
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Modeling and Simulation of the Google
TensorFlow Ecosystem

Author: Wenchen Lai (2643117)

1st supervisor: prof. dr. ir. Alexandru Iosup
2nd reader: dr. ir. Animesh Trivedi

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

November 2, 2020

“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley

ii

Abstract

Recently, many powerful machine learning (ML) systems or ecosystems have

been developed to render ML solutions feasible for more complex applications.

Google TensorFlow ecosystem is one of the most famous and popular machine

learning ecosystem. Because of some emerging technologies, such as big data,

Internet of Things (IoT), high-performance computing (HPC), the power of dat-

acenters are expected to be applied in Artificial Intelligence (AI) field. However,

when performing ML tasks in datacenters, new challenges and issues arise, such

as data management. Understanding the behaviors of the Google TensorFlow

ecosystem is our main objective.

We adopt the reference architecture method and extend our reference archi-

tecture created in our literature survey. We add additional deeper layers and

identify more than 10 new components to enrich our reference architecture.

Based on the reference architecture, we create a predictive model of Google

TensorFlow and integrate it into a discrete event simulator OpenDC. We de-

sign simulation experiments to validate our model and evaluate the performance

of the TensorFlow ecosystem in HPC environments.

iv

Contents

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Context and Objective . 1

1.2 Research Questions . 2

1.3 Research Methods . 3

1.4 Main Contributions . 4

1.5 Outline . 4

2 Background 5

2.1 A Reference Architecture for Datacenters 5

2.2 Simulators for Distributed Systems . 9

2.3 Performance Modeling of Distributed DL Systems 11

2.4 Performance Evaluation and Analysis of Distributed DL Systems 13

3 Reference Architecture 15

3.1 Overview . 15

3.2 Reference Architecture for TensorFlow Ecosystem 17

3.3 TensorFlow Core . 21

3.4 Discussion . 22

4 Modeling Google TensorFlow Ecosystem 25

4.1 Requirements . 25

4.2 Overview . 26

4.3 TensorFlow Model . 28

4.4 Discussion . 31

i

CONTENTS

5 Experiments on the Performance of TensorFlow 35

5.1 Overview . 35

5.2 Experiment Setup . 36

5.3 Model Validation and Calibration . 39

5.4 Results and Analysis for New Experiments 42

5.5 Discussion . 46

6 Conclusion and Directions for Future Research 49

6.1 Conclusion . 49

6.2 Directions for Future Research . 50

References 53

ii

List of Figures

2.1 A reference architecture for datacenters . 6

3.1 Reference architecture for Google TensorFlow ecosystem. 16

4.1 Architecture of the model. 27

4.2 Domain model of a computational graph. 28

4.3 An example of dataflow computational graph. 29

4.4 Execution model. 30

4.5 Time diagram for communication tasks. 32

4.6 Sequence diagram: communication among entities. 33

5.1 KTH calibration and validation experiment. 40

5.2 IBM "Minsky" calibration and validation experiment. 42

5.3 Strategy comparison on the A1 workload. 43

5.4 Strategy comparison on the Fathom workloads. 43

5.5 Scalability study on the A1 workload. 45

5.6 Scalability study on the Fathom workload. 45

iii

LIST OF FIGURES

iv

List of Tables

2.1 Simulators for distributed systems. 12

5.1 An overview of all experiments. 37

5.2 An overview of the workloads. 37

5.3 Types of computing devices. 38

5.4 An overview of HPC environments. 38

5.5 Time breakdown of KTH calibration and validation experiment. 40

5.6 Time breakdown of IBM calibration and validation experiment. 41

5.7 Total power consumption. 46

5.8 Total usage. 47

v

LIST OF TABLES

vi

1

Introduction

1.1 Context and Objective

Recently, machine learning (ML) and deep learning (DL) have gained much attention

due to their great potential in numerous areas like speech recognition [1], medical image

analysis [2], product recommendations [3] and self-driving cars [4]. The goal of ML is to

build a suitable model for prediction, classification, or decision making by learning from

a (large) amount of data. To render ML solutions feasible for more complex applications,

many powerful ML systems or ecosystems (such as TensorFlow [5], [6], PyTorch [7], and

MXNet [8]) have been developed.

Google TensorFlow [5], [6] is one of the most prominent and representative ML/DL

frameworks. Inspired by dataflow systems and parameter server architectures, TensorFlow

aims to operate at a large scale and in heterogeneous environments.

The objective of this thesis is to understand the behaviors and performance of Google

TensorFlow ecosystem.

Reference Architecture

What is a reference architecture? Muller [9] defines:

A Reference Architecture captures the essence of the architecture of a collection

of systems.

Reference architectures could provide guidelines for project managers, software develop-

ers, system architects to design a new system or extend an existing system. A reference

architecture for Google TensorFlow ecosystem could help us to understand its behaviours.

1

1. INTRODUCTION

There exist various AI reference architectures and they are designed for different pro-

poses. Some target at specific domains, such as ACR AI-LAB hospital reference architec-

ture [10] and a functional reference architecture for autonomous driving [11]. They usually

include domain-specific elements, such as Electronic Medical Records(EMRs) systems in

the hospital. Another kind of reference architectures is released by big corporations to

help customers define, design, and deploy AI solutions. These reference architectures are

used for their own AI systems, such as AI infrastructure reference architecture for IBM

systems [12] and Microsoft Azure Reference Architectures. The reference architecture for

datacenters of Iosup et al. [13], [14] is more general. It has been studied that it is well-

designed for big data ecosystems and several well-known industry ecosystems [14]. In this

project, we investigate it on TensorFlow ecosystems.

Predictive Model

Predictive model is a model that can predict the output of a system by analyzing data and

patterns. Regarding the level of detail, there are three types of model: black-box(empirical)

model, grey-box(hybrid) model, and white-box(mechanistic) model [15] [16]. A pure black-

box model simply describes a system in terms of its inputs and outputs, without any knowl-

edge of internal mechanisms [17]. It usually consists of a set of mathematical equations

and rules. The black box model is efficient and useful when the purpose of the model is to

represent the processing trends and to provide a quick and approximate output. However,

the black model is unable to inspect any inner components or logic of the system. Our

goal is to understand the behaviors of TensorFlow in datacenters, so the black-box model

is unsuitable. The opposite of the black-box model is the pure white-box model, which

describes as much system detail as possible. It is hard to create a pure white box model

which is essentially a replica of the real-world system [18]. Besides, the white box model

will consume a great deal of computing power. The gray box model is more generic and

commonly used in the simulation. It combines physical knowledge with statistical repre-

sentation to model a complex system. Considering the interpretability and simplicity, we

choose the gray box model to capture the behaviors of TensorFlow.

1.2 Research Questions

Our main research question is How to use discrete-event simulation to investigate

the performance of the Google TensorFlow ecosystem? To clarify the direction of

this study, we elaborate on three research questions as follows.

2

1.3 Research Methods

RQ1. How to design a deep reference architecture for the Google TensorFlow ecosystem?

RQ2. How to create a predictive model of the Google TensorFlow ecosystem within a

discrete-event simulator?

RQ3. What is the performance of the Google TensorFlow ecosystem in High-Performance

Computing (HPC) environments?

1.3 Research Methods

To address RQ1, we extend our reference architecture created in our literature survey. We

have mapped at least 10 components of the TensorFlow ecosystem. In this work, we add

additional deeper layers for the TensorFlow programming model and execution engine. We

identify more components and map to our reference architecture, as discussed in Chapter 3.

To address RQ2, we apply the AtLarge design process [14] to design the model of

Google TensorFlow. This structured process contains eight steps: We (1) formulate the

requirements and (2) understand alternatives in Section 4.1. The (3) bootstrap design is

inspired by the literature survey on distributed machine learning systems, and background

information and related work on performance analysis of Google TensorFlow ecosystem

as shown in Chapter 2. We also make use of the reference architecture for datacenters

of Iosup et al. [13], [14] in the design. The (4) high-level and low-level design of the

model are presented in Section 4.2 and 4.3. Based on the design, we (5) implement the

model, and integrate it with OpenDC [19] codebase using Kotlin programming language.

After implementation, we refer back to the requirements and discuss the (6) conceptual

analysis of the design in Section 4.4. The (7) experimental analysis of the design presents

in Chapter 5. We (8) summarize the design and the result of the model in Chapter 4.

To address RQ3, we design experiments on the performance of TensorFlow in Chap-

ter 5, following the general process for computer systems of performance analysis proposed

by Jain [20]. There are four types of experiments in computer systems: real-world experi-

ments, benchmarking, emulation, and simulation. We choose the simulation method which

simplifies both workload and environments. The simulation method can overcome the dif-

ficulties of executing repeatable and reproducible experiments. In Section 5.1, We state

the experiments goals. Section 5.2 describes the setup of the experiments, including the

selected workload, configured environment, and selected metrics. We validate our model

in Section 5.3 by comparing the results from published articles. We present and analyze

the experimental results in Section 5.4.

3

1. INTRODUCTION

1.4 Main Contributions

The main contributions of this thesis are:

1) A deep reference architecture for the Google TensorFlow ecosystem (Chapter 3).

2) A predictive model of Google TensorFlow ecosystem (Chapter 4).

3) An experiment to assess the performance of Google TensorFlow ecosystem (Chapter 5).

1.5 Outline

This thesis is structured as follows: Chapter 2 introduces background information on the

Google TensorFlow ecosystem and related work on performance analysis of distributed

machine learning systems. To address RQ1, Chapter 4 discusses the design of the model.

To answer RQ2, Chapter 5 presents the experimental evaluation on the TensorFlow model

and the performance of TensorFlow. In Chapter 6, we discusses the final remarks.

4

2

Background

This Chapter presents background information of this work. Section 2.1 introduces a

reference architecture for datacenters of Iosup et al. [13]. Section 2.2 compares seven

simulators for distributed systems. We discuss related work on performance modeling of

distributed deep learning systems in Section 2.3 and performance evaluation and analysis

of distributed DL systems in Section 2.4.

2.1 A Reference Architecture for Datacenters

In order to explore the generalization of artificial intelligence(AI), machine learning(ML)

or deep learning(DL) solutions, we investigate a reference architecture for datacenter, pro-

posed by Iosup et al. [13], [14]. In this reference architecture (Figure 2.1), there are five

core layers from top to bottom: (5) Front-end (Section 2.1) is used for application-level

functions; (4) Back-end (Section 2.1) manages tasks, resources and services on behalf of

the application; (3) Resources (Section 2.1) performs task, resource, and service manage-

ment on behalf of the Datacenter operator; (2) Operations Service (Section 2.1) is for

basic services typically associated with (distributed) operating systems; and (1) Infras-

tructure (Section 2.1) manages physical and virtual resources. An orthogonal layer, (6)

DevOps (Section 2.1), covers functions (such as monitoring, logging, and benchmarking),

that is essential to operating the datacenter but orthogonal to the providing services.

Development(Front-end)

Front-end is for users or programmers to deal with a task with functions. Three sub-layers

(Applications, High Level Language and Programming Model) help to capture systems or

ecosystems with a finer granularity.

5

2. BACKGROUND

Figure 2.1: The reference architecture for datacenters of Iosup et al. [13] [14]

Applications Applications are specific software programs designed for users. According

to dependence on Portals or SaaS1, applications can be categorized as following three

types: Self-developed Apps, often using PaaS/SaaS, usually are a program written in

Python, Java, Go, Erlang, SQL or C#; Apps that rarely adapt Portals/SaaS includes

Google Docs/Sheets, R-studio and Matlab; Apps that never adapt Portals/SaaS

usually are legacy, especially with native codes and statically linked libraries.

High-Level Languages High-Level Languages(HLLs) are designed for human beings,

not machines. Their principles are user-friendliness and easy to understand. High-Level

Languages for AI usually provide high-level building blocks for ML/DL algorithms, feature

engineering methods, parameters tuning methods, and tools for ML pipelines.

• Development APIs/SDKs for all layers

• HLLs for orchestration are tools that support automatically configure and man-

age a pipeline(such as ML pipeline or data pipeline). Examples are Google Cloud

Dataflow, Apache Airflow, and KubeFlow Pipelines.
1In a cloud computing context, there are three levels of cloud services defined by National Institute

of Standards and Technology(NIST): SaaS, Software as a Service; PaaS, Platform as a Service; and IaaS,
Infrastructure as a service

6

2.1 A Reference Architecture for Datacenters

• HLLs for front-ends usually provide high-level building blocks for applications,

such as Apache Pig, Apache Hive, BigQuery, and Impala.

