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Abstract

With the ascent of Information and Communication Technology (ICT), the complexity and scale of
High-Performance Computing (HPC) and data centers have surged, leading to pressing challenges
in energy and resource consumption. These data centers, fundamental to our digital experiences
and the backbone of our digital age, require profound understanding and optimization to align
with our vision of a sustainable and human-centric technological future. However, existing research
reveals gaps in this understanding, often presenting either overly generalized or overly narrow
insights. There is an urgent need for state-of-the-art modeling tailored to contemporary, large-
scale data center infrastructures.

In this study, we comprehensively characterize and model the resource and energy consumption
patterns from the LISA data center dataset. While addressing a noticeable void in existing literat-
ure, our detailed characterization spans from a broad overview down to node-specific insights with
a focus on CPU utilization and power usage. We give particular emphasis on the often-neglected
rack level, differentiating between generic and ML-centric facets. Also, we analyze correlations
across matrices and conduct essential pattern and peak analysis, identifying three predominant
recurring patterns. Further, by designing state-of-the-art LSTM and Transformer models, we
significantly enhance our estimation accuracy, registering a remarkable improvement of over 80%
when compared to current statistical methods. When forecasting four steps ahead, both LSTM
and Transformer models exhibit good performance, recording approximately 5% relative error for
power usage, 2% for temperature, and RMSE values between 3.46 and 3.8 for CPU utilization.
We also compare LSTM and the Transformer within the realm of HPC data centers, offering in-
sights into their best-suited applications. Our primary contributions lie in the granularity of our
characterization, the application of advanced ML models to data centers, and a comprehensive
evaluation of these models for improved sustainability and efficiency in HPC operations.
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Chapter 1

Introduction

In an age of unprecedented technological evolution, our society stands at the crossroads of trans-
formative change. This metamorphosis, which underscores the symbiotic relationship between
humans and technology, is anchored in the realm of ICT [33]. The vision of a world where in-
dividuals and human-centered organizations are enriched by an automated, sustainable layer of
technology is not just a distant dream but a tangible reality we’re weaving. ICT has become an
indispensable infrastructure in modern society, affecting various aspects of our lives and trans-
forming the way we live, work, and communicate [34]. At the heart of our digital world are data
centers [11]. These places, filled with many servers and networks, power our online experiences,
from phone apps to major research in various fields [70]. Yet, as indispensable as they are, these
data centers present a constellation of challenges, predominantly in terms of resource and energy
consumption. HPC and data centers provide the necessary infrastructure for many ICT-based
applications and services, and the growth of ICT drives the development and expansion of HPC
and data centers. As the demand for ICT-based services continues to grow, it is expected that
HPC and data centers will play a crucial role in enabling and shaping the future of ICT [4].

The complexity of data centers has been increasing due to fast-growing data demands and
workloads, along with more complex and diverse hardware, software, resources, and services [1].
Furthermore, the scale of the data center, in the US market alone, demand—measured by power
consumption to reflect the number of servers a data center can house—is expected to double by
2030, up from 17 TW in 2022 [47]. Consequently, data centers need to expand their storage,
architecture, and processing capabilities, leading to a rise in energy consumption and an increase
in data center construction [61]. There is a growing focus on sustainability, with data centers
adopting more efficient cooling systems, energy-efficient hardware, and renewable energy sources
[32], adding to the overall complexity and scale of data center operations.

In this work, we investigate characterization and modeling for resource usage and energy con-
sumption both for estimation and prediction. Resource and energy modeling in HPC data cen-
ters facilitates informed decisions regarding resource allocation, reducing capital and operational
expenses. Moreover, it enables data center operators to optimize cooling systems, power distri-
bution, and server utilization, thereby improving energy efficiency and reducing carbon emissions
[9]. These predictions play a key role in preventing service interruptions [29]. Additionally, they
ensure that workloads are distributed optimally for consistent performance [40].

Optimizing the performance and efficiency of data centers is paramount, not just for operational
excellence, but also in our pursuit of a sustainable technological future. As we envision a world
where technology operates seamlessly as utilities and services under human guidance, the emphasis
shifts to ensuring these data centers are not voracious energy consumers but optimized, efficient,
and predictable entities. This necessitates a profound understanding of their dynamics, from the
nuances of energy and resource characterization to the intricacies of machine learning models that
can predict their operational metrics.

It’s within this context that this thesis endeavors to contribute. By delving deep into the op-
erational matrices of data centers, identifying patterns of consumption, designing robust machine
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2 CHAPTER 1. INTRODUCTION

learning models for estimation and prediction, and evaluating their prowess, this research hopes to
illuminate the path toward data centers that resonate with our grand vision. The journey ahead
is both challenging and promising. It is a pursuit not just of technological excellence but also of
crafting a world where ICT stands as a beacon of human progress, a fundamental right, and a
testament to our collective aspirations.

Figure 1.1: Reference architecture for the ODA framework (Source: Suman et al, 2023).

The reference architecture for the ODA framework is illustrated in Figure 1.1. Inputs for in-
dividual ODA components across various layers are presented in the figure’s upper section. Our
research aligns with the segments of Data Characterization and Data Modeling & Learning. Within
this framework, the modeling of resources aligns with Layer 3, specifically the Resource Manager,
while energy modeling corresponds to Layer 6, dedicated to DevOps Platforms. Characterization
serves as the bedrock upon which sustainable and efficient machine-learning models are built for
data centers. When we speak of the intricacies and idiosyncrasies of data center operations, it’s
imperative to recognize that these infrastructures don’t operate in isolation; they are an inter-
play of hardware, software, environmental factors, and human interventions. As such, effective
characterization unravels the multifaceted layers of these operations. This granularity offers in-
valuable foresight, allowing for the anticipation of potential bottlenecks, ensuring resilience against
unforeseen challenges, and charting out strategies for seamless scalability. In the era of green com-
puting, where sustainability is paramount, characterization assists in pinpointing the pattern and
peaks [39]. Further, machine learning is essential for modeling energy consumption and resource
consumption in data centers due to its ability to capture complex patterns and relationships in
large-scale, dynamic, and multi-dimensional data [14]. Traditional statistical methods may not be
able to accurately model such intricate relationships, while machine learning algorithms can adapt
to changes in data center workloads, topology, and other factors. This paves the way for precision-
driven predictions, facilitating optimized resource allocation, minimized energy expenditure, and
substantial cost benefits for data center operators. Employing advanced analytics, machine learn-
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CHAPTER 1. INTRODUCTION 3

ing, and artificial intelligence techniques, data center operators can accurately predict resource
and energy demands, leading to more sustainable and efficient operations. In sum, while machine
learning offers predictive prowess, characterization provides clarity and direction, making them
indispensable partners in the journey toward next-generation data centers.

1.1 Problem Statement

In an age of unprecedented technological evolution, our society stands at the crossroads of trans-
formative change. This metamorphosis underscores the symbiotic relationship between humans
and technology, deeply entrenched in the realm of ICT. The vision of a world where individuals
and human-centered organizations are enriched by an automated, sustainable layer of technology
is no longer a distant dream but a tangible reality we are weaving.

Central to this vision are data centers, the bedrock of our digital age. These hubs enable
the myriad of digital experiences we’ve come to depend on, from the applications on our phones
to computational analyses driving groundbreaking advancements. As essential as they are, these
data centers also house a myriad of challenges, notably in resource and energy consumption.

Optimizing the performance and efficiency of data centers is not just about enhancing their
operational capacity. It is a commitment to creating a sustainable technological future, aligning
with our broader vision of a world where technology serves humanity seamlessly. This implies
that data centers must evolve from being mere energy consumers to entities that are optimized,
efficient, and inherently predictable. To achieve this, there’s an imperative to grasp their dynamics
fully, from understanding energy and resource characterization to using machine learning models
that can foretell their operational patterns.

However, despite the progress made in understanding data centers, noticeable gaps persist in
current research methodologies. Our deep dive into existing literature reveals a pattern of either
excessive generalization or extreme specificity. The broader perspective, though essential, often
overshadows the equally vital micro level, especially the rack level. This missing link between
macro and micro perspectives signifies a pressing need for a holistic research framework that
encapsulates the complete data center dynamic.

Moreover, recognizing patterns in energy and resource consumption is important for pree-
mpting high-demand scenarios. Temporary surges, though transient, can overburden data center
resources and skyrocket energy consumption. Yet, there’s a palpable lack of exhaustive research
on pattern and peak analysis for these matrices.

Another challenge is the continued reliance on static datasets and traditional models. This
approach, anchored in past paradigms, fails to resonate with the dynamic essence of contemporary
data center operations. To keep pace with the rapid fluctuations and intricacies characteristic of
today’s data centers, there’s an undeniable need for models that are both responsive and predictive.
Machine Learning models, known for their dynamic and adaptive nature, can bridge this gap. They
offer a forward-looking approach, enabling proactive decision-making by recognizing emerging
patterns and making timely predictions.

In our research, we distinctly highlight the following challenges that pervade the field:

1. Lack of a comprehensive multi-level approach that balances the macro and micro perspectives
for energy and resource, especially the absence of focused research on the crucial aspects of
pattern and temporary analysis in data center operations, which holds a key to enhanced
resource optimization during high-demand situations.

2. Reliance on traditional statistical models that may fail to capture the dynamic nature of
current data center operations and the challenges they present. Such an approach, tethered
to its past paradigms, is strikingly incongruent with the evolving dynamism intrinsic to
contemporary data center operations. The intricacies and rapid fluctuations characteristic
of today’s data centers necessitate models and data sources that are not only responsive but
also predictive. To bridge the gap left by static datasets and traditional models, we advocate
the use of Machine Learning models. These models, inherently dynamic and adaptive, are

3



4 CHAPTER 1. INTRODUCTION

well-suited to grasp the complex, ever-evolving nature of data center operations. ML models
can continuously learn from the data, recognizing emerging patterns, and making predictions
that facilitate proactive decision-making. The incorporation of ML models transforms the
operational paradigm from a reactive stance to a proactive, forward-looking approach.

3. Prioritize and implement strategies that drive energy efficiency in data centers. By aligning
operational optimization with sustainable practices, machine learning could help pave the
way for data centers that are both high-performing and environmentally friendly.

Tackling these problems enables us to provide a nuanced understanding of data center dy-
namics, laying the foundation for data-driven strategies to improve energy efficiency, resource
allocation, and overall system resilience. This positions data centers to better navigate the chal-
lenges of modern-day demands while prioritizing sustainability and operational excellence.

1.2 Research Questions

This work focuses on characterizing and modeling Resource Usage and Energy consumption us-
ing machine learning including estimation and prediction. Our main research question is How
to characterize and model resource use and energy consumption in large-scale data
center infrastructures? To clarify the direction of this study, we elaborate on three research
questions(RQs) as follows:

• RQ1: How to characterize and analyse resource and energy in HPC data cen-
ter?
This research question aims to unravel resource and energy characterization with a focus
on CPU utilization and power usage, both crucial for subsequent analytical and predictive
endeavors. The inherent challenge here lies in achieving a detailed and precise characteriza-
tion of resource and energy consumption patterns in the dynamic landscape of data center
operations.

Proper characterization and analysis of resource and energy usage pave the way for efficient
data center management. Addressing this question ensures that computational resources are
used effectively, resulting in cost savings, reduced energy consumption, and enhanced oper-
ational efficiency. This forms the foundation for all subsequent optimizations and predictive
strategies.

• RQ2: How to design an accurate and efficient ML model for data center resource
and energy estimation and prediction?
Venturing into the architecture and design of ML models tailored to the specific demands of
data center operations, this research question confronts the challenge of developing models
that are accurate, adaptable, and efficient. The ever-evolving nature of data centers adds
complexity, requiring models that address challenges like latency, scalability, and real-time
adaptability.

An optimal ML model tailored for data centers has the potential to forecast computational
needs, thereby preempting system failures and inefficiencies. Predictive capabilities can
lead to smoother operations, fewer outages, and more streamlined energy consumption.
Addressing this question aids in navigating the complexities of modern data centers by
offering proactive solutions rather than reactive fixes.

• RQ3: How to evaluate the ML models to understand resource use and energy
consumption?
Central to this research question is the formulation of apt evaluation metrics and method-
ologies tailored for ML models in the context of data center dynamics. The challenge here
transcends mere accuracy metrics, diving into model adaptability, and the ability to offer
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CHAPTER 1. INTRODUCTION 5

actionable insights. Crafting a reliable and relevant evaluation framework that can holistic-
ally assess a model’s performance within the specificities of vast computing infrastructures
is of paramount importance.

Evaluating ML models goes beyond mere accuracy; it determines the applicability and rel-
evance of the model in real-world scenarios. Understanding how a model performs under
varying conditions, and if it provides actionable insights, is crucial for operational success.
Addressing this question ensures that the developed models align with the practicalities and
intricacies of data center environments.

1.3 Main Contributions

Our research contributions (Cs) are threefold:

• C1: We provide a comprehensive characterization of resource and energy consumption pat-
terns, extending from a holistic overview to node-specific insights. This characterization not
only spans broad distributions but also delves deep into the often-neglected rack level, spot-
lighting peak insights, generic and ML-centric facets, and unveiling three dominant recurring
patterns.

• C2: We design LSTM and Transformer models for both estimation and prediction modeling
of CPU utilization and power consumption in HPC clusters. For estimation, they achieve
over 80% enhancement in estimation accuracy compared to current statistical methods. For 4
steps ahead prediction, both models achieve approximately 5% relative error for power usage,
2% for temperature, and an RMSE value range between 3.46 and 3.8 for CPU utilization.

• C3: We offer a comprehensive evaluation and comparison between LSTM and Transformer
within the context of HPC data centers. This provides insights into the best-suited ap-
plications of each model, laying a foundation for improved sustainability and operational
efficiency in high-performance computing environments.

• Original Contribution:

1. Comprehensive characterization on multi-level, fine-grained dataset:

We delve into an in-depth study on the dataset which is unique due to its detailed
granularity and multi-layered hierarchy. Such intricate data holds the potential to
unlock sophisticated patterns and insights that are typically overlooked in less refined
datasets. This depth and breadth lay the foundation for more robust modeling and
insightful characterizations.

2. Analysis spanning multiple levels (node, rack, overview): We carry out charac-
terization and analysis across multiple levels, offering insights from each distinct level.
At the node level, we investigate individual computational components. At the rack
level, we grasp the synergy between nodes. The overview provides a macroscopic per-
spective, ensuring holistic insights.

3. Employment of frequency domain analysis for enhanced pattern detection:

We integrate frequency domain analysis to identify recurring patterns in HPC data cen-
ters, detecting underlying periodicities fundamental to understanding HPC behavior.

4. ML model comparison and insights into HPC data center: By leveraging ma-
chine learning models and assessing their efficacy against practical metrics in the HPC
data center landscape, we illuminate their precise advantages and areas of strength.
This analytical process provides pivotal insights into optimizing these models specific-
ally for high-performance computing infrastructures, underscoring their potential to
significantly enhance operations and efficiency in the HPC data center domain.

5



6 CHAPTER 1. INTRODUCTION

1.4 Societal Relevance

In today’s digitized era, data centers have become the heart of our global infrastructure, powering
everything from cloud storage solutions to complex simulations that drive scientific advancements.
With the increasing demand for computational power, there’s a growing strain on our energy and
resources, making the efficient and sustainable operation of these data centers paramount. This
research not only advances our understanding of the intricacies of power usage and CPU utilization
in high-performance computing environments but also introduces machine-learning methodologies
that promise optimized operations. As a result, our work has broad societal implications. By
enhancing the efficiency of HPC data centers, we not only reduce their environmental footprint
but also potentially reduce operational costs, translating to economic benefits.

1.5 Thesis Structure

The structure of this thesis is outlined as follows: Chapter 2 and 3 provide background information
and reviews related work. Chapter 4 addresses RQ1 through our characterization studies. For
RQ5, our model design is detailed in Chapter 4. Chapter 6 showcases our experimental results
and associated discussions. Finally, Chapter 7 offers concluding remarks.

1.6 Statement of Independent Work

I hereby declare that this thesis is entirely my own work. All information derived from other
sources has been duly cited and referenced. The work has also not been submitted elsewhere for
assessment.

1.7 Open Science

All codes for this work are open and available. Available at https://github.com/MushroomGu/Thesis/tree/main
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Chapter 2

Background

In order to characterize and model the data for ODA in HPC, we first elucidate the fundament-
als of HPC — encompassing its computing architecture, structural hierarchy, and the range of
components and technologies it interfaces with. Subsequently, we delve into the intricacies of
understanding HPC behavior and the approaches to the characterization and modeling of ODA.

2.1 What is HPC?

HPC refers to the practice of aggregating computing power in a way that delivers significantly
higher performance than one could get from a typical desktop computer or workstation in order
to solve large computational problems in science, engineering, or business [27]. Parallel comput-
ing in HPC enables HPC clusters to handle sizable workloads, partitioning them into discrete
computational tasks that can run concurrently.

HPC systems are evolving. As the computational demands for tasks such as simulations,
modeling, and advanced analytics escalate, it’s becoming crucial to supplement traditional CPU-
based processing with specialized accelerators. These accelerators, adept at performing specific
computations more efficiently than general-purpose CPUs, significantly enhance overall system
performance. The practice of integrating accelerators, such as Graphics Processing Units (GPUs),
Field-Programmable Gate Arrays (FPGAs), or even custom-designed Application-Specific Integ-
rated Circuits (ASICs), with CPUs is gaining traction in HPC, especially in domains like artificial
intelligence, data analytics, and scientific computing. While the integration of diverse compu-
tational resources introduces complexity in programming and managing HPC systems, it also
creates opportunities for substantial improvements in performance, energy efficiency, and cost-
effectiveness. Utilizing the right combination of CPUs and accelerators and employing software
tools and frameworks that support heterogeneous computing can effectively equip HPC systems
to manage the most demanding computational tasks today. The 2000s saw the emergence of com-
modity clusters – groups of interconnected, commodity computers that work together as a single
system – as the dominant HPC architecture, due to their cost-effectiveness and scalability. In the
2010s and beyond, accelerators like GPUs became increasingly important for HPC, driven by the
needs of applications like machine learning [48][46]. At the same time, cloud computing emerged
as a viable alternative for some HPC workloads, offering flexibility and eliminating the need for
upfront capital investments [46].

2.1.1 Computing Architectures in HPC

HPC leverages various computing architectures to perform complex computational tasks more
efficiently. These architectures have specific characteristics and use cases. In our case for the data
centers, cluster computing, and distributed computing emerge as the predominant architectures
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Figure 2.1: Architecture of the HPC [16].

due to their aptness for handling vast amounts of data and computations while ensuring scalability
and reliability.

