Dyconits: Scaling Minecraft-like Services through
Dynamically Managed Inconsistency

Jesse Donkervliet
Department of Computer Science,
VU Amsterdam, the Netherlands
J.J.R.Donkervliet@vu.nl

Abstract—Gaming is one of the most popular and lucrative
entertainment industries. Minecraft alone exceeds 130 million
active monthly players and sells millions of licenses annually; it
is also provided as a (paid) service. Minecraft, and thousands of
others, provide each a Modifiable Virtual Environment (MVE).
However, Minecraft-like games only scale using isolated instances
that support at most a few hundred players in the same virfual
world, thus preventing their large player-base from actually
gaming together. When operating as a service, even fewer players
can game together. Existing techniques for managing data in
distributed systems do not scale for such games: they either do
not work for high-density areas (e.g., village centers or other
places where the MVE is often modified), or can introduce
an unbounded amount of inconsistency that can lower the
quality of experience. In this work, we propose Dyconits, a
middleware that allows games to scale, by bounding inconsistency
in MVEs, optimistically and dynamically. Dyconits allow game
developers to partition offline the game-world and its objects into
units, each with its own bounds. The Dyconits system controls,
dynamically and policy-based, the creation of dyconits and the
management of their bounds. Importantly, the Dyconits system is
thin, and reuses the existing game codebase and in particular the
network stack. To demonstrate and evaluate Dyconits in practice,
we modify an existing, open-source, Minecraft-like game, and
evaluate its effectiveness through real-world experiments. Our
approach supports up to 40% more concurrent players and
reduces network bandwidth by up to 85%, with only minor
modifications to the game and without increasing game latency.

Index Terms—dyconit, consistency, scalability, online gaming.

I. INTRODUCTION

Games provide entertainment to billions of players world-
wide, forming an industry with annual revenues of over
$175 billion [1]. We focus in this work on an emerging type
of game, exemplified by Minecraft, which offers players a
[modifiable virtual environment (MVE), With more than 200
million copies sold, Minecraft is the best-selling game of
all time, and still has more than 130 million active monthly
players [2] (more than the global number of MacOS users [3]]).
Microsoft has acquired Minecraft and started to operate it also
as a subscription-based service [4]. Albeit less popular, tens of
thousands of Minecraft-like games and services also exist [5]],
[6]. However popular, current MVEs|can scale only by relying
on small, isolated instances. Limited by bandwidth usage,
these instances can individually scale only to a few hundreds
of players even under favorable conditions [7[], and the Mi-
crosoft Minecraft-service limits scaling to only 10 players [4].

Jim Cuijpers
Department of Computer Science,
VU Amsterdam, the Netherlands
J.J.C.J.Cuijpers@vu.nl

Alexandru losup
Department of Computer Science,
VU Amsterdam, the Netherlands
A.Josup@vu.nl

— Game overloaded

D50 = = = = = = = e = = = — - -
E Game operates normally

= 401

2

8 301 [Worse

3 201

S 104 Better -e- without Dyconits
= -4 with Dyconits

200 300
time (s) / number of players
Fig. 1: Computation in an for an increasing number
of players over time. Without Dyconits, the game becomes
overloaded after connecting 350 players. Using Dyconits, the
game scales better, to more than 500 players.

0 100 400 500

Addressing the scalability challenge of Minecraft-like services,
in this work we design and evaluate in real-world experiments
[Dyconits| an MVE| middleware that reduces bandwidth usage
through optimistically bounded inconsistency. With
as Figure [T] depicts, Minecraft-like games and services can
scale significantly better than with the current technology.

Minecraft is a prominent example of that operate
real-time, online, and multi-user. Among virtual environments
and online gaming worlds, the distinguishing feature of
is that the player can modify all world objects (e.g., apparel,
tools, systems) and the virtual environment (e.g., parts of
the landscape, trees and their branches). This allows users to
change radically the game world, to create complex new con-
tent from even many game-parts, and even to create dynamic
systems by programming the game world. We detailed these
aspects in a vision-article [8] and summarize in this work only
the relevant technical aspects, in Section [[I-A]

Because the unique features provided by are ben-
eficial for many kinds of applications, tens of thousands of
applications leverage the Minecraft-like pattern. By allowing
users to construct and deconstruct the world in complex
ways, enable creative user-behavior that is currently
not possible in other games. are also useful for other
important societal tasks. Microsoft’s Minecraft: Education
Edition contains lessons on a diverse set of topics, for example,
computer science lessons in which students construct their own
digital computers and history lessons in which they explore
UNESCO world-heritage sites. Minecraft has also been used

for social activism, for example, in protecting Europe’s last
primeval forest from illegal logging [9]. The Java edition
of Minecraft is the hotbed of a large modding community,
with tens of thousands of mods and tens of highly played
modpacks that effectively create different games. The success
of Minecraft has also triggered tens of thousands of other game
developers, and Minecraft-like titles such as Dragon Quest
Builders 2 and Lego Worlds are also massively popular.

Although Minecraft already entertains millions of players,
it poses an important scalability challenge. Minecraft’s current
scalability is only achieved by replicating game instances that
do not exchange state. Thus, players join a single instance,
and do not interact in-game with users on other instances.
Moreover, both recent academic findings and industry practice
indicate the scalability of a single game’s instance is limited.
Minecraft instances, and several community-created games
using the same protocol, scale to only 300-400 players even
under favorable conditions [7[]; Section |V| presents real-world
experiments consistent with this. For example, the real-world
experiment summarized in Figure [I] shows how the game
latency (“tick duration” in the figure) increases with the
number of players. For the regular game, for 350 players the
game latency exceeds 5S0ms, a known limit in first-person
interactive gaming beyond which the player experiences the
game-updates as slow (lag) and possibly loses a sense of
immersion [10]. In contrast, enables the game to
scale further, up to over 500 players, before the latency limit.

The scalability challenge is general, going beyond only
the Minecraft game. Minecraft Realms, the cloud-operated
Minecraft service, limits to 10 the number of concurrent
players in each world-instance [|11]]. The large body of games
and services similar to Minecraft likel suffer from similar
scalability challenges.

How to scale Minecraft-like games and services? is the
main research question addressed in this work. A tempting
(but incorrect) answer is to “scale by credit card,” that is, to
buy more and better hardware. Such hardware would have to
cover the computer systems and networks forming, end-to-end,
the environment including each player’s computer, the game
servers operated by the company providing the gaming service,
and the compute and network resources in-between. Because
new technological waves change the minimal requirements
of online games every few years, the environment would
need to replace a majority of its hardware periodically, with
good coordination across many stakeholders. Although shared
infrastructure could lower costs for every game operator, the
gaming industry does not use such approaches. Thus, however
tempting, for the scale that Minecraft-like games have already
achieved, this approach seems both unsustainable and, even
without a detailed cost analysis, much more expensive than
efficiency solutions such as the work presented here.

Existing and practical approaches typically follow a
client/server architecture, where thousands of essentially non-

! Anecdotally, the authors of this paper experienced lack of scalability in
several Minecraft alternatives. However, no systematic study currently exists.

communicating servers support up to millions of concurrently
active players [12]. Server bandwidth, and sometimes even
the server CPU, act as bottlenecks that limit the scalability
of any individual server. To address this problem, state-
of-the-art games use interest management techniques, such
as larea of interest (Aol)| [13]] and [interest sets (ISs)| [14].
Interest management trades off consistency for performance,
by determining for each player which updates are likely to be
important and/or interesting, and reducing the frequency of all
other updates [15]], [16]. However, interest management tech-
niques cannot answer the question for two reasons. First, by
lowering update frequency, these techniques risk creating large
inconsistencies which reduce players’ Quality of Experience
(QoE), leading to a loss in customers and revenue. Second,
these approaches are “always on,” creating inconsistency even
when this is not required to support the current workload.

