataset comprises 180,110,880

rows of data.

Unlike the first dataset, where all metrics are stored in a single Parquet file, the metrics

in this dataset are stored in individual Parquet files. This structure necessitates additional

preprocessing steps to transform the data into a format consistent with the first dataset.

However, a notable challenge arises when dealing with GPU-related metrics. The format

of these metrics in this dataset differs from that in the first dataset. Moreover, the exact

format of these GPU metrics remains unknown, making it infeasible to convert them to

match the format of the first dataset. Given this limitation, two GPU-related columns

were excluded from characterization and the Experiment 4.

The inclusion of this additional dataset provides an opportunity to validate the robust-

ness and generalizability of the models trained on the first dataset. By testing on a dataset

with different structural characteristics and a slightly different time span, we aim to ascer-

tain the adaptability of the models to diverse data scenarios. This is particularly crucial

in real-world settings where data might come from varied sources and in different formats.

3.2 Statistical Analysis

The Table 3.9 shows the overall statistics.

Table 3.9: Summary statistics.

Metric Mean Std. Dev. 25% 50% 75% Max
node_load15 14.06 46.44 2.00 12.85 16.00 24,182.98
node_load5 14.10 51.03 2.00 13.06 16.02 27,593.61
node_load1 14.11 53.44 1.95 13.43 16.00 27,885.24
node_memory
Active_bytes

1.25× 1010 2.97× 1010 1.56× 109 4.80× 109 1.32× 1010 2.15× 1012

3.2.1 Node Memory Active

The node_memory_Active_bytes metric, representing active memory bytes, averaged around

12.51 TB. The standard deviation of 29.68 TB indicates a wide spread in memory usage,

ranging from a minimum of 23.95 MB to a substantial 2.15 PB.

Analysis: The wide range and high standard deviation in active memory usage suggest

that there are nodes with vastly different memory requirements. This could indicate a

37

heterogeneous workload or possibly point to specific nodes that are either underutilized

or overburdened. The extreme values may warrant further investigation for anomalies or

optimization opportunities.

3.2.2 Node Load Over Time

• 15 minutes (node_load15): The mean load was 14.06, with a standard deviation

of 46.44. The load values ranged from a minimum of 0.01 to a maximum of 24182.98.

• 5 minutes (node_load5): The average load over this interval was 14.10, with a

standard deviation of 51.03. The observed load values spanned from 0.01 to 27593.61.

• 1 minute (node_load1): The immediate load average was 14.11, with a standard

deviation of 53.44. The highest observed value was 27885.24.

Analysis: The high standard deviation and wide range suggest significant variabil-

ity among nodes. Nodes with extremely high or low values could be experiencing

issues or may be candidates for resource reallocation.

3.3 Anomaly Analysis

After applying the previously mentioned thresholds to the Additional PROMETHEUS

dataset, a total of 3,814,028 anomalies were identified. This represents approximately

2.91% of the total data points in this dataset. The standard deviation of 0.17 suggests

that these anomalies are not uniformly distributed, either across nodes or temporally.

Figure 3.9 presents a heatmap encapsulating all the time series data from the Additional

PROMETHEUS dataset, aggregated on a daily basis. The x-axis represents the date, while

the y-axis denotes the names of the nodes, specifically the days. In the heatmap, the color

of each cell represents the level of anomalies detected for a particular node on a given day.

Blue signifies a low level of anomalies, yellow indicates a medium level, and a deep, intense

red represents a high number of anomalies, signaling a day with more irregularities in the

node’s operation.

3.4 Time Block Analysis

In the context of the Additional PROMETHEUS dataset, the continuity and distribution

of time blocks remain a significant aspect of our analysis. As visualized in Figure 3.9, the

presence of blue color signifies that most of the data for that day is continuous. On the

38

12-31 01-05 01-10 01-15 01-20 01-25 01-30 02-04 02-09 02-14 02-19 02-24 02-29 03-05 03-10 03-15 03-20 03-25 03-30
Date (MM-DD)

r10n1
r10n13
r10n17
r10n20
r10n24
r10n28
r10n31

r10n6
r11n1

r11n13
r11n17
r11n20
r11n24
r11n28
r11n31

r11n6
r12n1

r12n13
r12n17
r12n20
r12n24
r12n28
r12n32

r12n7
r13n10
r13n14
r13n18
r13n21
r13n25
r13n29
r13n32

r13n7
r14n10
r14n14
r14n18
r14n21
r14n25
r14n29
r14n32

r14n7
r15n10
r15n14
r15n18
r15n21
r15n25
r15n29
r15n32

r15n7
r25n10
r25n14
r25n18
r25n22
r25n26

r25n3
r25n4
r25n8

r26n12
r26n16

r26n2
r26n23
r26n27
r26n30

r26n5
r26n9

r27n13
r27n17
r27n20
r27n24
r27n28
r27n31

r27n7

No
de

Low Medium High
Anomaly Level

Figure 3.9: Time-series heatmap with anomalies for the additional PROMETHEUS dataset,
blue indicates low anomaly level, yellow indicates medium and red indicates high.

39

0 500 1000 1500 2000 2500
Data Break Duration (Sec)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
De

ns
ity

Figure 3.10: Densityplot of data break duration for the 2020 PROMETHEUS dataset.

other hand, white areas denote days where the majority of the data collection experienced

interruptions.

The month-wise breakdown of interruptions, as shown in Table 3.10, revealed that Jan-

uary 2020 experienced the highest number of interruptions, affecting 283 nodes. The aver-

age interruption duration was 6272.3 seconds, with the longest interruption lasting 2249625

seconds and the shortest lasting 45 seconds. The node with the longest interruption time

was r12n30, while the node with the shortest interruption time was r10n4.

Table 3.10: Combined breakdown and anomaly data.

Month Breakdown Count Affected Node Count Anomaly Count
2022-06 287 280 25,637
2022-07 5479 280 437,003
2022-08 1513 319 617,376
2022-09 2763 319 146,964
2022-10 2053 319 1,449,874
2022-11 1922 318 881,725

The majority of interruptions, approximately 51.43%, lasted between 465 and 825 sec-

40

onds. These interruptions can potentially impact the performance of unsupervised anomaly

detection models, especially those sensitive to the temporal sequence of the data, such as

LSTM autoencoders. Given the frequency of data collection in this dataset, most inter-

ruptions are too long to be filled using interpolation methods. For models that are not

sensitive to the temporal sequence of the data, these interruptions can be ignored. How-

ever, for models that are sensitive to the temporal sequence of the data, it is crucial to

ensure that the input data is from a continuous time block.