Cluster Computing

In cluster computing, a group of computers, or nodes, work together as if they were a single
entity. Typically, these nodes are standard off-the-shelf servers that are interconnected via a
high-speed local area network (LAN). In a cluster computing setup, each node typically runs
its own operating system and has its own memory and processing power. Each node operates
under a similar hardware and software environment, creating a homogeneous network. They are
interconnected through a high-speed network that allows them to communicate and share resources
effectively. Cluster computing is often used when high computational power is required, and it
offers advantages such as high availability, scalability, and cost-effectiveness.

Distributed Computing

Distributed computing is a model where components of a software system are shared among mul-
tiple computers to improve efficiency and performance. In distributed computing, the workload
is divided into smaller subtasks that are executed concurrently on different machines, and the
results are combined to achieve the desired outcome. Each processor has private memory. The
processors communicate by sending messages across a network. The primary objective of distrib-
uted computing is to harness the combined computing power and resources of multiple machines
to tackle complex problems more efficiently than a single machine could. By distributing the
workload, tasks can be processed in parallel, leading to faster execution and improved scalabil-
ity. This architecture is more scalable than shared memory and is often used in large-scale HPC
systems. Distributed computing systems can take various forms like Client-Server Model, Peer-
to-Peer Model, and Message Passing Model, depending on the architecture and communication
model used.

2.1.2 System Model of HPC

In this paper, we are talking about the HPC system model which uses a heterogeneous architec-
ture that includes both traditional CPUs and accelerators. Interconnect technologies continue to
evolve, and software tools are constantly improving to help users effectively exploit these complex
systems. The hierarchy of HPC in the academic domain can be represented through various layers
of abstraction, beginning with computational tasks at the highest level to the actual hardware
infrastructure at the lowest level.
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Figure 2.1 demonstrates the hierarchy of HPC. In this hierarchy, users submit their jobs to the
scheduler, specifying their resource requirements and dependencies. The scheduler then decides
when and where (on which cluster) to run the jobs based on these inputs and the current state of
the system. We dive deep into each component:

Bags of Tasks

Bags of tasks referred to as parallel tasks, denote a set of tasks that are independent of each other,
allowing them to be executed in parallel without any inter-task communication. This property
greatly simplifies parallel programming and scheduler design.

Scientific Workflows

Scientific workflows represent complex scientific processes as a sequence of computational tasks,
with data dependencies between them. These workflows often include data pre-processing, sim-
ulation or modeling, and post-processing or analysis steps. For example, in a climate modeling
workflow, initial tasks might preprocess satellite data, followed by tasks that run a climate model,
and finally, tasks that analyze and visualize the results. Workflow management systems like Pe-
gasus and Taverna are often used to orchestrate these tasks on HPC resources [49].

ML Training

Machine Learning (ML) training involves learning a model from data. This often involves iterative
algorithms, where each iteration requires processing the entire dataset. For large models and
datasets, this can be computationally expensive. ML training tasks can be parallelized in various
ways, for instance, data parallelism involves dividing the dataset across multiple workers, whereas
model parallelism involves dividing the model. Deep learning frameworks like TensorFlow and
PyTorch provide support for parallel and distributed training [38].

Scheduler

Schedulers are crucial to managing and utilizing HPC resources efficiently. They accept job sub-
missions from users, decide when and where to run these jobs, and manage their execution.

Schedulers must make these decisions based on a variety of factors, such as job requirements
(e.g., number of cores, memory), current system state (e.g., available resources), and scheduling
policies (e.g., priority levels, fairness, utilization). For example, a scheduler might delay a large
job to avoid fragmenting resources and thus be able to start more small jobs.

Commonly used schedulers in HPC include Slurm, PBS Pro, and HTCondor. Slurm, for
example, supports a variety of scheduling policies, advanced reservation of resources, and elasticity
(adding/removing resources on the fly).

Clusters

Clusters are the workhorses of HPC. They consist of multiple racks and nodes (servers), each with
one or more processors (each with multiple cores), memory, and often local storage. Nodes are
interconnected by a network, allowing them to exchange data and work together on parallel tasks.

HPC clusters often include different types of nodes for different workloads. For instance, there
might be CPU nodes for general-purpose tasks, large memory nodes for memory-intensive tasks,
GPU nodes for tasks that can exploit GPU parallelism (like deep learning), and high-throughput
nodes for tasks that require fast I/O.

One of the largest and most powerful HPC clusters is the Fugaku supercomputer in Japan.
It has over 150,000 nodes, each with a 48-core Arm-based CPU, and a high-speed, low-latency
network [72].
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2.1.3 Nodes in HPC

Figure 2.2: Nodes architecture in HPC [16].

In the current era, the design and implementation of high-performance computing systems lean
heavily toward multicore CPU architectures. These systems are fundamentally composed of nodes
wherein each node harnesses the potential of several cores within a CPU. The integration of
multicore CPUs with advanced accelerators, such as Graphics Processing Units (GPUs) and Field
Programmable Gate Arrays (FPGAs), forms the backbone of this high-performance computational
setup [50].

The architecture of these nodes is critical for maximizing computational efficiency and through-
put. The various cores of a CPU, complemented by the accelerators, work collectively to compute.
The accelerators specialize in handling specific types of computations, enabling them to process
those much faster than a general-purpose CPU core. For instance, GPUs, with their hundreds of
cores, are particularly well-suited for computations involving large arrays of data, as often found
in graphics rendering and scientific simulations.

The tight integration between multicore CPUs and these accelerators is vital. Through smart
workload distribution - delegating tasks that suit the accelerators while keeping other tasks on
the CPU cores - these HPC systems are capable of significantly accelerating a broad spectrum of
scientific applications. This synergistic coupling is key to the computational prowess of today’s
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high-performance scientific computing systems.

As shown in Figure 2.2, the architecture within an individual node in an HPC system is
a testament to the complexity and sophistication involved in high-performance computing. The
interaction between CPUs and various accelerators reinforces how the architectural design of these
nodes contributes to the remarkable computational capabilities of HPC systems.

HPC systems employ nodes that are connected via a fast interconnect, wherein each node
houses multiple processors within a shared memory space. A node’s components are efficiently
managed by a chipset.

Each node comprises CPUs, and each of these CPUs is designed with several cores. These
cores are designed to share resources, and each CPU has multiple levels of cache memory. The
configuration is such that smaller, faster cache memory units are located closer to the core, while
larger, slightly slower cache memory units are shared among the cores. Interactions between the
cores of a CPU and the memory managed by another CPU take place via a high-speed on-chip
interconnect. Each CPU is designed with an integrated memory controller. This design uses
multiple channels to enhance memory bandwidth, and it leverages multiple dual in-line memory
modules (DIMMs) to increase the capacity per channel.

Moreover, the CPUs are connected to one or more accelerators - which have limited memory
- through a lower-bandwidth communication link. These accelerators have distinct architectures,
each with its own hierarchical memory structures. As one can see, the node architecture has
become highly heterogeneous and hierarchical [56].

2.2 To Understand HPC Datacenter Behaviors: Operational
Data Analysis

As stated above in Section 2.1.2, HPC environments are complex and hierarchical systems that
are often characterized by a multitude of interconnected nodes, each with multicore CPUs that
are tightly integrated with specialized accelerators. The performance and efficient utilization of
these systems is a function of numerous factors, including system architecture, application design,
workload characteristics, scheduling policies, and user behavior, among others.

To navigate this complexity and gain insights into the behavior of HPC systems, we need
to delve into Operational Data Analysis(ODA). Bourassa et al [5] define ODA as a mechanism
to analyze the operation of an HPC system to gain insight into its behavior. This involves the
systematic collection and examination of system logs, performance metrics, and other types of
operational data generated during the system’s operation. This kind of analysis is crucial for both
the optimal functioning of HPC systems and the effective execution of computational tasks.

Monitoring frameworks exist that collect data from a multitude of sensors distributed across
the infrastructure, extending to the granular level of individual computing nodes. These sensors
are embedded within both hardware and software units, capturing detailed operational data. For
instance, CPU and memory usage data can reveal hotspots or imbalances in the computational
load across different nodes or cores, while network traffic data (such as the count of TCP segments
sent or received by a node) can shed light on communication patterns or bottlenecks. Scheduler
logs can offer insights into job wait times, turnaround times, or resource allocation efficiency,
and application performance data can highlight issues related to scalability, parallel efficiency, or
input/output behavior.

By integrating and analyzing these diverse sources of operational data, we can obtain a holistic
and detailed view of system behavior, identify performance issues or inefficiencies, and guide
system tuning or workload optimization efforts. Furthermore, this data-driven approach can also
support predictive modeling or anomaly detection, enabling proactive system management and
fault mitigation.

The application of ODA in HPC can be customized to suit various operational levels based on
the unique requirements of a particular site. The categorization can be delineated across three
tiers: the Data Center Level, the HPC System Level, and the Node Level. Additionally, we
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introduce the OpenDC, a simulation platform for data centers, in the subsequent discussion.

2.2.1 Data Center Level

When applied at the data center level, ODA can contribute significantly to optimizing the func-
tionality of infrastructure and systems that span the entire facility, which includes areas such as
cooling, communication, and power distribution systems [52]. In addition, ODA can assist in
diagnosing and addressing various system issues.

For example, Jiang et al. [31] present a strategy predicated on warm water cooling, propos-
ing an adaptive cooling control framework that responds dynamically to workload fluctuations.
They construct this strategy on the basis of an in-depth analysis of real-world cluster traces from
industry-leading firms, Google and Alibaba. Their approach seeks to enhance the economic effi-
ciency of water cooling systems within data centers, leveraging ODA at the data center level to
achieve this goal. This rigorous methodology substantiates their findings, which have promising
implications for contemporary data center operations.

Grant et al. [21] offers an innovative method for examining and quantifying network contention
effects stemming from interference, also drawing on ODA data from data centers. Their meth-
odology utilizes a continuously running benchmark application and the deployment of network
performance counters, providing a precise, ongoing assessment of network interference impacts.
This approach underscores the vital role of data center-level ODA in assessing network perform-
ance, thereby contributing to more effective data center management strategies.

Both studies show the importance of data center-level ODA in optimizing operations and
improving efficiency, demonstrating the immense potential of optimizing data center management.

2.2.2 HPC System Level

At the level of the HPC system, ODA can serve to enhance resource utilization, energy efficiency,
and quality of service. This could involve the deployment of sophisticated scheduling mechanisms
for optimal user job placement, often utilizing supplemental system data, such as energy budgets,
thermal constraints, or I/O characteristics, to function within defined parameters [52].

For example, Imes et al. [26] presents a methodology for predicting the most advantageous
resource configurations for augmenting energy efficiency during application execution. This ap-
proach is informed by low-level hardware performance counters, gathered from HPC ODA. The
proposed method is capable of dynamically adapting to application behavior changes, providing a
highly adaptable and responsive resource management solution, thereby underlining the value of
HPC-level ODA.

Verma et al. [68] delve into the application of power management techniques for high-performance
computations on modern, energy-efficient servers, equipped with virtualization support. Their
focus is specifically on power management strategies involving dynamic consolidation and the
employment of dynamic power range. These strategies are enabled by servers’ low power states,
based on HPC-level ODA for effective power management in high-performance applications.

2.2.3 Node Level

At the compute node level, ODA can substantially enhance energy and resource efficiency and
system reliability [52]. This can be facilitated by the implementation of runtime systems, which
are designed with the capacity to dynamically adapt system parameters, such as CPU speed and
frequency, in response to the behavioral patterns of both hardware and applications from the
node-level ODA information. Moreover, it can be used to detect anomaly behaviors and also help
with failures happening in the system.

For example, by utilizing node-level resource consolidation, Lin et al. [45] address the challenge
of server pool power management by leveraging reinforcement learning techniques.

Guan et al. [23] introduces an adaptive anomaly identification strategy that, by using node-
level ODA data, examines the principal components most relevant to various failure types within
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cloud computing infrastructures. The strategy integrates the analysis of cloud performance metrics
with filtering techniques, facilitating automated, efficient, and precise anomaly detection.

2.2.4 OpenDC

Figure 2.3: OpenDC architecture [37].

OpenDC is a data center simulation platform developed by AtLarge Research. It provides col-
laborative online data center modeling, diverse and effective DC simulation, and exploratory data
center performance feedback. It serves a dual purpose: firstly, it aims to facilitate cloud computing
education by providing an open-source platform for learning and experimentation. Secondly, it
aims to support research endeavors focused on data centers by offering a comprehensive environ-
ment for studying and analyzing various aspects of data center operations.

The architecture of OpenDC consists of four primary components, illustrated in Figure 2.3: a
frontend, a web server, a database, and a simulator. To conduct a simulation using OpenDC, two
essential elements are required: a topology and a workload trace. The topology specifies the layout
of the data center being modeled, including various rooms with racks and machines. Machines
are described in terms of RAM and CPU models. The front end interacts with the web server,
which processes the received requests, such as experiment specifications, and stores them in the
database. The simulator monitors the database, simulates the experiments using the provided
topology and workload, and writes the results back to the database. These results can then be
accessed and retrieved by the web server.

In summary, OpenDC offers a comprehensive data center simulation platform with a user-
friendly front end, a web server for request processing, a database for experiment storage, and
a simulator for conducting simulations. Its flexibility and capabilities make it suitable for both
cloud computing education and research purposes, empowering users to explore and gain insights
into data center operations.

2.3 Data Characterization: Dive Deep Into System Beha-
viors in HPC

Data characterization, a process that portrays the critical features and attributes of a data set, is a
pivotal step in ODA. This in-depth analytical process not only provides a comprehensive overview
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of the data but also exposes its strengths, weaknesses, and underlying patterns or relationships
that might otherwise go unnoticed. The tasks associated with data characterization are manifold
and can involve identifying the types of data present, determining the distribution of this data,
and unearthing correlations, changes, and patterns among various data elements.

Data characterization provides a comprehensive understanding of the operational data within
the HPC system. It helps researchers gain insights into the nature of the data, its properties, and
its behavior, allowing them to make informed decisions during the analysis process. Moreover,
By characterizing the operational data, researchers can identify potential bottlenecks, anomalies,
or inefficiencies that may affect the performance of the HPC system. This understanding enables
them to optimize the system by implementing measures to improve efficiency, resource allocation,
and overall performance. It further helps in detecting and mitigating issues that may arise in the
HPC system. By analyzing the data, researchers can identify anomalies or abnormal patterns that
may indicate problems or potential failures. Early detection allows for timely troubleshooting and
mitigation strategies to minimize system downtime and maintain reliable operation, and improve
the performance of the HPC system.

In our case within the ODA context, data characterization serves as an essential pillar, aiding
in the understanding of the nature of the energy and resource operational data being collected.

2.4 Modeling for ODA: Leveraging Characterized Data

Modeling in HPC systems for ODA involves the utilization of characterized data to develop models
capable of interpreting and predicting system behaviors. In our context, modeling in HPC serves
several key purposes:

1. Data Representation: it involves determining how operational data will be represented within
the computational framework. This includes selecting appropriate data structures, formats,
and representations that enable efficient storage, processing, and analysis of the data.

2. Algorithm Design: HPC modeling for ODA entails designing algorithms and computational
methods tailored to the specific characteristics of the operational data. This involves de-
veloping mathematical models, statistical techniques, or machine-learning approaches for
specific purposes.

3. Estimation and Prediction: Modeling in HPC for ODA often includes the estimation and
prediction of system behavior based on the available operational data. By building com-
putational models that capture the dynamics and relationships within the data, it becomes
possible to estimate and simulate scenarios, predict future outcomes, or evaluate the impact
of potential changes or interventions.

In this paper, we focus on the estimation and prediction of resources and energy.

2.4.1 Time Series Estimation

In our context working in HPC for ODA analysis, estimation refers to the process of making
educated guesses or approximations about unknown values related to the operational data. Per-
formance Estimation and resource Estimation are all common use cases. For example, Baig et.al
[29] proposes an adaptive multi-methods approach that considers different scenarios encountered
in a production data center and enables selecting the predictive method that learns best. The
approach focuses on training estimation models using different methods and then selecting the
one that will yield the best estimation result given the current scenario and the previous batch of
collected data. [40] introduces the error preventive score (EPS) in time series forecasting models
to improve estimation accuracy. The EPS analyzes the most recent estimations to capture a better
result.
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2.4.2 Resource and Energy Prediction

Resource prediction in HPC systems is a dynamic field, necessitating an in-depth understanding
of computational demands. Accurate prediction facilitates efficient allocation, ensuring that com-
putational resources are neither underutilized nor pushed to their limits. This, in turn, leads to
enhanced job scheduling, with minimized wait times and maximized throughput, allowing systems
to achieve optimal performance. Furthermore, predicting resource needs contributes to improved
system reliability by preempting and avoiding potential resource clashes or overloads. Techniques
employed for effective resource prediction span a range of statistical analyses, machine learning
models, and simulations. Each offers unique insights, from deciphering patterns and trends to
understanding intricate non-linear relationships and anticipating potential challenges through vir-
tualized scenarios.

Parallel to resource prediction is the equally crucial domain of energy prediction. Given the
immense computational capabilities and the consequent energy demands of HPC systems, pre-
dicting energy consumption isn’t merely a cost-saving measure; it’s an environmental imperative.
Energy prediction seeks to provide precise estimates of power consumption, adapting to different
workloads and configurations. It also aims to spotlight the primary energy sinks within the sys-
tem, such as the power-hungry CPUs, memory units, and network interfaces. As with resource
prediction, the methodologies for energy prediction are multifaceted. They encompass statistical
methods, which analyze historical energy consumption data to inform future predictions, machine
learning approaches tailored for energy use cases, and simulations that mirror real-world energy
consumption scenarios, offering insights for system optimization.

Methodologically, both resource and energy prediction in the HPC realm is underpinned by
several common techniques. Supervised learning techniques, for instance, harness labeled datasets
to train models for future predictions. Reinforcement learning offers a more exploratory approach,
optimizing system behaviors through iterative trial and error. Neural networks, with their ability
to model intricate relationships, often find application in predicting complex system behaviors.
Moreover, statistical models serve as foundational tools, leveraging historical data to extrapol-
ate future patterns. Lastly, Graph-Based Models emerge as valuable tools, especially given the
interconnected nature of HPC systems, offering insights into system-wide interactions and depend-
encies.

In the next chapter, we present related work regarding time series estimation and modeling for
energy and resources.
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Chapter 3

Survey of Related Work

In this chapter, we present a taxonomy and an analysis of the state-of-the-art in the field of
resource and energy characterization, and modeling. We have identified and analyzed scientific
articles on the topic of characterization and modeling for ODA in resource, energy. Further, we
show the mapping work and comparative table for the modeling techniques. Part of this chapter
was produced in collaboration with Wenjun Liang during our joint literature study work.