A variety of traditional consistency models exist [[17], but
they have not been explored in the context of we
consider them in more detail in Section Promising for
this work, because games and especially bound stale-
ness, is the data-centric continuous consistency [18]], but this
relatively unexplored model has static bounds and thus seems
incompatible with the dynamic nature of games. Overcoming
this hurdle means addressing important new challenges, and a
principled transition from static to dynamic approaches.

In this work, we design, prototype, and evaluate
a novel middleware for that reduces bandwidth usage
through optimistically bounded inconsistency. Our main con-
tributions are:

1) The design of the middleware (in Section [II).
The system increases the scalability of
by dynamically configuring, and optimistically bounding,
the inconsistency between players. This middleware acts
between the [MVE]s existing game-code and networking
layers. Our work is the first that uses inconsistency to im-
prove scalability while simultaneously dynamically
bounding inconsistency.

2) A Minecraft-like game using (Section [[V). We
realize a full-scale game that replicates all the main
features of vanilla Minecraft, based on the Glowstone
community project [[19]. We show how the
middleware provides game developers with flexibility
in how they partition the game objects and the virtual
environment, but also automates their management. We
also demonstrate are compatible with state-
of-the-art scalability techniques such as and
allowing game developers to also leverage the benefits
of these interest-management techniques.

3) Real-world experiments evaluating the scalability im-

provements when using (Section [V). We im-

plement the Minecraft-like game based on
and, using the Yardstick benchmark [7]], conduct

comprehensive real-world experiments. Our experiments
cover system scalability, performance variability, and in-
game inconsistency, under various settings and ever-
increasing numbers of (emulated) players. The results

message
o [i gf e o MVE server
ér ©SSES, translate actions ,
simulator
o= < render — s
frames state | |2 laver | l«| 98M
= play config
updates | |5 simulation —:
= [world state v
‘g updates world | | world
NPG stat simulation generation
state
updates NPC "
@ <«—>client< simulation | 4> persistent
o || storage

Fig. 2: Operation of a Minecraft-like online game with multi-
ple players. Arrows indicate the main data flow; thicker arrows
indicate higher data rates. The data flow runs at 20 Hz or more.

indicate considerable scalability improvements due to

with exact values depending on the use of [Aoll

and [Dyconits}specific policies.
4) A free open-source system. We make it available

as middleware, usable as a stand-alone Java library [20].

II. SYSTEM MODEL

In this section we present a model of operation and consis-
tency for Figure [2] is a visual overview of this model.

A. Operational Model for Modifiable Virtual Environments

Commercial online games typically use client/server ar-
chitectures [10], in which each player runs locally a client
that connects to a server during play. The game server keeps
track of the global game state, simulates state changes, and
ensures all clients stay consistent with the changing global
state (regardless of the high volume of updates).

The client translates user-input, such as key presses, into
player actions (component @ in Figure |2) and forwards them
over the Internet to the game server. The networking stack (@)
receives the actions, deserializes them into one or several
game-messages, and enqueues them with other messages to
process for the same player (€).

The server runs the simulator. Although both player-
actions and state-updates create a continuous stream of mes-
sages, the simulator (@) updates state in ticks (steps) with a
fixed frequency of typically 20 Hz (tick duration up to 50 ms).
During each tick, the server simulates the progression of time
and all player actions. To avoid exceeding the tick duration,
the simulator buffers player actions until the next tick.

An simulator performs three main actions. First, vali-
dating and simulating player actions (). Validation prevents
players from cheating. Simulating players affects data such as
their location and their interactions with the world. Second,
simulating the world itself (@)). For realistic worlds, this
includes natural phenomena such as the movement of water
and the growth of plants, and artificial phenomena such as
the simulation of electrical circuits built by players. Last,
simulating non-player characters (NPCs), i.e., the behavior of
animals and other characters in the virtual world ().

At the end of each tick, all state updates are sent back to the
networking component (@). Here, messages are serialized and
sent to all clients. The client receives the state updates and uses
them to render a local view of the virtual world for the player,
typically at 60 frames per second (@). To reduce latency, the
client may speculatively apply player actions before it receives
a state update from the server confirming its effect.

generate procedurally an endless world for players
to explore. Together with player data, this world is stored
in persistent storage. Unlike traditional games, which embed
world data into the client statically, transfer the world
data to players dynamically, chunk by chunk, only when the
players access that chunk of the world. This is necessary
because the world is mutable.

B. Toward a Consistency Model for MVE3|

Consistency is essential to good gameplay experience. Play-
ers experiencing inconsistencies lose immersion in the game
world, and significant inconsistency causes gaming products
bad reputation and loss of revenue. Current approaches take
drastic measures to prevent this, disconnecting players when
their state becomes too inconsistent, for example due to high
network latency; but this too can lead to bad experience. How
can manage consistency?

Many definitions and models for consistency already ex-
ist [17]. are highly interactive systems, in which
possibly many clients send and receive a continuous stream of
update requests to the same part of the world (data item). This
makes them ill-suited for traditional client-centric consistency
models where concurrent writes are assumed to be rare,
because cannot reduce availability while synchronizing
state under bursty writes.

To balance consistency and performance, online games
use data-centric consistency models, coupled with updates
occurring with a fixed frequency (in lock-step), and scalability
techniques that limit the size and number of updates [14],
[21]], [22]. However, these approaches have limited ability to
quantify and bound the inconsistency they create, e.g., they
only correct inconsistencies between a few objects (the player
avatars) and only manage to bound staleness. This works well
for many current games but makes them unsuitable for scaling
where the objects include not only avatars but also
every world component, so the number of possibly inconsistent
objects often exceeds a few hundreds [7].

Instead, we use a continuous consistency model, based
on a data-centric definition of consistency first proposed in
TACT [18]]. Under this model, inconsistency between any
two replicas of the same data objects (consistency units, or
conits) can be quantified and the quantities can be bounded.
This model could address inconsistency both as a natural
phenomenon (e.g., caused by network latency) and artificially
imposed (e.g., by state-of-the-art game scalability techniques
such as area of interest [21] and interest sets [14]).

However, the conit model has not been applied to gaming
and [MVEs| before. Doing so raises important challenges: (1) it
does not address the challenge of nodes (i.e., clients) joining

and leaving the system over time [8, challenge C2]; (2) it does
not consider that clients can only change state speculatively;
(3) it implicitly does not allow significant imbalance between
the characteristics of the nodes running the replicas, because
this would limit the performance to that of the weakest
participant; and (4) to scale as we show in this work,
the model must become dynamic and be accompanied by
policies that set bounds dynamically, in response to changes
in player behavior and system workload. To address these new
challenges, we design and propose in the next section dynamic
conits (Dyconits).

III. DYCONIT SYSTEM DESIGN

In this section we present our design for Dyconits, a
middleware system for We formulate the requirements
of such a system and propose a novel design.

R1 Reduce system-wide network usage. The bandwidth
requirements of can increase quadratically, or even
cubically, with the number of users [23]. This forms a
scalability bottleneck, even when servers are provisioned
from environments with high-performance networking
resources, such as datacenters.

R2 Quantify and bound optimistically the inconsistency.
In real-time interactive systems, omitting or delaying
state-updates causes inconsistency (but can improve per-
formance). Both the type and magnitude of the inconsis-
tency matter for the quality of experience [24], [25].

