
A Trace-Based Performance Study of Autoscaling
Workloads of Workflows in Datacenters
Laurens Versluis

Vrije Universiteit Amsterdam
l.f.d.versluis@vu.nl

Mihai Neacşu
Vrije Universiteit Amsterdam

m.neacsu@atlarge-research.com

Alexandru Iosup
Vrije Universiteit Amsterdam

a.iosup@vu.nl

Abstract—To improve customer experience, datacenter oper-
ators offer support for simplifying application and resource
management. For example, running workloads of workflows
on behalf of customers is desirable, but requires increasingly
more sophisticated autoscaling policies, that is, policies that
dynamically provision resources for the customer. Although
selecting and tuning autoscaling policies is a challenging task
for datacenter operators, so far relatively few studies investigate
the performance of autoscaling for workloads of workflows.
Complementing previous knowledge, in this work we propose
the first comprehensive performance study in the field. Using
trace-based simulation, we compare state-of-the-art autoscaling
policies across multiple application domains, workload arrival
patterns (e.g., burstiness), and system utilization levels. We
further investigate the interplay between autoscaling and regular
allocation policies, and the complexity cost of autoscaling. Our
quantitative study focuses not only on traditional performance
metrics and on state-of-the-art elasticity metrics, but also on time-
and memory-related autoscaling-complexity metrics. Our main
results give strong and quantitative evidence about previously
unreported operational behavior, for example, that autoscaling
policies perform differently across application domains and
allocation and provisioning policies should be co-designed.

I. INTRODUCTION

Many application domains of datacenter computing, from
science to industrial processes to engineering, are based to-
day on the execution of complex workloads comprised of
workflows. To run such workloads in datacenters offering
services as clouds, customers and providers must agree on
a shared set of resource management and scheduling practices
that automate the execution of many interdependent tasks,
subject to Quality-of-Service (QoS) agreements. In particular,
they must agree on how to continuously acquire and release
resources using autoscaling approaches, to lower operational
costs for cloud customers and to increase resource utilization
for cloud operators. Although many autoscaling approaches
have been proposed, currently their behavior is not studied
comprehensively. This important problem contributes to the
low utilization of current datacenter (and especially cloud-
based) environments, as low as 6%–12% [1]–[3]. The state-of-
the-art in analyzing the performance of datacenter autoscalers
uses a systematic approach consisting of multiple metrics,
statistically sound analysis, and various kinds of comparison
tournaments [4], [5], yet lacks diversity in the application
domain and insight into the interplay between components of
the autoscaling system. Addressing these previously unstudied

factors, in this work we propose a comprehensive study of
autoscaling approaches.

We focus on workloads of workflows running in datacenters.
Although the workloads of datacenters keep evolving, in our
longitudinal study of datacenter workloads we have observed
that many core properties persist over time [6]. Workloads
exhibit often non-exponential, even bursty [7], arrival patterns,
and non-exponential operational behavior (e.g., runtime dis-
tributions). Workflows are increasingly more common to use
in datacenter environments, and are still rising in popularity
across a variety of domains [5], [8]. Importantly, the character-
istics of workflows vary widely across application domains, as
indicated by the workflow size and per-task runtime reported
for scientific [9], industrial processes [10], and engineering
domains [11].

Managing workloads of workflows, subject to QoS re-
quirements, is a complex activity [12]. Due to the often
complex structure of workflows, resource demands can change
significantly over time, dynamically as the workflow tasks are
executed and reflecting the task dependencies. Thus, design-
ing and tuning autoscaling techniques to improve resource
utilization in the datacenter, while not affecting workflow
performance, is non-trivial.

Studying autoscalers is a challenging activity, where innova-
tion could appear in formulating new research questions about
the laws of operation of autoscalers, or in creating adequate,
reproducible experimental designs that reveal the laws. This
matches challenges C6, C7, and to some extent C9 of our long-
term vision on Massivizing Computer Systems [13]. In this
work, we propose the following new research questions: Does
the application domain have an impact on the performance
of autoscalers?, What is the performance of autoscalers in
response to significant workload bursts?, What is the impact on
autoscaling performance of the architecture of the scheduling
system, and in particular of the (complementary) allocation
policy?, and What is the impact on autoscaling performance of
the datacenter environment? We do not analyze further pricing
strategies and models, as this is beyond of the scope of this
work.

We create a simulation-based experimental environment,
using trace-based, realistic workloads as input. Our choice
for this setup is motivated by pragmatic and methodological
reasons. Currently, no analytical model based on either state-

Fig. 1: The cloud-based system model, focusing on resource
autoscaling, including provisioning, and allocation.

space exploration or non-state-space methods1 has been shown
able to capture the complex workload-system interplay ob-
served in practice for the context of this work. Such analytical
models are hampered, e.g., by the lack of process stationarity
(i.e., burstiness and dynamic workloads) and the “curse of
dimensionality” stemming from sheer scale. Similarly, con-
ducting real-world experiments, such as our own large-scale
experiments [5] is also challenging in this context, due to
the high cost and long duration of experiments, and the
unreproducibility of experiments or statistical inconclusiveness
of reported results [4].

In summary, our contribution in this work is four-fold:
1) We are the first to investigate the impact on autoscaling

performance of the application domain (Section IV). To
this end, we experiment with workloads derived from
real-world traces corresponding to scientific, engineer-
ing, and industrial domains.

2) We analyze the behavior of the autoscalers when faced
with sudden peaks in resource demand by using bursty,
real-world workloads (Section V).

3) We are the first to analyze the impact of the allocation
policy on the performance of autoscalers (Section VI).

4) We are the first to investigate the behavior of au-
toscalers running across a diverse set of datacenter
environments (Section VII). We specifically consider
here the impact of datacenter utilization on autoscaling
performance.

II. SYSTEM MODEL

In this section, we describe a model of the datacenter
environment considered in this work, focusing on autoscaling.