3.1 Data Characterization in HPC

In the exploration of characterization in HPC systems, several contributions have been made and
mostly focus on energy consumption. Ozer et al. [55] initiated this exploration by employing
Bayesian Gaussian mixture models, an unsupervised machine learning technique. This approach
enabled the characterization of component performance and the detection of anomalies within
HPC systems. The proposed model was assessed using real-world data from a production HPC
system and demonstrated a capacity to accurately capture performance variations and identify
anomalies.

Drawing on the broad theme of performance characterization, Qouneh et al. [57] took a
different direction, focusing on the energy and performance profiling of heterogeneous servers
with integrated general-purpose graphics processing units (GPGPUs) in virtualized environments.
Their work bridged a gap in the research around cloud data centers, taking into account factors
influencing CUDA performance, such as virtualization overhead and the size of serial code. Their
work mirrors Ozer et al.’s endeavor to enhance system efficiency, albeit from a cloud computing
perspective.

Building on these efficiency-oriented efforts, Bugbee et al. [7] introduced a more comprehensive
methodology. By analyzing a sample of 10,000 jobs, classifying them, and employing frequency
domain analysis and regression modeling, they aimed to predict mean power usage. This work
extended the themes of performance characterization and efficiency optimization present in Ozer
et al. and Qouneh et al. by introducing power-aware queue simulation for optimal power cap
identification.

Following a similar path, Chinnici et al. [15] took a more specific path, examining the correl-
ation between server workload power consumption and the relative number of cores used in Data
Centers (DCs). Their analysis of real data from the ENEA-HPC DC facility illuminated the in-
tricate relationship between these variables, pushing the envelope of current productivity metrics.
This analysis, although distinctive in its focus on cores, aligns with the overarching themes of per-
formance characterization, efficiency optimization, and power consumption found in the previous
works. Collectively, these studies offer complementary insights that significantly contribute to the
broader field of energy efficiency in HPC systems.
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Resource Modeling

Supervised LearningSemi-supervised
LearningUnsupervised Learning Statistical Model

Machine Learning Analytical Model

Figure 3.1: Taxonomy of resource modeling.

3.2 Taxonomy of Resource Modeling Techniques

Techniques leveraged in resource modeling encompass machine learning and analytical models,
which are utilized to scrutinize and forecast an array of resource metrics such as CPU utilization,
memory usage, I/O patterns, and network traffic. These models are pivotal in optimizing the
employment of HPC resources and improving the efficiency of applications operating on expansive
computing systems.

The taxonomy of resource modeling techniques is illustrated in Figure 3.1, in which we can
observe that the Analytical Models category comprises Statistical Models. Meanwhile, the Machine
Learning Models category incorporates not only Supervised Learning but also Semi-supervised and
Unsupervised Learning as its primary techniques.

Based on our literature study, the acknowledgment of prediction-based resource allocation’s
importance within the sphere of memory-constrained and heterogeneous computing environments
is on the rise. As we observe, this methodology’s role in promoting efficient administrative practices
in these complex technological ecosystems is becoming increasingly crucial.

For the prediction methods, more methods include the increased application of machine learn-
ing techniques including supervised and unsupervised learning for the development of more precise
resource models, facilitating better prediction of resource requirements and optimal resource al-
location. We additionally observe a growing trend in the application and popularity of tree-based
models, such as XGBoost and LightGBM.

Additionally, cloud-based resource modeling has become significant, as cloud computing allows
flexible scaling of resources according to demand [51]. Research in this area aims to manage re-
sources in cloud environments efficiently, minimizing costs and enhancing performance. A stronger
emphasis on sustainability and energy efficiency in resource modeling is also observable, with the
aim to create environmentally friendly and energy-efficient models, particularly in high-energy
consumption areas like data centers.

We here dive deep into each method:

3.2.1 Machine Learning

1. Supervised Learning: Newaz and Mollah’s contribution is pivotal as it presents two re-
gression models trained on large-scale resource utilization data for predicting memory usage
categories in HPC systems [53]. The precision of these predictions significantly enhances
overall performance and resource utilization, offering a robust foundation for further ad-
vancements in HPC resource management.

Building upon the same theme, Tanash et al. [63] introduce an autonomous, open-source
tool that uses the LightGBM tree model to predict memory and time requirements for tasks
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submitted to Slurm HPC clusters. The tool alleviates the issues of resource wastage and
elongated wait times by accurately predicting application-specific resource needs, offering a
breakthrough in HPC resource management.

Li et al. [44] introduce a method to predict resource usage for large memory jobs in HPC
clusters, demonstrating a focus on tasks that substantially impact overall memory utilization.
By distinguishing large memory jobs from smaller ones, their method improves prediction
accuracy, creating a ripple effect that accelerates model training and reduces prediction
errors.

On the other hand, in the realm of cloud computing, Ali et al. [58] propose an innovative
method combining learning automata-based ensemble prediction models to increase the ac-
curacy of resource usage predictions. This approach’s success in enhancing cloud resource
management and scheduling proves it as a valuable addition to the toolkit of optimization
techniques.

Cao et al. [10] also focus on resource prediction in cloud environments, introducing a dynamic
ensemble model to predict CPU load. Their research offers an adaptable and reliable solution
for managing CPU resources in cloud platforms.

Similarly, Fang et al. [20] propose an adaptive resource management model, RPPS, for cloud
data centers. RPPS uses the ARIMA model for workload prediction and combines coarse
and fine-grained resource scaling with a VM-complementary migration strategy. This novel
approach improves the efficiency of workload management and VM migration in cloud data
centers.

Dong et al. [19] extend the concept of resource prediction by proposing an innovative
machine-learning methodology that uses data aggregation and adaptive parameter selection
to enhance long-term load prediction accuracy, primarily aimed at Grid environments.

Finally, Iqbal W et al. [29] use machine learning algorithms to predict future resource
utilization, offering an adaptive model selection approach. This innovative system uses
a classifier and statistical features of historical resource usage to identify the best model
adaptively, thus delivering enhanced accuracy, robustness, and speed in resource utilization
estimation.

2. Unsupervised Learning: Kadda Baghdad Bey et al. [3] present an unsupervised learning,
sophisticated soft computing approach for predicting CPU load that leverages both fuzzy
clustering methodologies and a naive Bayesian network. This model comprises two crit-
ical phases: the first stage involves breaking down the CPU load time series into distinct
clusters; the second stage employs the Adaptive Neuro-Fuzzy Inference System (ANFIS) on
each isolated cluster for precise prediction. The hybrid algorithm deployed during the train-
ing phase is responsible for the conditioning of Linear Adaptive Predictors (LAPs) pertinent
to each data cluster. Alongside this, a naive Bayesian network is concurrently trained using
the Expectation-Maximization (EM) algorithm. When subjected to testing, CPU load time
series are systematically categorized into pre-defined clusters, and the related LAP is used
to predict the CPU load for each specific time instance. A performance evaluation, con-
ducted utilizing time series traces collated by Yang and Dinda, demonstrated the superior
efficiency of this model over a single ANFIS model applied uniformly to all CPU time series
without preliminary clustering, thus validating the cluster-based machine learning approach
implemented for CPU load prediction.

Chen et al. [12] presents a novel, self-adjusting method named ESFCFNN designed for
precise resource demand prediction in Infrastructure as a Service (IaaS) cloud environments.
It adopts an ensemble model combined with a subtractive-fuzzy clustering-based fuzzy neural
network. The selected features are then clustered via a subtractive-fuzzy clustering algorithm
to provide input for the fuzzy neural network. Subsequently, the fuzzy neural network is
trained with the clustered input data, and multiple such networks are trained with different
input subsets in the ensemble model. The outputs of these networks are then amalgamated
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for the final prediction. Remarkably, the ESFCFNN method is self-adjusting, capable of
modifying the number of fuzzy neural networks in the ensemble model in accordance with
the prediction accuracy. The real-world effectiveness of this method was verified using actual
IaaS cloud environment datasets, where it outperformed other existing methods in prediction
accuracy and stability. Hence, ESFCFNN serves as a robust and accurate approach for
resource demand prediction in IaaS environments, promising enhanced efficiency and cost-
effectiveness in cloud computing. The method’s workload is manageable and its capability
of self-adjusting the number of neural networks based on prediction accuracy underscores its
innovation and superiority over existing methods.

3. Semi-supervised Learning:

Khosla et al. [37] proposed various prediction models based on semi-supervised learning
to predict CPU utilization during peak load conditions. This approach mitigates the risk
of system failure in large enterprise applications. One of the models employs expectation
maximization (EM) and envelope methods for feature extraction from CPU load patterns
and virtual user simulation. Experimental results highlight the model’s accuracy and its
potential integration into monitoring and resource management procedures, presenting a
promising solution for CPU load prediction in enterprise environments.

Guan et al. [24] discuss the importance of proactive failure management in cloud computing
systems and the challenges in predicting system failures. They employed both unsuper-
vised and semi-supervised learning approaches to create reliable cloud systems, integrating
Bayesian models for unsupervised fault detection and decision tree classifiers for fault pre-
diction. This approach emphasizes the application of machine learning for proactive failure
management, enhancing the reliability of cloud systems.

3.2.2 Analytical Model

• Statistical Model: Brandt et al. [6] present a real-time statistical analysis approach that
utilizes advanced resource monitoring, analysis, and configuration tools to manage a large-
scale heterogeneous environment. These tools allow for dynamic access to and interpretation
of platform and application state information, enabling more effective and adaptable use of
resources. The dynamic nature of these tools also allows for resource utilization, optimizing
performance, and cost-effectiveness.

3.3 Taxonomy of Energy Modeling Techniques

As depicted in Figure 3.2, the taxonomy of energy modeling techniques is segmented into four key
categories:

1. Machine Learning : This includes both Supervised Learning and Reinforcement Learning
techniques. Supervised Learning employs labeled datasets to create predictive models, while
Reinforcement Learning utilizes a system of rewards and punishments to guide decision-
making processes.

2. Neural Networks: This category refers to a subset of Deep Learning methods designed to
mimic the way a human brain functions, aiding in complex decision-making tasks.

3. Analytical Models: Comprising of both Statistical Models and PUE (Power Usage Effect-
iveness) Models. The former involves the use of mathematical formulations that capture
the intricate relationships between data variables, while the latter specifically focuses on
modeling and optimizing power usage efficiency in data centers.

4. Graph-Based Models: These models use graph structures to depict the interrelationships
between entities, enabling a more comprehensive understanding of complex systems.
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Energy Modeling

Neural NetworkGraph Based Model

Statistical Model

Machine Learning Analytical Model

PUE ModelSupervised Learning Reinforcement Learning

Figure 3.2: Taxonomy of energy modeling.

Based on our literature study, machine learning techniques are being more and more used to
develop energy-efficient scheduling in large-scale computing systems. Machine learning algorithms
are being extensively applied to forecast energy consumption patterns with higher accuracy.

Moreover, the recent surge in IoT and big data technologies has boosted the development of
innovative frameworks for real-time energy modeling. These frameworks analyze real-time energy
data to instantaneously predict potential energy fluctuations, facilitating immediate adjustments
and thereby enhancing energy efficiency in ODA. Such predictive models contribute significantly
to the effective allocation and utilization of resources within large-scale computing ecosystems,
mitigating energy wastage. Consequently, reinforcement learning and neural network-based meth-
odologies have gained traction as emerging trends within these real-time energy modeling frame-
works.

Here we dive deep into each method:

3.3.1 Machine Learning

1. Supervised Learning: Van Bui et al. [8] employs an infrastructure that utilizes a linear
model informed by on-chip performance hardware counters, a novel approach to modeling
power consumption for modern multiprocessor and multicore systems. The structure incor-
porates application elements along with performance and power measurement and analysis
components, collecting performance data using the TAU performance component. The power
model is employed in the analysis of a PETSc-based parallel fluid dynamics application us-
ing the PerfExplorer component, and the Common Component Architecture (CCA) offers
the component standard for scientific computation. This infrastructure is part of a larger
initiative focused on computational quality of service (CQoS). This work demonstrates the
potential of component-based software engineering to greatly influence the efficiency and
effectiveness of performance analysis and tuning of scientific applications. Notably, the op-
timal linear method has been found to offer the best power efficiency for a large number
of processors. While power dissipation generally increases with higher optimization levels,
energy consumption tends to decrease as more aggressive compiler optimizations are applied.

Feng et al. [62] utilize multi-variable regression modeling to analyze the statistical signific-
ance of HPL parameters and employ the energy and execution time modeling to calculate
power and performance indirectly. The technical route of the article involves the use of AN-
OVA tests and F-ratios to test the significance of predictor variables, while p-values are used
to determine statistical significance. The performance-to-power ratio metric is utilized to
evaluate energy efficiency and transformation techniques are employed to test the statistical
significance of predictor variables. The research conclusions indicate that multi-variable re-
gression models can accurately predict the HPL configuration for achieving maximum energy
efficiency. The best energy efficiency is attained by executing the benchmark at Reff, which
represents the performance achieved while executing the HPL benchmark at the maximum
energy efficiency possible based on the energy efficiency metric. Energy-efficient tuning can
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aid in optimizing the energy efficiency of scientific computing, considering power and energy
consumption as significant challenges for HPC in the upcoming decade.

Kestor G et al. [35] advocates for the use of a System Monitor Interface (SMI) to provide
detailed per-core power data based on regression analysis, thereby facilitating the develop-
ment of power-aware software algorithms. A proxy power sensor model, which gauges the
active power of each core by examining the cores’ activities via performance counters, is
employed to monitor the system’s power consumption accurately. Observing the system
power consumption and per-core performance counters through micro-benchmarks, the au-
thors amass data to create a statistical regression model that accurately predicts the power
consumption of unobserved configurations. This entails running training benchmarks on a
selected system configuration to monitor the system’s power consumption and per-core per-
formance counters. The significance of the work lies in its illumination of the necessity for
power-aware software algorithms to enhance efficiency in exascale computing systems and
regulate power consumption as a resource, with SMI providing the requisite detailed per-core
power information. SMI, as a platform-independent system employing a proxy power sensor
model, accurately estimates each core’s active power consumption, which lends it portability.
Coupled with the statistical regression model, this system accurately predicts the consump-
tion of unobserved configurations, improving the sampling frequency and precision of power
profiling.

Gschwandtner P et al. [22] introduce linear regression as a suitable method for modeling
energy consumption in HPC systems. The authors present in-band energy consumption
models based on hardware counters for the IBM POWER7 processor. They employ linear
regression with various benchmarks and applications, exploring parallelism and compiler
setups. The models demonstrate high accuracy, with a maximum error of 5.3% and an
average error of approximately 1% when using GCC. Furthermore, the authors identify vari-
ations in energy consumption resulting from different compiler effects and parallelism, which
serves as a unique contribution not explored in related work. The significance of this work
lies in its proposal of accurate models for energy consumption in parallel programs, taking
into account constraints on computational cost and complexity. The innovation of using
linear regression for energy consumption modeling, the utilization of high-level benchmarks
for training, and the identification of differences in energy consumption caused by compiler
effects and parallelism are critical contributions of this research.

Khan W et al. [36] utilized Linear Regression Modelling to probe the nexus between thermal
and IT aspects of workload, aiming to enhance the center’s thermal efficiency. Utilizing the
SEMMA process for exploratory analysis, we scrutinized data from four different areas,
namely workload, cooling, environment, and compute nodes sensor data, recorded from the
HPC cluster - CRESCO6. Through data cleansing, transformation, analysis, and a blend
of supervised learning and linear regression modeling, they examined diverse data attrib-
utes. The methodology empowered energy consumption forecasting and optimized thermal
management. Furthermore, feature extraction and selection, based on a positive linear cor-
relation, yielded pertinent data attributes for effective energy management. These findings
underline the significance of energy efficiency in data centers for sustainable development
and provide a foundation for future data analytics modeling of energy consumption and
resource utilization.

Similarly, Ozer G et al. [54] focus on using supervised learning techniques to predict CPU
power and instructions retired for HPC systems. The model utilizes statistical features
derived from time series data of hardware metrics and employs a multi-output random
forest regressor for learning. The technical approach of the article involves collecting sensor
data and performance metrics using GEOPM and DCDB frameworks, applying regression
for prediction, and evaluating the model using five benchmarks from the Coral-2 suite. Two
approaches were tested: GEOPM data only and GEOPM combined with DCDB data. The
results showed that incorporating DCDB data improved the model’s performance, which
was generic enough to handle the diversity of HPC workloads. The significance of this work
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lies in enabling energy-efficient CPU frequency selection during runtime, leading to reduced
HPC energy consumption. The model demonstrates good performance by leveraging fine-
granularity data and the ability to be retrained with recent data to adapt to system behavior
changes over time. Future research directions include evaluating the model with additional
data and implementing an online frequency-tuning agent.

[74] presents a dynamic capacity provisioning (DCP) system designed to optimize energy
use in cloud data centers while still meeting service level agreements (SLAs). The DCP
framework is made up of four components: a predictive module utilizing the ARIMA model,
an optimization module, a capacity provisioning module, and a Model Predictive Control
(MPC) controller that regulates the active servers based on demand, energy prices, and
reconfiguration costs. When tested on a Google compute cluster of about 12,000 machines
using trace-driven simulations, the DCP demonstrated a significant reduction in energy costs,
potentially lowering operational costs by 18.5-50% depending on the scheduling delay. This
flexible and lightweight architecture shows potential for practical implementation, balancing
energy savings and capacity reconfiguration costs.

2. Reinforcement Learning: Wang Z et al. [71] utilize the Modular Reinforcement Learning
(MRL) approach to enhance energy consumption. The theoretical basis revolves around
applying the MRL approach to improve the transferability of knowledge in RL agents. The
technical route of the article involves selecting and combining modules such as value func-
tions, policy representations, and state representations, followed by implementing gating
mechanisms to weigh these modules. The performance of the approach is evaluated through
experiments conducted in both simple and complex environments, and the results are com-
pared with conventional methods. The significance of this work lies in the fact that the
MRL approach enhances the generalization of RL agents, enabling the transfer of learned
knowledge. The MRL approach demonstrates superior performance in both simple and com-
plex environments compared to conventional methods. However, it faces limitations such as
longer computation time for gating mechanisms and the scalability issue of modules. The
research concludes that the MRL approach leads to improved generalization, faster conver-
gence, and better generalization ability in RL agents, while also acknowledging the identified
limitations and proposing areas for future research.