R3 Allow fine-grained control over system inconsistency.
Different state is important to different users. For ex-
ample, users are most interested in changes in their im-
mediate environment [14], [22] and are likely interested
in the actions of their friends [16]], but may be less
interested in actions taken by users they do not know.
Allowing inconsistency where possible, per-user, requires
fine-grained control over the inconsistency in the system.

R4 Allow consistency bounds to be modified dynamically.
User interest is likely to change, over time or when
users switch to a different activity [26] §3.2]. To prevent
decreasing gameplay experience, the system must ensure
low inconsistency for state that the user interacts with.

R5 Keep the system simple yet flexible. The system must
act as middleware. It will be used in deployed in
distributed ecosystems, e.g., in clouds, as services; to this
end, the system must have the ability to apply Dyconit-
related policies, dynamically.

A. Design Overview, Process, and Alternatives

This section presents the design of a Dyconit system
for optimistically bounded inconsistency in Focusing
on which synchronize state frequently and in high
volume (see Section [M), the Dyconit system limits resource
consumption, even when disseminating state updates to large
numbers of users, by bounding inconsistency between each
client and the global state at a fine-grained level.

Figure [3| depicts our design. In partial fulfillment of require-
ment the Dyconit system (blue area in the figure) acts

Modifiable Virtual Environment

12

game simulators

player world
simulation simulation

Y
Dyconit
game state policy
T T 11

NPC
simulation

I3]

5 8 1 |
A vV v v v
partitione updatee quantify e_
state bounds inconsistency
ST
II |
o
client:e client: & O_JSE
staleness: 1000| [staleness: 0
numerical: 1| | numerical: 0
@ﬂ Dyconit "Player One" <
oi Dyconit middleware
networking

Legend: —> data flow - control flow @ | state update

Fig. 3: Dyconit system design.

as middleware between the [MVE]s existing networking and
simulation layers, and requires no client-side modification. The
Dyconit middleware interacts dynamically only with the
server, which generates and forwards state-update messages.
Incoming state update requests are unaffected by the Dyconit
system. They are directly queued (@ in Figure [3)) for pro-
cessing by the game’s simulators (@). However, the resulting
state updates (€)) are no longer sent directly to clients, but
are handed off to the Dyconit system.

The system quantifies and bounds inconsistency through the
use of dyconits (first part of [R2)). A dyconit is a consistency
unit representing an arbitrary subset of the game state. The
subsets (i.e., partitions) are created dynamically (@) by the
Dyconit system using the selected policy (described in Sec-
tion [[II-B). Each dyconit can bound the staleness of the state,
e.g., ensure each game state has been updated at least once
in the past 2 seconds, and the numerical inconsistency, e.g.,
positional differences between the locations of the same object
across all clients; see Section for details on quantifying
inconsistency. This enables inconsistency bounds, per player
avatar, virtual-world object, or arbitrary combinations. The
system updates inconsistency bounds dynamically (@), based
on the changing interests of each player. To bound inconsis-
tency, the system quantifies the inconsistency caused by each
state update (@), forwards it to the corresponding dyconit,
and evaluates the consistency requirements for each client.
If a client’s inconsistency bounds are exceeded, the system
forwards all state updates to the client (@).

The inconsistency introduced by queuing state updates
reduces network bandwidth consumption (RI) in two ways.
First, the system merges messages that write to the same state,
allowing for large reductions in bandwidth usage for state that
is modified frequently. Second, queuing state-updates allows
them to be sent in batches, reducing system-level overhead

TABLE I: Overview of Dyconit policies.

Policy name Short name Description Dynamically responds to:
Player State ~ Workload
ZERO No inconsistency Creates a single dyconit. All players subscribe to it with an inconsistency bound X X
of zero. Effectively prevents inconsistency by sending new state updates
immediately to all players.
AOI Area of Interest Creates a dyconit for every chunk. Players set a bound of zero on the 9 closest v X
chunks, and a 1-second bound on all other chunks.
IS Interest Set Creates a dyconit for every player. Players set a bound of zero on the 5 players v X
in their interest set, and a 1-second bound on all other players.
ISN Interest Set - Numerical ~ Creates a dyconit for every player. Players set a bound of zero on the 5 players v X
in their interest set, and 0.16 units (slightly more than a single step) numerical
bound on all other players.
ZERO/IS Workload-based Interest ~ Uses the ZERO policy if relative utilization is less or equal than 90%. Uses the v v

IS policy otherwise.

such as packet headers.

Because the does not reduce availability while syn-
chronizing state updates, bounding the inconsistency is op-
timistic (second and last part of [RZ). To see why this is
the case, consider a client that reaches its staleness bound
on one of its dyconits. To prevent the inconsistency from
becoming larger, the system must synchronize state to the
client. However, synchronizing state is not instantaneous, due
to network latency and processing delay. This means the
time between sending the message to the Dyconits system
and it being processed by the client becomes larger than the
configured staleness bound. The system can compensate for
this effect by setting the value of the staleness bound to
the player’s maximum tolerable latency and subtracting the
estimated network latency and processing delay.

To enable fine-grained control over inconsistency (R3),
the Dyconits system manages each dyconit, dynamically and
automatically. Dyconits are re-configured dynamically (R4),
to match consistency restrictions that benefit each player; our
system maintains this process simple yet flexible through the
use of policies (R3] as detailed in Section [[II-B)). For example,
the positional difference for an important game-object could be
configured to be maintained with no inconsistency (numerical
inconsistency of 0), for a nearby but less important game-
object it can reach small numerical inconsistency, and for
objects located relatively far from all players it can reach high
numerical inconsistency.

Figure [3] shows an example of a dyconit, “Player One,”
associated with the game state representing one of the players
in the game (®,). While the red player (& in the figure)
is experiencing no inconsistency with regard to player one’s
state, the blue player (@) does experience some inconsistency.
The blue player could tolerate the higher inconsistency, be-
cause they are located further away from player one than the
red player, and due to the natural effects of perspective and
distance can see less the impact of the positional differences.
In traditional games, either the blue player would have been
disconnected or the game would have slowed down until their
client can catch-up (the lock-step approach in Section [[I-B).
In the Dyconit design, the blue player can continue without

delay to the game, because the Dyconits system deems the
inconsistency acceptable for this situation.

Design process and alternatives: We reached this design
through a long-term, iterative design process following the
principles of the AtLarge design vision [27]. We ideated
repeatedly and considered a large pool of designs, which we
have analyzed for both their level of innovation, that is, that the
designs are new solutions for the problem, and pragmatism,
that is, that they can be implemented in the conditions where
they are to be used. This principled approach to design resulted
in many design alternatives. We summarize here two of the
design alternatives we have considered in more detail.

Considering innovative designs, we also analyzed enforcing
strict, instead of optimistic, consistency bounds. However, this
would effectively limit the performance of the system to that
of the weakest node. This is undesirable because the game
server, typically hosted in a datacenter, can have significantly
more resources than a client running on a (mobile, or otherwise
constrained) user device.

Considering pragmatic designs, we considered letting each
client independently configure their Dyconit bounds, to match
the design of TACT [28|]. However, because the game server
has access to the global state, we decided to simplify our
design by managing the dyconits using a centralized policy
and avoiding unnecessary coordination between the server and
clients.

B. Dyconit Policies (Requirements

The Dyconit system can reduce resource usage by allow-
ing inconsistency. However, applications are likely to have
esoteric requirements in terms of the kind and magnitude of
inconsistency that is acceptable to its users, depending on the
(static requirements) and on current workload (dynamic
requirements). By cleanly separating mechanism from policy,
the Dyconits system supports a variety of approaches that
tolerate inconsistency. Here we describe how the Dyconit
policies work, introduce five policies (see also Table E]), and
show how they allow the system to use state-of-the-art interest-
management approaches that reduce bandwidth consumption.