A. Model Overview

We consider in this work the following model of a cloud-
based datacenter environment that uses an autoscaling compo-
nent to take decisions dynamically about resource acquisition
and release. As indicated by surveys of the field [5], [14],
[15], the state-of-the-art includes many autoscalers, designed

1Taxonomy introduced by Kishor Trivedi at WEPPE’17.

for different environments, workloads, and other design con-
straints. In contrast, our model matches the operations we
have observed in practice in (i) public cloud environments,
such as Amazon AWS and Microsoft Azure, (ii) semi-public
clouds servicing industries with strict security and process
restrictions, such as the datacenters operated by the Dutch
company Solvinity for the financial industry and government
public-services, and (iii) private, albeit multi-institutional,
clouds such as the research-cloud DAS [16].

Figure 1 depicts an overview of our model. The workload is
comprised of workflows, which are submitted by users to the
central queue of the datacenter (component 1 in Figure 1).
The transient set of machines available to users forms the
cloud (5). A user-aware scheduler calls an allocation policy (3)
to place the queued workflows onto machines available in
the cloud. In parallel with the operations of the scheduler,
the resource monitor (6) monitors periodically the utilization
of each active, that is, allocated machine, and the state of
the central queue. Starting from the monitoring information,
and possibly also using historical data, the autoscaler compo-
nent (7) periodically analyzes the demand (9) and the supply
(10) of the dynamic system. Through the resource man-
ager (4), the autoscaler can issue (de)allocation commands,
to dynamically obtain or release resources according to the
defined provisioning policy (8). Matching the state-of-the-art
in such policies [4], [5], the provisioning policies we consider
in this work are periodic and not event-based.

The periods used by the resource monitor and by the
autoscaler evaluation, that is, the monitoring interval and
the autoscaling interval, respectively, are adjusted through
configuration files.

B. Workflows

A workflow is a set of tasks with precedence constraints
between them. When all precedence constraints of a task
have been fulfilled, it can be executed. The concept of a
workflow fits both compute-intensive and data-intensive (i.e.,
for dataflows) tasks, and the precedence constraints frequently
express data dependencies between tasks.

In this work, we use the common formalism of Directed
Acyclic Graphs (DAGs) to model workflows. In this formal-
ism, tasks are modeled as vertices, and precedence constraints
are modeled as edges. DAGs are used across a variety of
application domains, in science [9], industrial processes [10],
and engineering [11]. DAGs also fit well web hosting [8]
and multi-tier web applications [17]. For big data workloads,
MapReduce workflows are frequently modeled as simple
DAGs, where mappers and reducers are modeled as nodes,
and the data dependencies between mappers and reducers are
modeled as links in the graph; Spark-like dataflows are also
common.

C. Provisioning Policies

We consider in this work two classes of autoscalers: (i)
general autoscalers that are agnostic to workflows, and (ii)
autoscalers that exploit knowledge and structure of workloads

TABLE I: The design and setup of our experiments. In bold, the distinguishing features of each experiment. (AS = autoscaling.)

ID Experiment
Focus (Section)

Input
Workload

System
Clusters

Resources
per cluster

AS
policies

Allocation
Policies

Workflow
Metrics

Autoscaler
Metrics

System
utilization

E1 Domain (§IV) T1, T2, T3 50 70 All FillworstFit - All 70%
E2 Bursty (§V) T2 (dupl), T4 Variable 70 All FillworstFit NSL - 70%
E3 Allocation (§VI) T4 50 70 All All - Supply Variable
E4 Utilization (§VII) T3 Variable 70 All FillworstFit NSL All [10 – 90]%

of workflows. All policies used in this work have already been
used in prior studies in the community [4], [5] and provide
a representative set of general and workflow-aware policies.
They also cover a variety of strategies, based on different
optimization goals such as throughput, (estimated) level of
parallelism, and queue size.

We now describe the provisioning policies we study in this
work, in turn:

1) Reg: employs a predictive component based on second-
order regression to compute future load [18]. This policy
works as follows: when the system is underprovisioned, that
is, the capacity is lower than the load, Reg takes scale-up de-
cisions through a reactive component that behaves similarly to
the React policy (described in the following). When the system
is overprovisioned, Reg takes scale-down decisions based on
its predictive component, which in turn uses workload history
to predict future demand.

2) Adapt: autonomously changes the number of virtual
machines allocated to a service, based on both monitored load-
changes and predictions of future load [19]. The predictions
are based on observed changes in the request rate, that is,
the slope of the workload demand curve. Adapt features a
controller aiming to respond to sudden changes in demand,
and to not release resources prematurely. The latter strategy
aims to reduce oscillations in resource availability.

3) Hist: focuses on the dynamic demands of multi-tier
internet applications [17]. This policy uses a queueing model
to predict future arrival rates of requests based on hourly
histograms of the past arrival-rates. Hist also features a reactive
component that aims to handle sudden bursts in network
requests, and to self-correct errors in the long-term predictions.

4) React Policy: takes resource provisioning decisions
based on the number of active connections [20]. React first
determines the number of resource instances below or above
a given threshold. New instances are provisioned if all resource
instances have a utilization rate above the threshold. If there
are underutilized instances and at least one instance has no
active connections (so, the instance is not in use), the idle
instance is shutdown.

5) ConPaaS: is designed to scale web applications at fixed
intervals, based on observed throughput [21]. Using several
time series analysis techniques such as Linear Regression,
Auto Regressive Moving Average (ARMA), and Multiple
Regression, ConPaaS predicts future demand, and provisions
resources accordingly.

6) Token: is designed specifically to autoscale for work-
flows [22]. By using structural information from the DAG

TABLE II: The four types of workloads and their characteris-
tics. (W = number of workflows.)