In the study of Lin X et al., [45], a reinforcement learning-based approach is utilized to
address the energy-efficient management of data centers in dynamic environments. The the-
oretical basis involves defining the state space using a fuzzy state representation and applying
the TD-learning algorithm to derive the optimal power management policy. The technical
route of the article comprises designing the state space, action space, and reward within
the reinforcement learning-based framework. The effectiveness of the proposed framework is
verified using real Google Cluster Data Traces. The proposed framework achieves significant
energy savings of up to 24.5% while ensuring a reasonable job response time. It addresses the
need for energy-efficient data center management and operates effectively in non-Markovian
environments without specific assumptions about job arrival and processing. The utilization
of fuzzy state representation reduces the time complexity and accelerates the convergence
rate of the reinforcement learning algorithm.

3. Neural Network: Tiwari A et al. [64] leveraged artificial neural networks (ANNs) to for-
mulate power and energy models for three significant kernels, using kernel-specific compiler-
based optimization parameters and hardware tables as inputs. The experimental setup
included an Intel Xeon workstation equipped with a power measurement harness, with a
source-to-source code transformer used to generate code variants. The findings established
that ANNs can effectively predict the component-level power draw and energy usage of cer-
tain high-performance computing (HPC) computational kernels. The derived models have
various applications including minimizing the number of actual benchmark runs, guiding dy-
namic clock frequency selections, and making better decisions in search-based auto-tuners.
These models are rooted solely in compiler-level optimization parameters and demonstrate
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high accuracy when subjected to well-studied compiler optimization strategies. The re-
search’s significance lies in providing insights into compiler optimizations’ impact on energy
usage, applicable to other application/kernel domains.

3.3.2 Analytical Model

1. Statistical Model: Kunkel J et al. [41] utilized advanced statistical methods, including
correlation analysis, the Kolmogorov-Smirnov test, and principal component analysis (PCA),
to examine power consumption in relation to hardware and software characteristics. Employ-
ing sophisticated statistical techniques such as correlation analysis, the Kolmogorov-Smirnov
test, and clustering, the authors identify outliers and patterns in the data, enhancing models
and facilitating the development of benchmarks for future architectures. In terms of signi-
ficance, the research highlights the importance of devising new strategies to optimize and
conserve energy, showcasing how statistical techniques aid in identifying meaningful behavior
and reducing the number of features requiring examination. Furthermore, the study presents
a methodology that employs advanced statistical methods to analyze measured data from
HPC platforms, resulting in more precise power models and benchmarks. It demonstrates
that a combination of select hardware counters and resource utilization metrics can provide
reasonably accurate power consumption estimations, eliminating the need for complex and
costly wattmeters on large-scale platforms.

2. Power Usage Effectiveness(PUE) Model: Jarus M et al. [30] revolves around the
creation of specialized power usage effectiveness models for diverse classes of real-life applic-
ations, which are clustered based on their distinctive attributes. Decision trees are leveraged
to select apt models for the current system load, based on an analysis of performance coun-
ters. A dedicated power measuring device was used to collect power usage data from the
server, enriching this data with additional information regarding power usage and trans-
forming it into formats suitable for further analysis. Clustering was used to group similar
programs, and decision tree induction was employed to automatically select a model fitting
the current system load. The introduced methodology achieved a mean percentage error
of less than 5% in all experiments, establishing itself as a more practical and cost-effective
solution compared to hardware devices for power monitoring. The proposed approach holds
significance as an efficient, practical means of monitoring and estimating the power usage of
HPC servers in real time. The study’s novelty is primarily grounded in the use of perform-
ance counters, specialized power usage models for different classes of real-life applications,
clustering, and decision trees. The authors conclude by highlighting the effectiveness of the
proposed methodology, noting its mean percentage error of less than 5% in all experiments,
and its practicality and cost-effectiveness compared to hardware-based power monitoring.
Clustering and decision tree induction are underscored as effective methods for enhancing
power usage estimation accuracy.

Lei N et al. [43] proposed framework takes a thermodynamics-based PUE models approach
and consists of four parts: energy analysis of IT equipment, energy analysis of data center
infrastructure, bottom-up energy analysis with temporal and spatial resolution, and data
center energy index decomposition analysis. The energy analysis of IT equipment focuses on
analyzing the energy usage of IT equipment within a data center, while the energy analysis of
data center infrastructure examines the energy consumption of cooling and power provision-
ing infrastructure. The bottom-up energy analysis provides insights into the energy usage
of a data center at different time intervals and locations. Lastly, the data center energy
index decomposition analysis identifies energy-saving potentials within data centers. The
significance of this work lies in providing a flexible and robust methodology for quantify-
ing data center energy with temporal and spatial resolution, addressing knowledge barriers,
and uncovering technology-related obstacles that hinder energy-saving potential in data cen-
ters. The proposed modeling framework is expected to be a valuable tool for policymakers,
data center operators, and researchers, offering a better understanding of data center en-
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ergy demand and energy-saving opportunities, and enabling informed decision-making. The
research highlights that data center energy management practices in North America, Asia
Pacific, and Western Europe will have a significant impact on global data center energy
consumption in the near term.

3.3.3 Graph Based Model

Lastovetsky A et al. [42] introduces a graph-based model optimization approach, which considers
the complex and non-linear relationship between energy consumption and problem size aimed at
minimizing execution time and energy consumption in data-parallel applications on contemporary
homogeneous multicore clusters. The proposed algorithm involves several steps: representing the
cluster as an undirected graph and the application as a directed graph, decomposing the directed
graph into strongly connected components using the Kosaraju algorithm, determining the optimal
execution order of the components by traversing them in topological order and optimizing the
execution time and energy consumption of each strongly connected component. The proposed
approach, which incorporates efficient algorithms and considers resource contention and NUMA,
demonstrates good performance in minimizing execution time and energy consumption in data-
parallel applications on modern multicore CPUs and clusters.

3.4 Mapping for Modeling Techiniques

3.4.1 Resource Modeling

As illustrated in Table 3.1, they provide structured insights into a diverse range of resource model-
ing methods including statistical models, as well as supervised, semi-supervised, and unsupervised
learning. These varied techniques significantly contribute to predicting a broad array of resource
metrics, encompassing aspects like CPU utilization, memory usage, I/O patterns, and network
traffic. These predictions, in turn, facilitate optimal resource allocation, enhancing the perform-
ance of applications on expansive computing infrastructure.

At the core of these methodologies, Brandt’s work introduces a statistical model distinguished
by its dynamic nature, effectively optimizing resource utilization. Adding to this, Newaz and
Mollah offer supervised learning techniques, demonstrating an outstanding predictive accuracy of
90.6% for HPC memory usage within the test data. Further enriching the methods, Chen et al.
propose an unsupervised learning approach, characterized by its adaptability in resource demand
prediction. Remarkably, this method markedly lowers error rates compared to unclustered baseline
models.

In parallel, Khosla et al.’s semi-supervised learning approach stands out in predicting CPU
utilization during peak load conditions. Remarkably, it exhibits an 8.05% enhancement in accuracy
when juxtaposed with tree-based models, underlining the efficacy of their method.

In conclusion, each of these modeling techniques brings forth the capacity to understand and
predict complex resource metrics. They showcase the power of machine learning in managing
resources and offer compelling evidence of its potential to bolster application performance on
large-scale computing platforms.

Table 3.1: Comparative table for resource modeling

Study Title Year Methodology Improvement Simul-
ation
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Table 3.1 – continued from previous page
Study Title Year Methodology Improvement Simul-

ation
Newaz et
al. [53]

Memory Usage
Prediction of HPC
Workloads Using
Feature Engineer-
ing and Machine
Learning

2023 Supervised Learning The random forest
model predicted
memory usage in
90.6% of the jobs in
the testing dataset,
and the memory
usage class matched
the ground truth for
89.6% of the testing
jobs

No

Tanash et
al. [63]

AMPRO-HPCC: A
Machine-Learning
Tool for Predicting
Resources on Slurm
HPC Clusters

2021 Supervised Learning Reduce the average
waiting time for sub-
mitted jobs from 680
hours to 8.0 hours
and the average turn-
around time from 692
hours to 16.4 hours

No

Li et al.
[44]

Practical resource
usage prediction
method for large
memory jobs in
HPC clusters

2019 Supervised Learning The prediction on
resource usage error
numbers are less than
10%

No

Iqbal et al.
[29]

Adaptive predic-
tion models for
data center re-
sources utilization
estimation

2019 Supervised Learning CPU utilization pre-
diction improves
around 5% comparing
with nonadaptive
models

No

Rahmanian
et al. [58]

A learning
automata-based
ensemble resource
usage prediction
algorithm for
cloud computing
environment

2018 Supervised Learning The performance
on resource predic-
tion improves 3.3%
comparing with unas-
sembled models

Yes

Chen et al.
[12]

Self-adaptive
prediction of
cloud resource
demands using
ensemble model
and subtractive-
fuzzy clustering
based fuzzy neural
network

2015 Unsupervised Learning Comparing with the
unclustered method,
the prediction per-
formance is improved
with less error

No

Cao et al.
[10]

CPU load predic-
tion for cloud envir-
onment based on a
dynamic ensemble
model

2014 Supervised Learning Comparing with sim-
ilar pattern models,
the prediction per-
formance improves
4.4%

No
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Table 3.1 – continued from previous page
Study Title Year Methodology Improvement Simul-

ation
fang et al.
[20]

Rpps: A novel
resource prediction
and provisioning
scheme in cloud
data center

2012 Supervised Learning The resource predic-
tion primarily main-
tains an error margin
of less than 10% in
terms of underestima-
tion or overestimation
for most of the dura-
tion

No

Dong et al.
[19]

An effective data
aggregation based
adaptive long term
CPU load predic-
tion mechanism on
the computational
grid

2012 Supervised Learning The experimental
findings demonstrate
that the algorithm
DALP point surpasses
preceding prediction
methods on CPU load
in terms of reducing
the mean square error.
Furthermore, the al-
gorithm demonstrates
enhanced represent-
ational capability,
resulting in lower
prediction errors

No

Benhammadi
et al. [3]

CPU load predic-
tion using neuro-
fuzzy and Bayesian
inferences

2011 Unsupervised Learning The prediction model
is suited for online use
due to its lower com-
putational demand
compared to the
DENFIS model. Fur-
thermore, the refined
prediction models
need approximately
100 us

No

27



28 CHAPTER 3. SURVEY OF RELATED WORK

Table 3.1 – continued from previous page
Study Title Year Methodology Improvement Simul-

ation
Khosla et
al. [37]

Forecast Extreme
CPU Usages Under
Peak Load Us-
ing Envelop EM
Semi-supervised
Learning

2022 Semi-supervised Learn-
ing

Their new practical
approach expedited
mitigation strategy
implementation from
a week to 3-4 hours.
Validated in an
integrated test envir-
onment, their model
alerted when CPU
utilization of com-
bined servers crossed
the 75% critical limit.
This strategy has
proven advantageous
in managing, plan-
ning, and optimizing
IT resources in com-
plex enterprise IT
environments.

Yes

Qiang et
al. [24]

Proactive Failure
Management by
Integrated Un-
supervised and
Semi-Supervised
Learning for De-
pendable Cloud
Systems

2011 Semi-supervised Learn-
ing

Both the ensemble of
Bayesian submodels
and decision tree
classifiers can accur-
ately predict failures
in the health-related
dataset without mis-
labeling many normal
instances. Utilizing all
eight significant fea-
tures selected through
relevance deduction
improves prediction
accuracy compared
to using just two
features selected from
relevance and re-
dundancy reduction
procedures, without
significantly increas-
ing computational
overhead.

No

3.4.2 Energy Modeling

Table 3.2 shows how energy modeling contributes to facilitating informed decision-making and ef-
fective allocation for optimized energy use. Energy modeling techniques such as supervised learn-
ing, reinforcement learning, neural networks, statistical models, PUE models, and graph-based
models contribute significantly by enhancing energy efficiency in large-scale computing systems.
Machine learning algorithms, as evidenced by Van Bui et al.[8], Feng et al.[62], Khan W et al.[36],
Ozer G et al.[54], and [74], are extensively used to forecast energy consumption patterns with
higher accuracy and are instrumental in optimizing power consumption. The integration of IoT
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and big data technologies has enabled the development of real-time energy modeling frameworks,
which leverage reinforcement learning and neural networks, as highlighted in studies by Lin X
et al.[45], and Tiwari A et al.[64], respectively, to predict potential energy fluctuations instant-
aneously. These predictive models enhance the allocation and utilization of resources, thereby
reducing energy wastage. Other approaches such as the PUE model [30, 43], statistical models
[41], and graph-based models [42] further aid in optimizing energy efficiency by creating power
usage models and analyzing power consumption patterns. Therefore, energy modeling plays a
crucial role in the DevOps platform by enabling energy-efficient operations, optimizing resource
utilization, and reducing operational costs.

Table 3.2: Comparative table for energy modeling

Study Title Year Methodology Improvement Simul-
ation

Khan et
al. [36]

Exploratory data
analysis for data
center energy
management

2022 Supervised Learning The exploratory data
analysis and time
series decomposition,
which empowers the
future prediction of
energy usage and
the enhancement of
thermal management
efficiency in data
centers

No

Ozer et al.
[54]

Towards a predict-
ive energy model
for HPC runtime
systems using su-
pervised learning

2020 Supervised Learning The model can predict
metric values accur-
ately with an average
relative error less than
15.3%, and it is espe-
cially precise for the
power package metric
comparing with naive
approach

No

Lei et al.
[43]

A robust model-
ing framework for
energy analysis of
data centers

2020 PUE Model The model, even
amidst potential un-
certainty in yearly
simulations, could
produce satisfactory
PUE value estimates
with a maximum
relative error of ±4%

Yes
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Table 3.2: Comparative table for energy modeling

Study Title Year Methodology Improvement Simul-
ation

Kunkel et
al. [41]

Understanding
hardware and soft-
ware metrics with
respect to power
consumption

2018 Statistical Model This found that a
small combination of
hardware counters
and resource util-
ization metrics can
accurately estimate
power consumption,
potentially negating
the need for complex
wattmeters and aiding
in the creation of
more efficient, energy-
saving software such
as green schedulers

No

Wang et
al. [71]

Modular rein-
forcement learning
for self-adaptive
energy efficiency
optimization in
multicore system

2017 Reinforcement Learning method can enhance
energy efficiency by
20% when compared
to the individual
learning method

No

Lin et al.
[45]

A reinforcement
learning-based
power management
framework for
green computing
data centers

2016 Reinforcement Learning The proposed power
management frame-
work successfully
aligns with the goal of
reducing server pool
energy consumption
while maintaining an
acceptable average
job response time. It
achieves energy sav-
ings of 5.4%, 17.8%,
and 24.5% with a job
response time penalty
of 0%, 29%, and 73%
respectively

Yes

Lastovetsky
et al. [42]

New model-based
methods and
algorithms for
performance and
energy optimiza-
tion of data par-
allel applications
on homogeneous
multicore clusters

2016 Graph Based Model The minimum, aver-
age, and maximum
percentage reductions
in energy for the first
dataset were 1%, 24%,
and 68% respectively,
which optimizing for
performance alone can
lead to a significant re-
duction in energy

Yes
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Table 3.2: Comparative table for energy modeling

Study Title Year Methodology Improvement Simul-
ation

Gschwandtner
et al. [22]

Modeling CPU en-
ergy consumption
of HPC applica-
tions on the IBM
Power7

2014 Supervised Learning Despite the com-
plex nature of the
POWER7 processor,
the study concluded
that linear regression
could achieve high ac-
curacy with a limited
set of input variables,
provided the compiler
and multi-threading
settings are appropri-
ately managed

No

Jarus et
al. [30]

Runtime power
usage estimation
of HPC servers for
various classes of
real-life applica-
tions

2014 PUE Model Improvement in the
estimates on all other
applications reach
even almost 20%
compared with the
one presented by the
tree

No

Kestor et
al. [35]

Enabling accurate
power profiling of
HPC applications
on exascale systems

2013 Supervised Learning Coarse-grained power
measurements might
obscure crucial de-
tails, like power spikes
or the fact that differ-
ent threads within an
application can have
varying power profiles

No

Zhang et
al. [74]

Dynamic energy-
aware capacity
provisioning for
cloud computing
environments

2012 Supervised Learning This method decreases
energy costs by $7
per hour, equating
to a 20% reduction,
and can lower the
total operational cost
by about 18.5 - 50%
while still maintaining
the target scheduling
delay

Yes

Tiwari et
al. [65]

Modeling power
and energy usage
of HPC kernels

2012 Neural Network The method signi-
ficantly lower the
number of necessary
benchmark runs by
filling most of the
benchmark results
space with modeled
outcomes, thereby re-
ducing the associated
overhead

No
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Table 3.2: Comparative table for energy modeling

Study Title Year Methodology Improvement Simul-
ation

Subramaniam
et al. [62]

Statistical power
and performance
modeling for op-
timizing the energy
efficiency of sci-
entific computing

2010 Supervised Learning Improved the energy
efficiency of the HPL
benchmark by auto-
mating the process
of identifying optimal
parameters through
our models

No

Bui et al.
[8]

A component in-
frastructure for
performance and
power modeling of
parallel scientific
applications

2008 Supervised Learning The effectiveness of
this approach largely
hinges on the quality
of the interfaces for
database access and
performance analysis

Yes

3.5 Summary

In this chapter, we delved into diverse related works. We began by exploring data characterization
in HPC systems, emphasizing energy efficiency and performance optimization. Subsequently, we
turned our attention to various modeling techniques for resource and energy, crafting a taxonomy
for each domain. Furthermore, we mapped these techniques, presenting a comparative table that
outlines their methodologies, enhancements, and whether they were evaluated in a simulation
environment.
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Chapter 4

Resource and Energy Data
Characterization

This section addresses Research Question 1 (RQ1): ”How can we Characterize and Analyze Re-
source and Energy Usage?” We dissect this question and provide comprehensive answers through
several stages. Firstly, Section 4.1 presents a requirements analysis specific to the characterization
of resource and energy usage as per the context of this thesis. Secondly, in Section 4.2, we describe
our chosen dataset and elaborate on the data processing techniques applied. In the rest of Section
4.3 4.4 4.5, we showcase our in-depth analysis and characterization.

4.1 Requirements Analysis

In this section, we extend the knowledge obtained in Chapter 2 to structure the stakeholders,
their associated concerns, and the essential requirements for the resource and energy characteriza-
tion that will adequately address the research question. The comprehensive requirement analysis
undertaken here serves as a directive for the subsequent analytical processes.

We first describe stakeholders in this section. Subsequently, we illustrate the anticipated use
cases wherein these stakeholders; this discussion is encapsulated in a subsequent section. Drawing
on these projected use cases, we proceed to categorize and explicate both the functional and non-
functional requirements, each in their dedicated sections. This structured approach allows us to
ensure a thorough understanding from various perspectives.