é i @ o] © o] [© o] [@1o00 :
4(1—‘:8576(«—‘(543‘"?&1 87654321 | P
S | |

© o] [@ o] [CHY E """" [®1000i

e 9 e e

0y o Rear |

;ﬁ"f © o] ©o] o] \|®1oooj

M . JMNo

J Ky J i D

] GHy X, | | D

: H—ig»” [®1000§ [© 1000} [® 1000 [®1000]

R-g-gedll | XaBc | B 1

(b) Dyconit AOI policy.

(a) No Dyconits.

(c) Dyconit IS policy.

Fig. 4: Visual overview of how Dyconits can effect state synchronization. A player (8,) observes the movement of two
avatars (@, &) through a virtual world consisting of contiguous chunks (i.e., areas, 7). Every arrow (—) represents a state
update received by the player. Every dyconit is shown together with the player’s staleness bound (e.g., 1000 ms as [® 1000)).
The AOI policy creates a dyconit for every chunk ("), whereas the IS policy creates a dyconit for every player.

Each Dyconit policy can affect the operation of Dyconits in
three areas. First, the policy determines how the global state
is partitioned across dyconits. Second, the policy determines
the weight of individual state-updates; accumulation of weight
beyond the bounds leads to synchronization. Third, the policy
can re-configure dyconit bounds for each player, based on
player state and the dynamic system workload.

We now explain, through a series of examples, how policies
can affect system behavior. Table [I| (on the previous page)
summarizes five Dyconit policies, which we explain in turn.
The first three policies are not new, but the latter two (ISN,
ZEROVIS) are, because they respectively create a novel com-
bination of policy and consistency dimension, and consider
system load. Overall, these policies are valuable because they
can be more flexible and fine-grained than previous policies.

The ZERO policy is a null-policy that emulates a system
without Dyconits. First, the policy creates a single partition
for the entire game-world, which means all state-updates are
assigned to this one partition. Second, the policy assigns a
weight of one to every state update. Third, sets a bound of zero
for both staleness and numerical error for each client. Because
every message exceeds the consistency bound of each client,
state updates are synchronized immediately to everyone.

The following three policies are based on interest manage-
ment approaches in virtual worlds. These policies dynamically
update consistency bounds based on player state. A visual
representation of their behavior is shown is Figure [}

The AOI policy is based on the concept of from
virtual worlds. The intuition is that users are typically
more interested in changes to nearby objects. Our AOI policy
achieves this by first partitioning the system state into areas
corresponding to geographical locations in the virtual world.
Second, it assigns weights to state updates based on the
magnitude of their change; for object-location updates, the

magnitude is equal to the displacement. Third, the policy sets
bounds for each user depending on the location of their avatar
in the virtual world: zero staleness for adjacent areas and a
bound of one second for areas further away. The higher bound
of one second is based on a value reported in related work [[14].

The IS policy is based on the concept of interest sets [[14].
The intuition is that humans can only focus on a limited set
of objects, so objects outside immediate focus allow more
inconsistency. The IS policy realizes this behavior by creating
a partition for each user. Second, it assigns a weight to each
state update by using the magnitude of the change, similar to
AOI policy. Third, the policy sets bounds of zero staleness for
avatars in a user’s interest set, and of one second for all others.

The ISN policy adapts the IS policy to use a numerical
bound, instead of a staleness bound, for avatars outside a
user’s interest set. This policy sets a numerical bound of
0.16 (see Table [) for avatars outside the player’s interest set.
Because the weight of a location update message is equal to its
displacement, a bound of 0.16 allows a location inconsistency
slightly larger than the maximum distance traveled in a single
tick, preventing synchronizing small avatar movements.

Finally, the ZERO/IS policy updates dynamically the con-
sistency bounds, based on both player state and system load.
The policy monitors resource usage and initially behaves like
ZERO. If critical resources (e.g., CPU, network bandwidth)
become scarce, it trades off consistency for reduced resource
usage by behaving like the IS policy, repartitioning the system
state across users and setting a staleness bound of 1s for all
avatars outside a player’s interest set.

C. Adaptability, Extensibility, and Generality of Dyconits

In our vision on future distributed (eco)systems [29, chal-
lenges C3 and C6], we have challenged the community to
build systems that adapt by “changing service level objectives

(SLOs) upon detecting a resource overload or a straggling
task”. Approaches should consider fine-grained non-functional
requirements and change SLOs both spatially (e.g., for small
game object) and temporally (e.g., in short time-period). We
have shown in Section how, through an extensible
approach to policies, Dyconits adapt to real-world conditions
and thus can support this vision conceptually. Section [V]shows
evidence this support can also exist in practice.

The system is made more extensible and practical by
using only server-side modifications. This also gives sufficient
benefits, performance-wise. Dyconits focus on limiting traffic.
As shown by a state-of-the-art evaluation of Minecraft-like
games [7, §4.4], the server-bound network traffic in Minecraft-
like games is orders of magnitude smaller than the client-
bound network traffic.

We also conjecture that the Dyconits mechanism and system
are general across many domains, but the policies proposed
here are tied to the gaming domain. Part of our conjecture,
Dyconits should generalize across games such as First-Person
Shooters and Massively Multiplayer Online Role Playing
Games, and even non-gaming applications where different
users have highly heterogeneous consistency requirements,
such as virtual concerts and interactive classrooms. We leave
proving this conjecture to future work.

IV. REALIZATION OF A DYCONIT SYSTEM IN MVES

In this section we describe how we realize the Dyconit
system in a real-world We consider as technologi-
cal base the open-source, Java-based, Minecraft-like
Glowstone [19], and analyze how to add to it the Dyconits
system. Realization precedes the actual implementation of a
prototype; conceptually, realization addresses a level lower
than the design in the previous section, but higher than
software engineering decisions.

A. Quantifying Inconsistency in Practice

The Dyconit system quantifies inconsistency along two
dimensions, staleness and numerical error. The (combined)
usage of these inconsistency dimensions was first introduced in
TACT [18], but still needs to be adapted for Staleness
is defined simply as the amount of time elapsed since messages
where last synchronized.

Numerical error is more complex, but allows more seman-
tically meaningful ways of bounding inconsistency in
To quantify numerical error, all messages are first assigned
a global weight. This weight objectively indicates the size
of the state update. For example, in an online game we
set the weight of an avatar’s position update to equal the
displacement. Importantly, the weight of the message does not
indicate the importance of the update for individual clients.
Using the weight of each update, we define the numerical
error as the sum of the weights of all updates that have not yet
been forwarded to the client. When to forward these updates
is determined by the Dyconit policy.

B. Dyconit Policies in Practice

Each Dyconit policy partitions the game state, weighs state
updates, and configures dyconit bounds for all clients. This
section shows how these tasks can be completed efficiently.

The developer controls the behavior of the Dyconit
system through the Dyconit policy. These policies allow the
Dyconit system to perform interest management (e.g., the AOI
and IS policies), to make trade-offs between consistency and
performance (e.g., the ZERO/IS policy), etc. To give policies
access to the [MVE[s internal state, we define an interface for
Dyconit policies. This allows the[MVE]developer to implement
their own policy, and has two main additional benefits. First,
it facilitates access for the policy to implementation-specific
game state, enabling policies such as AOI and IS, which need
this data to operate. Second, it offers control and thus more
reasons for developers to adopt Dyconits.

