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ABSTRACT
Online gaming applications entertain hundreds of millions of daily

active players and often feature vastly complex architecture. Among

online games, Minecraft-like games simulate unique (e.g., modifi-

able) environments, are virally popular, and are increasingly pro-

vided as a service. However, the performance of Minecraft-like

services, and in particular their scalability, is not well understood.

Moreover, currently no benchmark exists for Minecraft-like games.

Addressing this knowledge gap, in this work we design and use

the Yardstick benchmark to analyze the performance of Minecraft-

like services. Yardstick is based on an operational model that cap-

tures salient characteristics of Minecraft-like services. As input

workload, Yardstick captures important features, such as the most-

popular maps used within the Minecraft community. Yardstick cap-

tures system- and application-level metrics, and derives from them

service-level metrics such as frequency of game-updates under scal-

able workload. We implement Yardstick, and, through real-world

experiments in our clusters, we explore the performance and scala-

bility of popular Minecraft-like servers, including the official vanilla
server, and the community-developed servers Spigot and Glowstone.
Our findings indicate the scalability limits of these servers, that

Minecraft-like services are poorly parallelized, and that Glowstone
is the least viable option among those tested.
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1 INTRODUCTION
Primarily operated on high-performance machines in cluster-based

data centers, online computer gaming is a billion-player, multi-

billion-dollar industry [14]. The growth potential of this industry
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depends not only on innovative content, but also on transitioning

existing and future games to scalable online services. By offering

seamless but modifiable virtual environments, the online game

Minecraft has become the sixthmost-popular game on PC platforms,

and is popular also on other platforms.
1
However, the transition of

Minecraft to full delivery “as a service” is possibly still hampered by

technology. Because Minecraft acts as a distributed simulation and

database with high-frequency updates, it is not trivial to understand

its performance and scalability. Relatively few performance studies

focus on Minecraft-like services [7, 8, 5], and no public benchmarks

for Minecraft-like games exist. Addressing this knowledge and

tools gap, in this work we design, implement, and use Yardstick,

a benchmark for Minecraft-like services.

Online games are now a popular and large market, of over 250

million active users and over $100 billion global revenue [14]. De-

veloped by Mojang AB and acquired by Microsoft in 2014 for $2.5

billion,
2
Minecraft has currently more than 70 million active users

and generates over 100 million dollars in sales yearly.
3
The suc-

cess of Minecraft has triggered game-developers to create tens

of Minecraft-like games, many of which are currently distributed

through the Steam market for PC-games and, combined, have mil-

lions of customers. The modifiable environments of Minecraft are

used not only by gamers, but also as environments for education
4

(e.g., in history, anatomy, digital logic, and economics), and have

been used for activist approaches to save real-world ecosystems.
5

To maintain its status in the very competitive market, Minecraft

relies not on innovative content, but on technological advances:

it operates already across more than 10 gaming platforms, it co-

ordinates the servers operated by community-members, and is of-

fered “as a service” through Minecraft Realms. Technology-related,

Minecraft fosters an active and sizable modding community, which

has already created over 38,000 customized modules to alter the

gameplay of Minecraft.
6
Modding is not supported by the official

(vanilla) Minecraft distribution provided by Mojang; hence, the

modding communities have created several other implementations

of the Minecraft server-protocol to support their customizations:

the mod-friendly servers include Spigot [12], Sponge, and Glow-
stone [16].

Hosting vanilla Minecraft servers and various kinds of modded

servers is currently an emerging but fast-growing service. Despite

the large interest in Minecraft server hosting, the performance

of Minecraft-like services, and in particular their scalability, re-

mains poorly understood. Moreover, there currently exists no public

benchmark for Minecraft-like services. Therefore, it is challenging

1
http://bit.ly/PopularPCGames

2
http://bit.ly/Minecraft2-5B

3
http://bit.ly/MostPlayedGames, bit.ly/MojangSales, bit.ly/MicrosoftMC

4
https://education.minecraft.net/

5
For example, in Poland, http://bit.ly/MinecraftToSaveForests

6
https://www.curseforge.com/

Session 10: Performance Optimization

https://doi.org/10.1145/3297663.3310307
https://doi.org/10.1145/3297663.3310307
https://doi.org/10.1145/3297663.3310307
http://bit.ly/PopularPCGames
http://bit.ly/Minecraft2-5B
http://bit.ly/MostPlayedGames
bit.ly/MojangSales
bit.ly/MicrosoftMC
 https://education.minecraft.net/
http://bit.ly/MinecraftToSaveForests
https://www.curseforge.com/
https://www.acm.org/publications/policies/artifact-review-badging#functional


to determine, and consequently to improve, the performance of

Minecraft-like services. Toward understanding the (relative) per-

formance of Minecraft and Minecraft-like services, in this work we

propose Yardstick, a benchmark for Minecraft-like services. Our

main contribution is threefold:

(1) We design a system model for the operation of Minecraft-

like services (Section 2). Our model provides a reference

architecture for Minecraft-like games, which captures the

fundamental characteristic of such games: modifiable terrain.

The system model also captures the performance of the core

Minecraft game-loop. We validate the model with real-world

Minecraft and Minecraft-like servers.

(2) We design the Yardstick benchmark for Minecraft-like ser-

vices (Section 3). Yardstick fulfills a diverse set of require-

ments, among which Yardstick generates a workload that

simulates lifelike player behavior in representative virtual-

environments. Moreover, Yardstick defines and monitors

various system-, application-, and service-level metrics.

(3) We conduct, through real-world experimentation, an anal-

ysis of Minecraft-like services (Section 4). We construct

an experiment setup that focuses on three popular server-

distributions, including vanilla Minecraft, use the realistic

workloads derived from real-world communities, and con-

duct comprehensive parameter exploration to understand

the scalability of these services.