4.1.1 Stakeholders

The main stakeholders we identified are Data Center Operators, Scientific Researchers, IT Man-
agers, and Administrators. These stakeholders are envisioned to be the primary users.

• S01. Data center operators: These are the individuals directly involved in the day-to-day
operations and maintenance of the data center. Their work significantly influences the data
center’s resource usage and energy efficiency. Improving these aspects is crucial for them as
it directly impacts the data center’s performance and reliability.

• S02. Scientific researchers: They approach data centers from a research perspective.
They analyze the data generated from resource and energy characterization to identify pat-
terns, understand efficiency metrics, and devise new strategies to optimize data center per-
formance and minimize environmental impact. Their fields of study can range from computer
science and engineering to environmental science. Their research paves the way for advance-
ments in data center technology and broadens the scientific and technological understanding
of energy-efficient computing.
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• S03. IT managers and administrators: Tasked with overseeing the entire IT infra-
structure, which includes the data center, these professionals handle capacity planning, cost
control, and performance optimization. Hence, they require precise and comprehensive de-
tails about resource and energy consumption.

4.1.2 Use Cases

We define general use cases for the stakeholders, which help us in the requirements specification
phase. The use cases are drawn from stakeholder concerns.

• UC1. Efficient resource and energy allocation: Data center operators aim to ensure
optimal performance by monitoring resource and energy utilization, particularly power usage
and CPU utilization, across the infrastructure. By identifying and rectifying issues related
to underutilized or overutilized resources, they can rebalance or reassign resources more
effectively. The Resource and Energy Characterization offers crucial data regarding current
utilization and consumption levels, thus aiding in decision-making for optimization. This
addresses the concerns of stakeholder S01.

• UC2. Analyzing energy and CPU utilization trends and patterns: Stakeholders
such as scientific researchers, with interests in data center efficiency or sustainability, might
focus on the examination of CPU usage and energy consumption trends within data centers.
Resource and Energy Characterization data allows them to observe pattern evolutions over
time. They can evaluate the effects of introducing energy-efficient hardware or modifying
workload schedules on energy consumption. Additionally, this data aids in the study of
resource utilization trends. Such insights can lead to informed recommendations for resource
allocation strategies or for drafting efficient data center management policies. This in-depth
analysis not only provides practical strategies for enhancing data center operations but
also contributes to a broader scientific comprehension of fields like green computing and
sustainable IT infrastructure management. This addresses the concerns of stakeholders S01,
S02, and S03.

• UC3. Capacity planning: IT Managers aim to predict and plan for future capacity re-
quirements based on current resource usage trends and anticipated growth. With Resource
and Energy Characterization, they can comprehend current usage patterns and make fu-
ture demand forecasts. This intelligence can shape decisions regarding the procurement of
additional resources, infrastructure upgrades, or strategizing to maximize existing capacity
utilization. This addresses the concerns of stakeholder S03.

4.1.3 Requirements

For each stakeholder, the requirements are derived from their respective use cases. Among them,
recognizing patterns(REQ2) in data is crucial for proactive decision-making, driving operational
efficiency, and gaining deeper insights into system behaviors. In data centers, such analysis plays
a pivotal role by enabling accurate forecasting, resource optimization, and revealing interactions
over time.

• REQ1. Provide generic statistics and distribution of resource usage and power
consumption: Catering to UC1, UC2, and UC3, this requirement emphasizes the necessity
for basic yet comprehensive statistical analysis, particularly of CPU resource usage and power
consumption. Presenting distributions could entail employing graphical representations to
visualize the distribution and frequency of various resource usage and power consumption
levels.

• REQ2. Find repeating patterns in historical data: Addressing UC1, UC2, and
UC3, this requirement underscores the system’s capability to evaluate historical data to
discern recurrent patterns. These patterns might manifest as periodic spikes in resource
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usage, correlations between specific workloads and escalated consumption, or other trends
that recur over time. Recognizing these patterns is pivotal for predicting future trends and
refining planning.

• REQ3. Identify changes over time: Serving the needs of UC1, UC2, and UC3, this
requirement signifies the importance of monitoring alterations in resource usage and power
consumption over extended periods rather than merely offering a current snapshot. This
might involve visualizing consumption trends over time, computing the change rate, or pin-
pointing moments when substantial changes transpired. Recognizing the evolution in usage
and consumption grants insights into the data center’s dynamic needs and operational effi-
ciency.

• REQ4. Compare different nodes and racks: Relevant for UC1, UC2, and UC3, this
requirement spotlights the necessity to juxtapose different nodes and racks within the system.
This could shed light on efficiency variances across the data center, flagging particularly
effective or suboptimal nodes or racks. Additionally, it could aid in evenly distributing
workloads throughout the data center.

4.2 Dataset Introduction

In this section, we delve into the specifics of the dataset under examination. This particular
dataset stands out due to its multi-level categorization and fine-grained granularity. Such intricate
detailing enables a thorough and in-depth analysis, facilitating more nuanced insights and accurate
predictions. The diversity in data levels provides a comprehensive overview, ensuring that both
macro and micro perspectives are captured. The dataset’s fine granularity ensures that even subtle
nuances are recorded, allowing for a detailed exploration of trends, patterns, and anomalies. By
leveraging the richness of this dataset, we can derive actionable insights that can significantly
impact decision-making and strategy formulation.

4.2.1 Overview

LISA System

We utilize the dataset sourced from the LISA data center [18]. The temporal granularity is
achieved through a sampling rate of 30 seconds, spanning around 5 months of data collection from
June 2022 to November 2022. The spatial granularity is enriched by the extensive collection of
high- and low-level server and rack metrics by Surf’s data center operators. The fine temporal and
spatial granularities present in this dataset offer the potential for more in-depth and innovative
insights into the operations of data centers, which we explore in this study.

The LISA data center consists of a total of 349 nodes distributed across 20 racks, displaying
heterogeneity. The racks in the data center are categorized as either generic, containing nodes
with CPUs only, or designated for ML, featuring nodes equipped with both CPUs and GPUs. To
identify ML nodes, the data center operators analyzed the workloads executed on them. These
ML nodes are reserved and accessible only with special privileges assigned by the data center
administrators. Each rack can accommodate up to 32 generic nodes or up to 7 ML nodes, with
the specific distribution depending on the CPU and GPU models used and the power-consumption
limitations imposed by the cooling system [69].

SLURM and Prometheus: Job and Node Data

For the workload submitted in LISA, each job is exclusive to a user, with no multi-user jobs or
workflows implemented at present. The cluster manager SLURM [60] is utilized to enable users
to queue jobs for different node types. Machines can be either reserved for a specific duration
or jobs can be submitted to a job queue, where they are executed on a resource that meets the
specified requirements. Job scheduling follows a first-in, first-out (FIFO) approach per stakeholder,
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ensuring fair sharing across stakeholders. The data center offers nodes with co-allocation of jobs
or exclusive use through the utilization of distinct queues.

For the nodes in the data center, certain nodes serve as entry, administrator, and compilation
nodes, allowing users to compile libraries or programs, process data, generate outputs, etc., without
interfering with the jobs running on other nodes. For the purpose of our analyses, these nodes
were excluded.

SLURM is responsible for monitoring the usage of nodes and the status of machine and job
queues, and it logs this information, enabling queries. At the same time in LISA, Prometheus is
adopted to capture detailed temporal and spatial data of each node.

4.2.2 Data Preprocessing

Data cleaning is a crucial step in the further process, aimed at improving the quality and reliability
of the dataset. In this work, due to focusing on data characterization on resource usage and energy
consumption, we finally selected 8 related features in the node dataset and 12 features in the job
dataset as shown in Paragraph Feature Selection 4.2.2. For resource usage, we focus on the system
CPU load metric using the feature ’load1’, which captures the average number of threads that
were in the running or waiting states over the last minute. Since this is an average taken over a
time period, it can be a fractional number. For energy consumption, we focus on the Node power
consumption information using the feature ’surfsara power usage’ and ’nvidia gpu power usage
milliwatts’. Further, we did the time-series cleaning and missing value checking for further data
characterization and analysis. Based on correlation analysis, some highly related features are also
included in characterization and analysis like temperature-related features.

Feature Selection

We focus on energy and resource data characterization, so we first select related features as shown
in Table 4.1 and 4.2.

We focus on CPU utilization, power usage, and temperature. CPU utilization acts as a ba-
rometer for system workloads, revealing how intensively the computational heart of the system
is operating. Power usage, on the other hand, directly translates to operational costs and envir-
onmental impact, making it essential for gauging energy efficiency. Meanwhile, temperature, a
byproduct of computational activities, offers insights into system reliability and the effectiveness
of cooling solutions. Collectively, these metrics complement and reinforce the foundations of our
modeling endeavors.

Table 4.1: Feature descriptions Prometheus dataset.

Feature Name Description
id Job ID

timestamp Data timestamp
node Node name

node load1 Node load average over the last 1 minute
surfsara power usage Node power consumption information

node hwmon temp celsius Node temperature in degree Celsius
nvidia gpu power usage milliwatts Node Nvidia GPU power usage in milliwatts

nvidia gpu temperature celsius Node Nvidia GPU temperature information in degree Celsius

Time-series Cleaning

We first perform cleaning on the job dataset. Firstly, we filter out jobs whose start time falls
outside the specified start and end time range of the dataset. This step helps us focus on the
relevant jobs within the desired timeframe.
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Table 4.2: Feature descriptions SLURM dataset.

Feature Name Description
id Unique identifier for a job

start date Start time of the job
end date End time of the job

node Node where the job ran
nodetypes Node type information
numnodes Number of nodes used by the job
numcores Total number of cores used by the job

sharednode Whether the job ran on a shared node
submit Submission time of the job
start Actual start time of the job
end Actual end time of the job

state Status of the job

Missing Value Checking

We look into the missing value percentage in each feature as shown in Table4.3. For some features
related to GPU, there are missing values due to only specific nodes having GPUs, so we keep the
missing values. For other features missing values, we address missing values by removing them
considering only a very little percentage of missing values.

Table 4.3: Percentage of missing values across the dataset.

Feature Name Missing Percentage
id 0.00%

timestamp 0.00%
node 0.00%

node load1 0.40%
surfsara power usage 1.30%

node hwmon temp celsius 0.40%
nvidia gpu power usage milliwatts 90.11%

nvidia gpu temperature celsius 90.11%
id 0.00%

start date 0.00%
end date 0.00%

node 0.00%
nodetypes 0.00%
numnodes 0.00%
numcores 0.00%

sharednode 0.00%
submit 0.00%
start 0.00%
end 0.00%

state 0.00%
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4.3 Generic Statistic and Distribution of Resource Usage
and Power Consumption

In this section, we begin our analysis with a general distribution overview, progress to rack-level
specifics, and then delve into node-level details.

4.3.1 General Distribution

Table 4.4: Statical description of CPU load and power usage in the dataset.

Matrix Mean Median Std Min Max
CPU Load 10.8 4.0 49.9 0.0 4910.3

Node Power Usage(W) 171.5 132.0 211.2 32.0 1680.0

Figure 4.1: CPU load distribution in the dataset.

Figure 4.2: Power usage distribution in the dataset.
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O1: The mean CPU Load is 10.8, suggesting an average CPU utilization, while a median of 4.0
indicates the CPU Load distribution skews toward lower values.

O2: The CPU Load’s standard deviation is 49.9, indicating a significant variability.

O3: The mean and median values for Node Power Usage are 171.5 and 132.0, respectively, em-
phasizing power consumption’s concentration at the lower end.

O4: The standard deviation for Node Power Usage is 211.2, pointing to substantial variability in
power consumption among nodes.

In this part, we first examine the generic statistics and distribution of resource usage and power
consumption, with a specific emphasis on CPU load and power usage as shown in Table 4.4 and
Figure 4.1,4.2. Understanding the statistical properties and distributions of CPU load and power
usage is essential for optimizing resource allocation, improving energy efficiency, and designing
effective power management strategies.

For CPU Load as shown in Figure 4.1, the mean value of 10.8 indicates the average level of
CPU utilization across the observed data. The median value of 4.0 represents the middle point,
dividing the data into two equal halves. This suggests that the distribution of CPU Load is
skewed toward lower values, as evidenced by the significant difference between the median and
mean. This observation is further supported by Figure 1, which depicts the distribution of CPU
Load. It is evident from the figure that a substantial number of values are zero, indicating instances
of low CPU utilization. Additionally, the distribution is skewed toward lower values, with a higher
concentration of data points in the lower range. The standard deviation of 49.9 reflects the degree
of variability or dispersion in CPU Load values around the mean. The minimum and maximum
values of 0.0 and 4910.3, respectively, reveal the range of CPU Load observed in the dataset.

Regarding Node Power Usage, from Figure 4.2, it is evident that the distribution of Node Power
Usage is skewed towards lower values, particularly in the range of 32 to 250. This means that a
significant number of nodes exhibit relatively lower power consumption. The mean value of 171.5
represents the average power consumption across all nodes, indicating the overall power usage
level. The median value of 132.0, being the middle point of the distribution, further emphasizes
the concentration of power usage towards the lower end. The standard deviation of 211.2 highlights
the variability in power consumption among the nodes. This suggests that there is considerable
diversity in power usage patterns, with some nodes consuming significantly more power than
others. The minimum value of 32.0 indicates the lowest observed power usage, while the maximum
value of 1680.0 represents the highest power consumption recorded in the dataset. These values
provide valuable insights into the range of power usage, indicating the potential for both low and
high-power-consuming nodes within the system.

Overall, this analysis reveals that the Node Power Usage distribution is skewed towards lower
values, especially in the range of 32 to 250. This suggests a prevalence of nodes with relat-
ively lower power consumption, potentially indicating efficient power utilization or the presence of
energy-saving mechanisms in the system. However, the considerable standard deviation implies
variations in power consumption levels, highlighting the need for further investigation into the
factors influencing power usage variations among the nodes.

39



40 CHAPTER 4. RESOURCE AND ENERGY DATA CHARACTERIZATION

4.3.2 Rack Level

Figure 4.3: Rack level power consumption comparison grouped by generic nodes and ML nodes.

Figure 4.4: Rack level CPU utilization comparison grouped by generic nodes and ML nodes.
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Figure 4.5: Distributions of rack power consumption grouped by generic nodes and ML nodes.

O5: Nodes in Generic racks generally consume less power than those in ML racks.

O6: Power usage within Generic racks is stable, indicating predictable energy performance, with
rack 23 as an outlier due to its 48 CPU cores—quadruple the average.

O7: CPU utilization patterns between generic and ML racks are largely similar, indicating com-
parable workload demands across both types.

O8: An exception is rack 12, which has nodes with exceptionally high CPU utilization, suggesting
it handles more computationally demanding tasks than other racks.

O9: ML racks have a higher temperature than Generic racks by around 3.5 °C.

Figure 4.3, 4.4, and 4.5 provides a comparative analysis of power usage and CPU load at the
rack level, specifically between generic racks and ML racks. We investigate the power consumption
of individual nodes within each rack. The box plot captures the middle 50% of the data, with the
line inside denoting the median, while the ’whiskers’ show variability outside the upper and lower
quartiles, and points beyond them represent outliers.

The majority of the nodes in generic racks exhibit significantly lower power consumption
compared to their ML counterparts, demonstrating their energy efficiency. Furthermore, the power
usage within the generic racks is relatively stable, pointing to their predictable and consistent
energy performance. An outlier within the generic rack category is rack 23, which consumes
notably more power than the rest of the generic racks. After further investigation, this node is
equipped with 48 CPU cores, which is four times more than the typical count found in generic
nodes.

We also checked the temperature difference between the Generic rack and the ML rack. In
terms of thermal performance, it is worth noting that ML racks register a higher temperature than
generic racks by approximately 3.5 °C. This observation underscores the thermal implications of
handling machine learning workloads and calls for specialized cooling solutions tailored for such
environments.

In contrast, the differences in CPU utilization between the generic and ML racks are less
discernible. Both types of racks show similar patterns and distributions in CPU utilization, sug-
gesting that workload demand does not significantly differ between them. However, an exception
is rack 12, which houses certain nodes experiencing extraordinarily high CPU utilization. This
implies that rack 12, which deals with normal requests, is under heavier computational demand.
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4.3.3 Node Level

Figure 4.6: CPU load consumption Top10
nodes

Figure 4.7: CPU load consumption Last10
nodes

Figure 4.8: Power usage Top10 nodes Figure 4.9: Power usage Last10 nodes

O10: A marked discrepancy exists in CPU load among nodes, with node ’r14n20’ having a
significantly higher mean CPU load, exceeding 200.

O11: Nodes with the least CPU load primarily originate from racks ’r37’, ’r38’, which consist
mainly of GPU nodes, indicating less intensive CPU utilization in GPU-focused systems.

O12: For power usage, there aren’t any prominent outliers, but a significant portion of nodes with
high power consumption belongs to the ’r29’ rack, which predominantly houses GPU nodes.

O13: Nodes in the ’Normal’ rack, such as ’r15n30’, display reduced power consumption. Node
’r10n32’, a generic node in the Normal rack, exhibits both the lowest mean power usage and
the smallest CPU load.

O14: Some GPU nodes, particularly ’r37n4’, ’r37n6’, and ’r37n5’, also show low average power
consumption.

Further, we look into CPU load and power consumption at the node level – the performance
of each node.

In terms of CPU load, there is a notable discrepancy observed among the nodes, with node
’r14n20’ registering a significantly higher mean value as shown in Figure4.6. Specifically, the
mean CPU load for this node exceeds 200, a magnitude that is far greater when compared to
the node with the second-highest mean CPU load, which is approximately 60. It is pertinent to
highlight that node ’r14n20’ is part of the ’r14’ rack, categorized under the umbrella of generic
nodes. Furthermore, the partition associated with this specific rack is designated as ’shared’.

Furthermore, upon examination of the nodes with the least CPU load, as shown in Figure4.7,
a majority are observed to originate from the racks ’r37’, ’r38’. Notably, these racks are primarily
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composed of GPU nodes. This could suggest that systems primarily dependent on GPU computing
might not utilize their CPU resources as intensively, leading to a lower CPU load.

In contrast to CPU load, there are no distinct outliers with regards to power usage as shown
in Figure4.8; no individual node exhibits substantially higher average power consumption. Inter-
estingly though, the majority of the nodes with the highest power usage are found in the ’r29’
rack. It is noteworthy that these nodes are predominantly GPU nodes, suggesting a correlation
between GPU usage and power consumption.