The Dyconit policies need to partition the game state;
however, this may have undesirable performance drawbacks
for the simulator, which benefits from data locality. To let
policies partition the game-state without affecting data-locality,
we create logical partitions that do not affect the physical
layout of the state’s underlying data. Additionally, policies
create partitions lazily. To do so, the policy inspects outgoing
state-updates to determine which state they modify, and to
which partition this state belongs. Only if the update affects a
partition for which no dyconit currently exists, one is created.
Similarly, state updates that remove objects from the game
(e.g., an area of the world is unloaded because it is unused)
can trigger the removal of a dyconit.

Because virtual worlds in are large and unbounded
in size, players are likely to have no interest in the majority of
the game state partitions (i.e., dyconits). This makes explicitly
setting bounds for each player-dyconit pair inefficient. We
address this issue through dyconit membership: a client be-
comes a member of a dyconit when their bounds are explicitly
set by the active policy. For all non-members, their bounds
are assumed to be infinite (i.e., no consistency). The Dyconit
policy can assign membership to clients, per dyconit, either pe-
riodically or based on specific events. Because player behavior
is simulated every tick, player state is likely to be inspected
every game tick. Changing membership behavior occurs in
this step at relatively little cost, although the final complexity
of the operation is determined by the complexity of the
Dyconit policy. Similar to assigning state-updates to dyconits,
membership changes can also lazily initialize dyconits: if a
player should be a member of a non-existing dyconit, this
dyconit is created dynamically by the system.

C. Interest Management in Practice

This section discusses how to realize, in a real-world
the interest management techniques used by the Dyconit
policies presented in Section

The AOI policy partitions the game-state based on ge-
ographical areas. In players explore a procedurally
generated, voxel-based virtual world. This world is typically
endless and generated on-demand in fixed-sized chunks. This

TABLE II: Overview of experiments.

Policy Workload Parameters
Section Focus Type Num. Players World Policy ({III-B) Duration
Network Resource Usage Fixed 200 flat ZERO, IS, ISN Sm
System Scalability Increasing 1/s flat ZERO, AOI, IS, ISN <1h
Game Inconsistency Fixed 200 flat ZERO, IS, ISN 5m
Dynamic Consistency-Performance Trade-off Spike 300-400 flat ZERO, IS 6m

removes the need for the AOI policy to run its own world-
partitioning algorithms—it creates a dyconit for every chunk.
To associate updates with the correct dyconit, the system
inspects update messages. If the update modifies terrain, the
policy assigns it to the dyconit representing the chunk that
has been modified. If the update modifies an object, the policy
accesses the game state to look up the object’s current location;
it then assigns the update to the chunk’s dyconit.

The IS and ISN policies partition the game-state per player.
Every state-update concerning a player action (e.g., avatar
movement) is associated with the dyconit matching the player.
However, not all state-updates are directly associated with
a player, e.g., the movement of an [Non-Playable Character|
(NPC). For all such updates, the policy creates one additional,
catch all partition. To make sure clients do not miss such
updates, all clients are a member of this partition using an
inconsistency bound of zero.

The ZERO/IS policy has two modes of operation, whose
change is triggered by the system load. Initially, this policy
behaves like the ZERO policy: it creates a single dyconit that
includes all clients as members, with an inconsistency bound
set to zero. If the tick duration gets close to 50 ms (excluding
outliers), the system is close to overload so the policy re-
partitions the game state and re-assigns membership according
to the IS policy. When the workload drops, the reverse occurs.

V. REAL-WORLD EXPERIMENTS

We evaluate in this section the Dyconits system, through
real-world experiments. We build a prototype starting from
the codebase of Glowstone, a popular open-source and full-
scale implementation of Minecraft. We also implement the five
policies introduced in Section policy ZERO allows us to
compare the game with and without the use of Dyconits. We
release the complete project, as Opencraft, on GitHub [20].

We conduct comprehensive and realistic experiments, using
the Yardstick benchmark (7] and the settings detailed in
Section to assess resource usage, system scalability, in-
game inconsistency, and the dynamic consistency-performance
trade-off. Table [l summarizes our experiments, from which
we derive the following Main Findings:

MF1 Dyconits can reduce the game mean bandwidth usage by
49% when allowing low inconsistency, and by 85% when
allowing large, but tolerable, inconsistency.

MF2 Dyconits significantly improve the scalability of

MF3 Dyconits improve scalability while bounding in-
consistency.

MF4 Dyconits improve the robustness of by temporarily
allowing large inconsistency during workload bursts.

A. Experiment Setup

Here we describe the experiment setup. A summary of the
workloads is available in Table [} For an the workload
consists of two parts: the world and the players. The workloads
all use a flat world, i.e., a world consisting of an infinite flat
plane, but vary the number of players. The increasing work-
load connects 5 new players every 5 seconds. The workload is
synthetic, but useful for scalability experiments, as it enables
observing the maximum number of supported players. The
fixed workload connects a predetermined number of players:
25 new players every 5 seconds until the set number of players
is reached. The spike first connects a base number of players.
Then, after 180 seconds, it increases the number of players
to create a peak. The extra players remain connected for one
minute before disconnecting. The players are connected in the
same way as in the fixed workload. The players move in-world
using Yardstick’s behavior model.

We run our experiments on DAS-5, a distributed multi-
cluster for academic and educational use [30]]. For all experi-
ments, we use one machine to run the Opencraft server, and
Yardstick uses one machine per 50 emulated players. Each
machine is equipped with a dual 8-core 2.4 GHz CPU, 64 GiB
of memory, and an InfiniBand network with a maximum
throughput of 48 Gbps. This setup is comparable to the high-
bandwidth environments available in data centers, which are
used in industry to host as a service [T1].

B. Reduction in Network Resource Usage (Leads to [MF1))

The first experiment reports resource usage; Figure [5] on
the next page summarizes the results. The results show that
allowing low inconsistency can reduce mean bandwidth usage
by 49%, while allowing large but still acceptable inconsistency
can reduce the (arithmetic) mean of bandwidth usage by 85%.

The top-most plot in Figure [5] shows the number of mes-
sages sent by the server per second. With more than
800,000 messages per second, the ZERO policy sends the
most messages, by far. Because the policy behaves like a
traditional game without Dyconits, it allows no inconsistency
and immediately synchronizes all state updates with every
player. This static behavior also explains its low variance. For
a tick rate of 20 Hz and 200 players, we expect exactly 800,000
messages per second. The mean being slightly above this value
is likely caused by additional state updates, albeit less frequent,
such as those describing the layout of the terrain.

ZERO A o)
ISN A ee—g}
IS{ &
0 2 4 6 8 10 12
x10° messages per second
ZERO A ——eee o
ISN A — [T o
IS 1 —O— -
0 2 4 6 8 10 12
x10° packets per second
ZERO Laal
ISN em—-
IS of-e
0 2 4 6 8 10 12

x10° bytes per second

Fig. 5: Network usage of the same game, for different Dyconit
policies. Lower values (more to the left, horizontally) are
better. White dots show the arithmetic mean.

The ISN policy also behaves as expected. Allowing most
players to be inconsistent by a single step results in synchro-
nizing every-other step, resulting in a reduction of messaging,
by half. Although players keep an inconsistency bound of zero
with other players in their interest set, the number of players
in the a player’s interest set is sufficiently small (five) to not
impact significantly the number of messages sent per second.

Similarly to the ISN policy, the IS policy sets a bound of
zero on avatars in the player’s interest set. However, it allows
more inconsistency (staleness bound at 1) for avatars outside
the interest set. In our experiments, this results in an 89%
reduction in the mean number of messages sent per second.