ID Source Domain W # Tasks

T1 SPEC Cloud Group [5] Scientific 200 13,876
T2 Chronos [10] Industrial 1,024 3,072
T3 Askalon EE [11] Engineering 757 45,786
T4 Askalon EE2 [11] Engineering 3,551 122,105

structure, and by propagating execution tokens in the work-
flow, this policy estimates the level of parallelism and derives
the (lack of) need for resources.

7) Plan: predicts resource demand based on both work-
flow structure (as Token also does) and on task runtime
estimation [5]. Plan constructs a partial execution plan for
tasks that are running or waiting in the queue, considering
task placement only for the next autoscaling interval. The
resource estimation is derived by also considering the number
of resources that already have tasks assigned to them; Plan
places tasks on unassigned resources using a first-come, first-
served order (FCFS) allocation policy.

III. EXPERIMENTAL DESIGN

In this section we present our experimental design. Table I
summarizes the design and setup of our experiments. For
each experiment, the design considers deploying in turn the
competing autoscalers (Section II-C) in a carefully controlled
environment, subject to workloads that derive from real-world
operation. Each experiment reports traditional and modern
performance metrics.

A. Experiments

As indicated by Table I, our experimental design progresses
systematically through experiments that test the impact on
various performance metrics of the application domain, of the
workload arrival process (and especially of Bursty arrivals),
of the interplay of provisioning-allocation policies, and of the
average system utilization. E1 runs in turn three workloads (ex-
plained in Section III-B) from distinct domains, using a setup
derived from a state-of-the-art industrial setup and reporting all
autoscaler metrics (explained in Section III-C2). E2 focuses on
bursts in workload, which tests whether autoscalers can react
to sudden changes in the task-arrival rates. E2 reports various
workflow-related metrics (explained in Section III-C1). E3
measures the impact of allocation policies on the performance
of autoscalers, using for this T4, the most stressful workload
we use in our study. E3 reports a subset of the autoscaler met-
rics. E4 investigates the performance of autoscalers running of

Fig. 2: The arrival rate of Askalon EE2 (T4).

systems with varying average resource utilization, using for
this T3, a bursty and thus stressful workload but of a scale
that allows us to conduct all experiments for all utilization
levels. For more experiments, details, and complete results,
see our technical report [23].

In all experimental setups, the autoscaling interval is set to
30 seconds for all experiments, which is a common setup in
previous work, including [5]. The resource manager receives
real-time updates of the resource utilization of each site. We
do not include file transfer times or site boot-up times in any of
the experiments. By default, the simulator schedules tasks us-
ing the FillWorstFit policy (the other policies introduced
in Table I are discussed in Section VI). FillWorstFit
selects the site with the most available resources and assigns
as many tasks as possible, in a first-come-first-serve order,
before selecting again. Matching prior work [5], clusters are
only deallocated when they are idle, i.e., no tasks are being
executed, but at least one cluster is kept running at all times.

Experiments E2 and E4 use a tailored setup, where the
system is subjected to an arbitrary average utilization. We
achieve this utilization by either scaling the infrastructure (re-
sults in Section VII) or the workload (results in our technical
report [23]); scaling workloads derived from real-world traces
has known methodological drawbacks and pitfalls, such as
losing hidden characteristics and correlated behavior [24].

To scale the infrastructure while keeping its homogeneous
structure, we compute the number of sites needed to achieve
the target utilization. To this end, first, we compute per work-
flow its critical-path length (CP as defined in Section III-C1)
and its total load, as the total amount of CPU seconds
needed to complete all tasks of the workflow under ideal
conditions. Second, we compute for the entire workload the
overall execution time under ideal conditions, as the difference
between the earliest submission time of all workflows, and the
latest completion time when for each workflow its makespan
is equal to CP (the ideal runtime), and the total load as the
sum of total loads of each workflow. Last, from the overall
execution time and the total load of the entire workload, we
compute the number of clusters required to obtain the desired
system utilization.

B. Workloads

In total, this work uses four different workloads, whose
source, application domain, and characteristics are summa-
rized in Table II. Each workload consists of multiple work-

TABLE III: The metrics used in this work, grouped by level.

Workflow-level metrics

M Makespan
W Wait time
R Response time

NSL Normalized schedule length
CP Critical path length

Autoscaler-level metrics

AU Underprovisioning accuracy
AO Overprovisioning accuracy
ĀU Normalized underprovisioning accuracy
ĀO Normalized overprovisioning accuracy
TU Time underprovisioned
TO Time overprovisioned
k Average fraction of time of overprovisioning trends
k’ Average fraction of time of underprovisioning trends
MU Average number of idle resources
V̄ Average number of resources
h̄ Average accounted CPU hours per Virtual Machine (VM)
C̄ Average charged CPU hours per VM

flows. The required amount of CPUs and runtime per task are
known a priori.

Workload T1 has been constructed by the SPEC RG Cloud
Group to represent the scientific domain. All other workloads
are real-world traces taken from either production environ-
ments or scientific clusters. T2 is derived from the Chronos
production environment at Shell, and contains workflows
whose structure matches a chain of three levels (tasks). T3
and T4 are traces from the Askalon cluster, corresponding
to (chemical) engineering. Both feature a burst of workflow
arrivals at the start of the workload, exemplified by Figure 2.

C. Metrics

In this performance study we use both traditional and mod-
ern metrics, which we divide in two categories: workflow-level
and autoscaler-level metrics. Table III provides an overview of
these metrics.

1) Workflow-level Metrics: quantify how well the system,
autoscaler comprised, processes workflows. In this work we
consider the following five workflow-level metrics.

For a workflow: The makespan (M) is the time elapsed
between the start of its first task until the completion of its
last task. The wait time (W) is the time elapsed between the
arrival and the start of execution of a workflow’s first task.
The response time (R) is the total time the workflow stays in
the system. It is the summation of the makespan and wait time
of the workflow. The critical path length (CP) is the minimal
duration of the workflow, under ideal conditions, considering
all precedence constraints. The Normalized Schedule Length
(NSL) is the response time, normalized by CP [25].