Programming Models Programming Model is an abstraction that indicates how the

code can be organize or reuse. Programming Model for AI/ML/DL usually is related to

data abstraction or computation model.

• Simple-model programs refers to functional programming, procedural program-

ming, object-oriented programming, logic/rule-based programming, semantic net-

work and so on.

• Library-based programs provide a library of functions for implementing compu-

tation. They usually adopt functional or procedural programming. Examples are

scikit-learn [21], Spark MLlib [22] and CUDA [23].

• Structured programming models contain parallel programming model SPMD

(single program multiple data) and MPMD (multiple program multiple data), bags

of tasks, Directed Acyclic Graph(DAG) workflows, dataflow and services. Dataflow

model is the most popular programming model for AI/ML systems such as Tensor-

Flow [5], [6], MXNet [8], PyTorch [7] and Spark [24].

• Second-order and higher-order functions are functions that use functions as

input parameters or return value. An example is MapReduce [25].

• Long-running jobs refer to streaming or event-based processing. Examples are

Spark Streaming, Apache Beam [26] and Apache Flink.

Runtime Engines(Back-end)

Back-end manipulates low level operations for applications. This layer also has three

sub-layers (Execution, Memory & Storage and Network).

Execution Execution is designed to interpret and execute a series of functions sequen-

tially or concurrently with dependencies. Components in this level manage tasks, resources,

and services for the applications and deal with the problems about synchronization, com-

munication, scheduling, and fault tolerance. Corresponding to the programming models

layer, there are five types of Executions engine: Runtimes for library-based jobs, such

as CORBA, MPICH, and Microsoft High-Performance Computing platform; Runtimes

7

2. BACKGROUND

for second-order jobs, such as Hadoop, Spark, and Pregel [27]; Runtimes for long-

running jobs, such as Apache Storm, Amazon S4, and Google MillWheel; Runtimes

for other models, such as Apache Oozie; and App Hosting/Paas which refers to cloud

application platforms, such as Google App Engine, Heroku, and MS Azure.

Memory and Storage To support the variety and velocity of data used and produced

by AI, memory, and storage engine are important. Four components in these layers are

described as follows:

• File and Data Management refers to data replica, data recovery, and Content

Delivery Network(CDN).

• Active Data Management usually facilitates the process of data management,

such as Extract-Transform-Load(ETL) data management and Active Storage which

makes it simple to upload and attach files to cloud storage services.

• Mapping usually refers to tools for Object-relational mapping(ORM) or other map-

ping using schema.

• Data Models includes old, new or NoSQL database, key-value store, key-map store,

document, graph, catalogs, and objects store.

Network Network engine requires to enable more reliable and high-performance data

transmission. This layer does not have many components and one is Data Transport

Management, such as GridFTP.

Resources

Resources Layer manage tasks, resources and services for Datacenter operators. This

layer contains modules for Distributed Computation in a cluster, a node, or hetero-

geneous processors; Distributed (Shared) Memory architecture; Distributed I/O ;

Distributed Communication with network links, routers, or Top of rack (ToR) switch

architecture; and Distributed and Mobile Sensing with smart IoT(Internet of Things)

networks or sensing networks.

8

2.2 Simulators for Distributed Systems

Operation Services

Operation Services are some basic services associated with (distributed) operating sys-

tems. They are related to several aspects: Communication or Coordination, such as

peer-to-peer(P2P) communication, queuing, grouping and locking; Naming, Location,

and Discovery, such as universally unique identifiers(UUIDs), Directories, Replicas, and

Gossiping; Security, such as Authentication, Authorization and Accounting(AAA) Secu-

rity, access control lists(ACLs), demilitarized zone(DMZ) and single sign-on; Cross-DC

Ops, such as Cross Datacenter Replication service and congestion control; SDN Man-

agement, that is Software-Defined Networking Management; and IaaS Resource Man-

agement and container orchestration, including public cloud providers, private cloud

managers(such as OpenNebula), container orchestration(such as Docker).

Infrastructure

Infrastructure is the bottom layer in this RA. It consists of physical hardware and virtual

or containerized machines, including Physical Architecture/Hierarchy for Datacenter,

Room/Container, Rack, Cluster or Pod/Partition; Node; Memory Box; Storage Device

(such as tape robot); Network Device; and Sensors.

DevOps Tools

DevOps, a combination of development and operations, is a set of processes or methods that

promote communication, collaboration, and integration between different layers or different

components. Basic DevOps are testing, benchmarking, configuring, and deploying tools.

Complex DevOps includes monitoring, diagnostics tools and optimizers.

2.2 Simulators for Distributed Systems

In the field of computer systems, simulation is a popular, important, and cost-effective

method [20]. It imitates the behaviors and operations of a system, to gain insight into the

properties of the system under study and investigate the effects of alternative conditions.

It simplifies both workloads and environments of distributed systems. One advantage

of the simulation method is that it can overcome the difficulties of executing repeatable

and reproducible experiments. Considering the simulation models of the systems which

evolve, there are two types of simulators: (1)continuous simulators, where the state of

the system changes continuously; and (2)discrete event simulators, where the state of the

9

2. BACKGROUND

system changes at discrete time points [28]. Discrete-event simulators are more preferable

in computer systems since time is generally a discrete event (tick or cycle).

Many powerful discrete-event simulators for distributed systems has been developed,

such as CloudSim [29], iCanCloud [30] and OpenDC [19]. CloudSim [29] is a well-known

cloud computing simulator that can model the core functionality of clouds, such as the

creation of private/public cloud environments, communication between different cloud en-

tities, and resource management policies. Users define workloads by creating instances of

cloudlets. Cloudlets are submitted to and processed by virtual machines (VMs) deployed

in the cloud. Users can customize various resource management policies, such as VM al-

location policies, VM scheduling policies, and cloudlet scheduling polices. iCanCloud [30]

is similar to CloudSim, but it supports parallel simulation and provides a full graphical

user interface (GUI). OpenDC [19] is a simulation framework, aiming at serving a diverse

set of stakeholders. It provides basic resource models (CPUs, VMs, and memories), step-

based workflow models, and failure models. It has a GUI for users to interact with the

simulators. The above three simulators can model the environment and simulate different

workloads running on them, but they lack comprehension of different computing models

and applications.

Researchers start to extend simulators to support various applications, such as Network-

CloudSim [31] for parallel applications, MRSim [32] for MapReduce model, CEPSim [33]

for complex event processing systems, and IOTSim [34] for Internet of Things(IoT) appli-

cations. NetworkCloudSim [31] extends CloudSim with a network model and a stage-based

application model that can represent communicating processes. A task in an application

contains some computation and communication phases. It allows more accurate evalu-

ation of resource management policies to optimize the performance of parallel applica-

tions in a Cloud infrastructure. CEPSim [33] proposes a query model based on Directed

Acyclic Graphs (DAGs) to represent Complex Event Processing (CEP) and Streaming

Processing (SP) applications. It can be used to analyze and evaluate the performance

and scalability of CEP queries with various query processing strategies. MRSim [32] and

IOTSim [34] both model MapReduce applications as a set of Map tasks and Reduce tasks.

MRSim focuses on the Hadoop environment, while IOTSim focuses on the IoT field. We

cannot find any existing simulators that can effectively model ML/DL applications.

To analyze the properties of simulators for distributed systems, Ulita [35] proposes a

taxonomy with six branches: (1)model instance; (2)model lifecycle; (3)simulation quality;

(4)simulation capabilities; (5)simulator interaction; (6)simulation execution. Each branch

10

2.3 Performance Modeling of Distributed DL Systems

has 4 to 6 leaves that represent functional, non-functional, or stakeholder-related proper-

ties. Because this thesis focuses on the application layer, we compare seven mentioned

simulators in terms of workload, resources, parallel execution, language, GUI support, and

code availability in Table 2.1. OpenDC [19] is not the most mature simulator, but it pro-

vides attractive proprieties, such as failure model, energy consumption, and GUI support.

Therefore, we choose OpenDC and create a predictive model for TensorFlow applications

on top of it in Chapter 4.

2.3 Performance Modeling of Distributed DL Systems

Performance modeling is a method to model the behaviour of a system and predict various

performance metrics (such as execution time) of the system with a given workload and

setup. Modeling the performance of parallel computing and distributed systems is com-

monly used for scalability analysis [36], resource allocation [37], and capacity planning [38].

Most of prior work is targeted on specific distributed systems or parallel computing appli-

cations, such as MPI-based applications [39], MapReduce [40] [41], and stream processing

applications [42].

More recently, several performance models have been developed for distributed deep

learning systems. Yan et al. [43] develops a mathematical model for scalability estimation

and optimization of distributed deep neural network (DNNs) models training. It predicts

the training time of DNNs and quantifies the performance impact of data and model par-

titioning and system provisioning decisions. Similarly, Hashemi et al. [44] proposes a per-

formance model of DNNs and asynchronous stochastic gradient descent algorithm. They

focus on the system scalability of the CNTK framework. They conclude that poor I/O uti-

lization degraded the whole execution time. Shi et al. [45] and Alqahtani et al. [46] model

DNNs training with synchronous stochastic gradient descent algorithm. Shi et al. [45]

focus on GPU servers and clusters, while Alqahtani et al. [46] focus on different system

architectures, such as parameter server (PS), peer to peer (P2P), and ring-allreduce (RA).

Qi et al. [47] introduce an analytical performance model of DNNs training called PALEO

at a very fine granularity. It explores the design space of a deep neural network applica-

tion the choice of network architecture, hardware, software, communication schemes, and

parallelization strategies. Our predictive model in Chapter 4 covers the design choices

supported by these prior studies.

11

2. BACKGROUND

T
ab

le
2.1:

Sim
ulators

for
distributed

system
s.

S
im

u
lator

Y
ear

W
orkload

R
esou

rces
P
arallel

E
xecu

tion
L
an

gu
age

G
U
I

S
u
p
p
ort

A
vailab

ility

C
lou

d
S
im

[29]
2011

M
iscellaneous

D
C
s,V

M
s,

Storage,
N
etw

ork
N
o

Java
N
o

O
pen

Source

iC
an

C
lou

d
[30]

2012
M
iscellaneous

C
P
U
s,

N
etw

ork,
Storage

Y
es

C
+
+

Y
es

O
pen

Source

O
p
en

D
C

[19]
2017

W
orkflow

s
V
M
s,C

P
U
s,

G
P
U
s

Y
es

C
+
+
/K

otlin
Y
es

O
pen

Source

N
etw

orkC
lou

d
S
im

[31]
2011

P
arallel

D
C
s,V

M
s,

Storage,
N
etw

ork
N
o

Java
N
o

O
pen

Source

M
R
S
im

[32]
2010

M
apR

educe
D
C
s,V

M
s,

Storage,
N
etw

ork
N
o

Java
N
o

O
pen

Source

C
E
P
S
im

[33]
2016

Stream
ing

V
M
s,N

etw
ork

N
o

Java
N
o

O
pen

Source

IO
T
S
im

[34]
2017

M
apR

educe
V
M
s,Storage,
N
etw

ork
N
o

Java
N
o

N
o

12

2.4 Performance Evaluation and Analysis of Distributed DL Systems

2.4 Performance Evaluation and Analysis of Distributed DL
Systems

Apart from performance modeling, empirical performance analysis is a widely used ap-

proach to study the performance of distributed systems. There are several studies con-

ducting machine learning workload characterization to improve resource utilization and

workload performance in ML clusters.

Several recent work [48] [49] aims at identifying and understanding the performance

bottlenecks of deep learning training workloads. Guignard et al. [48] conduct several ex-

periments and analyze the performance of the Fathom [50] workloads on the IBM “Minsky”

platform. They focus on the computational behaviors. Wang et al. [49] establish an ana-

lytical characterization framework to investigate the performance of deep learning training

workloads from the Platform of Artificial Intelligence (PAI) in Alibaba.

Chien et al. [51] characterize the I/O performance and scaling of DL workloads in

TensorFlow and focus on its interaction with the storage system. They design a micro-

benchmark to measure TensorFlow reads, and then use a TensorFlow mini-application

based on AlexNet to measure the performance cost of I/O and check-pointing in Tensor-

Flow. Their work shows that TensorFlow provides high-performance I/O on a single node

in the data-ingestion phase and that burst-buffer can be an effective technique for fast

check-pointing.