All policies send slightly more messages than predicted. Our
prediction only includes estimates for the number of entity-
movement messages, whereas the measurements include all
types of messages. This result confirms an earlier result in the
community, which shows that the majority of messages sent
in are entity-position updates [7]].

Only minor differences appear in the statistical properties
(i.e., mean, median, narrow IQR) of the number of packets
sent per second, for the three policies. This seems to be
caused by the underlying network stack, which concatenates
multiple messages into a single packet because the majority
of messages is sent in bursts (once per game tick).

The strong reduction in number of messages per second,
combined with the relatively stable number of packets per
second, results in a strong reduction of bandwidth usage (bytes
per second). The number of bytes per second shows the
same trend as the number of messages per second, but less
strongly. This is caused by the game server sending chunk-
related (world-data) messages, which are much less frequent
than avatar positions, but much larger in size, and are not
affected by our Dyconit policies.

C. Increasing Maximum Number of Players (MF2)

Dyconits can significantly improve the maximum number of
players supported by an Figure [6] shows the results of
the scalability experiment. The runtime differs for each policy

& ZERO —

2 Aol I

é ISN 1 +11%

o IS I +44%
0 100 200 300 400 500

number of players

Fig. 6: Maximum number of players for a variety of Dyconit
policies. Policy ZERO represents the baseline, i.e., without the
use of Dyconits, allowing zero inconsistency.

ZERO || A0l |
40
£ M N;;.*‘:ﬁ‘“”"
g 01"
B ISN || B \
_g ________ e T a
§40-
N V,;WM "/_./—/‘JV/
0l- A e sentrisl]

T T T T T L — T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
time (s)

component total 4 simulate # net_tx net_rx

Fig. 7: Breakdown of tick duration for an increasing number
of players and a variety of Dyconit policies. Policy ZERO
represents the game without the use of Dyconits.

because the experiment runs an increasingly heavy workload
until the game becomes overloaded. Without Dyconits, the
game scales to 350 players. Using Dyconits can increase the
scalability of the game, depending on the active policy.

The AOI policy fails to increase scalability. In our analysis,
we found that this is likely due to the close proximity of the
emulated players. The AOI policy sets increasingly high in-
consistency bounds for areas further away from the player. Be-
cause all players are close together, their inconsistency bounds
are effectively zero. The ISN policy increases scalability from
350 to 390 players (+11%), which means the large reduction
in bandwidth usage (see [MFI) does not translate to large
scalability improvement. By allowing larger inconsistency, the
IS policy can support up to 505 players (+44%).

To better understand how the decreased consistency created
by the Dyconit policies affects the game’s scalability, we
analyze the time taken out of the tick duration by each
component, including networking. Figure [7] breaks down the
components of the tick duration, over time, as the number
of players increases. The top (orange) curve shows the total
time spent in the game tick. The other curves show how much
time is spent on each component. Simulate combines the
time needed to simulate the players and the world; net_rx
and net_tx show the time spent on receiving and sending
state updates, respectively. The majority of the time is spent
on simulating the virtual world and on sending state updates.

In Figure all curves follow the constantly increasing
number of players. Despite the tick duration increasing slowly
over time (i.e., sub-exponentially), the scalability of the game
is limited because the game becomes unplayable when the tick
duration exceeds 50ms (dashed-red, horizontal line). When
this happens, the game is no longer able to update its state
at 20Hz, slowing down time in the simulation and causing
undeterministic behavior. The experiment connects five players
every five seconds until the game becomes unplayable in this
way, at which point the game is stopped.

When not using Dyconits (plot ZERO), the time spent on
sending state-updates exceeds the time spent on simulation
for large numbers of players, and the game becomes over-
loaded. Both ISN and IS allow inconsistency between players,
reducing time spent on synchronizing state (net_tx), which
increases the maximum number of players.

All plots in Figure [/] show a spike in workload after
300 seconds. We found the cause of this behavior to be the
game’s automatic save function that triggers every five min-
utes. Saving removes unused area of the world from memory,
and writes the entire game state to disk. These operations
take additional time to complete, creating a spike in the tick
duration.

Finally, when using Dyconits (AOI, IS, and ISN), the
simulate part of the tick starts increasing more rapidly
after the world has saved (300 seconds), increasing the total
tick duration and limiting scalability. The reason for this
behavior is unknown, but negatively effects the scalability
improvements gained by using Dyconits.

D. Improve Performance, Bound Inconsistency

Dyconits can successfully improve game performance while
simultaneously bounding inconsistency. Figure [§] shows the
inconsistency and resource consumption for several
Dyconit policies. The figure reports the system-wide incon-
sistency, calculated as the sum of the inconsistencies between
each player and the global state. The top two figures respec-
tively show the numerical error and staleness for each policy.

The top plot in Figure [§] shows that the ISN policy suc-
cessfully limits inconsistency. The policy permits a numerical
error of 0.16units (see Table) on all avatars outside a
player’s interest set. With 200 players and an interest set
of 5, the upper bound on the system-wide inconsistency is
0.16x200x 195 = 6, 240. We observe that the ISN policy stays
well below this value. Because the policy synchronizes every
other step, and not all players start moving simultaneously, it
is unlikely that a player is inconsistent with all other players.
Using the IS policy, which bounds staleness, results in a global
numerical error ranging from roughly 22,000 to over 60,000.
Without dead-reckoning, a global numerical error of 60,000
for 200 players means that, on average, each player sees
every other player’s avatar 1.5 meters (units) from where they
actually are.

The middle plot in Figure [§] shows that the IS policy
successfully limits staleness. The policy permits staleness of
1 second for avatars outside a player’s interest set. With 200

ZEROq ¢
ISN1 <
IS 4 a— O we
T T B B T
0 2 4 6 8
numerical error (><1O4 in—game meters)
ZEROq ¢
ISN{ ot
IS 1 <Q
0 4 8 12 16
staleness (x10° ms)
ZERO O—H—mo °)
ISN —[—esmmossssascss essoe o
IS o—|0—ennmnmnmne wwooo e o ocee o
0 25 50 75 100

tick duration (ms)

Fig. 8: Trade-off between consistency and performance for
varying Dyconit policies under the Fixed-200 workload. Lower
values (more to the left, horizontally) are better. White dots
show the arithmetic mean.

players, this creates a global consistency bound of 1,000 x 200
= 200,000 ms. The policy reaches, but does not exceed, that
bound. The ISN policy, which uses a numerical error bound,
far exceeds the consistency bound of the IS policy. Its outliers
reach an inconsistency of ~1,500,000 ms, which means, on
average, here players have not received some state updates
for 1,500,000 / 200 = 7,500 ms. Further analysis reveals that
these outliers arise from players outside the interest set who
move very little during an extended period of time; their
accumulated change does not exceed the numerical bound
required to trigger an update, but staleness increases.

The bottom plot in Figure [8| shows the Dyconit policies
reduce the tick duration, but only by a small amount. Con-
cerning the resource overhead of running the policies, the
CPU usage for these policies (not shown) follows the same
trend. Because time spent on sending state updates is relatively
small when using a workload of only 200 players, Dyconits
do not reduce much the resource usage. The bottom plot in
Figure [§] also shows large numbers of outliers for the tick
duration. During further analysis we found these outliers are
present throughout the duration of the experiment, and occur
at a roughly fixed interval. Due to this observation, combined
with the fact that the outliers are present across all Dyconit
policies, we conjecture they are not caused by the Dyconit
system, but by periodic system-level events such as JVM
garbage collection.