This work aligns with our long-term vision, of Massivizing Com-

puter Systems [10]. It aligns with the principle of increased aware-

ness about the emerging properties of ecosystems (P9), by informing

ourselves and the community about the evolution of these new com-

puter ecosystems and, more specifically, how we address the need

for increased performance among such ecosystems. We specifically

tackle in this work the challenge of understanding this emerging

ecosystem (challenge C19, “understanding the New World”). This

work also aligns well with use case 6.3: Online Gaming. In partic-

ular, Minecraft-like games entertains tens of millions of players

worldwide at a fraction of the cost.

2 SYSTEM MODEL
In this section, we model the operation of Minecraft-like services.

We propose a system model, define the core unit of computation in

Minecraft services (the game-loop, or tick), and define performance

and service metrics for Minecraft-like services. Last, we validate

the system model with three Minecraft-like servers, which we

benchmark in Section 4.

2.1 Overview
Minecraft is a multi-player gaming system designed around the

traditional client-server model. The server performs the majority

of computation. All Minecraft users install locally client-software,

which connects to the server. Users may download server-software,

either vanilla or a server produced and modified by the community,

and use it to host Minecraft services independently. Alternatively,

users may use Minecraft servers as a service; for example, Mojang

offers Realms, that is, servers hosted for a monthly fee.

Figure 1 depicts the system model of Minecraft-like servers. The

typical Minecraft-like server adds to the basic client-server model a

variety of components, some idiosyncratic (e.g., related to the mod-

ifiable virtual-world of Minecraft, or to the Minecraft client-server

communication protocol), others generic (e.g., for user authenti-

cation, or for data storage). This system model is a generalization

of Minecraft(-like) servers commonly used by the community. We

describe the six main components below.

2.1.1 Network Manager. The user connects to Minecraft-servers

with client-software, which connects to the Network manager. The
latter accepts the incoming TCP-connection, configures the neces-

sary protocol stack, including layers for encryption and message

encoding/decoding, and exposes the messages to the Game loop
through a message queue.

2.1.2 Authentication Agent and Server. All Minecraft servers sup-

port authorization of Minecraft players. In particular, servers use an

Authentication Agent to communicate with a (developer-controlled)

Authentication Server.

2.1.3 Server Configuration. This component manages the parame-

ters that control the virtual-world simulation, e.g., the frequency

of spawning certain entities in the virtual world, the frequency

of persisting the world-state, the maximum message size, and the

view distance
7
.

2.1.4 One or Several Virtual Worlds. A server may contain sev-

eral worlds, each containing zero or more players. Players interact

with the virtual world, and with other players connected to the

same virtual world, through the Minecraft-service (see game loop,

Section 2.1.5). Each virtual world consists of game objects. These

objects are either (1) terrain, which is a grid of immovable blocks,

or (2) entities, some player-controlled, which may move freely.

The terrain is segmented into chunks, which are discrete cuboids8

of l ×m × n blocks, with l = 16,m = 16, and n = 256 for the official

Minecraft distribution.
9
To give the illusion that the terrain of

the world is infinitely large, terrain-chunks are generated using a

pseudo-random number generator and a complex algorithm that

mimics various geographies and biomes. At runtime, chunks are

generated, loaded, and stored, individually, as players join and leave

areas of the terrain. TheWorld loader component determines which

chunks should be loaded and stored to the world database, and

ensures the world is persisted between user-sessions.

Entities are all non-block objects in the game, including players,

creatures, and certain physics-aware block-like objects such as

sand and gravel
7
. Some entities, such as cows and wolves, are

controlled by virtual agents that respond to other entities and to the

terrain. For example, cows may move toward patches of grass, and

wolves may move towards players. When chunks are unloaded, all

entities located within are persisted, along with their corresponding

metadata (such as health).

2.1.5 The Main Service: the Game Loop. The primary service of-

fered by a Minecraft-server is to operate the game loop for all

connected players, independently for each virtual world managed

by the server. We model the game loop in Section 2.2. Similarly to

the typical game-loop in other games [22], the Minecraft game-loop

7
Community-led Minecraft wiki, https://minecraft.gamepedia.com

8
A parallelepiped whose faces are all all rectangles, e.g., as described by http:

//mathworld.wolfram.com/Cuboid.html
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Figure 1: System model for Minecraft-like servers.

performs the majority of the computation in Minecraft servers, and,

in particular, four categories of tasks
9
: (1) processing of incom-

ing messages; (2) performing updates regarding the virtual worlds;

(3) performing updates regarding the entities (including players) in

the worlds; (4) updating players of the new world and entity states.

2.1.6 Server-side Plugins. Minecraft has a considerable community

that creates new content, altering the vanilla game. Server-side

plugins can alter the operation of the server, and expose this func-

tionality through APIs. For example, a plugin may allow players

to generate complex constructions on the map, without the effort

required to manipulate each block; another may generate a map of

the region and post it to an online forum outside the game, to give

the entire community a 3d-depiction of progress in the collaborative

building process. The Plugin loader and Server plugin components

appear only in the systems designed and operated by the commu-

nity, such as Spigot and Glowstone [12, 16], but not in the vanilla
Minecraft-servers. At server startup, the plugin loader dynamically

loads the plugins indicated by the server-operator; dynamically,

through the API, the server-operator can run the functions offered

by plugin as a service.

2.2 The Minecraft Game Loop
Minecraft services perform most computation in the game loop

(tick). Ticks are started with constant frequency (tick frequency) of
20Hz; hence, the interval between the start of consecutive ticks (tick
interval) is equal 50ms. Processing a tick completes after a variable

amount of time (tick duration), which depends on the amount of

tasks the game-loop has to complete, the amount of computation

for each task, and the overhead of the game-loop implementation;

for example, many entities converging in the same chunk can lead

to substantial amounts of computation, relatively to a chunk with

few entities. The overhead is not fixed; although the main opera-

tions that occur within a tick are known, the order in which these

9
Community-led Minecraft wiki, http://technical-minecraft.wikia.com

ts td te

Tick Duration Tick Wait Duration

Tick Interval

Figure 2: Time line of the Minecraft game loop.

take place and the level of concurrency used depends on the im-

plementation. If the game-loop completes its computation before

the tick interval has elapsed, it pauses until the next tick should be

performed (the pause is for a variable tick wait duration).
Figure 2 illustrates a game tick: ts indicates the start time of a

tick, td the start of the tick wait period, and te the end of the tick

(and the start of the next tick).