It is noteworthy that node ’r10n32’, identified as a generic node assigned to the Normal rack,
displays the lowest mean power usage, as shown in Figure 4.9. This node also has the smallest
CPU load, which supports the expected correlation between power usage and CPU load. Other
nodes within this rack, such as ’r15n30’, also show lower power consumption. This could suggest
that certain configurations or usage patterns within this rack are contributing to improved energy
efficiency. Interestingly, some GPU nodes, specifically ’r37n4’, ’r37n6’, and ’r37n5’, also report
low average power usage. This observation aligns with the CPU load analysis of the last ten
nodes, suggesting that specific workloads or operational conditions could lead to reduced power
usage. This insight emphasizes the relationship between workload, operational circumstances, and
resource utilization.

4.4 Feature Correlation Regarding Resource and Energy

The increasingly complex and dynamic nature of data center operations necessitates a compre-
hensive understanding of various metrics associated with their functioning. This insight is essential
in system monitoring, predictive analysis, and enhancing the overall efficiency of data centers. In
our study, we focus on the correlation of resource and energy-related features with other features
in the dataset. The insights deep dive into low-level metrics correlation and the implication for
data collection and analysis. We aim to investigate the correlation between diverse metrics in
understanding data center behavior. Specifically, based on the insights, we can determine whether
all resource and energy-related metrics in our dataset are necessary, or if some can be inferred
from others through correlation.

Feature correlation analysis in time series data is a pivotal step toward successful modeling
and prediction, which will also be included in this paper. It aids in discerning the most relevant
features for a predictive model, especially those that have a strong correlation with the target vari-
able. At the same time, it helps identify and handle multicollinearity, a scenario where features are
highly correlated with each other, which can lead to unstable models and obscure interpretations
of predictor effects. Consequently, redundant features can be eliminated, improving the computa-
tional efficiency of the model – a critical factor when working with extensive datasets or intricate
models. Moreover, the analysis offers insights into the temporal dynamics among variables, includ-
ing lagged relationships, which are essential for constructing accurate predictive models. It also
enhances model performance by including features that have strong direct or lagged correlations
with the target variable.

4.4.1 Correlation Calculation Methods

We use both Pearson and Spearman correlation coefficients to provide a comprehensive view of
relationships in data. While Pearson detects linear relationships and requires data to be normally
distributed, Spearman identifies monotonic trends without needing data normality. The P-value,
meanwhile, is vital to validate the statistical significance of any observed correlation. A low P-
value suggests a statistically significant correlation, ensuring the relationship isn’t just due to
random chance. Always combining visualization, such as scatter plots, with these statistics gives
a clear picture of data associations.

1. Pearson The Pearson correlation coefficient, denoted by r, is a widely used statistical meas-
ure to understand the strength and direction of the linear relationship between two variables
[59]. Mathematically, it is computed as follows:
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First, calculate the mean of each variable, where the mean (µx for x and µy for y) is computed
as the sum (Σ) of all values (xi for x and yi for y) divided by the number of values (n).
Second, compute the deviation from the mean for each value (xi − µx and yi − µy). Next,
calculate the product of these deviations for each pair of values. The Pearson correlation
coefficient (r) is then calculated as the sum of these products (Σ(xi−µx)(yi−µy)) divided by

the square root of the product of the sums of squared deviations (
√

Σ(xi − µx)2Σ(yi − µy)2)
[17].

r =
Σ(xi − µx)(yi − µy)√

Σ(xi − µx)2Σ(yi − µy)2
(4.1)

As per Equation 4.1, the Pearson correlation coefficient r ranges between -1 and +1, provid-
ing an estimate of the strength and direction of the linear relationship between two variables.
It ranges between -1 and +1, where -1 signifies a perfect negative linear relationship, +1
indicates a perfect positive linear relationship, and 0 suggests no linear relationship.

2. Spearman The Spearman’s rank correlation coefficient often represented as ρ or rs, is a
non-parametric statistical measure that assesses the strength and direction of the monotonic
relationship between two ranked variables. Unlike the Pearson correlation coefficient which
assumes a linear relationship and normally distributed variables, the Spearman correlation
does not make these assumptions, making it more versatile in its applications. It is also
more robust to outliers and can be used for ordinal, interval, and ratio data.

Spearman’s correlation coefficient is computed through the following steps:

1. Each value in the dataset is ranked, with the smallest value assigned to rank 1. For values
that share the same data point, they are assigned the average of the ranks they would have
received if they were slightly different.

2. The difference in ranks, denoted as d, is calculated for each data pair.

3. The differences are squared, resulting in d2.

4. The squared differences are summed to produce Σd2.

The correlation coefficient (ρ) is then computed using the following formula:

ρ = 1 − 6Σd2

n(n2 − 1)
(4.2)

where n is the number of data pairs. This coefficient can range from -1 to 1, with -1
indicating a perfect decreasing relationship, 1 indicating a perfect increasing relationship,
and 0 indicating no relationship.

3. P-value The p-value is a critical concept in statistical hypothesis testing, including when
assessing the correlation between variables. When measuring correlation, the p-value reflects
the probability of observing the obtained data (or data that’s more extreme) assuming that
the null hypothesis, typically that there’s no correlation, is true.

In our work, the correlation coefficient can tell the strength and direction of the relationship
between two variables. However, it does not tell whether that relationship is statistically
significant, which indicates that it occurred by chance or not. A hypothesis test determines
whether the correlation could be due to chance, yielding a p-value. If the p-value is below a
set significance level (usually 0.05), it is statistically significant, leading to the rejection of
the null hypothesis and suggesting a non-zero correlation in the population [28]. Conversely,
if the p-value exceeds the threshold, we fail to reject the null hypothesis, indicating no strong
evidence for a population correlation.
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4.4.2 Results and Insights

We have analyzed the correlation for CPU utilization and power usage to better understand their
interrelationship. Here are the insights and results from our examination.

4.4.2.1 CPU Utilization Correlation

Figure 4.10 and 4.11 showcase the interrelation between metric pairs and CPU utilization in the
node dataset. Just as we examined the correlation in terms of power usage, a similar exploration
was carried out for metrics in relation to CPU utilization.

From the 68 metrics scrutinized, a group of 6 displayed a pronounced linear interdependence
with CPU utilization as per the Pearson correlation, registering a coefficient of 0.8 or higher.
Switching our attention to the Spearman correlation, a distinct set of 9 metrics was identified that
bore a strong monotonic association with CPU utilization.

Diving deeper, an intriguing observation is the nexus of these significantly correlated features
to node temperature and power consumption. This could imply that as CPU utilization surges,
there is a corresponding uptick in node temperature and power usage. Such interdependencies
highlight the importance of efficient thermal and power management in systems with fluctuating
CPU demands. Recognizing these relationships can assist system administrators in preemptively
managing potential stress on nodes, ensuring smoother and more sustainable operations.

Figure 4.10: Pearson correlation for CPU utilization.
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Figure 4.11: Spearman correlation for CPU utilization.

4.4.2.2 Power Usage Correlation

Figure 4.12 and 4.13 present the correlation matrices for metric pairs in the node dataset in relation
to power usage. This analytical lens into the dataset brings to light several nuanced relationships
and patterns.

From the entire set of 68 metrics, it’s noteworthy that only a fraction, specifically 6, manifested
a substantial linear dependency with power usage as highlighted by a Pearson correlation coefficient
exceeding 0.8. Transitioning to the Spearman correlation method, a slightly broader set of 9
metrics emerged, exhibiting a pronounced monotonic bond with power consumption.

What captures attention is the common thread tying these metrics: they all pivot around node
temperature and CPU utilization. This suggests a potential cascade effect. As CPU utilization
intensifies or the node temperature escalates, power consumption experiences a concurrent surge.
This interrelation underscores the delicate balance in computational systems. If CPU activity or
temperature rises uncontrollably, it might trigger a disproportionate increase in power consump-
tion, challenging the system’s efficiency and sustainability.

In light of these findings, one could speculate that by implementing adaptive thermal controls
or dynamic CPU task scheduling, it might be possible to modulate power consumption more
efficiently. Recognizing these intricate relationships not only deepens our understanding of system
behavior but also catalyzes the development of innovative strategies to refine power efficiency in
data centers.

4.4.2.3 Correlated Pairs

To verify that the matrix pairs that show strong correlations are significant, we first verify all
p-values of the pairs stated above. All p-values are less than 5 × 10−8, which indicates that the
results hold substantial statistical significance.

Based on the results of the correlation, These correlations suggest a reciprocal influence between
CPU utilization and both power usage and node temperature. To be more specific, it shows the
mutual impact that CPU utilization, power usage, and node temperature exert on each other.
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Figure 4.12: Pearson correlation for power usage.

As CPU utilization increases, it leads to a rise in power usage and node temperature due to
higher energy consumption and heat generation. Conversely, alterations in power usage and node
temperature can influence CPU utilization. For instance, in situations where node temperature
escalates excessively, the cooling system would work and can decrease CPU utilization to avoid
overheating, a process known as thermal throttling. Similarly, if power usage approaches its
maximum capacity, the system might reduce CPU utilization to prevent overload. Thus, the
relationship between these factors is characterized by reciprocal influence, where changes in one
can instigate changes in others. It opens avenues for further examination into ways to investigate
how to manage CPU utilization efficiently to control power usage and maintain optimal node
temperature.

Moreover, the feature ’node procs running’, which is a count of the currently running processes
on the node, shows a strong correlation with both CPU utilization and power consumption as well
(correlation values all above 0.6). A threshold of 0.6 was selected as a benchmark to denote
strong correlation, based on domain-specific standards and the relevance of the relationship in the
context of our study. From a CPU utilization perspective, a higher count of running processes
would typically require more CPU resources, leading to higher CPU utilization. As processes
demand computational power, the CPU responds by processing more tasks, which increases its
utilization percentage. Thus, a strong positive correlation would be expected between the number
of running processes and CPU utilization. From a power consumption standpoint, as the number of
running processes increases, the demand for computational power increases, requiring more energy
usage. More power is needed to support the CPU and other system components in processing
and managing these tasks. Hence, there’s also a strong positive correlation between the number
of running processes and power consumption. This information can be useful in capacity planning
and energy efficiency measures. For instance, if a node continually runs near its maximum process
limit and experiences high CPU utilization and power consumption, it may be nearing its capacity.
Such a situation could warrant an upgrade or redistribution of processes to other nodes. Similarly,
identifying processes that cause significant increases in CPU utilization and power consumption
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Figure 4.13: Spearman correlation for power usage.

can highlight opportunities for optimization, potentially reducing energy use and extending the
node’s effective capacity. Additionally, this correlation could inform predictive models or anomaly
detection systems, helping identify potential issues like malfunctioning processes or hardware
problems if CPU utilization or power consumption deviates significantly from expected levels
given the number of running processes.

4.5 Temporal Dependence, Pattern, and Peak Analysis

In this section, we introduce the methods we use in section 4.5.1, and we show the results and
insights in section 4.5.1. As the result in section4.4.2 indicates the high correlation between power
usage and CPU utilization, we only focus on the power usage for the pattern and peak analysis.

4.5.1 Methods

In this study, we employ a combination of analytical methods—namely Auto-correlation [2], Dis-
crete Fast Fourier Transform (DFFT) [66], and Continuous Wavelet Tree [13] —to carry out the
comprehensive pattern and peak analysis. We use auto-correlation, to identify any recurring pat-
terns within the data and to ascertain if past data values influence future ones. Then, we use
the Discrete Fast Fourier Transform (DFFT) to discern the overarching frequency components,
providing valuable insights into the overall behavior of the data. Lastly, the Continuous Wavelet
Tree will provide a time-frequency representation of the signal and show the peak and pattern.
This methodology is particularly advantageous for analyzing non-stationary signals, as it will offer
crucial information about not only the frequency content of the signal but also the exact timing of
these frequencies. By leveraging these powerful techniques in tandem, we aim to provide a robust
and comprehensive analysis of the patterns and peaks present in the data, which will ultimately
lead to more nuanced and insightful conclusions. Here we give a more detailed introduction to
each method:
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1. Auto-correlation [2] Auto-correlation is a statistical tool that measures the degree of
similarity between a given time series and a lagged version of itself over successive time
intervals. Instead of quantifying the relationship between two separate random variables, as
in standard correlation, autocorrelation evaluates the relationship of a single random variable
with its own past and future values.

In time series analysis, autocorrelation can identify seasonality or periodic trends. It quan-
tifies the strength and type of relationship between a variable and its historical values.
Autocorrelation can expose the relationships between past and future values, aiding in trend
identification and forecasting.

2. Discrete Fast Fourier Transform(DFFT) [66] The Discrete Fast Fourier Transform
is an algorithm used for the computation of the discrete Fourier Transform (DFT) and its
inverse. The DFT converts a sequence of values (typically a time series of measurements)
from the time domain into the frequency domain. In simpler terms, it’s a tool to extract
frequency information from a time-based signal. The Fast Fourier Transform (FFT) is a
version of the DFT that is computationally efficient.

Understanding the frequency components of a signal offers critical insights into the nature
and properties of the system or process that generated the signal. It can identify periodic
components in signals, allowing for the recognition of recurring patterns and their respective
frequencies, such as the fundamental frequency and harmonics in a sound signal.

3. Continuous Wavelet Tree [13] The Continuous Wavelet Transform (CWT) Peak Detec-
tion algorithm is a powerful tool used to detect and characterize transient, or short-lived,
events in time-series data.

In the context of peak detection, the CWT works by convolving the signal with wavelets of
various frequencies and scales. A wavelet is a waveform of effectively limited duration that
has an average value of zero. The key feature of wavelets is their ability to simultaneously
localize a signal in both the time and frequency domain - the so-called uncertainty principle
- which makes them ideal for peak detection in signals.

In the CWT Peak Detection algorithm, wavelets are used to examine the original signal at
different levels of resolution. At each scale, the wavelet transform identifies regions where
the signal significantly matches the wavelet (peaks in the transformed modulus). Peaks in
the wavelet-transformed signal correspond to distinctive features, or events, in the original
signal.

4.5.2 Results and Insights

In this section, we begin by presenting our findings and insights from a holistic standpoint, con-
sidering the entire system as a unified whole.
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4.5.2.1 Temporal Dependence and Predictability of Power Usage

Figure 4.14: Autocorrelation for power usage.

In the auto-correlation figure as shown in Figure 4.14, the dark blue line represents the autocor-
relation coefficient for each lag in the data. The autocorrelation coefficient measures the degree
of similarity between a given time series and a lagged version of itself over successive time inter-
vals. It ranges from -1 to +1, with +1 indicating perfect positive correlation, -1 indicating perfect
negative correlation, and 0 indicating no correlation. The light blue shadow generally depicts the
confidence intervals around zero, signifying the range where the autocorrelation coefficient is not
statistically different from zero. If the dark blue line (the autocorrelation coefficient) falls within
this area, it suggests that the autocorrelation at that particular lag may be due to chance, and is
not statistically significant.

Each lag means 30 seconds, and tracking power usage at half-minute intervals over 24 hours
would result in 2880 data points.

Here are some key observations from the autocorrelation figure:

O15: The sharp decrease observed in the dark blue region suggests that as lag time increases,
there is a rapid decrease in its correlation with the original series. This highlights that the
time series values are predominantly influenced by their immediate preceding values and
have a diminishing relation with values from the more distant past.

O16: The trajectory of the line transitioning into the light blue-shaded region around 250 lags(around
1.5 hours) indicates a point where the autocorrelation ceases to be statistically significant.
This suggests that any perceived correlation beyond this 1.5-hour point is potentially due to
random variations, taking into account the defined confidence intervals.

To sum up, for the power usage in the system, the rapid decrease of the autocorrelation observed
in the dark blue line as the lag time increases suggests that the given time series is primarily
influenced by recent events, demonstrating a strong time dependency in the short term. However,
the relationships with more distantly lagged observations become less significant, implying that
historical data has less predictive power for the future values in this series. Furthermore, once the
lag reaches around the 1.5-hour mark, the autocorrelation drops into the blue shadow, indicating
that correlations beyond this point may not be statistically significant. This finding implies a
potential boundary for effective predictive modeling based on autocorrelation, beyond which the
level of certainty is insufficient to confidently predict future behavior. Hence, for this specific time
series, any reliable prediction or pattern analysis should consider a time lag of up to approximately
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1.5 hours. Beyond this lag, the relationships may not be reliable or could simply be random
coincidences.

This result aligns with our understanding of HPC environments where power usage is largely
event-driven, primarily triggered by incoming job requests. Consequently, the diminishing impact
of historical data on the current state, as reflected in our autocorrelation analysis, is consistent
with this operational nature. The history of power usage does not directly influence current power
usage as it doesn’t dictate the timing or the computational requirements of incoming jobs. Thus,
the short-term dependencies observed up to approximately 1.5 hours could be related to the typical
job duration or queueing behavior in the system, beyond which the power usage appears to be less
predictable based on past behavior. This underlines the highly dynamic and responsive nature
of power consumption patterns in HPC environments, reinforcing the need for real-time or near
real-time monitoring and control strategies rather than relying on historical trends.

4.5.2.2 Patterns and Peak

1. Power Usage Hour of the Day

(w
)

Figure 4.15: Power usage per hour of the day.

O17: An evident diurnal pattern characterizes the power consumption across all nodes, with
discernible peaks and troughs.

O18: The power usage culminates at 10 a.m., and a consistent heightened consumption
interval is observed from 9 a.m. to 7 p.m., potentially aligned with regular business
operations or intensified computational activity.

O19: After 7 p.m., there is a consistent decline in power usage, culminating in the lowest
consumption at 5 a.m.

In our endeavor to understand the dynamics of power usage, we first discern the power
consumption patterns with respect to different hours of the day across all nodes, thereby
pinpointing the periods of heightened power usage. The hourly power usage, illustrated in
Figure 4.15, offers insightful revelations to this end.
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We observe a clear diurnal pattern in power usage across all nodes, with the peak power
consumption occurring at 10 a.m., and the lowest power consumption at 5 a.m., as shown
in Figure 4.15. The period from 9 a.m. to 7 p.m. represents a window of high power usage,
demonstrating a possible correlation with regular business hours or a time of heightened
computational activity. Post 7 p.m., the power usage consistently declines, reaching its
nadir at 5 a.m. These insights could be instrumental in strategizing for load balancing
or implementing energy-saving measures during periods of lower power consumption. For
example, following the elevated consumption phase, there’s a systematic decline starting
post 7 p.m., reaching its lowest point at 5 a.m., which suggests potential opportunities for
strategic load management and energy conservation during these off-peak hours.