4 Comparison First and Additional Prometheus Datasets

Upon closely examining both datasets, several key differences and similarities emerge:

4.1 Duration and Size

The first dataset spans a longer duration of 144 days, 19 hours, and 20 minutes, while the

additional dataset covers 92 days, 22 hours, and 59 minutes. This difference in duration

might influence the total number of anomalies detected in each dataset. Additionally, there

is some slight difference in the number of nodes (343 in the first dataset and 341 in the

additional dataset).

4.2 Node Memory Active

The additional dataset exhibits a higher average active memory bytes (12.51 TB) com-

pared to the first dataset (11.25 TB). This represents an increase of approximately 11.2%.

This could indicate more intensive memory usage patterns in the period covered by the

additional dataset.

4.3 Anomaly Rate

Both datasets have a similar anomaly rate, with the first dataset at 2.88% and the ad-

ditional dataset slightly higher at 2.91%. This consistency suggests that the anomaly

detection thresholds applied were effective across different time periods and data densities.

4.4 Average Interruption Duration

The additional dataset had a slightly longer average interruption duration (6272.3 seconds)

compared to the first dataset (6149 seconds). This could suggest more prolonged periods

of system downtime or data collection issues during the additional dataset’s timeframe.

41

Both datasets, while sourced from the same computing cluster and collected using the

PROMETHEUS system, exhibit unique characteristics. These differences underscore the

dynamic nature of HPC systems and the challenges in ensuring consistent data collection

and analysis.

5 Summary

In this chapter, we embarked on a comprehensive journey into the realm of data character-

ization and integration. The essence of our exploration revolved around understanding the

intricacies of our dataset, its nuances, and the inherent patterns that could be leveraged

for effective anomaly detection.

The process of data characterization was not merely about understanding the statistical

properties of the data but delving deeper into its structure, relationships, and potential sig-

nificance in the broader context of our research. We meticulously analyzed various features,

understanding their distributions, correlations, and potential impact on the outcomes of

our anomaly detection models.

Integration, on the other hand, was about ensuring that our dataset was cohesive, con-

sistent, and ready for the subsequent stages of our research. One of the pivotal steps in

this phase was the marking of anomalies based on certain thresholds. This step, although

seemingly straightforward, was crucial in setting the stage for our detection algorithms,

ensuring that they had a clear benchmark against which to measure deviations.

In summary, this chapter laid the groundwork for our research, ensuring that we had a

robust, well-understood, and effectively integrated dataset to work with.

42

Chapter 4

Data Integration

This chapter is dedicated to addressing Research Question 2: "How can node data be inte-

grated with job data for the purpose of anomaly detection?" We will explore the methodolo-

gies and techniques employed for integrating SLURM job dataset with the PROMETHEUS

time-series dataset.

1 Integration Background

The integration of the SLURM job dataset and the PROMETHEUS time-series dataset is

a key step in this study. This integration aims to leverage the job-related information in the

SLURM dataset to enhance the anomaly detection performance of the machine learning

models. This is one of the innovative points of this thesis, as most existing studies do not

incorporate job information into anomaly detection.

The motivation for integrating these two datasets is twofold. First, the SLURM dataset

contains valuable information about the jobs running on the nodes, including whether a

job was executed successfully or not. This information can potentially help the machine

learning models to better identify anomalies. Second, the integration of these two datasets

allows us to create a more comprehensive view of the system’s operation, combining both

the time-series data from the PROMETHEUS dataset and the job-related data from the

SLURM dataset. Figure 4.1 shows an example of data integration. The integration process

involves aligning the time-series data from the PROMETHEUS dataset with the job data

from the SLURM dataset. For each job in the SLURM dataset, the corresponding time-

series data from the PROMETHEUS dataset within the job’s start and end times are

selected. The node names in the two datasets are also matched to ensure that the data

from the same node are integrated.

43

Start Time:
2021-12-26 22:06:30

Node:
r1n1

End Time:
2021-12-27 22:06:30

Node:
r1n1

Timestamp
2021-12-26 22:07:30

...

Timestamp
2021-12-27 22:06:30

Timestamp
2021-12-26 22:07:00

Timestamp
2021-12-26 22:06:30

Node
r1n1

Node
r1n1

Node
r1n1

Node
r1n2

Node
r1n2

Timestamp
2021-12-26 22:06:30

Node: r1n1
jobID: [001,002,003]

jobCount: 3
completedJobs: 2

Timestamp
2021-12-26 22:07:00

Node: r1n1
jobID: [001,002,003]

jobCount: 3
completedJobs: 2

Timestamp
2021-12-26 22:07:30

Node: r1n1
jobID: [001,002,003]

jobCount: 3
completedJobs: 2

Timestamp
2021-12-26 22:06:30

Node: r1n1
jobID: [001,002,003]

jobCount: 3
completedJobs: 2

...

Slurm Dataset Prometheus Dataset Integrated Dataset

Figure 4.1: Example of the process of data integration.

44

0.0 0.2 0.4 0.6 0.8 1.0
Success Rate

0

2

4

6

8

10

12

14
De

ns
ity

Figure 4.2: Success rate density plot.

One of the challenges encountered during the integration process is the complex structure

of the node information in the SLURM dataset. The node information can appear in

several formats, such as single letters and numbers (e.g., r10n19), letters and numbers

with brackets and numbers (e.g., r12n[3,9]), and letters and numbers with brackets and

range numbers (e.g., r15n[18-24,26,28,31]). To handle this complexity, a Python function

was written to parse the node information and standardize it into a consistent format.

The integration process also involves the addition of new features to the original PROMETHEUS

dataset. Three new features were added, representing the number of jobs running, the num-

ber of jobs completed, and the success rate of the running nodes in the last 30 seconds.

These features provide additional context about the system’s operation and can potentially

help the machine learning models to better identify anomalies.

The integrated dataset will be used in the subsequent machine learning model training

and evaluation. The aim is to verify whether the integration of job data can enhance the

performance of the machine learning models in anomaly detection.

45

2 Integrated Data Analysis

The integrated dataset offers a unique perspective by combining both time-series metrics

and job-related information. One of the key insights derived from the integrated data

pertains to nodes that run multiple jobs simultaneously.

For nodes that are executing multiple tasks concurrently, the average success rate is

observed to be 0.49. This indicates that, on average, about half of the jobs on these nodes

are successful. However, this average figure might be misleading when we delve deeper into

the distribution of success rates.

Figure 4.2 was constructed to visualize the distribution of success rates for these nodes.

The y-axis represents the number of nodes, while the x-axis spans from 0 to 100, indicating

the success rate in percentage terms. Intriguingly, the density plot reveals a bimodal

distribution. The data predominantly clusters around the two extremes of the success rate

spectrum. This means that nodes tend to either have a very high success rate (close to

100%) or a very low success rate (close to 0%).