2) Autoscaler-level Metrics: are metrics quantifying the
elasticity of systems that autoscale. We use here the modern
elasticity metrics defined by the SPEC Cloud Group [26],
which are used already in practice and in the scientific
community [5].

In the SPEC Cloud Group’s methodology, the average
demand is the amount of resources that are required to
uphold a Service Level Objective (SLO) at each autoscaling
step, divided by the execution time. Similarly, the average
supply is the average amount of resources provisioned over
the execution time. In our model, we count as supplied any
resource that is allocated to the user, so both in a running state
or shutting down.

The SPEC methodology proposes various metrics capturing
the accuracy of the elastic process. The underprovisioning
accuracy metric (AU) captures lacking resources, by summing
the amount of resources that the autoscaler is not able to
provide, relative to the momentary demand, normalized by
the total amount of resources available during the experiment.
Correspondingly, the overprovisioning accuracy metric (AO)
captures excessive provisioning.

When the amount of resources under- or over-provisioned
can vary considerably over time, SPEC proposes to capture
a more accurate representation of under- and overprovision-
ing, by normalizing the under- and overprovisioning accu-
racy metrics by the momentary resource demand and supply,
respectively. Thus, we also use in our study the metrics
normalized overprovisioning accuracy (ĀO) and normalised
accuracy underprovisioning (ĀU).

The number of resources provisioned needs to follow the
demand curve as accurately as possible. The ideal autoscaler
provisions resources so that the system is executing all eligible
tasks without having any idle resources, which is captured by
the SPEC metric average number of idle resources (MU). We
also use in this work the SPEC metrics for quantifying if the
system is constantly off the demand curve, or is off sporad-
ically yet with large deviations: time underprovisioned (TU)
and time over-provisioned (TO), which measure the fraction
of time a system is under- or overprovisioned, respectively.

Last, we also use the metrics defined by the SPEC Cloud
Group to capture resource consumption and cost: the average
amount of allocated resources (V̄), which provides insight into
the costs of an autoscaler; the average accounted CPU hours
per VM (h̄), which measures the amount of hours a VM was
used, that is, the effective CPU-hours used; and the average
charged CPU hours per VM (C̄), which measures the total
amount of CPU hours a VM is charged and is dependent on
the cost model used by the cloud provider (we use in our work
the common per-hour charging that clouds such as Amazon
EC2 use for some of their popular IaaS services).

D. Implementation Details

We implement the model from Section II as a simulation
prototype in the OpenDC collaborative datacenter simula-
tion project [27]; the resulting prototype, OpenDC.workflow,
uses and extends significantly earlier code from the DGSim
project [28].

The prototype is implemented in Python 2.7 and features
all components highlighted in Section II-A. The implemen-
tation is modular, allowing components such as autoscaling
and allocation policies to be swapped by configuration. The

prototype is open-source and available at www.github.com/
atlarge-research/opendc-autoscaling-prototype.

IV. APPLICATION-DOMAIN EXPERIMENT

The aim of this experiment is to answer our research
question Does the application domain have an impact on
the performance of autoscalers?, by running workloads from
distinct domains. In the state-of-the-art comparison study [5],
all workloads are from the scientific domain and synthetically
generated. By using real-world traces from different domains,
we investigate if differences are observed running these work-
loads, expanding prior knowledge in this field.

Our main results in this section are:
• We find significant differences between autoscalers,

when scheduling for different application domains.
• The workload domain influences autoscaler under-

and overprovisioning behavior significantly.

A. Setup

In this experiment we use T1, T2, and T3, covering three
distinct domains. Each workload consists of multiple distinct
workflows, covering a range of applications from each domain.
The Chronos workload is composed of workflows that process
Internet-of-Things (IoT) sensor data, sampled periodically. The
arrival pattern of this workload has an exponential pattern. Ev-
ery minute 2i workflows arrive, where i ∈ [0−9] corresponds
to the amount of minutes into the workload. As the sensors
sample at a continuous rate, this workload can be repeated
indefinitely. The Askalon EE workload originates from the
engineering domain and features a huge initial burst. Roughly
16,000 tasks arrive in the first minute. Overall Askalon EE
spans 49 minutes.

We use a tailored setup for each workload, where the
number of clusters of the first setup is scaled to reach a system
utilization of 70%, a representative number in supercomput-
ing [29]. Each cluster contains 70 resources, matching the
state-of-the-art industrial setup described in [10]. To measure
the differences between autoscalers, we use the autoscaler-
level metrics defined in Section III-C2.

B. Results

The results of this experiment are visible in Table IV.
Overall, we observe significant differences for certain metrics
per workload. Some autoscalers severely overprovision on
a workload, while it may underprovision on another. This
indicates that the aspects of the application domain, such as
structure, arrival rate and complexity plays an important role
on the performance of an autoscaler.

In particular, if we look at AU , we notice that all autoscalers
have similar values for all workloads. The ĀO, Mu, V̄ , h̄,
and C̄ metrics for the Askalon EE workload are significantly
different for Hist, ConPaaS and somewhat for Token, indi-
cating these autoscalers waste resources significantly more
than others on this particular workload. We ascribe these
observations to the burst in Askalon EE. Hist and ConPaaS
keep a history of past arrival rates, effectively biasing future

www.github.com/atlarge-research/opendc-autoscaling-prototype
www.github.com/atlarge-research/opendc-autoscaling-prototype

TABLE IV: The elasticity results, per workload, per autoscaler (AS), using a workload-scaled infrastructure.