2.2.1 Relative Utilization. From the game loop, we derive a new

metric, the relative utilization, which is for game-servers the ana-

logue of resource utilization for traditional servers. We define the

relative utilization as the fraction of the tick duration over the

tick interval (Definition 2.1). Under normal operating conditions,

0 ≤ Ur ≤ 1. When Ur approaches 1, the tick wait duration is low

and there is little leeway for additional server load. When Ur ap-
proaches zero, little to none of the capacity of the server is used.

This metric effectively allows us to determine when spare capacity

remains, and when a server is overloaded (Ur > 1, discussed next).

Definition 2.1. The relative utilization of a server is defined as:

Ur =
td − ts
te − ts

where Ur is the relative utilization, and the variables td , ts , and te
are interpreted as in Figure 2.

2.2.2 Server Overload. If, for a given tick, the relative utilization is

larger than 1, the server cannot process the next tick at the correct

time and must delay the start of the next tick until spare capacity

becomes again available. This behavior results in desynchronized

updates and can cause unwanted game-behavior such as loss of

interactivity; in turn, these effects can quickly sour the gameplay

experience [4, 21]. Definition 2.2 captures this situation.

Definition 2.2. A Minecraft tick has the overloaded property iff., for

that tick, it holds that td − ts > te − ts .

Defining server-overloads that cause the degradation of game-

play experience is not straightforward. A server that occasionally

experiences an overloaded tick will not reduce the user experience

significantly, because the server has the opportunity to compensate

for the delay in the ticks that follow, and because the client-software

can use simple prediction [15, 24] and more complex techniques [3,

20] to compensate for mismatched server-updates. Only when over-

loaded ticks occur in bursts over a short timespan it becomes likely

for the players to notice undesirable behavior.

Our definition of system overload (Definition 2.3) is based on

a sliding-window average (τ ). The length of the window is arbi-

trary, because no formal definition of system overload currently
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exists for Minecraft-like services. A short window length may cause

false positives. A long window length may fail to identify an over-

loaded server.

Definition 2.3. A Minecraft server is overloaded if more than half of

the ticks in the previous τ seconds have the overloaded property.

(In this work, we use τ = 5s .)

2.3 Validating the Model
We validate here the (abstract) system model introduced in Sec-

tion 2.1. To this end, we select popular real-world Minecraft-like

servers, and map them to the system model. We focus on each

component of the system model, in turn. Overall, we do not find

components that are not used by at least one Minecraft-like server,

and find different implementations for specific components; we

conclude that our system model is a reference architecture for

Minecraft-like servers.

Although the vanillaMinecraft server does not publish its source

code, many community projects try to augment its functionality

or recreate its functionality from scratch. We select among these

projects two popular Minecraft-like servers, Spigot and Glowstone.
Spigot [12] is an adaptation of CraftBukkit10: it is fully compatible

with vanilla Minecraft, and also incorporates a plugin system and

several performance-oriented extensions. Glowstone is an indepen-

dent re-creation of Minecraft.

2.3.1 NetworkManager. Spigot,Glowstone, and vanilla all use Netty11

for network management. Internally, Netty uses worker threads

and asynchronous event groups to accept and configure commu-

nication channels.

2.3.2 Authentication Agent and Server. The authentication approach
used by vanilla Minecraft, Yggdrasil, is based on access-tokens,

which the client software requests and the Minecraft server vali-

dates.
12

The other servers use the same or a similar authentication

approach. For example, Spigot’s use of Netty means that, during

the authentication phase of the connection, the Network manager
simultaneously spawns a thread, the Authentication agent, which
verifies the session key with Mojang-controlled servers.

2.3.3 Server Configuration. The vanillaMinecraft server, Spigot,
and Glowstone have separately-stored configurations. The config-

urations are each loaded on startup and persist for the duration

of the process.

2.3.4 Virtual World. The world database uses a proprietary format,

Anvil
13

to store regions, which are comprised of 32×32 chunks. This

format is based on a community-developed approach and has been

included in vanilla Minecraft since version 1.3. The same format is

used in Spigot, which further exposes the state of the virtual-world

through the Bukkit API, and uses for performance reasons an IO

thread-pool to load and store multiple world-chunks concurrently,

based on the location of each player. Glowstone supports the Anvil
file format, with minor incompatibilities.

10CraftBukkit is now closed, https://bukkit.org/

11
https://netty.io/

12
Minecraft Coalition, http://wiki.vg.

13
https://minecraft.gamepedia.com/Anvil_file_format.

For procedural world-generation, vanilla Minecraft and Spigot
use the same algorithm, different from Glowstone’s.14

2.3.5 Plugin Loader and Server Plugins. The vanillaMinecraft server

does not support plugins. Spigot and Glowstone expose the Bukkit
API (shared by all servers based on CraftBukkit). Developers create
JVM-compatible binaries that are loaded dynamically through JVM

class-loaders. However, the class-loaders are configured hierarchi-

cally and thus plugins may access public APIs in other plugins.

The Bukkit API is event-driven; to alter real-time in-game behav-

ior, plugins register to it their event-handlers. Additionally, Bukkit

features synchronous and asynchronous task schedulers, which

enable multi-threaded execution.

2.3.6 Game Loop. All Minecraft servers perform a variety of tasks

during the game loop, including processing all player messages,

lighting updates, and updating the weather.
15 Spigot and Glowstone

both implement a variant of the Bukkit API. For each task in the

game loop, they fire the corresponding API events so that plugins

may alter the game behavior. Bukkit is not thread-safe, whichmeans

plugins must resynchronize with the game loop after asynchronous

computation.

3 DESIGN OF YARDSTICK, A BENCHMARK
FOR MINECRAFT-LIKE SERVICES

In this section, we present the design of Yardstick, a benchmarking

suite for Minecraft-like services. We define a set of eight require-

ments, and present the high-level design of Yardstick and the details

that help fulfill these requirements.