Such a distribution suggests that nodes often operate in a binary mode: they either

execute most of their jobs successfully or face consistent failures across the board. This

insight is crucial as it underscores the importance of understanding the underlying reasons

for such consistent successes or failures. It could be attributed to hardware reliability,

software configurations, or even the nature of the jobs being executed.

This bimodal distribution also has implications for anomaly detection. Nodes that con-

sistently fail might be easier to flag as anomalous. However, discerning anomalies in nodes

that have a mixed bag of successes and failures might be more challenging and would

require models to consider more nuanced patterns and dependencies.

In summary, the integrated data analysis sheds light on the operational patterns of

nodes, emphasizing the need for a more granular understanding of success rates and their

implications for anomaly detection.

3 Summary

In this chapter, we have explored the critical role of data integration in enhancing the

performance of machine learning models for anomaly detection in HPC systems. The

integration of the SLURM job dataset with the PROMETHEUS time-series dataset serves

as an innovative approach, offering a more comprehensive view of the system’s operation.

46

This integration not only enriches the feature set but also provides valuable context that

can aid in more accurate anomaly detection.

We also delved into the complexities and challenges of the integration process, including

the need for feature engineering and the standardization of node information. The addition

of new features, such as the number of running jobs, completed jobs, and success rates,

further enriches the dataset and provides additional dimensions for analysis.

Our integrated data analysis revealed intriguing patterns, particularly the bimodal distri-

bution of success rates among nodes running multiple jobs. Overall, the integrated dataset

serves as a robust foundation for the subsequent stages of machine learning model training

and evaluation, aiming to verify the effectiveness of incorporating job-related information

into anomaly detection.

4 Unsupervised Machine Learning Models for Anomaly De-
tection

This section aims to provide an in-depth discussion of the unsupervised machine learning

models used for anomaly detection in HPC clusters. Specifically, we will delve into the

intricacies of four key models: Isolation Forest (iForest), Autoencoder, Long Short-Term

Memory Autoencoder (LSTM-Autoencoder), and K-Means clustering. Each model will be

evaluated based on its performance in detecting anomalies.

4.1 Isolation Forest (iForest)

Isolation Forest, commonly abbreviated as iForest, is an anomaly detection algorithm that

operates on the principle of isolating anomalies rather than profiling normal data points.

The core idea behind this approach is that anomalies are few and different, which should

make them easier to isolate compared to normal points [11].

Given a dataset D of size N , the algorithm works by constructing an ensemble of isolation

trees (iTrees). Each tree is constructed as follows:

1. If the number of samples in D is less than a threshold e, or the tree depth reaches a

limit l, the tree construction ends.

2. Randomly select a feature q and a split value p between the minimum and maximum

values of q.

47

3. Partition the dataset into two subsets D1 and D2 such that D1 contains all samples

with values below p for feature q, and D2 contains the rest.

4. Recursively repeat the above steps for D1 and D2.

The anomaly score s(x, n) for a data point x in a tree of size n is defined as [11]:

s(x, n) = 2
−E(h(x))

c(n)

Where E(h(x)) is the average path length of unsuccessful searches in a Binary Search

Tree, and c(n) is the average path length of unsuccessful search in a BST. The score is a

value between 0 and 1, with larger scores indicating that x is more likely to be an anomaly.

The key advantages of iForest include:

• Efficiency: iForest has a linear time complexity with a low constant and a low

memory requirement.

• Scalability: The algorithm is particularly suited for high-dimensional datasets.

• Interpretability: The anomaly score produced by iForest can be traced back to the

structure of the iTrees, providing insights into the reasons for a particular score.

4.2 LSTM Autoencoder

Long Short-Term Memory (LSTM) networks, a subtype of Recurrent Neural Network

(RNN), are particularly adept at handling sequences due to their internal memory struc-

tures. An autoencoder, on the other hand, is designed for unsupervised learning of efficient

codings. The primary objective of an autoencoder is to learn a representation (encoding)

for a set of data, typically for dimensionality reduction. When combined, an LSTM Au-

toencoder becomes a powerful tool for time series anomaly detection.

The LSTM cell is defined by the following equations [7]:

ft = σ(Wf · [ht−1, xt] + bf) (Forget Gate)

it = σ(Wi · [ht−1, xt] + bi) (Input Gate)

C̃t = tanh(WC · [ht−1, xt] + bC) (New Cell State)

Ct = ft × Ct−1 + it × C̃t (Final Cell State)

ot = σ(Wo · [ht−1, xt] + bo) (Output Gate)

ht = ot × tanh(Ct) (Hidden State)

48

Where: - ft, it, ot are the forget, input, and output gates respectively. - ht is the hidden

state. - Ct is the cell state. - W and b are the weights and biases for each gate. - σ is the

sigmoid activation function. - × denotes element-wise multiplication.

The LSTM Autoencoder structure can be summarized as:

1. Encoding: The LSTM layers capture the temporal patterns in the data. This is

achieved by the LSTM’s ability to remember long-term dependencies, which allows

it to recognize patterns over extended sequences.

2. Bottleneck: A dense layer that provides a compressed representation of the input

data, encapsulating its most crucial features.

3. Decoding: The LSTM layers in the decoder aim to reconstruct the original data

from the compressed representation.

The reconstruction error, typically the Mean Squared Error (MSE) between the original

and the reconstructed sequences, serves as a metric for anomaly detection:

MSE =
1

N

N∑
i=1

(xi − x̂i)
2

Where: - xi is the original data point. - x̂i is the reconstructed data point. - N is the

total number of data points.

A significantly higher reconstruction error for a new sequence, compared to the training

sequences, indicates a potential anomaly.

4.3 Autoencoder

Autoencoders are a type of artificial neural network used primarily for unsupervised learn-

ing tasks. Their main objective is to learn a compressed, distributed representation (encod-

ing) of the input data, and then use this representation to reconstruct the original data as

closely as possible. The architecture of an autoencoder comprises two main parts: an en-

coder and a decoder. The encoder compresses the input into a latent-space representation,

and the decoder reconstructs the original data from this representation [6].

Mathematically, given an input x, the encoder maps it to a latent representation y

through a function f :

y = f(x)

49

The decoder then maps y back to the reconstructed input x̂ through a function g:

x̂ = g(y)

The primary goal of an autoencoder is to minimize the difference between the original

input x and its reconstruction x̂. This difference is often measured using a loss function

like the mean squared error.

Autoencoders have found applications in various domains, including dimensionality re-

duction, feature learning, and anomaly detection. Their ability to learn efficient represen-

tations from data without the need for explicit labels makes them particularly useful in

unsupervised learning scenarios.

4.3.1 KMeans Clustering

KMeans is a popular partitioning method that divides a dataset into K distinct, non-

overlapping subsets (or clusters). The goal of the algorithm is to partition the data points

into clusters such that the sum of the squared distances between the data points and the

centroid of their respective clusters is minimized. Mathematically, the objective function

J to be minimized is [22]:

J =
n∑

i=1

K∑
j=1

wij∥xi − cj∥2 (4.1)

Where:

• xi is the ith data point.