E. Dynamic Consistency/Performance Trade-off (MF4)

Although the previous experiments show that Dyconits can
improve performance by allowing bounded inconsistency, the
performance under lighter workloads may be sufficiently good
without introducing inconsistency. The previous experiment
is an example of such a case: under a workload of 200
players, the[MVE]can sustain the required 20 Hz tick frequency
because the tick duration is less than 50ms. In this case,

60
- Game overloaded ‘
) === ===
< ; [PEVRT S

40 Bl AL
.5 QJﬂ,N\/\/yW o ‘W W !
g Iy
3 5. / w 9 v
x S O O it poli
3 | £ & 8 & Dyconit policy

o w W W e zero
ol - ZERO/IS
0 100 200 300
time (s)

Fig. 9: Tick duration over time during the Spike workload.
Policy ZERO represents the game without the use of Dyconits.

introducing inconsistency can only marginally improve the
players experience, and may even decrease it.

In this experiment we evaluate the ZERO/IS Dyconit pol-
icy. This policy monitors the tick duration over time and
initially avoids inconsistency by synchronizing state updates
with clients immediately. However, when the tick duration
approaches 50ms, to improve scalability it starts behaving
similar to the interest set-based IS policy. When the number
of players drop below the number that triggered using interest
sets, the policy will try to stop using Dyconits.

Figure [9] shows the results of the experiment. The first
60 seconds of the experiment are the setup phase in which
players join the game. Every 60 seconds, the game performs
an automatic save, creating a peak in the tick duration. After
180 seconds, the number of players increases from 300 to 400.
When using the ZERO policy, this causes the tick duration to
exceed 50 ms, which in turn causes the game to drop below
the required 20 Hz update frequency. In contrast, the ZERO/IS
policy briefly lets the tick duration exceed 50 ms, then enables
interest sets and brings the tick duration back below 50 ms.

After 240 seconds, 100 players leave the game and the game
performs an automatic save. Despite the additional workload
caused by the save, the ZERO/IS policy disables interest sets
and maintains a tick duration below 50 ms.

VI. MAIN THREATS TO VALIDITY

Applying Dyconits to a professionally engineered game can
result in higher levels of performance improvement. In games,
significant performance and scalability improvements can be
obtained through advanced engineering. Because we built
Dyconits into Opencraft, an open-source game, we conjecture
that Dyconits can obtain a larger performance improvement
when applied to a professionally engineered system.

Our experiments use the Yardstick MVE benchmark to em-
ulate players [7]. Unfortunately, the benchmark uses a player
behavior model based on players in the game Second Life,
which is an but not Minecraft-like. Thus, the mobility
model we use may not capture all elements of Minecraft-like
player behavior. However, there currently exists no model in
the community for mobility in Minecraft-like games.

Similarly, as the Yardstick experiments indicate [7, Table 1],
the workload of Minecraft-like games can depend on various
game-world features, including complexity and view distance.

Exploring these features can be done with Yardstick, given
enough time and material resources, and remains outside the
scope of this work.

VII. RELATED WORK

We survey in this section work related to Dyconits. In con-
trast with all the existing approaches, ours is the first to focus
on[MVEs|—we provide new mechanisms and dynamic policies
that bound inconsistency and trade it off for scalability.

We base Dyconits on the continuous consistency model
introduced in TACT [18]. TACT is designed for distributed
databases. Our dyconit is similar to the TACT conit, but, to
make it useful for the highly dynamic and write-intensive
our model allows modifying the consistency bounds
frequently at runtime, and prevent reducing availability while
synchronizing state by bounding inconsistency optimistically.

Predictive treaties [31] are a mechanism to improve perfor-
mance in distributed systems by reducing synchronization fre-
quency. Predictive treaties use the observation that, when state
changes are predictable, the system can formulate predicates
about the system state that remain valid for a certain amount
of time and can be used instead of retrieving an exact value.
Whereas predictive treaties are designed for database systems
and improve performance by avoiding network latency, Dy-
conits are designed for online games in which players are often
unpredictable and game worlds non-linear, and scalability is
limited primarily by bandwidth.

Multiple approaches exist for increasing game scalability by
allowing inconsistency. Interest management approaches [16]]
omit—or reduces the frequency of—state updates that are
further removed from the player’s avatar. We compare here
with two such approaches, Colyseus and Donnybrook. Col-
yseus [21] is a distributed middleware for multiplayer games
that replicates game objects (e.g., avatars, items) across nodes,
distributing the computation needed to update these objects
every tick. Colyseus optimistically bounds inconsistency to a
staleness of 100 ms, using [@ In contrast, Dyconits further
use numerical error to prevent large inconsistencies, and
supports other interest management techniques such as interest
sets. Finally, Colyseus does not limit bandwidth usage.

Donnybrook [14]] introduces interest sets per player
and limits update-frequency beyond sets. Donnybrook uses
doppelgangers, Al-based movement extrapolation (effectively,
predictive treaties), to reduce inconsistency. In contrast, Dy-
conits also bound the numerical inconsistency.

The Mobihoc middleware [22] introduces the Vector-Field
consistency model for games in ad-hoc networks. Mobihoc is
also based on TACT, and allows developers to define time,
sequence, and value error-bounds on location-based pivots. In
contrast, Dyconits supports dynamically changing consistency
bounds, and players joining or leaving ongoing games.

DynFilter [32] is a publish/subscribe middleware for online
games. DynFilter partitions the virtual world and creates a
high-frequency and a low-frequency topic for each partition.
Players subscribed to the high-frequency topic receive all
updates from that partition immediately, while subscribers to

the low-frequency topic may not. Like Dyconits, DynFilter
determines dynamically how many updates to omit, based
on the workload. In contrast, Dyconits bounds the resulting
inconsistency between players, and is compatible with non-
distance-based approaches such as interest sets.

VIII. CONCLUSION AND FUTURE WORK

Minecraft-like games, and more generally currently
scale to only a few hundred players in self-hosted games and
to as low as only ten players in cloud-hosted services. This
contrasts sharply with their popularity, e.g., Minecraft alone
has over 130 million active users. To address this problem,
we introduce the Dyconits system, the first middleware
that keeps inconsistency bounded, dynamically.

We design our Dyconits system around a data-centric,
continuous consistency model adapted to which it
uses to quantify and optimistically bound the inconsistency
experienced by players. Through the creation and dynamic
management of consistency units (the dyconits), our design
allows dynamically-changing bounds on arbitrarily small parts
of the game state. The system separates consistency mech-
anism from policy; we propose in this work four policies
that leverage dyconits in conjunction with various other state-
of-the-art interest-management mechanisms. We realize the
Dyconit system and implement it in Glowstone, a popular
open-source Minecraft-like MVE] demonstrating Dyconits can
be applied in practice. We conduct comprehensive real-world
experiments: compared with the current technology, Dyconits
can reduce network bandwidth consumption by up to 85%,
improve scalability by up to 40%, and trades off efficiently
and dynamically consistency for performance.

In future work, we aim to evaluate the efficacy of Dyconits
for[MVEs|and beyond. For[MVEs| managing the inconsistency
caused by non-player entities is a relatively open area of
research. We conjectured in Section the Dyconit mecha-
nism is general, but requires domain-specific policies; proving
this is left for future work.

ACKNOWLEDGMENTS

This work is supported by NWO grants MagnaData and
OffSense, and by structural funds from VU Amsterdam.