2. Frequency Domain Analysis

  (30s per lag)

(W
)

Figure 4.16: Power usage over time by 24 hours

Our study uncovers a rhythmic pattern in power consumption, an indicator of underlying
computational and I/O operations. This discovery hints at the possibility of recognizing,
and ultimately forecasting, these periodic patterns to aid in detailed scheduling decisions.
To methodically discern the primary harmonics within this cyclic behavior, we employ a
discrete fast Fourier transform (DFFT), translating the series into the frequency domain.
We then identify prominent peaks with the assistance of a continuous wavelet tree (CWT)
algorithm. Utilizing this methodology, we manage to isolate the first three peak periods and
their respective amplitudes within the power consumption data.

Figure 4.16 discerns cyclical patterns can be observed. These patterns seem to manifest
themselves as recurring ’peaks’, which appear at regular intervals throughout the data-
set. Such periodic fluctuations might suggest that there are underlying operational routines
within the data center that repeat over time.

Moreover, the figure also reveals certain instances of ’shaking’ - rapid, small-scale fluctuations
in power usage. These could be the result of transient processes or instantaneous variations
in the workload of the system, which cause short-term changes in power consumption.

The presence of these periodic peaks and small-scale fluctuations points to a complex inter-
play of processes within the data center, all of which contribute to the overall power usage.
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By identifying and understanding these patterns, we hope to gain insights that could help
optimize energy consumption within the infrastructure.

Figure 4.17: Frequency Domain(DFFT) of power usage.

The Figure 4.17 provided illustrates the frequency domain representation of power usage
across our dataset. By transforming the original time-series data into the frequency domain,
we are able to identify patterns and cycles that are not immediately apparent in the time
domain.

On the x-axis, we have frequency, which denotes how often a certain pattern repeats within
a given time frame. Lower frequencies represent patterns that repeat over longer intervals,
such as daily cycles, while higher frequencies correspond to shorter intervals, such as hourly
patterns.

The y-axis represents the amplitude or strength of each frequency in the dataset. A higher
amplitude indicates that the corresponding frequency pattern is more prevalent or significant
within the data. Peaks, or significant protrusions in the plot, represent the most dominant
frequencies, implying the presence of strong, repeating patterns at these intervals.

By interpreting this figure, we can uncover key periodic behaviors in our power usage data,
which can be instrumental in predictive modeling and identifying anomalies.

In our analysis, we focused on the top three patterns as these represent the most dominant
cycles in the data. By concentrating on these primary frequencies, we aim to capture the
most significant, recurring patterns in power usage. We notice the amplitudes drop fast after
the top three frequencies. This selection helps to simplify the complexity of the time series
while still preserving key periodic behaviors.

We first analyze the entire time series, rather than a subset or shorter duration, which allows
us to account for all possible patterns and cycles that may occur. This holistic approach
maximizes our understanding of the system’s behavior over time, ensuring that any insights
or patterns we identify are representative of the system as a whole, rather than being specific
to a particular period.

Our Fourier analysis yields three dominant frequencies in the power usage data. These
frequencies correspond to cyclic patterns that recur over different time intervals. The spe-
cific periods of these cycles were calculated by taking the reciprocal of each frequency and
multiplying by 30 seconds, the time unit used in our dataset.
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• The first frequency, 0.00029223886630802467 Hz, corresponds to a cycle that repeats
approximately every 1.32 days. The amplitude of this frequency, 1327846457.924892,
indicates the strength of this cycle in the data. This suggests a diurnal pattern that is
slightly offset from the typical 24-hour day-night cycle.

• The second frequency, 0.0007305971657700617 Hz, corresponds to a cycle that repeats
approximately every 0.5 day or 12 hours. Its amplitude is 627682824.5249662. This
could represent a twice-daily pattern in the data.

• The third frequency, 0.0015342540481171295 Hz, corresponds to a cycle that repeats
approximately every 5.42 hours. Its amplitude is 626185142.6696367. This could rep-
resent a more frequent pattern in the data.

These findings provide a foundation for a deeper understanding of power usage in our HPC
environment and could inform strategies for more efficient energy management.

4.6 Summary

In this chapter, we first did the requirement analysis and then we delved deeply into the nuances
of resource and energy consumption, transitioning seamlessly from a broad perspective to intricate
node-specific insights revealing vital insights, and emphasizing both conventional and ML-centric
facets of data center functioning. Further, we explored the matrix’s correlations. Our subsequent
temporal and pattern analyses illuminated patterns in 24 hours and three significant recurring
consumption trends using auto-correlation, DFTT, and continuous wavelet tree techniques.
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Chapter 5

Modeling Power Usage and CPU
Utilization

The characterization work provides an understanding of Power Usage and CPU Utilization. This
chapter, we dedicate to addressing Research Question 2 (RQ2): How to Design an Accurate and
Efficient ML Model for Data Center Resource and Energy Estimation and Prediction?

Initially, Section 5.1 will provide an in-depth analysis of the requirements necessary for the
modeling of power usage and CPU utilization. Subsequently, the intricacies of the model design
will be described in Section 5.2.

5.1 Requirement Analysis

The modeling process is split into two essential components. The initial aspect revolves around
the real-time estimation of power usage, providing an immediate snapshot of the data center’s
energy consumption. Previously, the estimation of power usage primarily relied on basic statistical
models, which employed simple calculations. These models, though straightforward and easy
to understand, often struggled to provide accurate estimates due to their inability to effectively
incorporate the complex interdependencies among various data center parameters. The application
of machine learning methods has emerged as a promising approach to address these challenges.

The subsequent facet is centered on the prediction of CPU utilization and power usage, lever-
aging past and present data to forecast future CPU utilization and energy consumption. With the
rapid expansion and complexity of data centers, relying solely on current utilization statistics is
not sufficient. Real-time data, while vital, provides only a snapshot of the current system state.
To ensure smooth operations and prevent system overloads or under-utilization, it’s essential to
anticipate future demands. In this context, predicting future CPU utilization and power usage
becomes critical.

5.1.1 Functional Requirements

• FR1. Real-Time Estimation: The ML model should be able to estimate real-time power
usage.

• FR2. CPU Utilization Prediction: The ML model should be capable of predicting
the CPU utilization on the node level. The model should factor in the past and present
CPU utilization trends, workload patterns, and system configurations to generate accurate
forecasts. This can aid in effective resource allocation, load balancing, and preventing system
overloads.

• FR3. Power Usage Prediction: The model should predict future power usage patterns
based on the current and historical usage data.
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5.1.2 Non-Functional Requirements

• NFR1. Accuracy: The ML model should have a high degree of accuracy in both estimation
and prediction tasks. The model should be trained and validated on representative datasets
to ensure its reliability.

• NFR2. Efficiency: The model should provide results quickly, ideally in real-time or near
real-time. The algorithms should be optimized for efficiency to ensure timely response and
decision-making. The system should be capable of handling large volumes of data without
any significant delays or computational bottlenecks.

• NFR3. Scalability: The system should be scalable to manage and analyze data from large
data centers. It should be capable of processing and analyzing large volumes of data and
should be designed to scale up or down based on the load and the size of the data center.

• NFR4. Reliability: The system must be highly reliable, given that data center manage-
ment often deals with mission-critical operations. It should provide robust error handling
and fault tolerance capabilities to prevent disruptions in its operations.

• NFR5. Interoperability: The system should be able to interface effectively with ex-
isting data center management systems. It should adhere to standard data formats and
communication protocols to ensure seamless integration with the existing IT infrastructure.

• NFR6. Adaptability: The system should be adaptable to changing needs and conditions.
It should be designed to accommodate changes in workload patterns, technology advance-
ments, or shifts in organizational priorities and business objectives.

5.2 Methodology and Modeling

In the following, we propose our estimation modeling for power usage and prediction modeling
for both power usage and CPU utilization. Our study involves two distinct models for output
generation.

The first one, referred to as the Estimation Model, is tasked with estimating power usage based
on the current time CPU utilization. This model serves as a direct translator, transforming the
present state of CPU utilization into a corresponding power usage value.

Firstly, the power consumption estimation model is a critical component in data center resource
management. The existing approach for CPU utilization estimation relies on the formula of CPU
speed and frequency and has proven to be reliable. However, the existing power usage model based
solely on CPU utilization lacks the necessary accuracy required for efficient power management.
Currently, a simple statistical model is used for power usage estimation, which can not capture the
complex and dynamic relationships between CPU utilization and power consumption accurately.

The problem at hand is to design and develop an advanced power consumption estimation
model that surpasses the limitations of the existing simple statistical model. The objective is
to create a more sophisticated and robust model capable of providing highly accurate power
consumption predictions, thereby facilitating proactive resource allocation, energy optimization,
and overall data center performance enhancement.

The second prediction modeling part forecasts the next several lags in the sequence. We use
multi-index forecasting for energy prediction, targeting both power consumption and temperature.
For resource allocation, our focus is on predicting CPU utilization. We start from four lags for
forecasting. The choice of predicting the next four lags is motivated by our characterization
study, which revealed that these future intervals are highly relevant and can contribute significant
information to the prediction process. By providing insight into the near future states, this model
aids in efficient resource allocation and effective system management.

The prediction modeling entails leveraging historical and real-time data to forecast future power
usage and CPU utilization patterns. This approach allows us to capture the dynamic and evolving
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nature of resource demands within the data center, providing administrators with valuable insights
into potential capacity issues and energy usage trends. By incorporating sophisticated machine
learning techniques, we aim to build predictive models that can effectively handle the complexities
inherent in time series data, thus enabling accurate and reliable predictions.

In the subsequent sections, we detail the design of the modeling.

5.2.1 Model Selection

In the pursuit of designing an accurate and efficient model for CPU utilization and power con-
sumption, we carefully consider various machine learning algorithms. Two models stand out as
promising candidates for achieving the desired forecasting capabilities: Long Short-Term Memory
(LSTM) networks and Transform models.

When estimating and predicting intricate dynamics like CPU utilization and power consump-
tion, we require models that are both versatile and powerful. Our choice of LSTM networks and
Transform models is rooted in several key considerations:

1. Temporal Dependencies: Both LSTM and Transform models excel at modeling se-
quences, crucial for time series data. LSTMs, with their unique memory cell structures,
can remember and retrieve information over long intervals, making them adept at captur-
ing long-term dependencies in time series data. Transform models, on the other hand, use
attention mechanisms that weigh the importance of different time steps, allowing them to
discern and prioritize crucial patterns over others.

2. Complexity of Relationships: The nonlinear nature of CPU utilization and power con-
sumption requires models that can capture intricate relationships. LSTM and Transform
models are inherently nonlinear, offering an edge in modeling the complex interplay of vari-
ables in our data.

3. Scalability: As data centers grow and the volume of data surges, scalability becomes para-
mount. Transform models, particularly, have showcased remarkable scalability, handling
large datasets with ease, while LSTMs can be efficiently trained with the right optimiza-
tions.

4. Proven Track Record: Both models come with a storied legacy of successes. LSTMs have
been the go-to for numerous sequence prediction tasks, from speech recognition to financial
forecasting. Transform models, since their introduction, have revolutionized several domains,
especially natural language processing, and their prowess is now being recognized in time
series forecasting as well.

5. Complementary Strengths: While both models are strong contenders individually, they
possess complementary strengths. LSTMs thrive in scenarios where sequential memory is
vital, while Transform models leverage their attention mechanisms to give prominence to
specific impactful events. This makes the comparison between their performances even more
riveting, as it can shed light on which attributes of the data are more predictive.

In essence, while there are myriad models available, our choice of LSTM and Transform models
is a confluence of their proven capabilities, their alignment with the attributes of our data, and
the potential insights that arise from juxtaposing their performances. In our quest for efficient
forecasting in data center resource management, these models not only offer promising results but
also illuminate the underlying dynamics of CPU utilization and power consumption.

5.2.1.1 Long Short-Term Memory(LSTM) Model

Long Short-Term Memory, or LSTM, is a type of Recurrent Neural Network (RNN) specifically
constructed to process sequential data with intricate long-term dependencies [73]. Because of
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their capability to capture temporal dynamics and hold memory over elongated periods, LSTM
networks have found substantial use in time-series forecasting tasks.

A traditional RNN, while powerful for sequential data, suffers from issues known as vanishing
and exploding gradient problems. The vanishing gradient problem occurs when the gradients,
which play a pivotal role in updating weights during backpropagation, drastically reduce in mag-
nitude as they move back through the network. This scenario often culminates in subpar weight
updates, leading to the model’s inability to learn long-range dependencies. Conversely, the ex-
ploding gradient problem is an event where these gradients dramatically increase as they traverse
through the network, potentially causing unstable learning and exaggerated weight updates.

LSTM networks alleviate these issues by incorporating a memory cell along with a trio of
gates: the input gate, output gate, and forget gate. These components collectively facilitate the
preservation and manipulation of information over extensive periods without losing significant
context. They essentially control the flow of information in and out of the memory cell, which
allows the network to maintain relevant information while discarding the less significant details.

The memory cell sustains its state over time, allowing it to carry forward the context, and
its value is updated selectively. The input gate decides the extent to which incoming information
should update the memory cell, the forget gate determines what proportion of the memory should
be retained, and the output gate decides what the next hidden state should be. As a result, LSTM
networks can learn to bridge minimal or substantial time lags, adaptively ignoring or remembering
information in the input sequences.

LSTM networks have shown impressive performance in a wide array of sequential data predic-
tion tasks, providing particularly significant value when dealing with time-series data characterized
by intricate and nonlinear patterns. These traits make them a strong choice for complex predictive
modeling tasks that require understanding long-term dependencies in data.
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5.2.1.2 Transform Model

Figure 5.1: Transformer architecture [67]

As shown in Figure 5.1, it is a typical transformer model founded on an encoder-decoder structure,
which utilizes attention mechanisms extensively [25]. Transform models have recently emerged as
powerful alternatives for time-series forecasting tasks. The Transformer model was devised to sur-
pass the constraints inherent in LSTM and RNN, such as struggling with very long sequences or
when the important information is located far from where it is needed in the sequence. The Trans-
former consists of two primary elements: the encoder block, which scrutinizes the input data to
construct an exhaustive context, and the decoder block, which leverages this context to formulate
the output sequence. These models are based on the idea of self-attention mechanisms, enabling
them to focus on relevant time steps and identify important patterns in the data. The attention
mechanism allows the model to weigh the significance of different temporal points, resulting in
more effective feature extraction and representation. Transform models have gained popularity
for their ability to handle long-range dependencies in time-series data efficiently, making them a
compelling choice for accurate power consumption prediction.
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5.2.2 Model Design Overview

Figure 5.2: Modeling design overview

The design overview is visually presented in Figure 5.2, which depicts the distinct yet intercon-
nected frameworks of the Estimation Model and the Prediction Model. These models, although
different in their final objectives, follow a shared path in their initial stages of data utilization and
preprocessing.

The procedure starts with the collection of historical data, encompassing both job-specific
and node-related information. This data is subjected to a meticulous preprocessing phase, which
includes a systematic approach to data cleaning, transformation, and integration. These steps are
elaborated upon in Chapter 3 of the thesis.

Both the Estimation and Prediction Models engage in a process of feature selection and pick
different features that serve different purposes. This process is crucial for optimizing the perform-
ance of the models and effectively managing dimensionality. Feature selection not only reduces
the computational complexity but also enhances the predictive power of the models by eliminating
redundant or irrelevant features.

After feature selection, the models are trained using the prepared datasets. Cross-validation
is employed at this stage to assess the models’ ability to generalize on unseen data and to prevent
overfitting. Additionally, the models’ hyperparameters are meticulously tuned to optimize their
performance, striking a balance between bias and variance.

As for the output, both models function at the node level. The Estimation Model is designed
to generate an output encompassing Power Usage. The Prediction Model, which utilizes a dif-
ferent modeling framework, produces energy multi-index predictions for Power Usage along with
Temperature; For resource prediction modeling, the focus is on predicting CPU Utilization. This
distinction in outputs stems from the unique objectives of the two models, catering to different
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Figure 5.3: Sampling from the original time-series using moving window.

aspects of the system’s operational metrics.
In the following sections, we delve into a more detailed exploration of the modeling process.

5.2.2.1 Job Feature Integration

For a comprehensive understanding of the system’s behavior, we have integrated both job and
node data. The job data contributes unique insights into the system’s workload dynamics and can
augment the prediction and estimation capabilities of our model.

The integration proceeds as follows:

• Number of jobs submitted/started: This metric indicates how many jobs have been
initiated within the last 30 seconds. It provides insight into the inflow of tasks and can
suggest periods of high activity or load on the system.

• Number of jobs running: This quantifies the number of jobs actively executing during
the last 30 seconds. It illustrates the ongoing processing load and can potentially highlight
bottlenecks in the system.

• Number of jobs completed/failed/canceled/timeout/out of memory/node fails:
These parameters report the number of jobs in the last 30 seconds that have either completed
successfully, failed, got canceled, timed out, run out of memory, or led to node failures. These
metrics are critical to understanding the system’s robustness, efficiency, and potential issues.

By utilizing these job-based features in conjunction with node data, we aim to create a holistic
modeling approach that accounts for both the node level and the operational characteristics (job
data) of the system. This integration is expected to lead to a more accurate and reliable estimation
and prediction model.

5.2.2.2 LSTM Model for Estimation and Prediction

In an endeavor to enhance the learning process and elevate model performance, we segment the
original time-series data into smaller sub-samples using a sliding window approach. As illustrated
in Fig. 5.3, the sliding window moves systematically through the primary time-series data, gener-
ating a series of overlapping sub-samples. These sub-samples not only allow the model to exploit
localized temporal information more effectively but also increase the quantity of training data,
thereby enhancing the model’s ability to generalize and capture dynamic temporal dependen-
cies. The size of the sliding window is crucial in this process, as a wider window may introduce
noise or irrelevant information, while a narrower window could potentially overlook longer-term
dependencies. Therefore, optimizing the window size is a critical aspect of our approach.

Let L represent the sequence length. Then, the tth input and output of the LSTM network are
given by the sequence (xt, xt+1, ..., xt+L−1) and yt+L = xt+L, respectively. Here, L is a positive
integer that signifies the number of prediction steps ahead. Additionally, T is the total count of
subsamples, which is determined by the length of the original time series and the sequence length
L.

For the estimation and prediction, the LSTM network graph displays the sequential nature of
the model, with multiple LSTM layers capturing the temporal patterns in the input data. The
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model receives historical power consumption data as input, and through the recurrent connections
of the LSTM cells, it learns to extract essential temporal features and make accurate predictions
for future power usage.

During each timestep, the LSTM cell ingests two key pieces of information: the corresponding
input for that particular timestep, and the hidden state values from the preceding timestep.
Additionally, the final hidden values from the last LSTM cell are utilized as input for the ensuing
dense layer. To extrapolate the system’s future behavior, we can employ a dense layer formulated
as follows:

yt = Wdht + bd (5.1)

Here, Wd and bd denote the weights and bias term within the dense layer, respectively, and ht

represents the hidden state from the final LSTM cell. It’s worth noting that the dimensionality of
the hidden state corresponds to the predefined number of neurons. Importantly, the final hidden
state values incorporate information from all previous inputs as they are a function of both the
cell memory and the output gate.