• cj is the centroid of the jth cluster.

• wij is an indicator variable that is 1 if xi is in cluster j and 0 otherwise.

• ∥·∥ denotes the Euclidean distance.

The algorithm iteratively refines the position of the centroids. The steps are as follows:

1. Initialize K centroids randomly.

2. Assign each data point to the nearest centroid.

3. Recalculate the centroid of each cluster as the mean of all the data points assigned

to that cluster.

50

4. Repeat steps 2 and 3 until the centroids no longer change significantly or a stopping

criterion is met.

One of the challenges with KMeans is the selection of the appropriate number of clusters,

K. Various methods, such as the elbow method, can be used to determine an optimal

value for K. Another challenge is that KMeans can be sensitive to the initial placement

of centroids. To mitigate this, the algorithm can be run multiple times with different

initializations and the best result in terms of within-cluster sum of squares can be chosen.

KMeans clustering has been widely used in various domains, including image segmenta-

tion, customer segmentation, and anomaly detection. Its simplicity and efficiency make it

a popular choice for clustering tasks, especially when the data distribution is well-defined

and the number of clusters is known a priority [22].

5 Evaluation Metrics

This section will discuss the evaluation metrics used in our study, including Accuracy,

Precision, Recall, F1-Score, and ROC AUC.

5.1 Accuracy

Accuracy is a commonly used metric for evaluating classification models but has its limita-

tions in the context of unsupervised anomaly detection, where the goal is to identify rare

and previously unseen anomalous patterns in data.

Mathematically, accuracy A can be defined as [2]:

A =
TP + TN

TP + TN + FP + FN
(4.2)

Where:

• TP is the number of True Positives

• TN is the number of True Negatives

• FP is the number of False Positives

• FN is the number of False Negatives

51

In anomaly detection, TP and TN refer to the number of anomalies correctly identified

and the number of normal data points correctly identified, respectively. The denominator

represents the total number of predictions made or the size of the dataset.

While accuracy A provides a general sense of the model’s performance, it may not always

be the ideal metric, especially in datasets with imbalanced class distributions. Therefore,

it’s crucial to evaluate it alongside other metrics such as precision, recall, and the F1-score,

to understand the true capabilities of the model.

In our experiments, we use accuracy as a baseline metric but also consider other metrics

due to the challenges posed by imbalanced datasets and the nature of unsupervised anomaly

detection.

5.2 Precision

Precision, also known as the positive predictive value, is a measure of the accuracy of the

positive predictions made by a model. In the context of anomaly detection, it quantifies

how many of the data points that were predicted as anomalies were actual anomalies. Given

the unsupervised nature of anomaly detection, where labels are often not available, a high

precision indicates that the model is reliable in its anomaly predictions and minimizes the

risk of false alarms.

Mathematically, precision is defined as [15]:

Precision(P) =
TP

TP + FP
(4.3)

Where:

• True Positives (TP): The number of actual anomalies correctly identified by the

model.

• False Positives (FP): The number of normal data points incorrectly identified as

anomalies by the model.

In the realm of unsupervised anomaly detection, precision becomes particularly signif-

icant. Given that anomalies are rare, a model that raises too many false alarms (low

precision) can lead to unnecessary investigations, wasted resources, and reduced trust in

the system. Therefore, while it’s essential to detect genuine anomalies, it’s equally cru-

cial to ensure that the number of false positives is kept to a minimum. This balance is

often a challenging aspect of anomaly detection, making precision an invaluable metric for

evaluating the performance of detection models [15].

52

5.3 Recall

Recall, often termed as Sensitivity, measures the proportion of actual anomalies that the

model correctly identifies. In the context of anomaly detection, it quantifies the model’s

ability to capture all potential anomalies, ensuring that genuine threats or issues are not

overlooked.

Mathematically, recall is defined as [15]:

Recall(R) =
TP

TP + FN
(4.4)

Where:

• True Positives (TP): The number of actual anomalies correctly identified by the

model.

• False Negatives (FN): The number of actual anomalies that the model failed to

identify.

In unsupervised anomaly detection, achieving a high recall is of paramount importance.

Given the rarity of anomalies and the potential severity of their implications, it’s crucial

that the model detects as many of them as possible. A model with low recall might overlook

genuine anomalies, leading to potential undetected threats or issues. However, it’s essential

to note that there’s often a trade-off between precision and recall. A model that is too

aggressive in flagging anomalies might achieve a high recall but at the cost of a reduced

precision, leading to many false positives [15].

5.4 F1-Score

The F1-Score is a metric that combines both precision and recall into a single value,

providing a more holistic view of a model’s performance, especially when the distribution

of classes is imbalanced, as is often the case in anomaly detection.

Mathematically, the F1-Score is defined as the harmonic mean of precision and recall [17]:

F1-Score(F1) = 2× P ×R

P +R
(4.5)

The F1-Score ranges between 0 and 1, where a score of 1 indicates perfect precision and

recall, and a score of 0 indicates that either the precision or the recall is zero.

In the context of unsupervised anomaly detection, where anomalies are rare and both

false positives and false negatives can have significant implications, the F1-Score becomes

53

particularly valuable. It ensures that the model is not biased towards just precision or

recall but strikes a balance between the two. A high F1-Score indicates that the model has

achieved a good trade-off between identifying genuine anomalies and not raising too many

false alarms [?].

5.5 ROC AUC

The Receiver Operating Characteristic (ROC) curve is a graphical representation that

illustrates the diagnostic ability of a binary classifier as its discrimination threshold varies.

The ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR)

at various threshold settings.

Mathematically, the TPR and FPR are defined as [4]:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

The Area Under the ROC Curve (AUC) provides a scalar value that quantifies the

overall ability of the model to discriminate between the positive and negative classes. An

AUC of 1.0 indicates perfect classification, while an AUC of 0.5 suggests that the model’s

performance is no better than random guessing.

In the context of unsupervised anomaly detection, the ROC AUC becomes particularly

crucial. Given that anomalies are rare events, the class distribution is typically highly

imbalanced. In such scenarios, traditional accuracy can be misleading, and the ROC AUC

offers a more informative metric. A high AUC indicates that the model can effectively dis-

tinguish between normal and anomalous data points, irrespective of the specific threshold

set for classification.

6 Experiment 1: Model Performance on the Continuous Time-
Series Dataset

The first experiment aims to investigate the impact of using continuous versus non-continuous

time-series data on the performance of the machine learning models.The primary objective

of the first experiment was to assess the performance of various anomaly detection models

on a specific node, ‘r11n14‘, within a defined time range: from ‘2022-10-04 19:20:30‘ to

54

‘2022-10-17 16:23:00‘. This time range was selected due to its continuous nature, sub-

stantial data volume (comprising 29,451 rows), and a moderate anomaly proportion of

0.33.