There are also some studies [52] [53] for a multi-tenant cluster where multiple ML appli-

cations (tenants) share a set of resources. Park et al. [52] analyze the inference workloads

in a Facebook datacenter, pointing out limitations of the current ML infrastructure [53]

and providing suggestions for future general-purpose/accelerated inference hardware. Jeon

et al. [54] present a detailed workload characterization of a two-month trace from a multi-

tenant GPU cluster in Microsoft and focused on resource utilization, job scheduling, and

failure analysis.

13

2. BACKGROUND

14

3

Reference Architecture for Google
TensorFlow Ecosystem

Reference architectures could help to conquer the complexity and manage the diversity

when designing or analyzing systems. In this chapter, we address our first research ques-

tion: How to design a deep reference architecture for the Google TensorFlow

ecosystem?

3.1 Overview

In this chapter, we extend the reference architecture from our literature survey. We identify

more components for the TensorFlow ecosystem and map them to the reference architecture

in Section 3.2. We also add additional depth to TensorFlow programming model and

execution model based on TensorFlow architecture [5] in Section 3.3. Figure 3.1 presents

our results. Those components marked with red diamonds are new in this work.

Method Our process is mainly based on TensorFlow scientific publications and docu-

mentation or tutorials from their official sites. Other materials such as source code may

also be considered if available. The first step of our mapping process is to extract compo-

nents of a system. Different components usually have different functionalities. Then we

map each component to each layer. It is also possible that one layer has several components

and one component maps to several layers. Further, we consider other components that

do not belong to this system but are required or supported by this system.

15

3. REFERENCE ARCHITECTURE

 Development
 (Front-End)

 Runtime
 Engines
 (Back-end)

 Memory
 &
 Storage

File Systems

 Infrastructure

 Operations Services

 Resources

 Network

 Execution

 Programming
 Model

 High Level Language

 Application
DevOps

Tools

TensorBoard
 TF Extended(TFX)

HDFS

Google Kubernetes EngineZookeeper

Google Cloud Storage

Node.js TFlite
Runtime

Data
Validation

Model
Analysis

Apache Beam

Loading data &
Preprocessing

Model Training & Parameter Tuning Serving & Inference

Google Compute Engine

Distribution Strategy API

TF HubEstimator Keras TF Serving API

TensorFlow.js API TF Lite API

Main components of TensorFlow Components of Google Cloud Platform Components of TFX Third-party components

Transform

tf.data

POSIX

General purpose resoure manager

Yarn Marathon/Mesos

GPU Cluster scheduler for DL/ML workload

Optimus Tiresias Gandiva

THEMIS SLAQ

TensorFlow
Core

 Kernel Implementations

Distributed Master Dataflow executor
Graph Constructor

Operations Placement

Graph Optimizer

Network Interface Device Manager

Operations Scheduler

Operations Executor

Eigen BLAS cuDNN

AWS S3

Tracer

Profiler

Graph
Visualization

Metrics
Visualization

Libraries & Extensions:
Agents, Graphics, Probability...

gRPC Verbs NCCL GPUDirect RDMAMPI

Computational Devices

CPUsCloud TPUs GPUs

 DataFlow Graph

Network

InfiniBandEthernet PCIe

XLA

Data Model

ML Metadata TFRecord Protobuf

...

Control dependencies

=

Operations

Nodes

Tensor

+Edges

BFC
Memory
Allocator

New in this work Strategies

TF Serving API

Borg

Mobile & IoT DevicesContainers

Storage Devices

SSD HDD

Figure 3.1: Reference architecture for Google TensorFlow ecosystem.

16

3.2 Reference Architecture for TensorFlow Ecosystem

3.2 Reference Architecture for TensorFlow Ecosystem

There are six layers in our reference architecture (Figure 3.1): development, runtime en-

gines, resources, operations services, infrastructure, and DevOps. In this section, we intro-

duce each layer.

3.2.1 Development

Development layer is for users or programmers to deal with a task with functions. There

are three sub-layers (Applications, High Level Language, and Programming Model).

3.2.1.1 High-Level Language

An ML/DL workflow contains three stages: loading & preprocessing data, model training

& parameter tuning, and serving & inference. Most components in this layer can be placed

into these three stages. One component in TensorFlow is used to orchestrate ML pipelines.

If not mentioned specifically, components have the most complete and stable support for

Python and they also support JavaScript, C++, Java, Go, and Swift language.

Loading and Preprocessing Data Two components (tf.data and Transform) mapped

into this stage are both high level APIs. The tf.data API enables to build input pipelines.

An input pipeline usually is an Extract-Transform-Load(ETL) process. The Extract phrase

reads input data and constructs a Dataset, an abstraction represented a sequence of ele-

ments that have the same structure, from data stored in memory or file systems. It supports

a variety of data formats, including text, CSV, images, and videos. The Transform phase

performs data preprocessing, such as shuffling, time-series windowing, and other operations

with the map function. The final phase loads the transformed data to available accelerators

(e.g., GPU or TPU) to train models.

Transform is a component offered by TensorFlow Extended(TFX) [55]. It is a standalone

library based on Apache Beam, which is an advanced unified programming model for batch

and streaming data processing. Using Transform, a processing function will be defined to

describe a series of operations that transform raw data into the data used to train a model

and then be converted into a Beam pipeline to transform data.

Model Training and Parameter Tuning This stage is essential and contains four

components. Keras [56] is a high level, user-friendly, functional API for Neural Network.

It is written in Python and runs on top of TensorFlow. TensorFlow implements tf.keras to

17

3. REFERENCE ARCHITECTURE

train models and support TensorFlow-specific functionality (such as tf.data pipelines). The

advantages of Keras are simplicity, modularity, and extensibility. It minimizes the number

of user actions required for common use cases and provides standalone, fully-configurable

modules (such as neural layers, cost function, and activation function) that can be plugged

together with a few restrictions. New modules are also easy to add as existing modules

provide enough examples.

Estimators [57] is also a high-level API for specifying, training, and evaluating ML

models. Compared to tf.keras, Estimators support for parameter server-based training

and full TFX integration. The Keras model can be converted to Estimators to access

Estimators’ strength.

TensorFlow Hub is a repository for transfer learning, providing pre-trained models that

can be reused to solved new tasks with less training time and training data.

Distribution Strategy is a relatively low-level API for Execution layer to distribute train-

ing across multiple machines, GPUs, or TPUs and can be used with high-level APIs such

as Keras. There are different types of strategies, including mirrored strategy with an all-

reduce algorithm for synchronous, parameter server strategy for asynchronous training,

and other strategies for different hardware platforms.

Serving and Inference The trained and saved models can be run directly or be deployed

to provide services. There are three components for deployment: TensorFlow Serving,

TensorFlow.js and Tensorflow Lite. TensorFlow Serving is a production-level flexible and

high-performance serving system. It supports RESTful API and gRPC API. TensorFlow.js

allows training and deploying models in a JavaScript environment, such as in a web browser

or a server using Node.js as back-end. TensorFlow Lite is a lightweight solution for mobile

and embedded systems. It consists of two main components: a converter which converts

models into an efficient form, and an interpreter which runs specially optimized models

on different hardware types. It supports Android systems with Java, iOS systems with

Swift or Objective-C, and Linux-based embedded systems (such as Raspberry Pi and Edge

TPU) with Python.

ML pipelines TensorFlow Extended(TFX) [55] is a high level language for orchestration.

TFX supports for continuous training and serving with production-level reliability and pro-

vides reusable built-in components (Data Analysis, Data Transformation, Data Validation,

Trainer, Model Evaluation and Validation, and Serving). A TFX pipeline requires Apache

Beam as a programming model and it is also possible to use Apache Airflow or KuberFlow

18

3.2 Reference Architecture for TensorFlow Ecosystem

Pipelines as orchestrators to author, schedule, and monitor ML workflows. ML Metadata

is an integral component of TFX to retrieve and record metadata associated with ML

workflows (such as Execution metadata, which records a run in an ML workflow and the

runtime parameters). The storage backend of ML Metadata can be SQLlite(in-memory or

disk) or MySQL.

3.2.1.2 Programming Model

Apache Beam [26] is required when using TFX components. It is a unified program-

ming model for batch and stream data processing. It belongs to long-running jobs using

streaming and structured programs using DAG workflows or dataflow. It supports multiple

distributed processing back-ends, such as Apache Spark, Apache Flink, and Google Cloud

Dataflow. Java, Python, and Go languages can be used to implement a Beam model.

TensorFlow Core is libraries-based and a structured dataflow programming model. All

TensorFlow applications could be expressed as a dataflow computation graph. We discuss

more detail about this component in Section 3.3.1.

Libraries & Extensions are libraries-based programs and built on TensorFlow. They help

to build advanced models or domain-specific applications, such as Agents for reinforcement

learning, Graphics for computer graphics functionalities, and Probability for probabilistic

reasoning and statistical analysis.

3.2.2 Runtime Engines

Back-end manipulates low level operations for applications. This layer also has three

sub-layers (Execution, Memory and Storage, and Network).

3.2.2.1 Execution

TensorFlow Execution belongs to runtimes for second-order jobs. It is written in C and

consists of client, master, and worker. The client program uses Session to execute a

graph and interact with the master and workers. The master schedules tasks over workers

and workers execute tasks. No parameter servers are in TensorFlow, instead, ps tasks

are generated for parameter updates. If the application runs on multiple devices, a node

placement algorithm will be run to map the computation onto a set of available devices

(such as CPUs and GPUs). Fault tolerance is handled by user-level checkpoints. We

discuss more detail about this component in Section 3.3.2.

19

3. REFERENCE ARCHITECTURE

Node.js is runtime for TensorFlow.js and is a JavaScript runtime. It executes a JavaScript

code on a browser or a server. TFlite Runtime is runtime for TF lite library. It deploys

ML models on mobiles and IoT devices.

3.2.2.2 Memory and Storage

Memory TensorFlow runtime is responsible for memory allocation and garbage collec-

tion [58]. It adopts best-first with coalescing (BFC) memory allocator.

Data Model ML Metadata is a library for recording and retrieving metadata associated

with ML workflows. Data models that it uses contains Artifact(a component or a step in an

ML workflow), Execution(a record of a run and the runtime parameters), Events(a record

of the relationship between an Artifact and Execution) and other records. It supports

storage back-end SQLite(in-memory or disk) and MySQL.

TFRecord is a file format for storing a sequence of binary records. It helps to read

large data efficiently and makes use of memory and storage. tf.data the module provides

functions to read and write TFRecord files.

Protobuf is a mechanism for serializing structured data and is similar to JSON and XML.

It is designed by Google. gRPC uses Protobuf for communication.

File Systems TensorFlow supports to save data in cloud storage (such as Google Cloud

Storage and AWS S3), POSIX (Portable Operating System Interface) file systems, and

distributed file systems (such as HDFS).

3.2.2.3 Network

gRPC, developed by Google, is a high-performance universal Remote Procedure Call (RPC)

framework. It is the main network engine for TensorFlow. TensorFlow also supports Verbs

protocol, MPI, GPUDirect RDMA, and NCCL.

3.2.3 Resources, Operation Services and Infrastructure

Resources Layer manage tasks, resources and services for Datacenter operators. In this

layer, we identify two types of resource managers. One type is general purpose resource

manager, including Borg [59], Hadoop Yarn [60] and Apache Mesos [61]. The other type is

GPU cluster scheduler designed for ML/DL workload, includingOptimus [62], Tiresias [63],

Gandiva [64], SLAQ [65], THEMIS [66].

20

3.3 TensorFlow Core

In Operation Services layer, Google Kubernetes Engine and Google Compute Engine are

IaaS resource management and container orchestration. Zookeeper [67] can provide basic

services for maintaining configuration information, naming, and grouping.

In Infrastructure layer, TensorFlow supports various computational devices (including

CPUs, GPUs, Cloud TPUs, containers, and mobile and IoT devices) and different types

of networks to connect computing nodes (such as InfiniBand, Ethernet, and PCIe).

3.2.4 DevOps

Data Validation(TFDV) and Model Analysis(TFMA) are components of TFX. They are

DevOps tools for High-level language layer. TFDV can check and analyze data by comput-

ing descriptive statistics, inferring a schema, and detecting data anomalies. TFMA allows

evaluating the model on a large amount of data. They both support to be visualized in

Jupyter notebooks.