AS Workload AU AO ĀU ĀO TU TO k k’ MU V̄ h̄ C̄

React
Chronos 70.7 17.6 27.8 17.6 45.9 50.5 0.0 0.0 36.0 202.3 3,467.9 21.0

Askalon EE 211.5 16.1 32.4 47.6 40.0 56.0 4.0 1.0 16.7 1,319.9 2,121.3 58.9
SPEC 54.8 38.9 15.7 38.9 33.7 64.4 1.6 0.8 70.8 68.8 3,538.9 784.0

ConPaaS
Chronos 70.7 17.6 27.8 17.6 45.9 50.5 0.0 0.0 36.0 202.3 3,467.9 21.0

Askalon EE 211.5 50.4 31.4 55.8 39.0 60.0 7.0 0.0 51.0 2,088.1 3,355.9 93.2
SPEC 52.9 40.2 14.9 40.2 32.9 66.0 2.6 0.0 72.5 70.0 3,597.6 797.0

Hist
Chronos 70.7 17.6 27.8 17.6 45.9 50.5 0.0 0.0 36.0 202.3 3,467.9 21.0

Askalon EE 211.5 56.2 31.4 56.2 39.0 60.0 7.0 0.0 57.8 2,218.3 3,565.2 99.0
SPEC 53.9 40.2 14.9 40.2 33.0 66.0 2.6 0.0 72.5 70.0 3,597.6 797.0

Adapt
Chronos 70.7 17.6 27.8 17.6 45.9 50.5 0.0 0.0 36.0 202.3 3,467.9 21.0

Askalon EE 211.5 17.6 32.4 47.5 40.0 56.0 4.0 1.0 18.2 1,353.6 2,175.4 60.4
SPEC 54.9 38.8 15.7 38.8 33.6 64.6 1.6 0.8 70.9 68.8 3,538.9 784.0

Plan
Chronos 70.7 17.7 27.8 17.7 45.9 50.5 0.0 0.0 36.0 202.3 3,467.9 21.0

Askalon EE 210.0 17.8 33.1 45.9 40.7 53.6 2.0 2.0 18.4 1,350.0 2,169.6 60.7
SPEC 54.2 38.1 15.7 38.1 33.7 63.6 0.9 0.9 70.0 68.2 3,507.3 777.0

Reg
Chronos 70.7 17.6 27.8 17.6 45.9 50.5 0.0 0.0 36.0 202.3 3,467.9 21.0

Askalon EE 210.0 16.1 33.1 45.6 40.7 53.6 2.0 2.0 16.7 1,312.4 2,109.2 59.0
SPEC 53.9 39.7 15.4 39.7 33.4 65.3 2.4 0.5 71.6 69.4 3,570.5 791.0

Token
Chronos 70.7 17.6 27.8 17.6 45.9 50.5 0.0 0.0 36.0 202.3 3,467.9 21.0

Askalon EE 211.5 16.8 31.4 51.4 39.0 60.0 7.0 0.0 17.4 1,335.3 2,146.1 59.6
SPEC 53.4 40.3 14.8 40.3 32.7 66.1 2.6 0.0 72.5 70.0 3,597.6 797.0

predictions due to this one time peak, while Token seems to
overestimate the level of parallelism.

Overall, our results suggests the aspects that come with an
application domain, such as structure and complexity, play
an important role on the performance of an autoscaler. This
indicates the choice of autoscaler is non-trivial for a given
application domain and should be carefully benchmarked.

V. BURSTY WORKLOAD EXPERIMENT

Bursts are common in cloud environments [19]. The sudden
increase in demand of resources require a proactive approach
to ensure task execution is not delayed. The goal of this
experiment is to provide insights to answer How well can
autoscalers handle a significant burst in arriving tasks?.

Our main results in this section are:
• Workload-agnostic autoscalers perform equally well

compared to workload-specific autoscalers.
• The Plan autoscaler creates an order of magnitude

more task delay than the other autoscalers when
executing the Chronos workload.

A. Setup

To investigate the impact of bursts, we use two real-world
workflows from two distinct domains.

The first workload is EE2 from the Askalon traces. EE2
features a one-time burst at the start of the workload, visible
in Figure 2. In the first minute, around 24,000 tasks arrive
which is not an uncommon amount in grids and clusters [11].

The second workload is a scaled version of the industrial
Chronos workload used in Section IV, visible in Figure 3.

Fig. 3: The arrival rate of Chronos (duplicated 22 times).

The workload is scaled so that the highest peak – on a minute
basis – matches that of the Askalon EE2 trace. This workload
remains representative as the workload scales linearly with the
amount of IoT sensors applied in Shell’s Chronos infrastruc-
ture.

The infrastructure is designed to have an average of 70%
resource utilization, for the reasons stated in Section IV. To
measure the impact of bursts, we measure the cumulative
delay, NSL, and M per autoscaler, per workload. We compute
the NSL using the workload makespan and CP. The delay is
computed by subtracting the CP of a workload’s makespan.
By using these metrics, we investigate if there are differences
in how autoscalers handle burstiness.

B. Results

To observe the impact of these bursts per autoscaler, we
measure the M per workload and compute the overall NSL,
per autoscaler. We only visualize the results for the Chronos
workload, which shows the most variation. More results can
be found in our technical report [23].

Fig. 4: The makespan and cumulative delay per autoscaler for
the Chronos workload. Color coding matches Figure 6.

TABLE V: The NSL, per autoscaler, per workload.

Workflow React ConPaaS Hist Adapt Plan Reg Token

Askalon EE2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Chronos 1.02 1.02 1.02 1.03 1.07 1.02 1.01

The results for Chronos are visible in Figure 4. This top
figure shows per autoscaler the M. The CP of the workload is
annotated by a black dotted line. From this figure we observe
the Plan autoscaler has a slightly higher M than the other
autoscalers. From the M and CP we compute the NSL for
each combination, see Table V. From this table we observe
little difference between the autoscalers for both workloads.