6.1 Parameter Setting

• iForest: The Isolation Forest model was initialized with a contamination parameter

set to 0.33. This value was determined based on the known proportion of anomalies

in the dataset. The intention was to ensure that the model had an appropriate

sensitivity level to detect outliers without generating an excessive number of false

positives.

• KMeans: The KMeans clustering algorithm was employed with the number of clus-

ters set to 2. This binary clustering approach was chosen under the assumption that

the data primarily consists of two groups: normal and anomalous. Anomalies were

identified by calculating the distance of data points to the cluster centers. Points

farther from the centroids than the average distance were classified as anomalies.

• Autoencoder: A standard autoencoder was utilized with an encoding dimension

of 14. This dimensionality was selected to capture a significant portion of the data

variance while enabling the model to identify anomalies based on reconstruction

error. The model was trained for 30 epochs to ensure convergence. Anomalies were

detected by comparing the reconstruction error, specifically the mean squared error

(MSE), between the original and reconstructed data. The threshold for anomaly

detection was set at the 67% quantile of the MSE, aiming to identify the top 33% of

data points with the highest reconstruction errors as anomalies.

• LSTM Autoencoder: The LSTM Autoencoder was designed to handle time-series

data, with a sequence length of 10 time steps. The model architecture consisted of two

LSTM layers for encoding, followed by two LSTM layers for decoding. The model

was trained using the mean squared error (MSE) as the loss function. Anomalies

were identified based on the reconstruction error between the original and predicted

sequences. The threshold for anomaly detection was set at the 67th percentile of the

MSE, targeting the top 33% of sequences with the highest reconstruction errors.

55

iForest KMeans Autoencoder LSTM Autoencoder
Models

0.0

0.2

0.4

0.6

0.8

M
et

ri
cs

 (
as

 fr
ac

ti
on

s)
Accuracy
Precision
Recall
F1-Score
ROC AUC

Figure 4.3: Experiment 1 results.

6.2 Results and Analysis

The results of the anomaly detection models applied to the dataset are summarized in

Table 4.1 and Figure 4.3. Each model’s performance metrics, including accuracy, precision,

recall, F1-score, true positives, and ROC AUC score, are presented.

Table 4.1: Experiment 1 results.

Model Accuracy Precision Recall F1-Score True Positives ROC AUC
iForest 73% 60% 59% 59% 7252 0.6952
KMeans 79% 80% 50% 61% 6110 0.7184
Autoencoder 63% 45% 44% 45% 5454 0.5855
LSTM Autoencoder 95% 93% 92% 92% 11264 0.9302

From the results, it can be observed that the LSTM Autoencoder outperforms the other

models in terms of accuracy, precision, recall, and F1-score. The iForest model, while

achieving a reasonable accuracy, has a lower precision and recall compared to the LSTM

Autoencoder. The KMeans model shows a high precision but a relatively lower recall,

indicating that it might be missing out on detecting some anomalies. The Autoencoder

has the lowest performance metrics among the models, suggesting that it might not be the

best fit for this particular dataset.

The ROC AUC score, which measures the model’s ability to distinguish between the nor-

56

mal and anomalous data points, is highest for the LSTM Autoencoder, further emphasizing

its superior performance.

In terms of true positives, the LSTM Autoencoder successfully detects 11,264 anomalies,

which is significantly higher than the other models. This indicates that the LSTM Au-

toencoder is more sensitive to anomalies in the dataset and can detect them with higher

accuracy.

Overall, the results suggest that for this specific dataset and the features used, the LSTM

Autoencoder is the most suitable model for anomaly detection. Future work could explore

optimizing the other models or introducing new features to improve their performance.

7 Experiment 2: Model Performance on the Entire PROMETHEUS
Dataset

The second experiment was designed to evaluate the performance of anomaly detection

models on the entire dataset that encompasses all nodes. This approach contrasts with

the first experiment, where a specific node and time range were selected. Due to the

discontinuity in the dataset’s timestamps, the LSTM Autoencoder was not tested in this

experiment. This experiment is designed to provide a comprehensive assessment of the

models’ ability to detect anomalies in a large, complex dataset.

7.1 Parameter Setting

• iForest: The Isolation Forest model was initialized with a contamination parameter

set to 0.028. This value was chosen based on the expected proportion of anomalies

in the dataset, ensuring that the model is sensitive enough to detect outliers while

minimizing false positives.

• KMeans: The KMeans clustering algorithm was employed with the number of clus-

ters set to 2. This setting was chosen because the data is expected to have two

primary groups: normal and anomalous. Anomalies were identified based on the

distance of data points to the cluster centers, with the assumption that anomalies

would be farther from the cluster centroids than regular data points.

• Autoencoder: A standard autoencoder was utilized with an encoding dimension

of 14. This dimensionality was selected to capture the majority of the data variance

while still enabling the model to detect anomalies based on reconstruction error. The

model was trained for 10 epochs to ensure convergence without overfitting. Anomalies

57

Autoencoder KMeans iForest
Models

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ri
cs

 (
as

 fr
ac

ti
on

s)
Accuracy
Precision
Recall
F1-Score
ROC AUC

Figure 4.4: Experiment 2 results.

were detected based on the reconstruction error, specifically the mean squared error

(MSE), between the original and reconstructed data. The threshold for anomaly

detection was set at the 97.2% quantile of the MSE, aiming to capture the top 2.8%

of data points with the highest reconstruction errors as anomalies.

7.2 Results and Analysis

In the second experiment, we evaluated the performance of various anomaly detection

models across the entire dataset and all nodes. The results are summarized in Table 4.2

and Figure 4.4.

Table 4.2: Experiment 2 results.

Model Accuracy Precision Recall F1-Score True Positives ROC AUC
Autoencoder 95% 17% 17% 17% 594,225 0.5716
KMeans 75% 6% 55% 11% 1,972,033 0.6530
iForest 97% 54% 53% 53% 1,876,920 0.7571

The results from Experiment 2 offer a diverse range of performances across the tested

models. The Autoencoder, despite its high accuracy, showed moderate ability in distin-

guishing between normal and anomalous data points with an ROC AUC score of 0.5716.

KMeans, although less precise, demonstrated a higher recall and a slightly better ROC

58

AUC score. The iForest model emerged as the most effective, with strong precision, recall,

and an ROC AUC score of 0.7571.

This leads us to an important consideration regarding the role of training iterations,

particularly for deep learning models like the Autoencoder. Due to the computational

constraints and the sheer volume of data, the Autoencoder was trained for only 5 iterations.