TensorBoard is a complex DevOps tool provided by TensorFlow for logging training

metrics (such as loss and accuracy), visualizing the model graphs, tuning hyper-parameters,

tracing, monitoring and profiling a program.

3.3 TensorFlow Core

As Figure 3.1 shows, we add additional depth to TensorFlow programming model and exe-

cution model based on TensorFlow architecture [5]. In this section, we illustrate the details

of TensorFlow programming model (Section 3.3.1) and execution model (Section 3.3.2).

3.3.1 Programming Model

A computation is abstracted as a stateful dataflow graph. Each node represents an oper-

ation(e.g., Add, Matrix Multiply, or Sigmoid function). Tensors, data with N-dimensions,

flow along normal edges in the graph. The graph also has some special edges, called control

dependencies, which enforce orderings of operations. Most tensors cannot survive after ex-

ecution, so variables are a special kind of operations that can handle a persistent mutable

tensor to survive across executions of a graph. In ML applications, model parameters are

usually stored in variables type.

21

3. REFERENCE ARCHITECTURE

3.3.2 Execution

Distributed Master contains three steps. It constructs the computational graph and prunes

it for optimization. There are various graph optimizer (such as Grappler [68]) and opti-

mization algorithms. Graph optimizer aims to improve TensorFlow performance through

graph simplification and improve hardware utilization by optimizing the mapping of graph

nodes to compute resources [68]. It is an optional step, so we will not discuss graph opti-

mizer in our modeling work. Graph partitioner partitions the graph to obtain graph pieces

for each participating device and distributes the sub-graph to workers. The distributed

master also caches these pieces so that they may be re-used in subsequent steps.

Dataflow executor schedule the execution of graph operations using kernel implementa-

tions appropriate to the available hardware (CPUs, GPUs, etc). It also performs send and

receive operations to communicate with other devices.

Kernel Implementations perform the mathematical computation for each operation. It

contains various linear algebra libraries (such as Eigen and BLAS) and GPU-accelerated

libraries (such as cuDNN).

XLA(Accelerated Linear Algebra) is a domain-specific optimizing compiler for linear al-

gebra. It provides an alternative mode to run an ML model, aiming at improving execution

speed, memory usage, and portability.

Network Interface TensorFlow supports multiple communication protocols, including

gRPC over TCP, and RDMA over Converged Ethernet.

Device Manager manage multiple devices (CPUs, GPUs, or TPUs) with a registration

mechanism. TensorFlow has special naming rules for devices. The name of a device is the

unique identifier of the device.

3.4 Discussion

In this chapter, we extend the reference architecture from our literature survey. Two main

contributions of this chapter are as following:

1. We identify more components at several layers, such as Resource layer and Network

layer. These components are well mapped to our reference architecture and enrich

our reference architecture.

2. We expand the TensorFlow programming model and execution engine with the ad-

ditional depth based on TensorFlow architecture [5]. This extension of the reference

architecture helps to design our predictive model in Chapter 4.

22

3.4 Discussion

Threats to Validity

In this chapter, single reviewer bias happens in the process of creating the reference archi-

tecture. We only have one single person to perform the identifying and mapping compo-

nents manually. The result is based on the comprehension of relevant materials. Although

we try to utilize as many materials (relevant papers, tutorials, and source code, etc.) as

possible, only one person may miss some additional materials or misunderstand the func-

tionalities of some components. Then the result is not reliable. An alternative way is to

use a pair-reviewing or multiple-reviewing system [69]. Several reviewers perform the iden-

tifying and mapping process independently. We collect the results from all the reviewers.

Then we merge the results using statistical methods or other methods (such as showing

additional evidence) to reach an agreement.

23

3. REFERENCE ARCHITECTURE

24

4

Modeling Google TensorFlow
Ecosystem

The reference architecture provides a guideline for architectural design and analysis. Based

on the reference architecture from Chapter 3, and considering the interpretability and

simplicity of a model, we address our second research question in this chapter: How

to create a predictive model of the Google TensorFlow ecosystem within a

discrete-event simulator?

The remainder of this chapter is structured as follows. Section 4.1 states the require-

ments of the model. Section 4.2 describes the overview of the model. In Section 4.3, we

introduce our TensorFlow predictive model in details. In Section 4.4, we refer back to the

requirements of our model and discuss potential threats to validity.

4.1 Requirements

The model is used to evaluate the performance of the Google-TensorFlow ecosystem. The

model should be able to predict the TensorFlow workload, imitate its execution in clusters,

and monitor the states of applications and clusters. We analyze the requirements of the

model layer by layer in this section.

R1. Application: The application model is expected to fulfill the generality requirements,

that is, it could represent all TensorFlow applications.

R2. Execution: TensorFlow expresses numerical computations as a dataflow graphs. The

execution of a graph mainly contains graph optimization, graph partitioning on differ-

ent devices, and local scheduling on each device (i.e., the selection of next operations

25

4. MODELING GOOGLE TENSORFLOW ECOSYSTEM

to be executed). The model needs to capture these behaviors of the execution engine

of the TensorFlow system.

R3. Data Management: Task processing includes data access(read/write). ML/DL

jobs need to handle I/O operations such as loading training or validation samples

from files, updating model parameters, and saving trained models or checkpoints to

a storage system. When a replica is located at remote resources, communication

overhead may happen. The model is required to provide an interface for storage

systems and manage data sizes, locality, and transfer process.

R4. Heterogeneous Resources: In TensorFlow, there are different kinds of hetero-

geneity, including the memory capacity, the computational speed, and the network

bandwidth. It is expected to provide models for heterogeneous resources and support

to manage these resources with various policies.

R5. Datacenter Topology should be configurable. The purpose is to make it suitable

for a different design of the physical and logical layout of the resources and their

connectivity in different datacenters or HPC environments.

R6. Metrics should be collected for both TensorFlow users and cluster administrators.

TensorFlow users should be able to monitor their jobs’ status and extract data from

allocated devices. With R1-R3, users can study the scalability of their jobs and iden-

tify performance bottleneck, which can help to make better decisions on distributed

strategies, synchronization protocols, and the specifications of devices. Multi-tenant

clusters administrators can monitor the status of the cluster and the utilization of

different machines or units. With R4 and R5, administrators can study the impact

of heterogeneous resources management and cluster topology, to improve clusters

utilization and capacity to run more ML/DL jobs.

4.2 Overview

To address the requirements, we design the architecture of our model in Figure 4.1.

The OpenDC simulator We choose OpenDC simulator [19] as our base simulator.

The OpenDC simulator provides a basic discrete event simulation framework and two

main components: OpenDC model and OpenDC simulation engine. The simulation engine

controls the main simulation loop and schedules the simulation events. The model is used

26

4.2 Overview

DevOpsModelConfiguration

TensorFlow
Users

Cluster
Administrators

Resouce
Management
& Scheduling

Environment

OpenDC
Simulation
Engine

Cluster-Level
Metrics

Infrastructure

Back-End

Front-End

Applications
or Jobs

Resouce

Operations
Services

TensorFlow Model

OpenDC
Model

Communcation Execution

Dataflow Graph

Storage System

OpenDC
Integration

Legend

Data

Control

Deep Learning Model

Resource Manger
Network Controller

Devices

New

User-Level
Metrics

Applications
Monitors

Resource
Monitors

Figure 4.1: Architecture of the model.

to define the physical datacenter environments, the policies that control the dynamics

of the datacenter, and various workloads running on the datacenter. Following list the

interesting OpenDC features that could be reused on this project.

• Bare Metal Provisioning determines how to map requested devices to available nodes

in the datacenter. Datacenter providers can customize allocation and scheduling

policies to maximize resource utilization.

• Workflow Workload Model determines how a workflow job schedule and run on nodes.

A workflow job consists of a set of tasks with inter-dependencies. Andreadis et al. [70]

also propose a reference architecture for datacenter scheduling using this workflow

workload model.

OpenDC Integration We implement the pieces necessary to integrate the OpenDC

simulator with the TensorFlow model logic. The main classes created for the integration

are depicted in the following:

• Resource Manager extends the workflow scheduler to handle ML applications. It is

used for resource allocation and deallocation. There are various allocation policies,

such as first-fit policy and random policy.

• Network Controller controls network flow along with machines. Because there is

no existing network model in the OpenDC simulator, this is a minimal form of

network model for datacenters. We assume all machines are connected. Then we

27

4. MODELING GOOGLE TENSORFLOW ECOSYSTEM

Node

OpDef/NodeDef

OperationTensor Tensor

Node * Edge *

metadataGraph

metadata

src

dst

Edge

Node

Node

TensorShape

GraphDef

TensorControl dependenciesmetadata

input* control_input* output*

Operation

Legend

Composition

Generalization

Association

Figure 4.2: Domain model of a computational graph.

create a bandwidth lookup table and a network latency lookup table. The dura-

tion of a single network flow can be computed as: network_delay = latency +

message_size/bandwidth. As Figure 4.5 shows, the source device sends a mes-

sage to the network controller. The network controller checks the destination device

calculates the network delay, and then sends the message to the destination device.

• Devices extends bare-metal devices to execute ML tasks. To support heterogeneous

resources, we add a flag for GPU awareness. We also implement several functions for

communication tasks.

4.3 TensorFlow Model

In this section, we illustrate our TensorFlow model in details: application model (Sec-

tion 4.3.1), execution model (Section 4.3.2), communication model (Section 4.3.3)

4.3.1 Application Model

Considering the generality, an ML application is modeled as a dataflow computational

graph as Figure 4.2 shows. A graph consists of a set of nodes and edges. GraphDef is

a serialized version of a graph in ProtoBuf format. Each node represents an operation

(such as add, matrix multiply, or sigmoid function). The metadata of an operation is

held by OpDef and NodeDef in ProtoBuf format. OpDef describes the static information

of operation, such as operation type. NodeDef describes dynamic information, such as

28

4.3 TensorFlow Model

operation name and device information. Tensors flow along normal edges and some special

edges control dependencies. Figure 4.3 is an example of dataflow computational graph.

Input x

Variable w

MatMul

Variable b

Add Add AssignSoftmax

Variable s

Figure 4.3: An example of dataflow computational graph.

However, the dataflow computational graph is a relatively low-level application model

and it is too complex to model a real-world ML application using the dataflow model. For

convenience, we also create a high-level deep learning model. A layer is a general and

central abstract of deep learning. It contains a set of operations. We model each layer in

the neural network as a node and the connections between layers as edges.

4.3.2 Execution Model

Based on Section 3.3.2, we design the execution model in Figure 4.4. Distributed Master

coordinates the execution of an application. It could accept different strategies to orches-

trate jobs. There are different aspects to consider these strategies. One is the parallelism

method, including data parallelism and model parallelism. When we train a DL model

using data parallelism, each worker will have an entire copy of the DL model. The training

data is divided into several non-overlapping chunks. Each worker loads a chunk of training

data and trains its data. After one or more iterations, all the workers will update and

synchronize model parameters. When we train a DL model using model parallelism, the

DL model will be split. Each worker holds a different part of the DL model. The workers

holding the input layer of the DL model will load the training data. There are two phases

of DL training: forward propagation and backward propagation. In the forward propaga-

tion, the workers compute the output and propagate the output to the workers holding the

next layer. In the backward propagation, the workers holding the output layer of the DL

model will compute the gradients and propagate the gradients to the workers holding the

input layers.

Another aspect is synchronization, including synchronous training and asynchronous

training. In synchronous training, all workers train on different chunks of input data, and

update model parameters at each step [6]. In asynchronous training, all workers are inde-

pendently training on the input data and updating model parameters asynchronously [6].

29

4. MODELING GOOGLE TENSORFLOW ECOSYSTEM

Execution Model

 Operations
 Scheduling Default: Depth-First-Search Customized

Distributed Master Dataflow Executor

Graph Constructor

Operations placement

Operations Scheduler

Operations Executor

Application Strategies

FLOPs Calculator

Computation Tasks Comunication Tasks

Tasks

No
Distribution

Synchronization

Parallelism

Async / Sync Sync Async / Sync

Data parallelism Data parallelism Data parallelism /
Model parallelism

Mirrored CustomizedParameterServerStrategies Default

Figure 4.4: Execution model.