3.1 Requirements
We consider for our benchmark both requirements applicable for

all types benchmarks [23] and domain-specific requirements. We

discuss both classes of requirements, in turn.

3.1.1 Requirements Applicable to Many Types of Benchmarks. We

adopt here five common criteria [23]:

R1 Fairness: The benchmark should provide a fair performance

assessment for compatible systems. In particular, benchmark

developer should limit bias to one specific system as much

as possible.

R2 Ease of use: The benchmark should easy to set up, configure,

and use so that obtaining results for new applicable systems

is simple.

R3 Clarity: The benchmark should choose and present results in a

manner that logically characterizes performance.

R4 Representativeness: The benchmark should be comprised of

tasks and metrics suitable to the target systems.

R5 Portability: should run on different host-platforms.

3.1.2 Benchmarking Minecraft-like Services.

R6 Relevant and Realistic Workloads and Metrics: Players emulated

by the benchmark should imitate true player behavior such

that the workload created by the emulated players is sim-

ilar to real-world workloads. Similarly, the virtual world

14
http://bit.ly/GlowstoneMinecraft.

15
http://technical-minecraft.wikia.com/wiki/Tick.

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

245

https://bukkit.org/
https://netty.io/
http://wiki.vg
https://minecraft.gamepedia.com/Anvil_file_format.
http://bit.ly/GlowstoneMinecraft
http://technical-minecraft.wikia.com/wiki/Tick


Virtual environment

Benchmark
configuration

Yardstick Instance

Player emulation

Player
emulation

Player behavior
model

User

Data publishing

Monitoring and logging

Monitoring
Prometheus

Results
database

Results processing
and analysis

Minecraft-like
game

Experiment
results

Map selection

DataConfiguration Results
Legend

Server
configuration

Yardstick
Collector

Model

User

Figure 3: Architectural Overview of the Yardstick Bench-
mark.

of the benchmark should resemble popular commercial or

community-driven worlds. The metrics used by the bench-

mark to describe system performance and scalability should

provide insight into how real players experience these prop-

erties.

R7 Reconfigurability: The benchmark should be adaptable to vari-

ous Minecraft-like services. If a new type of Minecraft-like

service arises, the benchmark should require few alterations

to support the new service. Likewise, the benchmark should

be reconfigurable such that presenting results in another

form is possible.

R8 LowOverhead:The benchmark needs to interact with theMinecraft-

like service to collect application-level metrics. The overhead

of this interaction needs to be low.

3.2 Design Overview
All benchmarks, and so also Yardstick, define [9, Ch.1]: (1) a process

to conduct the benchmark, including how a single benchmarking

experiment should run, and how and what to monitor about the

system under test (described in this section, with parameters de-

tailed in Section 3.3), (2) the workload given as input to the system

under test (Sections 3.4 and 3.5), (3) the metrics to assess the output

of the system under test (Section 3.6).

3.2.1 The Benchmarking Process. The overall process of Yardstick
addresses in particular the requirements R1, R3, R4, R6, and R7
(see Section 3.1). Yardstick evaluates the performance of the server

using specific configurations of these parameters, grouped into

experiments (R1).
Yardstick subjects a Minecraft server to workloads determined

by the virtual world and a set of emulated players. Both are pa-

rameterizable, leading to infinitely many possible workloads. A

Minecraft service can be configured to generate procedurally its

virtual world or to use an existing pre-generated world; the latter

option allows different Minecraft-like servers to run the same work-

load. The workload generated by emulated players is specified by

selecting a built-in player behavior (R4). The resulting workloads
are independent of the tested Minecraft-server (R1) and selected

to cover a diverse set of operational conditions (R7).
Yardstick monitors both the machine running the Minecraft

server application and the machines that run the emulated play-

ers. After an experiment is complete, both raw and processed data

are made available to the Yardstick user to analyze server perfor-

mance (R1,R3). During an experiment, Yardstick measures both

system-level metrics such as CPU, RAM, and network usage, and

application-level metrics such as tick duration, number of transmit-

ted messages, and the relative utilization of the server (R4).

3.2.2 The Benchmark Architecture. Figure 3 depicts the architecture
of Yardstick. Yardstick consists of three main components (the

shaded boxes in the figure). The Virtual environment component

includes the Minecraft service, that is, server and APIs, alongside

the current configuration and the virtual-world, plus the Yardstick

Collector component that monitors the activity of the service.

The Player emulation component connects emulated players

to the system under test, that is, players are emulated by an AI-

algorithm, according to a behavioralmodel specified by the user (R7,
see Section 3.5).

The Monitoring and logging component monitors both the emu-

lated players and the virtual environment, processes the results that

are communicated to the user, and logs these to the Results database.

3.2.3 The Benchmark Implementation. The implementation of Yard-

stick addresses in particular the requirements R2, R5, and R8 (see

Section 3.1). Yardstick uses for the Monitoring and logging com-

ponent the Prometheus monitoring tool,
16

a popular monitoring

tool for real-time measurement of time-series data. Prometheus is

portable (R5) and low-overhead (R8), and could be replaced by simi-

lar monitoring systems, e.g., Ganglia and Nagios. We have deployed

Yardstick in DAS-5 [2] (see Section 4.1.2), which is a multi-cluster

infrastructure for computer science that shares common features

available in modern multi-cluster datacenters (relevant here, x86-

based CPUs, various types of fast memory and storage devices, and

Ethernet and Infiniband high-speed networks).

Yardstick collects server performance metrics through the Yard-
stick Collector component. Collectors serve two key key goals: mea-

sure tick-related data, and publish this data to the Yardstick mon-

itoring subsystem. In general, collectors are designed such that

they only expend low computational effort (R8) and most data

processing occurs in the monitoring component. To achieve low

overhead, Yardstick also uses simple counters to measure applica-

tion level metrics on the system under test, and only communicates

these counter values to the monitoring subsystem. Only after the

experiment is complete, data is further aggregated and processed.