This limited training likely hindered the model’s ability to fully converge and capture

the underlying patterns in the data. In contrast, in Experiment 1, the Autoencoder’s

performance peaked around 20 iterations, suggesting that more extensive training could

potentially yield better results.

The limited training iterations for the Autoencoder highlight the challenges posed by the

dataset’s size and computational constraints. It raises questions about the model’s ability

to generalize well when not adequately trained, which could be a focus for future work.

In summary, Experiment 2 revealed that while some models like iForest performed ex-

ceptionally well, others like the Autoencoder could benefit from more extensive training.

The varying performances across models underscore the complexity of anomaly detection

and the need for careful consideration of model training and computational resources

8 Experiment 3: Model Performance on the Integrated Dataset

The third experiment aims to evaluate and compare the performance of the selected ma-

chine learning models on the integrated PROMETHEUS and SLURM dataset. This exper-

iment is designed to assess whether integrating job-related information from the SLURM

dataset with the time-series data from the PROMETHEUS dataset can enhance the mod-

els’ ability to detect anomalies.

8.1 Parameter Setting

In this experiment, the parameters from the first experiment are retained. However, the

dataset is augmented with the following job-related metrics from the SLURM dataset:

• Number of tasks running in the past 30 seconds.

• Number of tasks that successfully completed in the past 30 seconds.

• Success rate of tasks in the past 30 seconds.

The hypothesis is that these additional metrics might provide a richer context for the

models, potentially leading to improved anomaly detection performance. By incorporating

59

iForest KMeans Autoencoder LSTM Autoencoder
Models

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
M

et
ri

cs
 (

as
 fr

ac
ti

on
s)

Accuracy
Precision
Recall
F1-Score
ROC AUC

Figure 4.5: Experiment 3 results.

these job-related metrics, this experiment seeks to understand if such auxiliary information

can offer more insights into the system’s behavior and enhance the anomaly detection

process.

8.2 Results and Analysis

The third experiment aimed to integrate job-related information from the SLURM dataset

to enhance anomaly detection capabilities. The performance metrics of various models

on this augmented dataset are presented in Table 4.3 and Figure 4.5. These metrics are

also compared with the models’ performance in Experiment 1 to assess the impact of the

additional metrics.

Table 4.3: Experiment 3 results.

Model Accuracy Precision Recall F1-Score True Positives ROC AUC
iForest 66% 49% 49% 49% 4,795 0.6185
KMeans 79% 80% 49% 61% 4,854 0.7166
Autoencoder 54% 31% 30% 30% 2,966 0.4789
LSTM Autoencoder 68% 51% 51% 51% 4,999 0.6341

The results of Experiment 3 reveal a nuanced picture. While some models like KMeans

and LSTM Autoencoder maintained their performance levels, others like iForest and the

standard Autoencoder experienced declines in various metrics. This suggests that the

60

additional job-related metrics did not universally improve the models’ anomaly detection

capabilities.

Delving deeper into the complexities of data integration, especially in the context of

anomaly detection, we find that the SLURM dataset introduces a unique set of challenges.

It provides a macroscopic view of task statuses across nodes, affecting the time series of

all nodes involved in a task when a failure occurs. However, anomalies at the node level

are often transient and localized, which may not necessarily impact the entire task or all

nodes involved. This discrepancy introduces noise into the model, potentially affecting its

performance.

The integration of SLURM data, therefore, appears to be a double-edged sword. On one

hand, it provides additional context that could be valuable for anomaly detection. On the

other hand, the granularity and nature of the data might introduce noise, thereby affecting

the model’s performance adversely.

In summary, while the integration of job-related metrics from the SLURM dataset adds

another layer of complexity, it does not consistently enhance the performance of the models

tested. Future work could explore alternative methods of integrating these metrics or

consider other auxiliary information sources to improve model performance.

9 Experiment 4: Model Generalization Across Different Datasets

The fourth experiment is designed to evaluate the generalization capability of the models

trained on the data from Experiment 1. The primary objective is to assess how well the

models, which were trained on the ‘r11n14‘ node data from the PROMETHEUS dataset,

perform on a different node (‘r14n17‘) from the Additional PROMETHEUS Dataset. This

experiment will provide insights into the models’ ability to detect anomalies in datasets

they haven’t been trained on, which is crucial for real-world applications where the model

might be deployed on unseen data.

9.1 Experiment Design

The data for this experiment is sourced from the ‘r14n17‘ node of the Additional PROMETHEUS

Dataset, spanning from ‘Mar 02 2020 13:10:30‘ to ‘Mar 17 2020 20:51:15‘. This dataset was

chosen due to its continuous nature, substantial data volume, and an anomaly proportion

similar to that of Experiment 1.

61

iForest KMeans Autoencoder LSTM Autoencoder
Models

0.0

0.2

0.4

0.6

0.8

1.0
M

et
ri

cs
 (

as
 fr

ac
ti

on
s)

Accuracy
Precision
Recall
F1-Score
ROC AUC

Figure 4.6: Experiment 4 results.

Instead of training the models from scratch, this experiment leverages the models that

were previously trained on the ‘r11n14‘ node data from Experiment 1. This approach

allows for a direct assessment of the models’ generalization capabilities.

This experiment is pivotal in understanding the robustness of the models and their adapt-

ability to different datasets. It will shed light on the potential need for model retraining

or fine-tuning when transitioning between datasets with similar characteristics.

9.2 Results and Analysis

The results of Experiment 4, where models trained on the ‘r11n14‘ node data from Ex-

periment 1 were tested on the ‘r14n17‘ node data from the Additional PROMETHEUS

Dataset, are presented in Table 4.4 and Figure 4.6

Table 4.4: Experiment 4 results.

Model Accuracy Precision Recall F1-Score True Positives ROC AUC
Autoencoder 74% 62% 60% 61% 18,114 0.7058
iForest 37% 35% 100% 52% 30,136 0.5197
KMeans 82% 79% 65% 72% 19,714 0.7821
LSTM Autoencoder 82% 74% 72% 73% 21,653 0.7951

Upon comparing the results from Experiment 4 with those of Experiment 1, several

observations can be made:

62

• The Autoencoder in Experiment 4 achieved an accuracy of 0.74, which is an im-

provement from the 0.63 in Experiment 1. The precision, recall, and F1-Score also

saw improvements, suggesting that the model trained on the ‘r11n14‘ node data has

a good generalization capability when tested on the ‘r14n17‘ node data.

• The iForest model’s performance dropped significantly in Experiment 4, with an

accuracy of only 0.37, compared to 0.73 in Experiment 1. This indicates that the

model might be overfitting to the specific characteristics of the ‘r11n14‘ node data

and struggles to generalize to the ‘r14n17‘ node data.