Users can customize their own distributed strategies with the device manager and oper-

ation placer. Following are three common strategies currently supported by TensorFlow:

• Default Strategy is no distribution strategy. It places all variables and computations

on a single device. A distributed master also acts as a dataflow executor to execute

a computational graph.

• Parameter Server Strategy supports training on multiple devices. There are two

types of devices: workers and parameter servers. The model parameters are placed

on parameter servers. Workers will perform computational tasks and communicate

with parameter severs to updates the model asynchronously or synchronously.

• Mirrored Strategy supports synchronous distributed training on multiple GPUs. By

30

4.4 Discussion

default, it uses efficient ring-allreduce algorithms [6] to transfer model variable up-

dates across the devices.

The default operation scheduling algorithm is Depth-First-Search (DFS). It is possible to

customize the operation scheduling algorithm. Mayer et.al. [71] have tried Highest Path

Computation Time first (PCT) scheduling algorithm to reduce the execution time of the

critical path on the graph and Maximum Successor Rank first (MSR) scheduling algorithm

to optimize the resource utilization of the devices.

Operations executor executes two types of operations: mathematical computation op-

erations and communication operations (Send or Receive operations). A computation

operation processes a batch size of data and could be calculated as the information of

FLOPs (floating-point operations). FLOPs calculator is mapped to kernel implementa-

tions. The calculation of FLOPs refers to literature in Section 2.3.

4.3.3 Communication

It is necessary to consider the execution of data communication tasks when evaluating

distributed DL applications. Once the graph is partitioned into a set of subgraphs by

graph partitioner, any cross-device edge (i.e. the source node and destination node are

on different devices) will be removed and replaced by an edge to a new Send node and

an edge to a corresponding Receive node. When the operation executor gets this task,

the source device encodes its message and sends a message to the network controller as

Figure 4.5 shows. The network controller searches the destination device in the lookup

table, calculates the network delay, and then sends the message to the destination device.

Figure 4.5 presents an asynchronous non-blocking communication.

4.4 Discussion

In this chapter, We create a predictive model for the TensorFlow ecosystem based on the

requirements listed in Section 4.1.

1. We create the application model (R1) and execution model (R2) of TensorFlow based

on our analysis from the reference architecture in Chapter 3.

2. We create a minimal form of storage and network model to fulfill the requirement

R3.

31

4. MODELING GOOGLE TENSORFLOW ECOSYSTEM

Source
Device

Destination
Device

Network
Controller

Check
destination

Route
& Delay

Send message
to destination device

Receive & decode
message

Encode
message

(non-blocking)
Send message

Figure 4.5: Time diagram for communication tasks.

3. Our model is embedded in the OpenDC simulator. We leverage its existing fea-

tures and extend it to support heterogeneous resources (R4), the configuration of

clusters (R5), and some cluster-level metrics (R6).

4. Several user-level metrics, such as execution time, are also generated to meet the

requirement R6.

Threats to Validity

In this chapter, one potential threat to validity is the verification of the predictive model.

The design of our model is derived from the reference architecture of the TensorFlow

ecosystem in Chapter 3. It is hard to verify our model because we create it based on

a conceptual analysis of the reference architecture. One possible method is to perform

formal analysis, but it is out of our scope. Another threat to validity is the validation of

the model. It depends on whether the implementation of the model works. We will discuss

more details on the experiments of model validation in the next chapter (Chapter 5).

32

4.4 Discussion

Return

Execute Tasks

Push Weights
(Send Message)

Send ps job

Application
Manger TFMaster

Graph Partitioning

Worker Resource
Manger

Schedule

Devices

Initialize

...
Execute

Users

Report

Initialize Jobs Submit Jobs
Allocate Resource

Start TFMaster

Send worker job

Schedule

Load Data

Return

...
Return

Jobs Complete

Return

Release
ResourceReport

Cluster
Admin

Config Environment

Parameter
Server

Network
Controller

Setup

Control Connections

...

Delay
& Route

Message
to destination

Report

Update Weights

Return Execute

Figure 4.6: Sequence diagram: communication among entities.

33

4. MODELING GOOGLE TENSORFLOW ECOSYSTEM

34

5

Experiments on the Performance of
TensorFlow

In this chapter, we address our third research question: What is the performance of

Google TensorFlow ecosystem in High-Performance Computing (HPC) envi-

ronments? Our approach is to design simulation experiments to evaluate the performance

of the TensorFlow ecosystem in HPC environments. We create our simulation model in

Chapter 4. We first validate and calibrate our model through simulations set up to match

the real-world experiments of Chien et al. [51] and Guignard et al. [48]. Then, we use our

model to analyze the performance of the TensorFlow ecosystem in HPC environments.

We focus in this chapter on a modern interpretation of performance, which includes not

only conventional performance metrics (e.g., response time) but also how well the system

performs in terms of power consumption.

The remainder of this chapter is structured as follows. Section 5.1 states the goals of

the experiments. Section 5.2 describes the setup of experiments, including the selected

workload, configured environment, and selected metrics. In Section 5.3, we validate and

calibrate our predictive model. In Section 5.4, we present and analyze the experimental

results.

5.1 Overview

The goals of the experiments are (1) to calibrate and validate our predictive model designed

in Chapter 4; (2) to use our predictive model, embedded in a simulator, to explore the

performance of TensorFlow workloads in HPC environments. Table 5.1 depicts an overview

35

5. EXPERIMENTS ON THE PERFORMANCE OF TENSORFLOW

of all experiments, whose setup we summarize in Section 5.2. We elaborate on each of these

two goals in the following, in turn.

To calibrate all features in our model, we reproduce two experiments from peer-reviewed

papers [48] and [51] as follows:

1. Chien et al. [51] conduct experiments on characterizing Deep Learning (DL) I/O

workloads in TensorFlow and focus on its interaction with the storage system. We

will use their results and descriptions to validate the storage component included in

our simulation setup.

2. Guignard et al. [48] port Fathom [50] workloads to the IBM Minsky platform, to

study its performance. Experiments from [48] can help validate the communication

processes between devices. We use this information for our validation experiments.

We describe the details and results of calibration and validation experiments in Section 5.3.

Although the environments and workloads we study admit many heterogeneous config-

urations, in this chapter we focus on four main aspects. First, the selection of a strategy

(defined in Section 4.3) affects the dynamic operation of the system. Second, HPC envi-

ronments face challenges when scaling under ML workloads. Third, we are interested to

understand how the system becomes used and thus how its utilization evolves over time.

To evaluate the performance of Google TensorFlow ecosystem in HPC environments,

we design four types of experiments: strategy comparison (Section 5.4.1), scalability

study (Section 5.4.2), and cluster utilization study (Section 5.4.3).

5.2 Experiment Setup

In this section, we illustrate the setup of our experiments. The experimental setup includes

the selected workload, configured environment, and selected metrics. We describe the

process of recreating workloads (Section 5.2.1) and environments (Section 5.2.2) from two

peer-reviewed articles for calibration purposes.

5.2.1 Workload

Table 5.2 describes an overview of the workloads used in this work. We recreate each

workload used in this thesis from the description presented in peer-reviewed articles, as

follows:

36

5.2 Experiment Setup

Table 5.1: An overview of all experiments. The unique elements of each experiment are
emphasized in bold. Strategies: D: default strategy, PS: parameter server strategy, M:
mirrored strategy; Metrics: Texec: execution time, NET: normalized execution time, PC:
power consumption. For details of Workload, see Table 5.2. For details of Environment, see
Table 5.1 and 5.3.

§ Goal Workload Environment Strategies Metrics

5.3 Calibration and Validation
A1 HPC at KTH D Texec

Fathom IBM “Minsky” platform D/PS NET

5.4.1 Strategy Comparison
A1 HPC at KTH

PS/M
Texec

Fathom IBM “Minsky” platform NET

5.4.2 Scalability Study
A1 HPC at KTH

PS/M Speedup
Fathom IBM “Minsky” platform

5.4.3 Cluster Utilization Study
A1 HPC at KTH

D/PS/M Usage, PC
Fathom IBM “Minsky” platform

Table 5.2: An overview of the workloads.

Name Model NumParams FLOPs Dataset #samples Batch size Iterations
A1 [51] AlexNet 61 M 0.7 G Caltech 101 9144 16, 32, 64, 128 142

Fathom [50]
VGG-19 138 M 16 G ImageNet 14 M 8 200
AlexNet 61 M 0.7 G ImageNet 14 M 64 200

• For the A1 workload of Chien et al. [51], we consider a single TensorFlow mini-

application, which computes the AlexNet model and uses the Caltech 101 dataset.

The dataset contains 9,144 images with the average image size of around 14kB. The

application is executed 142 iterations. The batch size is varied between 16, 32, 64

and 128.

• For the Fathom workloads [50], we consider two applications as Table 5.2 shows.

For each application, we execute 200 iterations. The arrival pattern of these seven

applications has no relation with the results, so we test them one by one.

5.2.2 Environment

Table 5.4 describes an overview of HPC environments. We recreate HPC environments

used in this thesis from the description presented in peer-reviewed articles as follows:

• For HPC at KTH, we leveraged already existing computing devices components in

OpenDC and modified the performance characteristics as in Table 5.3. Each node

37

5. EXPERIMENTS ON THE PERFORMANCE OF TENSORFLOW

Table 5.3: Types of computing devices. Mem_Bw: memory Bandwidth; Max PC:
maximum power consumption; Min PC: idle power consumption.

Types Specification Cores Frequency Memory Mem_Bw Max PC Min PC
CPU1 Intel E5-2690v3 Haswell 24 3498 MHz 512 GB 68 GB/s 135 Wh 84 Wh
CPU2 IBM POWER8 10 3690 MHz 160 GB 115 GB/s 190 Wh 130 Wh
GPU1 NVIDIA Tesla K80 4992 824 MHz 24 GB 480 GB/s 334 Wh 90 Wh
GPU2 NVIDIA Tesla P100 3584 1190 MHz 16 GB 720 GB/s 250 Wh 125 Wh

Table 5.4: An overview of HPC environments. For details of devices, see Table 5.3.

Environments Storage System Devices per Node Network
HPC at KTH [51] Lustre 1×CPU1+1×GPU1 12 GB/s EDR Infiniband

IBM “Minsky” platform [48] not used 2×CPU2+4×GPU2 12 GB/s EDR Infiniband

has one CPU and one GPU. KTH GPU cluster has nine thin nodes. The parallel file

system used is Lustre. The nodes are connected by 12GB/s EDR InfiniBand network.

We configured the data transfer rate of the Lustre storage system as summarized in

Chien et al. [51, Table 1].

• For IBM “Minsky” platform, we added to the set of components supported by OpenDC

computing devices with the configuration summarized in Table 5.3. Each node has

two CPUs and four GPUs. IBM “Minsky” platform has twelve nodes. The nodes

are connected by 12GB/s EDR InfiniBand network. The experiments in Guignard

et al. [48] do not use the storage sub-system; instead, all data is in-memory. We

configured the network matrix in our network controller model with the “Minsky”

network topology diagram from Guignard et al. [48, Figure 1].

5.2.3 Metrics

In this chapter, we use the following metrics:

• Execution time Texec of an application.

• Communication time Tcomm, computation time Tcomp, and memory access time Tmem

of an application. Memory access time is a part of computation time.

• Normalized execution time [48]: NET = Tmeasured/Tdefault, where Tmeasured is the

predictive execution time of the application and Tdefault is the predictive execution

time of the application using default strategy.

38

5.3 Model Validation and Calibration

• Speedup is the ratio between the execution time with the number of computing work-

ers equal to 1 and the execution time with the number of computing workers equal

to n: Texec(1)/Texec(n). We only consider strong scaling, which means the problem

size is kept constant, and horizontal scaling, which means the added resources are

computing workers, instead of cores in a single machine.

• Usage: the percentage of CPU/GPU device time Tcomp/Texec.

• Power Consumption (PC) inWh of the workload. This metric is provided by OpenDC

simulator [19]. It uses a linear model based on machine load [72], with an idle baseline

of minimum power consumption and a maximum power draw as Table 5.3 shows.

5.3 Model Validation and Calibration

We validate and calibrate our simulation model in following steps:

1. We recreate the workload and environment from the description presented in peer-

reviewed articles [51] [48] as describes in previous Section 5.2.

2. We iterate each experiment 50 times.Uta et al. [73, Figure 3 and Figure 13] finds 50

runs or more could achieve 95% confidence intervals (CIs) for performance measure-

ments. Thus, we choose 50 as the number of repetitions, which is in line with that

in peer-reviewed publications.