The implementation of the Yardstick Collector component is

specific to the system under test. Currently, Yardstick includes a

collector for each of vanilla, Spigot, and Glowstone. These collectors
consist of minimal modifications to the server source-code, to col-

lect information with little implementation effort (R2), but it may

also be possible to use external tools, such as drop-in Java agents.

16
https://prometheus.io/
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Table 1: Overview of supported Yardstick experiments. Em-
phasized values indicate constants in other experiments.
Acronyms: W—Workload, C—Configuration.

ID Type Parameter Description Values

1 W Input world complexity High, Medium, Low

2 W Connected players, count 25, 50, 75, . . . , 250, 275, 300
3 W Player behavior model SimpleWalk, WalkModify

4 W Join strategy Linear join, Fixed
5 C View distance 10, 14, 18, 22, 26, 30, 32
6 C Entity spawning true, false

3.3 Overall Process: Configuration Parameters
Yardstick currently supports five main configuration parameters

that guide how the benchmark operates. For each parameter, Yard-

stick pre-defines several distinct, relevant, and realistic values,

which are used to assess the impact of the parameter on the per-

formance and scalability of the system under test, whilst keeping

other parameters constant.

Table 1 summarizes the parameters and their pre-defined values.

For each parameter, one value is emphasized. This value indicates

the default setting for the parameter. For example, for the exper-

iment with input-world complexity set to low, we test with 50
players and entity-spawning set to true.

The six main parameters supported by Yardstick are:

(1) Input World Complexity: This parameter defines the com-

plexity of the input virtual world. The complexity levels

correspond to the virtual worlds listed in Table 2.

(2) Number of Connected Players: This parameter defines the

number of connected bots to the server. In conjunction with

the join strategy, this number specifies how many bots are

on the server at any given time.

(3) Player Behavior Model: The player behavior model specifies

how the simulated players interact with the environment. In

this experiment, we test two player behavior models, these

are further described in Section 3.5.

(4) Join Strategy: The join strategy defines how bots join the

server throughout the experiment. Yardstick supports two

join strategies: 1) Linear join: 10 players join the server every

120 seconds. 2) Fixed: 5 players join the server every second

until a multiple of 25 is reached. The server keeps running for

one hour, after which it is restarted and the process repeats

for the next multiple of 25 players.

(5) View Distance: This indicates the number of chunks sent

to each player, measured as a radius in chunks around the

player. By default, the Minecraft server imposes a value-

range between 2 (low load, low visibility) and 32 (high load,

excellent visibility). The default value is set to 10, which is

commonly used in practice.

(6) Entity Spawning: The entity spawning parameter is a com-

bination of three application settings: spawn-animals, spawn-
npcs, and spawn-animals.When each is set to true, theMinecraft

server will spawn game entities of various types that move

around in the world. For each of these entities, the server

computes walk paths, and player interactions. Thus, this

Table 2: Virtual worlds used by Yardstick.

Name Size Downloads Complexity

(official name of community map) [MB] (in 1,000s) (relative)

Vertoak City 62 556 High

World of Worlds 53 244 Medium

Castle Lividus of Aeritus 36 307 Low

parameter may impose an additional computational cost in

the game loop.

3.4 Input Workload: Virtual World
The Minecraft game always starts from a virtual-world map, which

is either generated procedurally, or generated by other players

(possibly, from a previously generated world). Virtual worlds may

have varying size and processing complexity, based on whether

the terrain is walkable, on the material types used, on meta-data

associated with certain materials, and on the size of the world.

Moreover, the complexity of virtual worlds impacts the performance

of Minecraft-like games [1]. Thus, Yardstick must define the starting

virtual-world.

Yardstick natively supports virtual-worlds generated procedu-

rally starting from the same seed of the pseudo-random number

generator; sharing the seeds is sufficient to ensure the same virtual-

worlds are generated (R5). However, to ensure the relevance of the

starting virtual-world (R6), Yardstick uses publicly available virtual-
worlds generated by the community. The three virtual-worlds,

whose characteristics are summarized in Table 2, have different com-

plexity and size, and are some of the most popular virtual-worlds

in the community (as indicated by their download counts).

3.5 Input Workload: Emulation Models for
Player Behavior

Any benchmark for a class of interactive systems must define the

interaction model predicting how clients use the system. Currently,

no such interaction-model exists for Minecraft, although many

exist for games with different characteristics [11, 21, 19]. Yardstick

employs two interaction-models based on an existing model for

Second Life [11], which is the online game or environment closest

to Minecraft that has a public interaction-model.

Yardstick’s interaction-models predict player behavior in-game,

and are based on the observation that players either perform a

complex activity in a narrow area, for example, building a house,

or are moving towards such an area, for example, exploring the

world. The Yardstick models combine these activities, subject to

the parameters summarized in Table 3. The SimpleWalk model lets

players walk to close-distance or long-distance locations, and idle

momentarily. The WalkModify model generates short- and long

distance traveling, and also regularly lets the players place and

break blocks in the virtual world.
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Table 3: Player behavior models supported by Yardstick.

Parameter Value

SimpleWalk Model

α : Ratio of long-distance targets to short-distance targets α = 1/9

WalkModify Model

α : Ratio of long-distance targets to short-distance targets α = 1/9

β : Ratio of break/place tasks to walk tasks β = 1/3

γ : Amount of blocks to break/place γ = 3

3.6 Metrics for Minecraft as a Service
During an experiment, Yardstick measures a variety of metrics,

both system- and application-level. Yardstick also derives service-

level metrics, such as Relative Utilization (see Section 2.2.1). Table 4

summarizes all metrics used in this work.

3.6.1 Collection of System-Level Metrics. During experimentation,

each machine executes an instance of the monitoring sensor (here,

the Prometheus metrics-server), which automatically collects and

stores system-level metrics such as CPU load, RAM usage, disk

usage, and network usage. The monitoring system is hierarchical,

with the root (primary) configured to periodically poll all other

monitoring-sensor instances. Data samples are stored in-memory,

or on disk in a custom binary format
17
, until the end of the ex-

periment. Using a query language exposed through the CLI, the

Yardstick tools extract and process the data after the experiment

is complete.