The bottom figure shows the cumulative delay, per au-
toscaler for the Chronos workload. From this figure we observe
that the Plan autoscaler creates an order of magnitude more
task delay than the other autoscalers. This is in contrast with
the NSL being roughly equal to the other autoscalers. We
therefore conclude that while the workload finishes roughly
in the same time compared to the other autoscalers, during
execution tasks are delayed significantly more when using
Plan. Plan allocates considerably fewer clusters to process
tasks compared to the other autoscalers, causing significant
task delay. This would likely lead to several QoS violations.

Overall, workload-agnostic autoscalers perform similarly in
terms of NSL and might even outperform worklow-specific
autoscalers regarding task delay.

VI. DIFFERENT ALLOCATION POLICIES EXPERIMENT

Besides the availability of resources, other components
can affect the performance of a system. The goal of this
experiment is to answer the research question Does the choice
of allocation policy have an impact on the performance of the
autoscalers?, i.e. investigate and quantify the impact of the
allocation policy on the performance of the autoscalers.

Our main results in this section are:

Fig. 5: The supply in resources, per allocation policy, per
provisioning policy. (For each allocation-autoscaler pair, the
combined violin and box-and-whiskers plots summarize the
empirical distribution of observed supply.)

• The allocation policy has a direct influence on the
behavior of all autoscalers.

• The interplay between deallocation strategy and al-
location policy can have a significant impact on the
average supply in a system.

A. Setup

In this experiment we run all possible combinations of
allocation policies and autoscalers using a state-of-the-art
industrial setup and workload [10].

To measure the impact of allocation policies on the behav-
ior of the autoscalers, we have implemented three different
policies in our simulator: FillWorstFit, WorstFit, and BestFit.
WorstFit selects the site with the most available resources.
After assigning a task it re-evaluates which site has the most
available resources. BestFit selects per task the site with the
least available resources where the task still fits. None of these
policies use a greedy backfilling approach.

To measure the impact of proposed allocation policies, we
measure the supply of resources throughout the experiment.

B. Results

The results of this experiment are visible in Figure 5. On the
vertical axis we show seven groups, one for each autoscaler.
On the horizontal axis, we depict the distribution of supply.
For each autoscaler and allocation policy combination, we
show the distribution of the supply choices. The minimum and
maximum as well as the 25th and 75th percentiles are denoted
by blue bars. The median is denoted by a larger green bar. The
distribution of supply is visualized by a shaded area around the
range. The average supply is denoted by a red cross symbol.

Overall we observe some differences between the au-
toscalers. From the perspective of the autoscalers, besides
Token and Adapt, all autoscalers have the same minimum and
maximum supply for BestFit. And besides Token, an equal
amount of supply for WorstFit and FillWorstFit.

From the perspective of the allocation policies, we can
observe the BestFit allocation policy has a significant lower
average supply than the other two policies, for every au-
toscaler. As FillWorstFit and WorstFit assign jobs to the most
idle clusters, clusters will rarely be considered idle and thus
will not be deallocated. One way to resolve this scenario
is to migrate tasks by e.g. migrating the VM or interrupt
and reschedule tasks. This is part of our ongoing work.
Additionally, we observe differences in the distribution and
average of supply per autoscaler for BestFit.

From Figure 5, we observe that Adapt has the lowest
maximum allocated resources, which impacts the response
time of the workload. All setups running FillWorstFit and
WorstFit require 650 seconds to process the workload. Token
running BestFit also requires 650 seconds as it provisions
more machines. Adapt running BestFit requires 694 seconds
due to underprovisioning. All other autoscalers running BestFit
require 654 seconds.

From these observations we conclude that the allocation
policy can have a direct influence on the behavior and perfor-
mance of autoscalers. As a result, comparing autoscaler can
only be done fairly when using the same allocation policies.

VII. DIFFERENT UTILIZATION EXPERIMENT

In the current state-of-the-art [5], the system utilization is
39.5% for workload T1, assuming all VMs were allocated
throughout the experiment. Prior work demonstrates a resource
utilization of 70% is possible [29] in supercomputing. In
this experiment, we shed light on our research question How
do autoscalers behave when faced with different resource
environments?. To investigate how autoscalers operate when
faced with different amount of resources, we scale the in-
frastructure based on a target resource utilization based on the
amount of CPU seconds a workload contains. We compare the
normalized under- and overprovisioning for each autoscaler.

Our main results in this section are:
• The fraction of time of overprovisioning differs per

autoscaler significantly at lower utilization, yet con-
verges for higher utilization.

• Autoscalers that significantly overprovision more re-
sources do not yield a better NSL.

Fig. 6: The NSL and ĀO per utilization per autoscaler. All
curves overlap in the top part of the figure.

A. Setup

In this experiment we run the Askalon EE workload, a work-
load from the engineering domain. This workload contains
a load of 2,823,758 CPU seconds and spans in total 2,998
seconds, based on the submission times and critical paths
of the workflows. We vary the number of clusters to obtain
10%, 20%, . . . , 90% resource utilization. Each cluster has 70
resources, for reasons described in Section IV. Note that since
autoscalers predict the amount of VMs required, the system
may allocate more VMs since the resource manager computes
the required amount of clusters (ceiled) to meet the prediction
(up to the maximum amount of clusters specified).

We measure the normalized under- and overprovisioning
time in the system and NSL of processing the workload. This
provides us with insight into the trade-offs autoscalers make
when allocating resources.

B. Results

The results are visible Figure 6, where we plot for each
resource utilization percentage the ĀO and NSL. ĀO shows
significant differences between the autoscalers. We expect
autoscalers to somewhat overprovision, as resources are in-
cremented per 70. However, we observe Hist, ConPaaS,
and Token overprovision significantly more than the other
autoscalers, while yielding no benefit in NSL. We ascribe
this behavior for Hist and ConPaaS to keeping a history of
incoming jobs. For EE, roughly 16,000 jobs arrive at the start,
causing the histogram to be biased towards overprovisioning
resources. For Token, the level of parallelism influences the
amount of resources provisioned. Token estimates a high level
of parallelism for the EE workload, causing overprovisioning.
React and Plan perform the best as they feature the lowest
overprovisioning time while having a similar NSL compared
to the other autoscalers.