3. For each iteration, we compare the results with the articles.

4. We check if the trends shown by the model match the results in the articles and the

execution time is within expected numerical ranges.

5. If we get an undesirable outcome, errors may occur in the workload and environment

configuration, the system model, and the calculation of metrics. We analyze the

undesirable result and review each component of the model and its parameters.

6. If we refine our predictive model or the calculation of metrics, we should rerun all

validation and calibration experiments.

7. When the outcomes of all validation and calibration experiments are expected, we

regard our result as valid.

39

5. EXPERIMENTS ON THE PERFORMANCE OF TENSORFLOW

Figure 5.1: KTH calibration and validation experiment: compare with the execution time
from the article [51, Figure 3]

Table 5.5: Time breakdown of KTH calibration and validation experiment.

Batch size Tcomm Tcomp Tmem Texec

16 0 s 59.64 s 2.03 s 59.64 s
32 0 s 51.40 s 1.48 s 51.40 s
64 0 s 48.99 s 1.20 s 48.99 s
128 0 s 46.86 s 1.06 s 47.14 s

Results

Figure 5.1 shows our simulation results for capturing the execution time of the A1 workload

with 16, 32, 64, 128 batch size compared to the runtime from the article [51, Figure 3].

Our estimation time is a bit higher than the actual time reported in the article. However,

we still can see that there is a trend, which shows when the batch size of an application is

higher, the execution time gets lower. Table 5.5 presents the time breakdown of the KTH

calibration and validation experiment. The article does not provide more details on the

application. We only can ensure the communication time is valid in this table because the

application with the default strategy is executed in one device.

Figure 5.2 shows our simulation results for capturing the normalized execution time (NET)

of Fathom workloads of AlexNet and VGG-19 compare to the runtime from the arti-

40

5.3 Model Validation and Calibration

Table 5.6: Time breakdown of IBM calibration and validation experiment.

Model Strategy Tcomm Tcomp Tmem Texec

AlexNet
Default 0 s 190.60 s 11.95 s 199.00 s

ParameterServer 3.84 s 66.80 s 1.12 s 70.64 s

VGG-19
Default 0 s 733.7 s 62.71 s 781.43 s

ParameterServer 7.82 s 109.00 s 2.49 s 117.21 s

cle [48, Figure 7 and Table 2]. The normalized execution time is calculated as NET =

Testimated/Tdefault, where Testimated is the overall predictive execution time using prede-

fined strategy and Tdefault is the overall predictive execution time of the application using

default strategy. Figure 5.2 shows our estimated NET is lower than the actual NET report

in the article. Table 5.6 presents the time breakdown of the IBM calibration and validation

experiment. In this experiment, the application using the default strategy is executed on

one CPU device, while the application using the parameter server strategy is running on

one GPU device and CPU device. Thus, we can also ensure the communication time for

the default strategy is zero. The AlexNet application using the parameter server strategy

in this experiment uses 64 batch sizes and one GPU device as one worker. We can com-

pare this result with the KTH experiment that uses 64 batch size and default strategy with

one GPU device in Table 5.1. The time breakdown of these two applications is similar.

The execution time of the application in this experiment is a little higher, because of the

communication time and more iterations.

The articles do not provide more detailed information on the experiments. The reasons

for our estimation inaccuracy of IBM experiments might be our minimum form of network

model. We do not model network overhead and the network delay is only based on the

bandwidth and the data size of the message. Thus, the estimated communication time

might be lower than the actual. Then, the execution time of the application using the

parameter server strategy will be lower accordingly.

We not only validate our model with metrics but also inspect the running of our simulator

step by step to ensure the functionalities (such as the communication model and execution

model) are valid. Overall, although the prediction might be not so accurate, our model

could produce several valid results.

41

5. EXPERIMENTS ON THE PERFORMANCE OF TENSORFLOW

Figure 5.2: IBM calibration and validation experiment: compare with the normalized exe-
cution time from the article [48, Figure 7 and Table 2].

5.4 Results and Analysis for New Experiments

In this section, we present and analyze the results of four new experiments: strategy com-

parison (Section 5.4.1), scalability study (Section 5.4.2), and cluster utilization study (Sec-

tion 5.4.3).

5.4.1 Strategy Comparison

Figure 5.3 and Figure 5.4 presents the strategy comparison on the A1 workload in KTH

environment and on the Fathom workloads in IBM “Minsky” environment. The applica-

tions with parameter server strategy and mirrored strategy use four GPU workers. We

can see in Figure 5.3 the trend of batch size and execution time is similar to that in Fig-

ure 5.1. For the AlexNet applications in two experiments, the execution time or NET of

the application using the mirrored strategy is lower than that using parameter strategy.

The mirrored strategy is more efficient for the AlexNet application. In Figure 5.4, the

VGG-19 application performs similar to parameter server strategy and mirrored strategy.

A possible reason for this is that the VGG-19 application is computational-intensive. The

computation time of VGG-19 accounts for a higher percent of execution time.

42

5.4 Results and Analysis for New Experiments

Figure 5.3: Strategy comparison on the A1 workload.

Figure 5.4: Strategy comparison on the Fathom workloads.

43

5. EXPERIMENTS ON THE PERFORMANCE OF TENSORFLOW

5.4.2 Scalability Study

Figure 5.5 and Figure 5.6 shows the scalability study on the A1 workload using mirrored

strategy and Fathom workloads using mirrored strategy and parameter strategy, respec-

tively. We can see that unusual super-linear speedup happens in the AlexNet application

using a batch size of 128 and mirrored strategy with 8 workers (Figure 5.5) and AlexNet

application using a batch size of 64 and mirrored strategy with more than 16 workers (Fig-

ure 5.6). We discuss the unusual super-linear results as following:

1. Yan et al. [43] have investigated the scalability results of ImageNet-22K. They ob-

served that model parallelism speedup is super-linear, while data and parameter

server parallelism speedups are roughly linear [43]. Thus, most of our results are

roughly linear and mirrored strategy scale better than the parameter server strategy.

These are reasonable. However, the super-linear results are abnormal.

2. The super-linear results happen in the application using a batch size of more than

64 and a mirrored strategy with more than 8 workers. Our application size is kept

constant in this experiment. Adding more workers means each worker will get less

computational jobs. We might drop some jobs because the jobs cannot be divided

equally to each worker. Then, it will cause our computational time lower than ex-

pected.

3. The communication time might be not accurate. We have mentioned our network

model is simple and when using mirrored strategy there is less communication over-

head. Thus, some communication time might not be counted because of low precision.

5.4.3 Cluster Utilization Study

Table 5.7 presents the results of the total power consumption of the A1 workload. The

power consumption, provided by OpenDC, uses a linear model based on machine load [72],

with an idle baseline of minimum power consumption 90 Wh and maximum power draw

334 Wh as Table 5.3 shows. The power consumption varies significantly in a different

setup. Compared to the default strategy with one worker, other settings have a higher

power consumption. And we also can see that when batch size equals 64, the application

consumes the lowest power compared to other batch sizes. It is hard to validate and explain

these results in detail. However, the default batch size of AlexNet is 64, which means

AlexNet with a batch size of 64 usually can get better performance. It is consistent with

44

5.4 Results and Analysis for New Experiments

Figure 5.5: Scalability study on the A1 workload.

Figure 5.6: Scalability study on the Fathom workload.

45

5. EXPERIMENTS ON THE PERFORMANCE OF TENSORFLOW

Table 5.7: Total power consumption.

Strategy Batch size
Workers

1 2 4 8
Default 4.24 kWh

Parameter Server

16 240.9 kWh 241.0 kWh 241.1 kWh 241.5 kWh
32 120.5 kWh 120.5 kWh 120.7 kWh 119.4 kWh
64 60.2 kWh 60.3 kWh 59.7 kWh 58.3 kWh
128 150.6 kWh 148.5 kWh 144.5 kWh 136.4 kWh

Mirrored

16 240.9 kWh 241.0 kWh 241.1 kWh 241.5 kWh
32 120.5 kWh 120.5 kWh 120.7 kWh 119.4 kWh
64 60.2 kWh 60.3 kWh 59.7 kWh 58.3 kWh
128 150.6 kWh 148.5 kWh 144.5 kWh 136.4 kWh

our results. We conclude that our model enables us to estimate the power consumption of

the TensorFlow ecosystem.

Table 5.8 presents the results of the total usage of the A1 workload. It shows when

adding more workers, the device usage is degraded for parameter server strategy and almost

remains the same for mirrored strategy. For the parameter server strategy, when there are

more workers, the parameter server is much easier to be the bottleneck. All the workers

have to communicate with the parameter server and update model parameters. However,

the mirrored strategy overcomes this issue. Thus, the usage almost remains the same when

increasing workers. We also can observe that when increasing the batch size, device usage

is higher. This is because if the batch size of the application is larger, the size of a task

will be larger and the number of tasks for each worker will be less. Then each worker will

spend more time computing a task rather than communicating with other machines.

5.5 Discussion

In Chapter 5, we conduct simulation experiments to evaluate the performance of the Ten-

sorFlow ecosystem in HPC environments. We first validate and calibrate our predictive

model created in Chapter 4 through simulations set up to match the real-world experi-

ments of Chien et al. [51] and Guignard et al. [48]. Then, we use our simulation model to

evaluate the performance of the TensorFlow ecosystem in HPC environments. We focus

on three aspects: strategy selection, scalability, and cluster utilization.

The key findings of these experiments are as following:

46

5.5 Discussion

Table 5.8: Total usage.

Strategy Batch size
Workers

1 2 4 8
Default 1.0

Parameter Server

16 0.847 0.793 0.708 0.584
32 0.905 0.869 0.808 0.707
64 0.948 0.927 0.888 0.822
128 0.965 0.954 0.932 0.893

Mirrored

16 0.856 0.857 0.857 0.856
32 0.912 0.911 0.909 0.908
64 0.951 0.952 0.951 0.949
128 0.968 0.968 0.967 0.967

1. There exists a trend for a fixed-size machine learning application that when the batch

size is larger, the execution time is lower.

2. For AlexNet application, the mirrored strategy is more efficient than the parameter

server strategy.

3. Mirrored strategy scales better than the parameter server strategy and its speedup

is roughly linear.

4. Our model can estimate the power consumption of the TensorFlow ecosystem.

5. When adding more workers, the device usage is degraded for parameter server strat-

egy and almost remains the same for mirrored strategy.

Threats to Validity

We identify several threats to validity for our experiments. First potential threat is that

the abnormal super-linear speedup happens in scalability study experiment. It means our

model might not be accurate. We should figure out why it happens and fix it in the future.

Another potential threat is that our data management model is simple. We do not present

a detailed understanding of complex interactions between devices. The data management

model is expected to be improved in the future. Reproducing experiments is also a threat

to validity. It is hard to make sure all the settings of the experiments are the same as

that in the articles, including the setup of environments, the setup of workloads, and the

calculation of metrics. Thus, there is much work on experiments left to be done.

47

5. EXPERIMENTS ON THE PERFORMANCE OF TENSORFLOW

48

6

Conclusion and Directions for Future
Research

In this chapter, we conclude the main contributions of this thesis and propose several

potential directions for future research.

6.1 Conclusion

In this thesis, we address three main research questions on understanding the behaviors

and performance of Google TensorFlow ecosystem:

RQ1. How to design a deep reference architecture for the Google TensorFlow ecosystem?

In Chapter 3, we extend our reference architecture created in our literature survey.

We add additional deeper layers for the TensorFlow programming model and execu-

tion engine. We identify more components and map to our reference architecture.

RQ2. How to create a predictive model of the Google TensorFlow ecosystem within a

discrete-event simulator?

In Chapter 4, we create a multi-layer predictive model of the Google TensorFlow

ecosystem within the OpenDC simulator. An application is modeled as a dataflow

computational graph. We design the execution model with three strategies (default

strategy, parameter strategy, and mirrored strategy) which are currently supported

by TensorFlow. We also create a simple communication model for data transfer.

RQ3. What is the performance of the Google TensorFlow ecosystem when running in

High-Performance Computing (HPC) environments?