REFERENCES

[1] B. Gilbert, “Video-game industry revenues exceed sports, film
combined in 2020 - Business Insider,” Dec 2020. [Online]. Available:
http://bit.ly/GamesExceedFilm

[2] ““Minecraft’ Tops 131 Million Monthly Active Users,” Jan 2021,
[Online; accessed 8. Jan. 2021]. [Online]. Available: http:/bit.ly/
Minecraftl31Million

[3] M. Panzarino, “Apple pushes the reset button on the Mac Pro,” apr
2017. [Online]. Available: https://bit.ly/MacOSUsers

[4] “Minecraft Realms for Java,” Nov 2020, [Online; accessed 12. Jan.
2021]. [Online]. Available: http://bit.ly/MinecraftService

[5] “Steam Search,” Jan 2021, [Online; accessed 12. Jan. 2021]. [Online].
Available: http://bit.ly/steam-mves

[6] “Mods - Minecraft - CurseForge,” Jan 2021, [Online; accessed 12. Jan.
2021]. [Online]. Available: http://bit.ly/ModsForMinecraft

[7] J. van der Sar, J. Donkervliet, and A. Iosup, “Yardstick: A Benchmark
for Minecraft-like Services,” in ICPE, 2019, pp. 243-253.

[8]

[9]

[10]
(11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

J. Donkervliet, A. Trivedi, and A. Iosup, “Towards Supporting Millions
of Users in Modifiable Virtual Environments by Redesigning Minecraft-
Like Games as Serverless Systems,” in HotCloud, 2020.

A. Natividad, “How Greenpeace Used Minecraft to Stop Illegal
Logging in Europe’s Last Lowland Primeval Forest,” jan 2018.
[Online]. Available: https://bit.ly/MinecraftGreenpeace

M. Claypool and K. T. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, no. 11, pp. 40-45, 2006.
Mojang, “Minecraft Realms.” [Online]. Available:
minecraft.net/en-us/realms-plus

R. A. Bartle, Designing virtual worlds. New Riders, 2004.

M. R. Macedonia, M. Zyda, D. R. Pratt, P. T. Barham, and S. Zeswitz,
“NPSNET: A Network Software Architecture For Large Scale Virtual
Environments,” Presence Teleoperators Virtual Environ., vol. 3, no. 4,
pp. 265-287, 1994.

A. R. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang,
S. Seshan, and X. Zhuang, “Donnybrook: enabling large-scale, high-
speed, peer-to-peer games,” in SIGCOMM, 2008, pp. 389—400.

J.-S. Boulanger, J. Kienzle, and C. Verbrugge, “Comparing interest
management algorithms for massively multiplayer games,” in NetGames,
2006, p. 6.

E. S. Liu and G. K. Theodoropoulos, “Interest management for dis-
tributed virtual environments: A survey,” ACM Comput. Surv., vol. 46,
no. 4, pp. 51:1—51:42, 2014.

P. Viotti and M. Vukolic, “Consistency in Non-Transactional Distributed
Storage Systems,” ACM Comput. Surv., vol. 49, no. 1, pp. 19:1—-19:34,
2016.

H. Yu and A. Vahdat, “Design and evaluation of a conit-based continuous
consistency model for replicated services,” ACM Trans. Comput. Syst.,
vol. 20, no. 3, pp. 239-282, 2002.

“Glowstone Project,” Jan 2021, [Online; accessed 12. Jan. 2021].
[Online]. Available: https://glowstone.net

atlarge research, “opencraft-dyconits,” Jan 2021, [Online; accessed
8. Jan. 2021]. [Online]. Available: https://github.com/atlarge-research/
opencraft-dyconits

A. R. Bharambe, J. Pang, and S. Seshan, “Colyseus: A Distributed
Architecture for Online Multiplayer Games,” in NSDI, 2006.

N. Santos, L. Veiga, and P. Ferreira, “Vector-Field Consistency for Ad-
Hoc Gaming,” in Middleware, vol. 4834, 2007, pp. 80-100.

V. Nae, A. Iosup, and R. Prodan, “Dynamic Resource Provisioning in
Massively Multiplayer Online Games,” TPDS, vol. 22, no. 3, pp. 380-
395, 2011.

K.-T. Chen, C.-C. Tu, and W.-C. Xiao, “OneClick: A Framework for
Measuring Network Quality of Experience,” in INFOCOM, 2009, pp.
702-710.

P. Chen and M. E. Zarki, “Perceptual view inconsistency: An objective
evaluation framework for online game quality of experience (QoE),” in
NetGames, 2011, pp. 1-6.

S. Shen, S.-Y. Hu, A. Iosup, and D. H. J. Epema, “Area of Simulation:
Mechanism and Architecture for Multi-Avatar Virtual Environments,”
TOMM, vol. 12, no. 1, pp. 8:1—-8:24, 2015.

A. Tosup, L. Versluis, A. Trivedi, E. V. Eyk, L. Toader, V. van Beek,
G. Frascaria, A. Musaafir, and S. Talluri, “The AtLarge Vision on the
Design of Distributed Systems and Ecosystems,” in ICDCS, 2019, pp.
1765-1776.

H. Y. Vahdat and Amin, “Combining Generality and Practicality in a
Conit-Based Continuous Consistency Model for Wide-Area Replica-
tion,” ICDCS’01, pp. 429-438, 2001.

A. Tosup, A. Uta, L. Versluis, G. Andreadis, E. V. Eyk, T. Hegeman,
S. Talluri, V. van Beek, and L. Toader, “Massivizing Computer Systems:
A Vision to Understand, Design, and Engineer Computer Ecosystems
Through and Beyond Modern Distributed Systems,” in /CDCS, 2018,
pp. 1224-1237.

H. E. Bal, D. H. J. Epema, C. de Laat, R. van Nieuwpoort, J. W. Romein,
F. J. Seinstra, C. Snoek, and H. A. G. Wijshoff, “A Medium-Scale
Distributed System for Computer Science Research: Infrastructure for
the Long Term,” IEEE Computer, vol. 49, no. 5, pp. 54-63, 2016.

T. Magrino, J. Liu, N. Foster, J. Gehrke, and A. C. Myers, “Efficient,
Consistent Distributed Computation with Predictive Treaties,” in Eu-
roSys, 2019, pp. 36:1—-36:16.

J. Gascon-Samson, J. Kienzle, and B. Kemme, “DynFilter: Limiting
bandwidth of online games using adaptive pub/sub message filtering,”
in NetGames, 2015, pp. 1-6.

https://www.

http://bit.ly/GamesExceedFilm
http://bit.ly/Minecraft131Million
http://bit.ly/Minecraft131Million
https://bit.ly/MacOSUsers
http://bit.ly/MinecraftService
http://bit.ly/steam-mves
http://bit.ly/ModsForMinecraft
https://bit.ly/MinecraftGreenpeace
https://www.minecraft.net/en-us/realms-plus
https://www.minecraft.net/en-us/realms-plus
https://glowstone.net
https://github.com/atlarge-research/opencraft-dyconits
https://github.com/atlarge-research/opencraft-dyconits

	Introduction
	System Model
	Operational Model for Modifiable Virtual Environments
	Toward a Consistency Model for mcgame

	Dyconit System Design
	Design Overview, Process, and Alternatives
	Dyconit Policies (Requirements R4, R5)
	Adaptability, Extensibility, and Generality of Dyconits

	Realization of a Dyconit System in MVEs
	Quantifying Inconsistency in Practice
	Dyconit Policies in Practice
	Interest Management in Practice

	Real-World Experiments
	Experiment Setup
	Reduction in Network Resource Usage (Leads to MF1)
	Increasing Maximum Number of Players (MF2)
	Improve Performance, Bound Inconsistency (MF3)
	Dynamic Consistency/Performance Trade-off (MF4)

	Main Threats to Validity
	Related Work
	Conclusion and Future Work
	References