From these observations we conclude that at lower system
utilization, some autoscalers overprovision more than others,
yet converges for high system utilization. The autoscalers that
overprovision more resources do not yield a better NSL.

VIII. THREATS TO VALIDITY

We discuss in this section the threats and limitations to the
validity of this work we have identified, and the remedial steps
we have taken. We see the use of a simulator, instead of a
real-world setup, as the most important threat to the validity
of our work. To address this threat, we have validated our
simulator (i) manually, using small example workflows, (ii)
automatically, generating workflows and testing the output
matches Little’s Law, (iii) re-running the experiments defined
in [5], for which we have real-world results, and (iv) using as
input workload for all experiments real-world traces to further
improve the resemblance of our simulations to the real world.
The alternative of using a real-world setup would not have
been possible without considerable expense and delay.

Albeit considerably more diverse than the experimental
setups used in previous studies, our simulation-based con-
structs still suffer from limitations: the simulated infrastructure
is homogeneous, the workflows are compute-intensive, etc.
The simulated infrastructure used in this work matches many
current private/hybrid cloud setups, which are often homo-
geneous [30] or provide a homogeneous view of virtualized
resources [31]. The main challenge of taking heterogeneity
into account, expresses itself through different processing
speed per resource.

We simulate compute-intensive workflows; in reality, data-
intensive workflows are becoming more common, from sci-
entific workflows [32], [33], to MapReduce [34] and other
big data workflows. However, data-intensive workflows also
involve resource management and scheduling besides au-
toscalers, for example, caching [35] and auto-tiering tech-
niques, whose study jointly with autoscalers greatly exceeds
the scope of this work.

The internal validity of our study is affected by the choice
of using a single exemplary trace for each of the scientific,
engineering, and industrial domains. Although more could in
general be better, currently the community does not have a
set of traces with provably good coverage or representation
for any of these domains; in other words, there is no Parallel
or Grid Workloads Archive for workflows that the community
can use for provably representative experiments. Establishing
such an archive goes beyond the scope of this work.

The external validity of our study has as main threat
generalizing beyond the findings of this study. The domains
used in this work do not represent the full spectrum found
in cloud environments, for example, workloads from health,
financial [36], and business domains.

IX. RELATED WORK

This study complements, and by design of research ques-
tions significantly extends, the large body of related work
in the field surveyed by Lorido-Botran et al. [15] and by
Vaquero et al. [14]. Beyond the new research questions we
propose, our study is the first to use an experimental approach
with workloads from multiple domains, and diverse datacenter
environments.

Closest to our work, Ilyushkin et al. [5] conduct the first sys-
tematic comparison of autoscalers for workflows, using real-
world experimentation. The experimental design is limited:
their work focuses on the scientific domain, and, due to the
use of real-world resources, limits the amount of machines to
50 and the resources used per task to a single core.

Also close to this work, Papadopoulos et al. [4] introduce a
performance evaluation framework for autoscaling strategies in
cloud applications (PEAS). PEAS measures the performance
of autoscaling strategies using scenario theory. Similarly to this
work, they use a simulation-based experimental environment,
analyzing the elasticity of six autoscaling policies for workload
traces collected from the web-hosting domain. In contrast, this
work focuses on workloads of workflows, leading to signif-
icantly new scheduling constraints, on different application
domains, and on different types of metrics (in particular, also
workflow-level).

Our work also complements the specialized performance
comparisons presented by authors of new autoscalers, such
as the work of Han et al. [37] (domain-agnostic), Hasan et
al. [38] (domain-agnostic), Heinze et al. [2] (stream-processing
domain), Mao et al. [39] (scientific workflows), Jiang et
al. [40] (web-hosting domain), Dougherty et al. [3] (focus
on energy-related metrics). In contrast to these studies, ours
focuses on deeper analysis focusing on new research questions,
on different and more diverse application domains, etc.

X. CONCLUSION AND ONGOING WORK

Autoscaling, the process of acquiring and releasing re-
sources at runtime, is an important, non-trivial task at the
core of datacenter operations. To help with understanding how
autoscalers work, prior work has performed systematic analy-
sis and comparisons, yet the results still lack in the diversity
of application domain, choice of metrics, and environments.
Addressing this lack of diversity, in this work we perform a
comprehensive comparison of state-of-the-art autoscalers.

We ask new research questions about the operational laws
of autoscalers managing workloads of workflows. To answer
these questions, we conduct trace-based simulations, measur-
ing the impact of autoscaling across a variety of datacenter
environments, workloads, and metrics. We use workloads from
three different domains, scientific, industrial processes, and
engineering. We analyze the performance effects of workload
burstiness, of the interplay between allocation and autoscaling,
and of the level of utilization in the datacenter.

Our study gives strong, quantitative evidence about autoscal-
ing performance, including findings such as:

• The application domain has a significant impact on the
performance of an autoscaler.

• For bursty workloads, workload-agnostic and workfload-
specific autoscalers result in similar NSL performance.

• The allocation policy has a direct impact on autoscaling
performance. The pair allocation and provisioning policy
should be co-designed and considered together when
deploying systems.

• Especially for lower system utilization, the Hist, Con-
PaaS, and Token autoscalers overprovision more than the
others, while yielding no better NSL.

In our ongoing work, we will study the impact of hetero-
geneity in datacenters on autoscalers, measure the impact of
different application domains, using traditional and emerging
cost metrics (e.g., the finer-grained cost-models released for
selected resources by Microsoft and Google in mid-2017) to
compare autoscalers, include boot-up and network transfer
times, etc. We have also indicated throughout this work several
directions for future work, for example, investigating the effect
of migrating jobs on the size clusters, e.g., deallocating entire
clusters when not used, to gain further insight into the effect
of using different allocation policies.