3.6.2 Collection of Application-Level Metrics. Yardstick captures

several application-level metrics: the number of connected play-

ers, number of disconnects, and details of network messages are

captured by the Player emulation component (see Figure 3); and

the tick-length and stage are captured by the Yardstick collector
component. These components publish data periodically to a fast

intermediary cache; Yardstick currently uses Prometheus Pushgate-

way.
18

The Player emulation component also captures application-

level messages transmitted between bots and the Minecraft-like

server, including the time of transmission, and message type, size,

source, and destination. To keep the network usage low (R8), these
detailed records are not published to the intermediary cache, but

stored on-disk in compressed (GZIP) CSV format.

3.6.3 Derivation of Service-Level Metrics. Yardstick derives several

service-level metrics from the system-level and application-level

metrics it collects. Firstly, from the message data, Yardstick deter-

mines the relative frequency, average packet size, rate of each mes-

sage type, and various basic statistics (e.g., the quartiles). Message-

sizes collected by Yardstick represent the application-level data, and

not the total size of IP packets; thus, they are irrespective of the

underlying transport-protocol. From the game-loop data, Yardstick

derives the tick frequency, which should be approximately equal to

20Hz for a Minecraft service that is not overloaded. Last, Yardstick

computes the relative utilization (see Section 2.2.1).

17
https://prometheus.io/docs/prometheus/latest/storage/

18
https://prometheus.io/docs/instrumenting/pushing/

Table 4: Overview of performance metrics obtained by Yard-
stick. Acronyms: S—System, A—Application, D–Derived, Y—
Yardstick, C—Collector, Tp—Type, Src—Source.

Name Tp Src Description

RAM usage S S RAM usage of the service

CPU load S S CPU load total and per-core

Disk usage S S Rate of disk R/W, in bytes

Network usage S S Rate of incoming/outgoing bytes

Player count A Y Current connected players, count

Disconnects A Y Server-wide disconnects, count

Messages, I/O A Y Timestamped message-log

Tick length A C Time spent processing each tick

Tick stage A C Time spent and order of processing

Messages Frequency D Y Number of messages per second

Message Freq., % D Y Relative frequency, by msg. type

Message Weight, % D Y Fraction of bytes, by msg. type

Tick frequency D C Frequency of game loop updates

Relative Utilization D C See Section 2.2.1

4 EXPERIMENT RESULTS
This section discusses the experiment results obtained from using

the Yardstick benchmark on vanilla, Spigot, and Glowstone. The
main findings are based on the scalability experiment using both

join strategies (ID = 2 and ID = 4 respectively in Table 1); the

results of all other experiments are available in a technical report

on arxiv.org [18]. Our main findings are:

MF1 Minecraft-like services scale to hundreds of players. For higher

numbers of players, the Minecraft services become over-

loaded.

MF2 Minecraft-like services are poorly parallelized. Although these

services try to exploit parallelism, none of the Minecraft ser-

vices ever fully utilizes the CPU during the experiments.

MF3 Minecraft-like services transmit a vast amount data which

increases linearly with the number of players.

MF4 Position updates are the most frequently sent type of updates.

The majority of the data sent by the server concerns the

terrain of the world.

MF5 Different Minecraft-like servers have different performance

profiles. Glowstone delivers the worst performance among

the tested services. The vanilla server performs best.

4.1 Experiment Setup
In this section, we present the experiment setup used throughout

our experiments. Using Yardstick, we assess and compare in each ex-

periment the performance of the three systems under test, running

independently in the same environment.

4.1.1 System Under Test. This experiment tests several popular

Minecraft server implementations. In particular, we investigate

the default vanilla Minecraft server provided by Mojang, the mod-

ded variant Spigot, and the open-source reimplementation of the

Minecraft server Glowstone.
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Table 5: Minecraft-like servers used in our experiments.

System License Version Release date URL

Minecraft Commercial 1.11.2 Dec 21, 2016 [13]

Spigot Community 3fb9445eca Apr 30, 2017 [12]

Glowstone Community 2017.6.0-94e2efd Jun 9, 2017 [16]

Spigot is currently the most popular Minecraft server distribu-

tion
19

and was forked from CraftBukkit, which was previously the

most popular variant. Our experiments only use installations of the

Minecraft servers, with the customized Yardstick collector included.

4.1.2 Environment. All our experiments use theDAS-5multi-cluster

system [2]. We reserve 7 compute nodes for each sub experiment.

One node downloads and executes the Prometheus server and push

gateway. This node will collect metrics from the other reserved

nodes. This node also uses the Yardstick benchmark tools to mea-

sure and obtain the relative utilization per-tick. Yardstick pushes

data to the Prometheus push-gateway, which caches metrics tem-

porarily. The Prometheus server collects and stores this data at

a constant interval.

One other node is designated to be the server node. This node

obtains the Minecraft server software modified with the integrated

Yardstick metrics hook.

The remaining 5 nodes are used by the Yardstick framework as

client nodes. Each node is loaded with the Yardstick software to

connect to the Minecraft server and emulate player behavior. Client

nodes also push metrics to the Prometheus push gateway.

4.2 Minecraft-like Services Only Scale to
Hundreds of Players

Modern MMO games, such as World of Warcraft and Runescape,

scale to thousands of players per service-instance. Can Minecraft-

like services scale similarly?

We conduct experiments running workloads with increasing

players (“linear join” in Section 3.3) and fixed players (“fixed”),

in turn. Figure 4 depicts the tick frequency of the Minecraft-like

services vanilla, Spigot, and Glowstone. A decrease in tick frequency

causes the simulation of the virtual world to slow down, decreasing

the overall game speed, and thus introducing update latency (see

Section 2.2).

Figure 4a indicates the tick frequency from both Glowstone and
vanilla drops below 20Hz during the increasing players workload.

The tick frequency ofGlowstone drops below 20Hzwhen connecting

175 players or more, and the tick frequency of vanilla drops below
20Hzwhen connecting 225 players ormore. The tick frequency from

Spigot does not drop below 20Hz, but Spigot does not successfully
connect more than 225 players (it crashes). Figure 4b shows lack of

scalability for Glowstone and Spigot, but not for vanilla. Glowstone
drops below 20Hz when connecting 125 players or more, and Spigot
drops below 20Hz when connecting 225 players or more.