49

6. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

In Chapter 5, we design simulation experiments to evaluate the performance of the

TensorFlow ecosystem in HPC environments. We first validate and calibrate our

predictive model through simulations set up to match the real-world experiments of

Chien et al. [51] and Guignard et al. [48]. Then, we use our model to analyze the

performance of the TensorFlow ecosystem in HPC environments. We focus on three

aspects: strategy selection, scalability, and cluster utilization. The key findings of

these experiments are as following:

(a) There exists a trend for a fixed-size machine learning application that when the

batch size is larger, the execution time is lower.

(b) For AlexNet application, a mirrored strategy is more efficient than a parameter

strategy.

(c) Mirrored strategy scales better than the parameter strategy and its speedup is

roughly linear.

(d) Our model enables us to estimate the power consumption of the TensorFlow

ecosystem.

(e) When adding more workers, the device usage is degraded for parameter server

strategy and almost remains the same for mirrored strategy.

6.2 Directions for Future Research

In this section, we propose several potential directions for future research on understanding

the behaviours of machine learning ecosystems in datacenters.

Improve data management model. In this work, we create a minimal form of network

and storage model for data transfer. We do not present a detailed understanding of complex

interactions between devices, including computational devices (such as CPUs and GPUs)

and communication devices (such as switches and routers). Data management is a challenge

for machine learning workloads [74]. It relates to loading training data from storage or

memory, saving checkpoint files or model parameters data, moving data to other devices,

and other data management-related problems. Chien et al. [51] find data prefetching is

a key factor to improve the performance of the input pipeline in TensorFlow. Chishti

et al. [75] show memory hierarchy is becoming a performance bottleneck for scaling deep

learning. To better capture the behaviors of data management in TensorFlow, future work

could design a more detailed network, storage, and memory model. It not only could help

50

6.2 Directions for Future Research

the prediction more accurate, but also could provide insights to optimize data systems for

machine learning workloads.

Conduct real-world experiments to validate the model. In Chapter 5 Section 5.3,

we validate and calibrate our model by reproducing two experiments from peer-reviewed

articles. Reproducing experiments is a challenge [76]. It is hard to make sure all the

settings of the experiments are the same as that in the articles, including the setup of

environments, the setup of workloads, and the calculation of metrics. Thus, we consider to

conduct real-world experiments and compare the results from real-world experiments with

that from simulation to validate our model. Then, our model would be more reliable.

Explore scheduling policies in multi-tenant heterogeneous GPU clusters. Mod-

ern HPC environments host not only a single job, but rather the combined workloads of

multiple concurrent tenants. Multi-tenant cluster scheduling for machine learning work-

loads has been studied by a number of recent works, such as Gandiva [64], Optimus [62],

and Themis [66]. These schedulers, mentioned in Chapter 3 Section 3.2.3, target at differ-

ent objectives such as high efficiency, fairness, cluster utilization, and resource isolation.

Future research could focus on exploring resource scheduling and cluster management in

multi-tenant heterogeneous GPU clusters.

Study how to provision HPC hardware for machine learning workloads. There

are two opportunities for future research on how to provision HPC hardware for ma-

chine learning workloads. First, we could explore different types of hardware, including

traditional hardware and ML/big-data hardware (e.g., SSD). Second, we could study ca-

pacity planning for machine learning workloads in HPC environments. Andreadis extends

OpenDC and designs a capacity planning system, Capelin, for cloud infrastructure. Us-

ing Capelin tool to investigate machine learning workloads in HPC environments has the

potential to help resource provisioning and planning.

Investigate the performance and energy efficiency of TensorFlow in HPC envi-

ronments with failures. Failures could affect cluster utilization and energy efficiency.

Failures are caused by various reasons, such as runtime errors, network timeouts, incorrect

inputs, job preempted or invalid memory access [54] [77]. In this work, we have studied the

performance and power consumption of TensorFlow in HPC environments without failures.

OpenDC has provided failure features and realistic energy models are being developed. It

51

6. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

is possible to extend this work to perform failure analysis of TensorFlow jobs in shared

clusters. It could help to study the impact of failures on cluster usage and to improve

failure handling ability for machine learning workloads.

52

References

[1] Li Deng and Xiao Li. Machine Learning Paradigms for Speech Recogni-

tion: An overview. IEEE Transactions on Audio, Speech, and Language Processing,

21(5):1060–1089, 2013. 1

[2] Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep Learning in Med-

ical Image Analysis. Annual Review of Biomedical Engineering, 19:221–248, 2017.

1

[3] Ivens Portugal, Paulo Alencar, and Donald Cowan. The Use of Machine

Learning Algorithms in Recommender Systems: A Systematic Review.

Expert Systems with Applications, 97:205–227, 2018. 1

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard

Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Mon-

fort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba.

End to End Learning for Self-Driving Cars. ArXiv, abs/1604.07316, 2016. 1

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. TensorFlow: A System for Large-Scale Machine

Learning. In 12th USENIX Symposium on Operating Systems Design and Imple-

mentation, pages 265–283, 2016. 1, 7, 15, 21, 22

[6] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean,

Matthieu Devin, et al. TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems. ArXiv, abs/1603.04467, 2016. 1, 7, 29,

31

53

REFERENCES

[7] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, et al. PyTorch: An Imperative Style, High-Performance

Deep Learning Library. In Advances in Neural Information Processing Systems,

pages 8024–8035, 2019. 1, 7

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A

Flexible and Efficient Machine Learning Library for Heterogeneous Dis-

tributed Systems. ArXiv, abs/1512.01274, 2015. 1, 7

[9] Gerrit Muller. A Reference Architecture Primer. https://www.gaudisite.

nl/ReferenceArchitecturePrimerSlides.pdf, August 21, 2020. 1

[10] Chris Treml and Brad Genereaux. ACR AI-LAB Hospital Ref-

erence Architecture Framework. https://resources.nvidia.com/

redefining-medical-imaging/acr-ai-lab-hospital-architecture-ebook,

2019. 2

[11] Sagar Behere and Martin Törngren. A Functional Reference Architec-

ture for Autonomous Driving. Information and Software Technology, 73:136–150,

2016. 2

[12] Kelvin Lui and Jeff Karmiol. AI Infrastructure Reference Architecture.

https://www.ibm.com/downloads/cas/W1JQBNJV, June, 2018. IBM systems. 2

[13] Alexandru Iosup, Alexandru Uta, Laurens Versluis, Georgios An-

dreadis, Erwin Van Eyk, Tim Hegeman, Sacheendra Talluri, Vincent

Van Beek, and Lucian Toader. Massivizing Computer Systems: a Vision

to Understand, Design, and Engineer Computer Ecosystems through and

beyond Modern Distributed Systems. In 38th IEEE International Conference

on Distributed Computing Systems, pages 1224–1237, 2018. 2, 3, 5, 6

[14] Alexandru Iosup, Laurens Versluis, Animesh Trivedi, Erwin Van Eyk,

Lucian Toader, Vincent van Beek, Giulia Frascaria, Ahmed Musaafir,

and Sacheendra Talluri. The AtLarge Vision on the Design of Distributed

Systems and Ecosystems. In 39th IEEE International Conference on Distributed

Computing Systems, pages 1765–1776, 2019. 2, 3, 5, 6

54

https://www.gaudisite.nl/ReferenceArchitecturePrimerSlides.pdf
https://www.gaudisite.nl/ReferenceArchitecturePrimerSlides.pdf
https://resources.nvidia.com/redefining-medical-imaging/acr-ai-lab-hospital-architecture-ebook
https://resources.nvidia.com/redefining-medical-imaging/acr-ai-lab-hospital-architecture-ebook
https://www.ibm.com/downloads/cas/W1JQBNJV

REFERENCES

[15] Paul A. Fishwick, editor. Handbook of Dynamic System Modeling. Chapman and

Hall/CRC, 2007. 2

[16] R. H. A. Hellsen, Georgo Z. Angelis, M. J. G. van de Molengraft, A. G.

de Jager, and J. J. Kok. Grey-box Modeling of Friction: An Experimental

Case-study. Eur. J. Control, 6(3):258–267, 2000. 2

[17] Octavio Loyola-González. Black-Box vs. White-Box: Understanding

Their Advantages and Weaknesses From a Practical Point of View. IEEE

Access, 7:154096–154113, 2019. 2

[18] Martin Tarr. MODELLING-Choosing a model. http://www.ami.ac.uk/

courses/topics/0199_mod/index.html, 2003. 2

[19] Alexandru Iosup, Georgios Andreadis, Vincent Van Beek, Matthijs Bij-

man, Erwin Van Eyk, Mihai Neacsu, Leon Overweel, Sacheendra Talluri,

Laurens Versluis, and Maaike Visser. The OpenDC Vision: Towards Col-

laborative Datacenter Simulation and Exploration for Everybody. In 16th

International Symposium on Parallel and Distributed Computing, pages 85–94, 2017.

3, 10, 11, 12, 26, 39

[20] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. John Wiley & Sons,

1990. 3, 9

[21] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter

Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research, 12(Oct):2825–2830,

2011. 7

[22] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,

Sean Owen, et al. Mllib: Machine Learning in Apache Spark. The Journal

of Machine Learning Research, 17(1):1235–1241, 2016. 7

[23] Shane Cook. CUDA Programming: A Developer’s Guide to Parallel Computing with

GPUs. Newnes, 2012. 7

55

 http://www.ami.ac.uk/courses/topics/0199_mod/index.html
 http://www.ami.ac.uk/courses/topics/0199_mod/index.html

REFERENCES

[24] Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott

Shenker, and Ion Stoica. Spark: Cluster Computing with Working Sets.

Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, 10:10,

2010. 7

[25] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-

cessing on Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

7

[26] Apache Beam. https://beam.apache.org/documentation/, 2016. 7, 19

[27] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehn-

ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A Sys-

tem for Large-Scale Graph Processing. In Proceedings of the ACM SIGMOD

International Conference on Management of data, pages 135–146, 2010. 8

[28] Oliver Ullrich and Daniel Lückerath. An Introduction to Discrete-Event

Modeling and Simulation. Simul. Notes Eur., 27(1):9–16, 2017. 10

[29] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF

De Rose, and Rajkumar Buyya. CloudSim: A Toolkit for Modeling and

Simulation of Cloud Computing Environments and Evaluation of Resource

Provisioning Algorithms. Software: Practice and Experience, 41(1):23–50, 2011.

10, 12

[30] Alberto Núñez, Jose L Vázquez-Poletti, Agustin C Caminero, Gabriel G

Castañé, Jesus Carretero, and Ignacio M Llorente. iCanCloud: A Flex-

ible and Scalable Cloud Infrastructure Simulator. Journal of Grid Computing,

10(1):185–209, 2012. 10, 12

[31] Saurabh Kumar Garg and Rajkumar Buyya. NetworkCloudSim: Mod-

elling Parallel Applications in Cloud Simulations. In IEEE 4th International

Conference on Utility and Cloud Computing, pages 105–113, 2011. 10, 12

[32] Suhel Hammoud, Maozhen Li, Yang Liu, Nasullah Khalid Alham, and

Zelong Liu. MRSim: A Discrete Event based MapReduce Simulator. In

Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 6,

pages 2993–2997, 2010. 10, 12

56

https://beam.apache.org/documentation/

REFERENCES

[33] Wilson A Higashino, Miriam AM Capretz, and Luiz F Bittencourt. CEP-

Sim: Modelling and Simulation of Complex Event Processing Systems in

Cloud Environments. Future Generation Computer Systems, 65:122–139, 2016. 10,

12

[34] Xuezhi Zeng, Saurabh Kumar Garg, Peter Strazdins, Prem Prakash Ja-

yaraman, Dimitrios Georgakopoulos, and Rajiv Ranjan. IOTSim: A

Simulator for Analysing IoT Applications. Journal of Systems Architecture,

72:93–107, 2017. 10, 12

[35] Paweł Ulita. A Survey of Simulators for Distributed Systems. unpublished.

10

[36] Prasad Jogalekar and C. Murray Woodside. Evaluating the Scalability

of Distributed Systems. IEEE Transactions on Parallel and Distributed Systems,

11(6):589–603, 2000. 11

[37] Brian J. Watson, Manish Marwah, Daniel Gmach, Yuan Chen, Martin F.