• The KMeans model’s accuracy in Experiment 4 is 0.82, a slight improvement from

the 0.79 in Experiment 1. The precision and recall also saw improvements, suggesting

that KMeans has a stable clustering mechanism that works similarly across different

datasets with comparable characteristics.

• The LSTM Autoencoder achieved an accuracy of 0.82 in Experiment 4, which

is a decrease from the 0.95 in Experiment 1. However, the precision and recall in

Experiment 4 are slightly lower than in Experiment 1. This indicates that while the

model still generalizes well, there might be specific characteristics in the ‘r14n17‘

node data that the model finds challenging.

In conclusion, while some models like the Autoencoder and KMeans showed promising

generalization capabilities, others like iForest might require fine-tuning or retraining when

transitioning to different datasets.

10 Summary

Throughout this chapter, we systematically explored the performance of various anomaly

detection models across different scenarios and data characteristics within the PROMETHEUS

dataset.

To discern the most robust model from each experiment, the Receiver Operating Charac-

teristic Area Under the Curve (ROC AUC) metric was principally considered. ROC AUC

provides an effective measure that encapsulates both the true positive rate and the false

positive rate, thereby offering a holistic understanding of model performance regardless of

the threshold setting. From each experiment, the model with the highest ROC AUC was

deemed the best performing. Table 4.5 and Figure 4.7 shows the performance metrics of

the best models chosen from each experiment.

63

Table 4.5: Best model comparison across experiments.

Exp. Model Accuracy Precision Recall F1-Score True Positives ROC AUC
1 LSTM Autoencoder 95% 93% 92% 92% 11,264 0.9302
2 iForest 97% 54% 53% 53% 1,876,920 0.7571
3 KMeans 79% 80% 49% 61% 4,854 0.7166
4 LSTM Autoencoder 82% 74% 72% 73% 21,653 0.7951

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Experiments

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ri
cs

 (
as

 fr
ac

ti
on

s)

Model: LSTM Autoencoder Model: iForest Model: KMeans Model: LSTM Autoencoder

Accuracy
Precision
Recall
F1-Score
ROC AUC

Figure 4.7: Experiment results comparison.

In the first experiment, centered around a specific node with continuous time-series

data, comprising 29,451 rows and an anomaly proportion of 33%, the LSTM Autoencoder

emerged as the most proficient model, demonstrating its capability in handling time-series

data with a high proportion of anomalies.

The second experiment expanded the dataset to encompass all nodes, resulting in a

massive data volume of 129,546,553 rows. However, the anomaly proportion significantly

decreased to 2.8%. Despite the absence of LSTM in this experiment, the iForest model

showcased commendable performance, especially considering the vastness of the dataset

and the stark contrast in anomaly proportion compared to the first experiment.

The third experiment aimed to understand the impact of integrating job-related infor-

mation from the SLURM dataset with the PROMETHEUS time-series data. The results

were mixed; while some models maintained their performance, others saw declines, sug-

gesting that the integration of job-related metrics might introduce complexities that not

64

all models can handle effectively.

In the fourth experiment, we applied models trained on the data from the first experiment

to a different dataset: the Additional PROMETHEUS Dataset’s r14n17 node data from

Mar 02 2020 to Mar 17 2020. Among the models tested, the LSTM Autoencoder once again

stood out, achieving commendable performance metrics. This suggests that the LSTM

Autoencoder not only excels in handling time-series data with high anomaly proportions

but also showcases a significant degree of generalizability across datasets. However, when

comparing the performance of other models like iForest and KMeans, it’s evident that

while some models maintain their efficacy across datasets, others might face challenges,

emphasizing the importance of model adaptability.

Across all experiments, the scale of the dataset and the proportion of anomalies play

pivotal roles in influencing model performance. The LSTM Autoencoder consistently

showcased its strength, especially when dealing with time-series data with high anomaly

proportions. On the other hand, the iForest model demonstrated resilience in the second

experiment with a vast dataset but faced challenges in the fourth experiment.

The integration of job-related metrics in the third experiment presented mixed outcomes.

It underscores the notion that while auxiliary data can provide additional context, it also

introduces complexities that can influence model behavior. The fourth experiment fur-

ther emphasized the importance of model generalizability. In essence, while the LSTM

Autoencoder emerged as the most consistent performer across diverse datasets, the ex-

periments highlight the multifaceted nature of anomaly detection. Model performance is

deeply intertwined with data characteristics, scale, and the nature of anomalies present.

65

Chapter 5

Conclusion and Future Work

Throughout this research, we have delved into the complex realm of anomaly detection

within high-performance computing clusters. This journey, although challenging, has been

enlightening, offering invaluable insights into the intricacies of handling large datasets and

detecting anomalies within them.

1 Conclusion

1.1 RQ1: What are the characteristics of HPC Node data and Job Data?

Our in-depth data characterization has provided valuable insights into the structure, rela-

tionships, and inherent patterns within the HPC Node and Job Data.

1.2 RQ2: How can node data be integrated with job data for the purpose
of anomaly detection?

The integration of HPC node data from the PROMETHEUS Dataset with job data from

the SLURM Dataset has been a pivotal aspect of our research. We developed a method

to seamlessly integrate these two types of operational data, thereby providing a more

comprehensive view of the system’s state.

1.3 RQ3: How do various unsupervised machine learning models per-
form in detecting anomalies in large-scale HPC clusters?

Our methodologies, from the use of autoencoders to the application of clustering algo-

rithms, have demonstrated the versatility and depth of our approach. The models were

rigorously evaluated using established metrics, attesting to their effectiveness in anomaly

detection within large-scale HPC clusters.

66

2 Future Work

2.1 Future Work for RQ1

For RQ1, future work could delve into more granular aspects of HPC Node and Job Data

by examining the impact of different types of jobs on node performance. Additionally,

advanced statistical methods could be employed to better understand the underlying dis-

tributions and correlations within the data.

2.2 Future Work for RQ2

For RQ2, which focused on the integration of node and job data, future studies could

explore different methods of data integration, such as using machine learning techniques

to automatically annotate anomalies based on a wider range of metrics. Additionally,

optimizing the integration process to handle real-time data streams could allow for more

timely anomaly detection.

One potential avenue for improvement lies in the granularity of task logs. Specifically,

recording the exact timestamp when a task starts to fail could help pinpoint the onset of

an anomaly, and identifying the specific node or nodes responsible for the task failure could

offer insights into localized anomalies. By maintaining such detailed logs, we could train

our model to recognize correlations between node-specific anomalies and task failures more

effectively. This aligns with our initial vision of leveraging both node and task information

to enhance anomaly detection capabilities.

2.3 Future Work for RQ3

For RQ3, which examined the performance of various unsupervised machine learning mod-

els in anomaly detection, future work could involve re-evaluating the performance of the

autoencoder on the dataset from Experiment 2 with an increased number of iterations.