Which services drop their tick frequency below 20Hz depends

on the workload: for 150 players, the tick frequency of Glowstone
is approximately 15Hz with the fixed players workload, but for the

19
Statistics available at https://bstats.org and http://mcstats.org/global/. (The latter

site appeared to be down around February 8, 2019.)
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(a) Effect of the increasing players workload. Horizontal axis shows
number of connected players as measured by Yardstick.
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(b) Effect of the fixed players workload. Horizontal axis shows the
number of players that Yardstick tries to connect.

Figure 4: Tick frequency of Minecraft-like game servers
when varying the number of players. (Horizontal axis shows
the number of players that Yardstick tries to connect. Mark-
ers indicate the median value. Whiskers indicate a 95% con-
fidence interval.)
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Figure 5: Relative utilization of Minecraft-like game servers
with the fixed players workload. (Horizontal axis, markers,
and whiskers as in Figure 4.)

increasing players workload the frequency is still 20Hz. Similarly,

for 275 players, the tick frequency of vanilla is approximately 18Hz,
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Figure 6: CPU utilization of Minecraft-like game servers
with the fixed players workload. (Horizontal axis, markers,
and whiskers as in Figure 4.)

but it remains 20Hz for the fixed players workload. This indicates

that Minecraft-like services react differently to different workloads.

Figure 5 depicts the relative utilization of the Minecraft-like

game servers for the fixed players workload. The horizontal axis

depicts the number of players connected to the server and the

vertical axis depicts the relative utilization (see Section 2.2.1). We

see that the relative utilization exceeds 100% for Glowstone when
connecting 125 players or more, while for Spigot this only occurs

when connecting 250 players or more. Likewise, for 200 players,

Glowstone is running at approximately 220% relative utilization

and is therefore overloaded, while vanilla is not overloaded, at

approximately 80% relative utilization. This indicates that different

Minecraft-like services react differently to equal workloads.

Combining Figure 4b and Figure 5 shows that the decrease in

tick frequency coincides with exceeding a relative utilization of

100% for each of the Minecraft-like services. This suggests that the

tick frequency of the servers decrease because the duration of each

individual tick is larger than its maximum duration, delaying the

execution of the next tick, hereby reducing the tick frequency.

Overall, we conclude that Minecraft-like services can currently

scale up to hundreds of players per server-instance, whereas state-

of-the-art MMO games, such as World of Warcraft and Runescape,

can currently scale to thousands of players per server-instance.

This gap, of an order of magnitude, provides a clear motivation for

researchers to look for novel techniques to increase the scalability

of Minecraft-like services.

4.3 Minecraft-like Services are Poorly
Parallelized and this Forms a Bottleneck

The level of parallelism a service can use gives often an explanation

for the scalability of the service.

Figure 6 shows the number of used cores vs. the number of

players, using the fixed join strategy (ID = 2 and ID = 4 in Table 1).

Between 25 and 150 connected players, all games show a trend

of increasing CPU utilization for an increasing number of players.

Between 150 and 300 players, the CPU utilization of both Glowstone
and vanilla stops increasing. The CPU utilization ofGlowstone keeps
increasing until 150 players. For a larger number of players the CPU

utilization seems to be roughly constant at a value between 7 and
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Figure 7: Outgoing packet throughput on Minecraft-like
game servers when with the fixed players workload. (Hor-
izontal axis, markers, and whiskers as in Figure 4.)

8 cores. The CPU utilization of vanilla keeps increasing until 200
players. For larger numbers of players, the CPU utilization stays

slightly below 8 cores. None of the tested services uses all of the

available cores at any time during the experiment.

Combined, Figures 5 and Figure 6 indicate that, whereas the

relative utilization exceeds 100% for all games and continues to

increase with the number of players, the number of utilized cores

does not, and never reaches 32 (the total number of cores in the

node). Hence, the game is spending more time on each game tick

without consuming all available computational resources. This sug-

gests that Minecraft is poorly parallelized. It is possible that the

tested services do not fully parallelize the separate tasks in the

game loop discussed in Section 2.2.

4.4 Network Traffic from Minecraft-like
Services Increases with the Number of
Players; Is Limited by CPU Utilization

We now analyze if the cap in parallelism observed in the previous

section is due to network or CPU bottlenecks.

Figure 7 shows the number of packets per second transmitted by

the Minecraft-like game server over the number of players while

under the fixed players workload. The horizontal axis shows the

number of players, and the vertical axis shows the number of pack-

ets per second sent by the server. All games show an increasing

number of packets sent for an increasing number of players. The

number of packets per second sent by Glowstone keeps increasing
with the number of players. The number of packets per second sent

by Spigot and vanilla also increases with the number of players,

but stops doing so after 225 players.

Combined, Figures 5 and Figure 7 indicate the reduced increase in

number of packets sent per second by Glowstone coincides with the

game exceeding 100% relative utilization. The reduction in number

of packets sent by Spigot also coincides with the game exceeding

100% relative utilization. The reduction in packets sent by vanilla
does not coincide with the game exceeding 100% relative utilization.

However, when combining Figure 6 and Figure 7 we observe that

the reduction in number of packets sent coincides with an upper

bound in the CPU utilization of the game. vanilla seems unable to

use more than 8 CPU cores. This can be seen in Figure 6, where

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

250



Table 6: Network packet distribution, vanilla experiment
with 200 players using the fixed players workload. freq: fre-
quency of occurrence. potb: percentage of total bytes. aps:
average packet size. In bold-face font, the most important
percentages. Asterisk (*): server-bound message, otherwise:
client-bound.