Arlitt, and Zhikui Wang. Probabilistic performance modeling of virtual-

ized resource allocation. In Manish Parashar, Renato J. O. Figueiredo,

and Emre Kiciman, editors, Proceedings of the 7th International Conference on

Autonomic Computing, pages 99–108, 2010. 11

[38] Arnd Schröter, Gero Mühl, Samuel Kounev, Helge Parzyjegla, and Jan

Richling. Stochastic performance analysis and capacity planning of pub-

lish/subscribe systems. In Jean Bacon, Peter R. Pietzuch, Joe Sventek,

and Ugur Çetintemel, editors, Proceedings of the Fourth ACM International Con-

ference on Distributed Event-Based Systems, pages 258–269, 2010. 11

[39] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. LogGOPSim:

simulating large-scale applications in the LogGOPS model. In Salim Hariri

and Kate Keahey, editors, Proceedings of the 19th ACM International Symposium

on High Performance Distributed Computing, pages 597–604, 2010. 11

[40] Emanuel Vianna, Giovanni Comarela, Tatiana Pontes, Jussara M.

Almeida, Virgílio A. F. Almeida, Kevin Wilkinson, Harumi A. Kuno, and

Umeshwar Dayal. Analytical Performance Models for MapReduce Work-

loads. Int. J. Parallel Program., 41(4):495–525, 2013. 11

57

REFERENCES

[41] Daria Glushkova, Petar Jovanovic, and Alberto Abelló. MapReduce

Performance Models for Hadoop 2.x. In Yannis E. Ioannidis, Julia

Stoyanovich, and Giorgio Orsi, editors, Proceedings of the Workshops of the

EDBT/ICDT 2017 Joint Conference, 1810 of CEUR Workshop Proceedings. CEUR-

WS.org, 2017. 11

[42] Gabriela Jacques-Silva, Zbigniew Kalbarczyk, Bugra Gedik, Henrique

Andrade, Kun-Lung Wu, and Ravishankar K. Iyer. Modeling stream pro-

cessing applications for dependability evaluation. In Proceedings of the 2011

IEEE/IFIP International Conference on Dependable Systems and Networks, pages

430–441. IEEE Compute Society, 2011. 11

[43] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul M. Chilimbi.

Performance Modeling and Scalability Optimization of Distributed Deep

Learning Systems. In Proceedings of the 21th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages 1355–1364, 2015. 11, 44

[44] Sayed Hadi Hashemi, Shadi A. Noghabi, William Gropp, and Roy H. Camp-

bell. Performance Modeling of Distributed Deep Neural Networks. CoRR,

abs/1612.00521, 2016. 11

[45] Shaohuai Shi, Qiang Wang, and Xiaowen Chu. Performance Modeling and

Evaluation of Distributed Deep Learning Frameworks on GPUs. In IEEE

16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on

Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and

Computing and Cyber Science and Technology Congress, pages 949–957, 2018. 11

[46] Salem Alqahtani and Murat Demirbas. Performance Analysis and Com-

parison of Distributed Machine Learning Systems. CoRR, abs/1909.02061,

2019. 11

[47] Hang Qi, Evan R. Sparks, and Ameet Talwalkar. Paleo: A Performance

Model for Deep Neural Networks. In 5th International Conference on Learning

Representations, 2017. 11

[48] Mauricio Guignard, Marcelo Schild, Carlos S. Bederián, Nicolás

Wolovick, and Augusto J. Vega. Performance Characterization of State-

Of-The-Art Deep Learning Workloads on an IBM "Minsky" Platform. In

58

REFERENCES

51st Hawaii International Conference on System Sciences, pages 1–8, 2018. 13, 35,

36, 38, 39, 41, 42, 46, 50

[49] Mengdi Wang, Chen Meng, Guoping Long, Chuan Wu, Jun Yang, Wei

Lin, and Yangqing Jia. Characterizing Deep Learning Training Workloads

on Alibaba-PAI. In IEEE International Symposium on Workload Characterization,

pages 189–202, 2019. 13

[50] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and

David M. Brooks. Fathom: reference workloads for modern deep learning

methods. In IEEE International Symposium on Workload Characterization, pages

148–157. IEEE Computer Society, 2016. 13, 36, 37

[51] Steven Wei Der Chien, Stefano Markidis, Chaitanya Prasad Sishtla,

Luís Santos, Pawel Herman, Sai Narasimhamurthy, and Erwin Laure.

Characterizing Deep-Learning I/O Workloads in TensorFlow. In 3rd

IEEE/ACM International Workshop on Parallel Data Storage & Data Intensive Scal-

able Computing Systems, pages 54–63, 2018. 13, 35, 36, 37, 38, 39, 40, 46, 50

[52] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind

Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich,

Satish Nadathur, et al. Deep Learning Inference in Facebook Data Cen-

ters: Characterization, Performance Optimizations and Hardware Impli-

cations. arXiv preprint arXiv:1811.09886, 2018. 13

[53] Kim M. Hazelwood, Sarah Bird, David M. Brooks, Soumith Chintala,

Utku Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing

Jia, Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis,

Misha Smelyanskiy, Liang Xiong, and Xiaodong Wang. Applied Machine

Learning at Facebook: A Datacenter Infrastructure Perspective. In IEEE

International Symposium on High Performance Computer Architecture, pages 620–

629. IEEE Computer Society, 2018. 13

[54] Myeongjae Jeon, Shivaram Venkataraman, Junjie Qian, Amar Phan-

ishayee, Wencong Xiao, and Fan Yang. Multi-tenant GPU Clusters for

Deep Learning Workloads: Analysis and Implications. Technical report, Mi-

crosoft Research, 2018. 13, 51

59

REFERENCES

[55] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu

Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent

Koc, et al. TFX: A TensorFlow-Based Production-Scale Machine Learn-

ing Platform. In Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 1387–1395, 2017. 17, 18

[56] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

17

[57] Heng-Tze Cheng, Zakaria Haque, Lichan Hong, Mustafa Ispir, Clemens

Mewald, Illia Polosukhin, Georgios Roumpos, D Sculley, Jamie Smith,

David Soergel, et al. TensorFlow Estimators: Managing Simplicity vs.

Flexibility in High-Level Machine Learning Frameworks. In Proceedings of

the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 1763–1771, 2017. 18

[58] Peng Gu. Memory management for tensorflow. https://github.com/

miglopst/cs263_spring2018/wiki/Memory-management-for-tensorflow, May 4,

2018. 20

[59] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-

heimer, Eric Tune, and John Wilkes. Large-scale cluster management at

Google with Borg. In Proceedings of the Tenth European Conference on Computer

Systems, pages 18:1–18:17. ACM, 2015. 20

[60] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agar-

wal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh

Shah, Siddharth Seth, et al. Apache Hadoop YARN: Yet Another Re-

source Negotiator. In Proceedings of the 4th annual Symposium on Cloud Comput-

ing, pages 1–16, 2013. 20

[61] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-

thony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos:

A Platform for Fine-Grained Resource Sharing in the Data Center. In

Proceedings of the 8th USENIX Conference on Networked Systems Design and Imple-

mentation, 11, page 22, 2011. 20

60

https://github.com/fchollet/keras
https://github.com/miglopst/cs263_spring2018/wiki/Memory-management-for-tensorflow
https://github.com/miglopst/cs263_spring2018/wiki/Memory-management-for-tensorflow

REFERENCES

[62] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong

Guo. Optimus: an Efficient Dynamic Resource Scheduler for Deep Learn-

ing Clusters. In Rui Oliveira, Pascal Felber, and Y. Charlie Hu, editors,

Proceedings of the Thirteenth EuroSys Conference, pages 3:1–3:14. ACM, 2018. 20, 51

[63] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae

Jeon, Junjie Qian, Hongqiang Harry Liu, and Chuanxiong Guo. Tiresias:

A GPU Cluster Manager for Distributed Deep Learning. In 16th USENIX

Symposium on Networked Systems Design and Implementation, pages 485–500, 2019.

20

[64] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-

vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,

Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. Gandiva: Intro-

spective Cluster Scheduling for Deep Learning. In 13th USENIX Symposium

on Operating Systems Design and Implementation, pages 595–610, 2018. 20, 51

[65] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman.

SLAQ: quality-driven scheduling for distributed machine learning. In Pro-

ceedings of the 2017 Symposium on Cloud Computing, pages 390–404. ACM, 2017.

20

[66] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram

Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.

THEMIS: Fair and Efficient GPU Cluster Scheduling. In 17th USENIX Sym-

posium on Networked Systems Design and Implementation, pages 289–304, 2020. 20,

51

[67] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin

Reed. ZooKeeper: Wait-free Coordination for Internet-scale Systems. In

USENIX Annual Technical Conference, 2010. 21

[68] Rasmus Munk Larsen and Tatiana Shpeisman. TensorFlow Graph Opti-

mizations, 2019. 22

[69] Erwin Van Eyk, Johannes Grohmann, Simon Eismann, André Bauer,

Laurens Versluis, Lucian Toader, Norbert Schmitt, Nikolas Herbst,

61

REFERENCES

Cristina Abad, and Alexandru Iosup. The SPEC-RG Reference Architec-

ture for FaaS: From Microservices and Containers to Serverless Platforms.

IEEE Internet Computing, 2019. 23

[70] Georgios Andreadis, Laurens Versluis, Fabian Mastenbroek, and

Alexandru Iosup. A Reference Architecture for Datacenter Scheduling:

Design, Validation, and Experiments. In SC18: International Conference for

High Performance Computing, Networking, Storage and Analysis, pages 478–492,

2018. 27

[71] Ruben Mayer, Christian Mayer, and Larissa Laich. The TensorFlow

Partitioning and Scheduling Problem: It’s the Critical Path! CoRR,

abs/1711.01912, 2017. 31

[72] Mark Blackburn and Green Grid. Five Ways to Reduce Data Center

Server Power Consumption. The Green Grid, 42:12, 2008. 39, 44

[73] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez,

Jan S. Rellermeyer, Carlos Maltzahn, Robert Ricci, and Alexandru Io-

sup. Is Big Data Performance Reproducible in Modern Cloud Networks?

In Ranjita Bhagwan and George Porter, editors, 17th USENIX Symposium on

Networked Systems Design and Implementation, pages 513–527. USENIX Association,

2020. 39

[74] Arun Kumar, Matthias Boehm, and Jun Yang. Data Management in Ma-

chine Learning: Challenges, Techniques, and Systems. In Proceedings of the

2017 ACM International Conference on Management of Data, pages 1717–1722, 2017.

50

[75] Zeshan Chishti and Berkin Akin. Memory system characterization of deep

learning workloads. In Proceedings of the International Symposium on Memory

Systems, pages 497–505. ACM, 2019. 50

[76] Alessandro Vittorio Papadopoulos, Laurens Versluis, André Bauer,

Nikolas Herbst, Jóakim von Kistowski, Ahmed Ali-Eldin, Cristina L.

Abad, José Nelson Amaral, Petr Tuma, and Alexandru Iosup. Method-

ological Principles for Reproducible Performance Evaluation in Cloud

Computing. In Michael Felderer, Wilhelm Hasselbring, Rick Rabiser,

62

REFERENCES

and Reiner Jung, editors, Software Engineerin, Fachtagung des GI-Fachbereichs

Softwaretechnik, P-300 of LNI, pages 93–94. Gesellschaft für Informatik e.V., 2020.

51

[77] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie

Qian, Wencong Xiao, and Fan Yang. Analysis of Large-Scale Multi-Tenant

GPU Clusters for DNN Training Workloads. In Dahlia Malkhi and Dan

Tsafrir, editors, 2019 USENIX Annual Technical Conference. 51

63

	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Objective
	1.2 Research Questions
	1.3 Research Methods
	1.4 Main Contributions
	1.5 Outline

	2 Background
	2.1 A Reference Architecture for Datacenters
	2.2 Simulators for Distributed Systems
	2.3 Performance Modeling of Distributed DL Systems
	2.4 Performance Evaluation and Analysis of Distributed DL Systems

	3 Reference Architecture
	3.1 Overview
	3.2 Reference Architecture for TensorFlow Ecosystem
	3.3 TensorFlow Core
	3.4 Discussion

	4 Modeling Google TensorFlow Ecosystem
	4.1 Requirements
	4.2 Overview
	4.3 TensorFlow Model
	4.4 Discussion

	5 Experiments on the Performance of TensorFlow
	5.1 Overview
	5.2 Experiment Setup
	5.3 Model Validation and Calibration
	5.4 Results and Analysis for New Experiments
	5.5 Discussion

	6 Conclusion and Directions for Future Research
	6.1 Conclusion
	6.2 Directions for Future Research

	References