ACKNOWLEDGMENTS

This work is supported by the Dutch projects Vidi MagnaData
and KIEM KIESA, by the Dutch Commit and the Commit project
Commissioner, and by generous donations from Oracle Labs, USA.

REFERENCES

[1] Vasan et al., “Worth their watts?-an empirical study of datacenter
servers,” in HPCA, 2010.

[2] Heinze et al., “Auto-scaling techniques for elastic data stream process-
ing,” in ICDE Workshops, 2014.

[3] Dougherty et al., “Model-driven auto-scaling of green cloud computing
infrastructure,” FGCS, 2012.

[4] Papadopoulos et al., “PEAS: A performance evaluation framework for
auto-scaling strategies in cloud applications,” TOMPECS, 2016.

[5] Ilyushkin et al., “An Experimental Performance Evaluation of Autoscal-
ing Policies for Complex Workflows,” in ICPE, 2017.

[6] Iosup and Epema, “Grid computing workloads,” IEEE Internet
Computing, vol. 15, no. 2, pp. 19–26, 2011. [Online]. Available:
http://dx.doi.org/10.1109/MIC.2010.130

[7] Li, “Realistic workload modeling and its performance impacts in large-
scale escience grids,” IEEE TPDS, vol. 21, no. 4, pp. 480–493, 2010.

[8] Wu et al., “Workflow scheduling in cloud: a survey,” TJS, 2015.
[9] Juve et al., “Characterizing and profiling scientific workflows,” FGCS,

vol. 29, no. 3, pp. 682–692, 2013.
[10] Ma et al., “ANANKE: a Q-Learning-Based Portfolio Scheduler for

Complex Industrial Workflows,” in ICAC, 2017.
[11] Iosup et al., “The Grid Workloads Archive,” FGCS, 2008.
[12] Rodriguez and Buyya, “A taxonomy and survey on scheduling algo-

rithms for scientific workflows in iaas cloud computing environments,”
CCPE, vol. 29, no. 8, 2017.

[13] A. Iosup et al., “Massivizing computer systems: a vision to understand,
design, and engineer computer ecosystems through and beyond modern
distributed systems,” CoRR, vol. abs/1802.05465, 2018.

[14] Vaquero et al., “Dynamically scaling applications in the cloud,” SIG-
COMM, 2011.

[15] Lorido-Botran et al., “A review of auto-scaling techniques for elastic
applications in cloud environments,” JGC, 2014.

[16] Bal et al., “A medium-scale distributed system for computer science
research: Infrastructure for the long term,” Computer, 2016.

[17] Urgaonkar et al., “Dynamic provisioning of multi-tier internet applica-
tions,” in ICAC, 2005.

[18] Iqbal et al., “Adaptive resource provisioning for read intensive multi-tier
applications in the cloud,” FGCS, 2011.

[19] Ali-ElDin et al., “Measuring cloud workload burstiness,” in UCC, 2014.
[20] Chieu et al., “Dynamic Scaling of Web Applications in a Virtualized

Cloud Computing Environment,” in ICEBE, 2009.
[21] Fernandez et al., “Autoscaling web applications in heterogeneous cloud

infrastructures,” in IC2E, 2014.
[22] Ilyushkin et al., “Scheduling workloads of workflows with unknown task

runtimes,” in CCGRID, 2015, pp. 606–616.
[23] Versluis et al. (2017) Technical report: A trace-based

performance study of autoscaling workloads of workflows in
datacenters. [Online]. Available: https://atlarge-research.com/lfdversluis/
2017-11-24 lfdversluis autoscaling-comparison.pdf

[24] Frachtenberg and Feitelson, “Pitfalls in parallel job scheduling evalua-
tion,” in JSSPP, 2005, pp. 257–282.

[25] Kwok et al., “Benchmarking the task graph scheduling algorithms,” in
IPPS/SPDP, 1998.

[26] Herbst et al., “Ready for rain? A view from SPEC research on the future
of cloud metrics,” CoRR, vol. abs/1604.03470, 2016.

[27] Iosup et al., “The opendc vision: Towards collaborative datacenter
simulation and exploration for everybody,” in ISPDC, 2017.

[28] ——, “DGSim: Comparing grid resource management architectures
through trace-based simulation,” in ECPP, 2008.

[29] Jones et al., “Scheduling for parallel supercomputing: A historical
perspective of achievable utilization,” in JSSPP, 1999.

[30] Ghanbari et al., “Feedback-based optimization of a private cloud,”
FGCS, 2012.

[31] Sotomayor et al., “Virtual infrastructure management in private and
hybrid clouds,” Internet, 2009.

[32] Eom et al., “Speed vs. accuracy in simulation for i/o-intensive applica-
tions,” in IPDPS, 2000.

[33] May et al., “ZIB structure prediction pipeline: composing a complex
biological workflow through web services,” Euro-Par, 2006.

[34] Ousterhout et al., “Making Sense of Performance in Data Analytics
Frameworks.” in NSDI, 2015.

[35] Uta et al., “Towards resource disaggregation-memory scavenging for
scientific workloads,” in CLUSTER, 2016.

[36] Garrison et al., “Success factors for deploying cloud computing,” CACM,
2012.

[37] Han et al., “Lightweight resource scaling for cloud applications,” in
CCGrid, 2012.

[38] Hasan et al., “Integrated and autonomic cloud resource scaling,” in
NOMS, 2012.

[39] Mao et al., “Auto-scaling to minimize cost and meet application
deadlines in cloud workflows,” in SC, 2011.

[40] Jiang et al., “Optimal cloud resource auto-scaling for web applications,”
in CCGrid, 2013.

http://dx.doi.org/10.1109/MIC.2010.130
https://atlarge-research.com/lfdversluis/2017-11-24_lfdversluis_autoscaling-comparison.pdf
https://atlarge-research.com/lfdversluis/2017-11-24_lfdversluis_autoscaling-comparison.pdf