Message freq potb aps σ Size Distribution [B]

Type (%) (%) [B] [B] 25% 50% 75% Max

EntityPosition 45 2 9 35 9 9 9 32k

EntityHeadLook 18 0 3 38 3 3 4 33k

EntityPositionRotation 16 1 11 40 11 11 12 32k

EntityVelocity 5 0 8 146 7 8 8 64k

EntityTeleport 5 1 29 66 29 29 29 32k

EntityMetadata 3 0 25 459 7 7 32 63k

PlayerPosition* 3 0 25 72 25 25 25 32k

EntityStatus 1 0 5 0 5 5 5 34

SpawnObject 1 0 68 663 55 55 55 62k

PlayBuiltinSound 1 0 23 176 22 22 22 32k

ChunkData 1 93 32k 9k 31k 31k 32k 252k

MultiBlockChange 1 0 37 284 20 26 41 33k

BlockChange 1 0 11 147 10 10 10 32k

for 200 players or more vanilla is very close to, but stays below, a

utilization of 8 cores. We conclude the CPU does act as bottleneck.

4.5 World Data is Responsible for Most
Network Traffic; Player Position Updates
Are Most Frequent

Table 6 shows a summary of the network activity from one of the

repetitions of the fixed players workload. Most network traffic is

caused by the server communicating player location data to the

clients. Only packets that have a frequency of 1% or more have

been included in the table. The first row of the table shows that

45% of the packets exchanged between the server and clients are

EntityPosition packets. These packets communicate the location

of an entity from the server to a client. The top five rows in the

table show packets related to entity positioning. These packets

account for almost 90% of all network traffic between the server

and the clients. Whereas packets related to entity positions are

the most frequently sent, the ChunkData packet, responsible for

communicating the layout of the world to the clients, is responsible

for the largest amount of network traffic generated by the server.

From the obtained network trace, 93% of the bytes sent over the

network belong to such a packet.

Overall, Minecraft-like games transmit a large number of packets

which increases steadily with the number of players. All servers

show an increasing number of packets sent per second until they be-

come overloaded, at which point the servers show erratic behavior.

4.6 Glowstone Delivers the Worst Performance;
Vanilla Performs Best

Figure 4a shows that Glowstone drops the tick frequency below

20Hz after connecting more than 150 players, while vanilla and

Spigot can connect 225 players before reducing server frequency

or limiting the number of players. Similarly, Figure 4b shows that

Glowstone performs worst for a fixed number of players as well.

Moreover, Figure 5 shows that Glowstone uses more of the CPU

time available for each tick, regardless of the amount of players.

In contrast, vanilla performs best throughout the experiments.

Figure 4a shows that vanilla can support more players than Glow-
stone before reducing server tick frequency, and that it does not limit

the number of players as opposed to Spigot. Figure 4b shows that
vanilla is the only server implementation that does not decrease the

server tick frequency throughout the entire experiment. Finally, Fig-

ure 5 shows that the relative utilization of vanilla does not surpass
the threshold of 100% and thus the server is never overloaded.

5 RELATED WORK
In this section we survey the body of related work, which we di-

vide across traditional (generic) benchmarks and Minecraft-specific

performance studies.

The many traditional benchmarks and tracing utilities typical

in cluster environments, e.g., the SPEC and TPC consumer and

database benchmarks, the NPB and HPCC parallel benchmarks, and

the tracing utilities developed for the large data centers of Google

and others, do not address the specific challenges of online games.

In particular, previous work in this category lacks representative

workloads and service-level metrics. Yardstick complements this

body of work.

Considering only Minecraft-related work, relatively few perfor-

mance studies exist to-date [7, 8, 5], and no benchmark has been

proposed. In contrast, Yardstick extends and complements these

studies, and proposes a benchmark.

Closest to our work, Alstad et al. [1] experiment with lifelike

bots the performance of vanilla Minecraft. In contrast to Yardstick,

they do not investigate: (1) application- and service-level metrics,

(2) different Minecraft-like servers.

Likewise, Cocar, Harris, and Khmelevsky [5] investigate the

impact of CPU-core affinity on the performance of vanillaMinecraft,

with similar limitations

Manycraft [7] is a Kiwano-based [6] distributed architecture

aiming to scale Minecraft. Relatively to Yardstick, the Manycraft

experiments: (1) currently support only non-modifiable Minecraft

environments, (2) are not compatible with the vanilla clients and
thus requires installing additional software on the client machine,

(3) suffer from the same drawbacks as Alstad et al.

Similarly to Manycraft, but with more drawbacks due to the

early stage of the project, Koekepan [8] distributes Minecraft, but

so far lacks extensive performance experiments.

6 CONCLUSION AND ONGOINGWORK
Among the workloads typical in high-performance data centers,

Minecraft-like gaming services are increasingly more popular, but

their performance and scalability are still not well-understood. To

address this problem, in this work we have designed, implemented,

and used the Yardstick benchmark for Minecraft-like services.

At the core of the Yardstick benchmark is our system model

for the operation of Minecraft-like services, which captures salient

characteristics of Minecraft-like systems and the performance of
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the core game-loop. Yardstick proposes a benchmarking system

that subjects the Minecraft-like service to the test of a realistic

workload, and produces system-, application-, and service-level

performance metrics that follow the system model. The Yardstick

workload simulates lifelike player behavior.

We have used Yardstick on the DAS-5 cluster environment to

conduct real-world experiments with three Minecraft-like services.

Our main findings include:

MF1 Minecraft-like services can scale to hundreds of players.

MF2 Minecraft-like services are poorly parallelized.

MF3 The Minecraft protocol leads to large amount of data, linearly

proportional with the number of players.

MF4 Position updates dominate in frequency, but volumetrically,

terrain data is responsible for most network traffic.

MF5 The Minecraft-like servers have different performance pro-

files.

We are currently exploring the implications of the performance

and scalability limitations of Minecraft-like services; we aim to

design new scalability techniques for this domain. In the future,

we aim to perform more extensive parameter exploration on other

distributed Minecraft-like services.

ARTIFACTS FOR REPRODUCTION
The Yardstick project adheres to the 2019 reproducibility standards

of ACM and IEEE. For this project, we release all the output as

free open-access data and free open-source software (and related

documentation):

Data Available on Zenodo [17]

Software https://github.com/atlarge-research/yardstick
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