Conducting this on a more powerful computing cluster could mitigate challenges posed

by the dataset’s size and potentially improve the model’s accuracy and reliability. Ad-

ditionally, exploring other unsupervised learning models, such as Generative Adversarial

Networks (GANs), could offer new avenues for effective anomaly detection.

In conclusion, this research has laid a robust foundation for anomaly detection within

HPC clusters. The methodologies developed, insights gained, and challenges overcome all

attest to the potential of our approach. As we look forward to the future, we are optimistic

about the advancements and innovations that await in this ever-evolving field.

67

Bibliography

[1] Carletti, M., Terzi, M., and Susto, G. A. Interpretable anomaly detection with

diffi: Depth-based feature importance of isolation forest. Engineering Applications of

Artificial Intelligence 119 (2023), 105730. 15

[2] Chicco, D., and Jurman, G. The advantages of the matthews correlation coefficient

(mcc) over f1 score and accuracy in binary classification evaluation. BMC Genomics

(2020). 51

[3] Chu, X., Talluri, S., Versluis, L., and Iosup, A. How do ml jobs fail in

datacenters? analysis of a long-term dataset from an hpc cluster. In Companion of

the 2023 ACM/SPEC International Conference on Performance Engineering (New

York, NY, USA, 2023), ICPE ’23 Companion, Association for Computing Machinery,

p. 263–268. 13, 14

[4] Fawcett, T. An introduction to roc analysis. Pattern recognition letters 27, 8 (2006),

861–874. 54

[5] Ghiasvand., S. upad: Unsupervised privacy-aware anomaly detection in high perfor-

mance computing systems. In Proceedings of the 8th International Conference on Pat-

tern Recognition Applications and Methods - ICPRAM (2019), INSTICC, SciTePress,

pp. 852–859. 15

[6] Hinton, G. E., and Salakhutdinov, R. R. Reducing the dimensionality of data

with neural networks. science 313, 5786 (2006), 504–507. 49

[7] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural compu-

tation 9, 8 (1997), 1735–1780. 48

[8] Iosup, A., Kuipers, F., Varbanescu, A. L., Grosso, P., Trivedi, A., Reller-

meyer, J., Wang, L., Uta, A., and Regazzoni, F. Future computer systems and

networking research in the netherlands: A manifesto, 2022. 8

68

[9] Iosup, A., Uta, A., Versluis, L., Andreadis, G., van Eyk, E., Hegeman,

T., Talluri, S., van Beek, V., and Toader, L. Massivizing computer systems:

A vision to understand, design, and engineer computer ecosystems through and be-

yond modern distributed systems. In 2018 IEEE 38th International Conference on

Distributed Computing Systems (ICDCS) (2018), pp. 1224–1237. 8

[10] Kusuma, G. Y., and Oktiawati, U. Y. Application performance monitoring sys-

tem design using opentelemetry and grafana stack. Jurnal Ilmu Sistem dan Teknologi

Informasi 3, 1 (2022), 1–10. 16, 30

[11] Liu, F. T., Ting, K. M., and Zhou, Z.-H. Isolation forest. 2008 Eighth IEEE

International Conference on Data Mining (2008), 413–422. 47, 48

[12] Liu, P., and Guitart, J. Performance characterization of containerization for hpc

workloads on infiniband clusters: an empirical study. Cluster Computing 25, 2 (4

2022), 847–868. 8

[13] Molan, M., Borghesi, A., Cesarini, D., Benini, L., and Bartolini, A. Ruad:

Unsupervised anomaly detection in hpc systems. Future Generation Computer Sys-

tems 141 (2023), 542–554. 15

[14] Morrow, A., Baseman, E., and Blanchard, S. Ranking anomalous high per-

formance computing sensor data using unsupervised clustering. In 2016 International

Conference on Computational Science and Computational Intelligence (CSCI) (2016),

pp. 629–632. 15

[15] Powers, D. M. Evaluation: from precision, recall and f-measure to roc, informedness,

markedness and correlation. arXiv preprint arXiv:2010.16061 (2011). 52, 53

[16] Reuther, A., Byun, C., Arcand, W., Bestor, D., Bergeron, B., Gadepally,

V., Houle, M., Hubbell, M., Jones, M., Klein, A., et al. Interactive super-

computing on 40,000 cores for machine learning and data analysis. arXiv preprint

arXiv:1807.07814 (2018). 16

[17] Sokolova, M., and Lapalme, G. A systematic analysis of performance measures

for classification tasks. Information Processing Management 45, 4 (2009), 427–437.

53

[18] Suman, S. Literature study on operational data analytics frameworks in large-scale

computing infrastructures. 9

69

[19] Tanash, M., Yang, H., Andresen, D., and Hsu, W. Ensemble prediction of job

resources to improve system performance for slurm-based hpc systems. In Proceed-

ings of the 2021 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems (2021), pp. 1–2. 30

[20] Wang, T., Wei, J., Zhang, W., Zhong, H., and Huang, T. Workload-aware

anomaly detection for web applications. Journal of Systems and Software 89 (2014),

19–32. 15

[21] Wu, C., Yan, B., Yu, R., Yu, B., Zhou, X., Yu, Y., and Chen, N. k-means clus-

tering algorithm and its simulation based on distributed computing platform. Hindawi

(2021). 24

[22] Zahra, S., Ghazanfar, M., Khalid, A., Azam, M. A., Naeem, U., and

Prügel-Bennett, A. Novel centroid selection approaches for kmeans-clustering

based recommender systems. Information Sciences 324 (2015), 20–36. 50, 51

70

	List of Figures
	List of Tables
	1 Introduction
	1 Problem Statement
	2 Research Questions
	3 Contributions
	4 Significance of the Study
	5 Plagiarism Declaration

	2 Background
	1 HPC System Model
	2 Unsupervised Machine Learning for Anomaly Detection

	3 Data Characterization and Integration for Node Data and Job Data
	1 PROMETHEUS Node-Level Dataset
	2 Slurm Job Dataset
	3 Additional PROMETHEUS Dataset
	4 Comparison First and Additional Prometheus Datasets
	5 Summary

	4 Data Integration
	1 Integration Background
	2 Integrated Data Analysis
	3 Summary
	4 Unsupervised Machine Learning Models for Anomaly Detection
	5 Evaluation Metrics
	6 Experiment 1: Model Performance on the Continuous Time-Series Dataset
	7 Experiment 2: Model Performance on the Entire PROMETHEUS Dataset
	8 Experiment 3: Model Performance on the Integrated Dataset
	9 Experiment 4: Model Generalization Across Different Datasets
	10 Summary

	5 Conclusion and Future Work
	1 Conclusion
	2 Future Work

	Bibliography