An LSTM layer consists of a set of recurrently connected blocks, known as memory blocks.
These blocks can be thought of as a differentiable version of the memory chips in a digital computer.
Each one contains one or more recurrently connected memory cells and three multiplicative units
- the input, output, and forget gates - that provide continuous analogs of write, read and reset
operations for the cells. More precisely, the input to the cells is multiplied by the activation of the
input gate, the output to the net is multiplied by that of the output gate, and the previous cell
values are multiplied by the forget gate. The net can only interact with the cells via the gates.

Figure 5.4: LSTM unit structure [25]

For our model for estimation and prediction, as the LSTM unit structure shown in Figure 5.4,
the regulation of the gates is achieved by the Sigmoid neural network layers, which are tasked
with deciding the information that is stored, discarded, and output from the memory cell. The
input gate manages the admission of new information into the memory cell. The forget gate
determines which information is no longer needed and thus is removed from the memory cell.
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Finally, the output gate oversees the delivery of information from the memory cell to the network
output. This configuration effectively manages the information entering and exiting the memory
cell. These gates operate under the control of Sigmoid neural network layers, which determine
what information is stored in the memory cell, what is discarded, and what is to be output. They
consist of memory cells with gates that regulate the flow of information, allowing them to learn
from historical data and make predictions for the future.

5.2.2.3 Transformer Model for Estimation and Prediction

Figure 5.5: Transformer model design in this work

The design of our Transformer model, tailored for our time-series forecasting, is illustrated in
Figure 5.5. The architecture seamlessly integrates the principles of attention mechanisms with
traditional feed-forward networks, culminating in a powerful predictive model.

Input Embedding and Positional Encoding The raw input data, a sequence of values,
first undergoes a transformation into a dense vector representation using the nn.Linear() layer.
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This transformation serves as an embedding mechanism, converting rudimentary data points into
meaningful vectors.

To ensure the model retains an understanding of the inherent sequence order—vital for time-
series data—each embedded vector is enriched with a positional encoding. This encoding is es-
sentially a unique signature assigned to each sequence position, enabling the model to discern
temporal patterns.

Encoder: Context Representation The heart of the Transformer model, the encoder, re-
ceives the positionally encoded embeddings. It comprises a series of layers that apply self-attention
mechanisms and feed-forward networks. The encoder’s primary objective is to discern intricate
patterns within the sequence and encapsulate this information into a compact context represent-
ation. This representation carries the essence of the input data, abstracting key patterns and
relationships for subsequent decoding. It’s comprised of multiple identical layers, with each layer
consisting of a self-attention mechanism and a fully connected feed-forward network. Input em-
beddings are used to transform the input into dense, low-dimensional vectors. To accommodate
both the content and its position in the sequence, positional embeddings are integrated with the
input embeddings.

Our implementation leverages the torch.nn.TransformerEncoderLayer, which inherently en-
capsulates both the self-attention and feed-forward components.

Decoder: Context Interpretation While the encoder focuses on pattern abstraction, the
decoder’s role pivots towards leveraging this abstracted context for precise predictions. It possesses
its set of embedded inputs, which, similar to the encoder, are enriched with positional encodings.

Mirroring the encoder’s layers, the decoder employs a combination of self-attention, feed-
forward networks, and an additional attention layer tailored toward the encoder’s output. This
specialized attention layer allows the decoder to make informed predictions by emphasizing relevant
parts of the encoded context.

Upon interpreting the context, the decoder’s output is channeled through a final nn.Linear()
layer. This fully connected layer serves as a mapping mechanism, converting the decoder’s high-
dimensional output into our desired forecast size, thus producing the final prediction.

The Self-Attention Mechanism within the encoder allows each element in the input sequence to
consider all other elements, applying relevance-based weights. This mechanism is operationalized
as a dot-product operation involving a query vector, a key vector, and a value vector for each
sequence element. The outputs of the attention and feed-forward layers are then amalgamated
and layer normalization is applied in the ”Add and norm” operation.

The Feedforward Network within the encoder is a straightforward neural network with fully
connected layers, which is utilized to learn non-linear transformations.

Decoder Block: Structurally similar to the encoder but equipped with an additional attention
mechanism, the decoder transforms the encoded sequence into the output sequence. It employs
attention over both the encoder outputs and the decoder inputs. The decoder is constructed from
several identical layers, each layer featuring a self-attention mechanism, an attention mechanism
over the encoded sequence, and a fully connected feed-forward network.

5.3 Summary

In this chapter, we initiated our discussion with a requirement analysis for energy and resource
modeling in HPC data centers. Subsequently, the LSTM and Transformer models are our chosen
ML frameworks and meticulously crafted the modeling architecture for our experiments, encom-
passing both estimation and prediction. An in-depth exploration of these two models is also
presented within the chapter.
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Chapter 6

Experiments and Evaluation for
Power Usage and CPU Utilization
Modeling

In this chapter, we tackle our third research question: ”How can we evaluate the ML Model to
comprehend resource utilization and energy consumption in large-scale data infrastructures?” We
outline the experimental setup and procedure in Sections 6.1 and 6.2, respectively. Following that,
we introduce the evaluation metrics in Section 6.3. We then present our experimental findings
and delve deeper into model comparisons and discussions in Sections 6.4 and 6.5.

6.1 Experiment Setup

Our experimental setup utilizes the dataset drawn from the LISA System. The specifics of this
dataset, including its description and the preprocessing steps undertaken, are delineated in the
work of characterization. We conducted our experiment on Node r11n. To ensure the robustness
of our modeling, we test our model in different time intervals. The first dataset is from June
2022 to November 2022. The second dataset is from January 2020 to August 2020. This aimed to
evaluate the performance consistency of our models across various temporal phases. By employing
this methodology, we were better positioned to assess if the performance metrics were inherently
linked to specific timeframes or if they remained consistent irrespective of the time period under
consideration. Furthermore, the systematic partitioning of the dataset into different time windows
aided in elucidating any potential periodic trends or seasonality effects that could be present. This
is paramount in understanding whether our models can adapt and predict effectively across varied
time frames or if they display an affinity towards specific periods. The preprocessing steps, which
were imperative for refining the dataset and ensuring its readiness for model ingestion, included
normalization, outlier detection, and handling of any missing values. These crucial steps enhanced
the quality of the data and ensured a seamless transition into the modeling phase, thus maximizing
the chances of obtaining reliable and generalizable results. By testing the models on different time
periods from the same data source, we aimed to confirm the stability and reliability of our chosen
algorithms, thereby enhancing the scientific rigor and validity of our experimental findings.

We begin by predicting four steps ahead. To ensure a robust evaluation of our models, we
implemented cross-validation on our dataset. Time series cross-validation is distinct due to the
sequential nature of the data. Unlike standard cross-validation techniques where data is randomly
sampled, time series cross-validation maintains the temporal order. Initially, the model is trained
on an early segment of the data and tested on a subsequent segment. In the next step, the test
segment from the previous step is added to the training set, and the model is tested on the next
segment. This ”rolling” process continues, ensuring that the model always predicts future points
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Table 6.1: Grid search for the Transformer. The underlined values represent the hyperparameters
used in this research.

Hyperparameters 1 2 3

d model 512 256 128
Attention heads 8 4 2
Hidden units 2048 1024 512
Batch size 64 48 32
Dropout rate 0.05 0.25 0.5

Table 6.2: Grid search for the LSTM. The underlined values represent the hyperparameters used
in this research.

Hyperparameters 1 2 3 4

Number of layers 6 4 2 1
Hidden units 2048 1024 512 256
Batch size 64 48 32 26

based on past data.
For our initial experiments, both the LSTM and Transformer models were set up with a

learning rate of 0.1, a batch size of 32, and the Adam optimizer. A dropout rate of 0.05 was used
to mitigate underfitting, based on empirical findings from preliminary tests. Given the complex
nature of our data and the models, hyperparameter tuning was essential. These experiments were
evaluated using a validation set, with the goal of minimizing validation loss. In the context of the
Transformer architecture, the d model refers to the dimensionality of the embeddings. This is a
core hyperparameter in the Transformer design, influencing both the size and the capacity of the
model. The LSTM model was further configured with a sequence length of 4 which means the
model was trained to use the past 4 time steps of data to estimate or predict the power usage.

The hyperparameters for both the LSTM and the Transformer were optimized through experi-
mental trials and grid search methods. The configuration grid for the LSTM and the Transformer
can be viewed as below 6.1 6.2.

The subsequent section is dedicated to detailing the specific procedures implemented through-
out our experiments.

6.2 Experiment Procedure

The sequence of steps adhered to during our experiment is outlined as follows:

1. Data Preprocessing: As explained in Chapter 4, the necessary preprocessing steps were
undertaken on our dataset. This included the treatment of missing values, outlier detection,
and feature scaling. Additionally, categorical variables underwent one-hot encoding, thereby
transforming them into a machine-readable format.

2. Model Building: We leveraged the PyTorch library, a popular open-source machine learn-
ing framework, to construct our models. For the Transformer model, we built upon PyT-
orch’s existing implementation, adjusting the number of encoder and decoder layers, the size
of input embeddings, and the number of heads for multi-head attention as described in the
”Model Design” section. For the LSTM model, we utilized PyTorch’s LSTM module and
customized the number of LSTM layers and the dimension of the hidden state according to
our design.
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For both models, the Adam optimizer was selected for its adaptive learning rate properties,
which can help expedite convergence during training. As our task is prediction-based, we
employed the Mean Squared Error (MSE) loss function, a common choice for regression
problems. The MSE loss calculates the average squared difference between the actual and
predicted values, providing a measure of prediction error. The models were compiled with
these configurations, setting the stage for the training phase.

3. Model Training: Both models were trained using the training dataset. During this phase,
the models’ weights were adjusted based on feedback from the backpropagation process and
the Adam optimization algorithm. We monitored the models’ performance on the validation
set at the end of each epoch, tuning hyperparameters and guarding against overfitting. The
training was halted when the validation set performance started to degrade, signaling the
start of overfitting.

4. Model Evaluation: Upon completion of training, the model’s performance was evaluated
on the unseen test set, which provided an unbiased estimation of the model’s ability to
generalize to new data. Additionally, we compare our results with the baseline statistical
model in OpenDC employing a linear method, thereby gauging the extent of improvement
achieved by our models.

5. Hyperparameter Tuning: We employed a validation set for hyperparameter tuning. Para-
meters such as the learning rate, dropout rate, batch size, and number of layers in the
Transformer and LSTM models were optimized to enhance model performance.

6. Result Analysis: The results were analyzed based on the chosen evaluation metrics. This
analysis allowed us to gain insights into how well our models were performing and identify
areas for improvement.

6.3 Evaluation Metrics

To assess the performance of our models, we adopted two primary metrics: Root Mean Squared
Error (RMSE) and Relative Error (RE). Both of these metrics are standard for regression tasks,
providing insight into the model’s prediction accuracy.

1. Root Mean Squared Error (RMSE)

The RMSE is the square root of the MSE. The MSE measures the average of the squares
of the errors, that is, the average squared difference between the estimated values and the
actual value. A lower MSE indicates that our model’s predictions are closer to the observed
data, which is the desired outcome. The formula for calculating MSE is given by:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (6.1)

where Yi represents the actual value, Ŷi represents the predicted value, and n is the total
number of data points.

For the RMSE, it has the advantage of using the same units as the quantity being estimated,
making it easier to interpret in terms of the magnitude of the error. Similar to MSE, a lower
value of RMSE is better as it indicates a closer fit to the data. The RMSE is calculated as
follows:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2 (6.2)
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2. Relative Error (RE)

Relative Error is a metric that provides insight into the relative accuracy of a predictive
model, expressed as a percentage of the actual values. It quantifies the difference between
the predicted and actual values relative to the actual value. The formula for calculating the
relative error for a single data point is:

RE =
|ŷ − y|
|y|

(6.3)

Where:

• ŷ represents the predicted value.

• y represents the actual value.

6.4 Experiment Results

In this section, we detail our estimation and prediction outcomes in Section 6.4.1 6.4.2. Subsequent
insights and discussions can be found in Section ??.

6.4.1 Estimation Results

Model RMSE RE
LSTM 0.923 0.39%

Transformer Model 0.954 0.4%
Statistical Model 38.02 21.1%

Table 6.3: Power Usage estimation performance comparison between Transformer, LSTM models,
and baseline statistical model
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Figure 6.1: Snippet comparison of power usage estimations: Baseline, LSTM, and Transformer
models.

Referring to Table 6.3 and Figure 6.1, we observe that both the LSTM and Transformer models
significantly outperform the baseline statistical model. The latter demonstrates a substantial
deficiency in adapting to the nonlinear fluctuations in power usage, reflecting a drastic performance
deficit of 82% and 85% as compared to LSTM and Transformer models, respectively.

The LSTM and Transformer models, on contrast, effectively encapsulate the nonlinear inform-
ation, exhibiting adeptness in responding to the intricacies of power usage variations. Particularly,
the Transformer model, with its architectural advantage of attending to different portions of the
input sequence differently, lends it proficiency in managing complex dependencies, thus slightly
edging out even the LSTM model.

6.4.2 Prediction Results

Model Power Usage Temperature CPU Utilization
RMSE RE RMSE RE RMSE RE

LSTM 9.55 5.3% 1.77 2.4% 3.80 -
Transformer Model 8.92 5.1% 1.54 2.1% 3.46 -

Table 6.4: Prediction performance comparison between Transformer and LSTM models across
different targets. RE values are not provided for CPU utilization due to the presence of numerous
zero values, which can lead to ambiguities in relative error calculations.
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As shown above 6.4, the Transformer Model consistently slightly outperforms the LSTM in all
metrics (Power Usage, Temperature, and CPU Utilization) in terms of both RMSE and RE.

Besides, the difference in performance is more significant in the ”Power Usage” and ”CPU
Utilization” metrics, where the Transformer Model demonstrates a lower RMSE by 0.63 and 0.338
respectively compared to LSTM.

Specifically, for Power Usage, the Transformer surpasses the LSTM with an RMSE improve-
ment of 0.63 units and a reduced RE by 0.5%. This trend of enhanced performance is also evident
in Temperature predictions, where the Transformer leads with an RMSE advantage of 0.23 and
an RE improvement of 0.3%. In the context of CPU Utilization, the Transformer’s predictions are
closer to the observed values, evident from its RMSE advantage of 0.338. A key insight derived
from these results is the potential adaptability of the Transformer’s architecture for time-series
prediction tasks. Its inherent ability to process various parts of the input data in parallel, cap-
turing both immediate and long-range dependencies, enables the Transformer to identify intricate
temporal relationships more effectively than the sequentially processing LSTM.
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Figure 6.2: LSTM Model performance.
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Figure 6.3: Transformer Model performance.

The figures above function visually compare actual and predicted values using hexagonal bins.
The darkness of each hexagon indicates the density of data points, with darker hexagons signifying
a higher concentration of points. A reference diagonal line represents where predictions match
actual values perfectly. Thus, hexagons close to this line indicate accurate predictions. When
viewing the plot, assess the color concentration and proximity to the diagonal: a concentration
of dark hexagons near this line suggests precise predictions, while those distant may highlight
prediction discrepancies or outliers.

From the results visualized in the figure, several key points can be distilled, as enumerated
below:

• For both models, a significant concentration of data points lies along the diagonal, indicating
that the predicted values are frequently aligned with the actual values.

• While both models generally align with the diagonal, noticeable deviations highlight their
challenges in accurately predicting sudden changes in energy consumption and resource al-
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location, potentially driven by complex data patterns or unpredictable external factors.

• The Transformer model exhibits a slightly higher density of points clustered closely around
the diagonal compared to the other model, suggesting that its predictions can be more
accurate or consistent.

The observation that a majority of points for both models align with the diagonal is promising.
It signifies that both models generally provide accurate predictions for the 4-step prediction.
However, the presence of points that deviate from the diagonal suggests that there are certain
instances where the models’ predictions diverge from the actual values. These deviations might
be attributed to sudden changes in energy consumption and resource allocation, which remain
challenging for the models to capture accurately. Such fluctuations can be driven by unpredictable
external factors or inherent complexities in the data patterns. While the models demonstrate
commendable predictive capabilities overall, further refinements might be needed to better handle
these unexpected shifts and improve the forecasting robustness.

The slight difference in the concentration of points around the diagonal for the Transformer
model suggests its superior capability in making predictions that are very close to the actual
values. The denser clustering for the Transformer model around the diagonal could indicate
that it is better equipped to handle the intricacies and patterns in the dataset, especially CPU
utilization, potentially due to the self-attention mechanisms inherent in Transformer architectures.

In general, the results presented in these figures underscore the utility and effectiveness of both
models, with a slight edge in favor of the Transformer model.

6.4.3 Prediction Performance for Different Time Steps

The following visual 6.7 delves into the model’s performance across varying time lags for three
different metrics: Power Usage, Temperature, and CPU Utilization. A noticeable trend across
these figures is the pronounced decline in model accuracy when forecasting around 200 lags ahead
for both models. This drop in performance aligns with our previous observations from the auto-
correlation analysis, underscoring the challenges of making long-term predictions based on past
data. The autocorrelation results, presented earlier indicated that the strength of the relation-
ship between observations diminishes significantly after approximately 200 lags(1.5h - 2h). This
present analysis brings to light the practical implications of that finding. As the models beyond
the 200-lag mark, both the LSTM and Transformer models grapple with increased uncertainty,
culminating in pronounced errors.

Also, In our analysis of performance across varying time steps, both models exhibit commend-
able accuracy for short-term predictions within approximately 100 lags, equating to a timeframe of
about 50 to 60 minutes. When venturing into mid-term predictions, spanning between 100 to 200
lags or roughly 1 to 1.5 hours, the Transformer maintains its stability and robustness, whereas the
LSTM shows a discernible decline in performance. However, for forecasting beyond the 200-lag
mark, which translates to predictions exceeding 1.5 hours, there is a noticeable degradation in the
accuracy of both models. This discrepancy indicates that while the LSTM can capture short-term
dependencies effectively, the Transformer’s self-attention mechanism possibly enables it to harness
longer dependencies more robustly.
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Figure 6.4: Power Usage Figure 6.5: Temperature

Figure 6.6: CPU Utilization

Figure 6.7: Model performance in predicting different time lags

6.5 Discussion and Model Comparison

Table 6.5: Model comparison between LSTM and Transformer

Aspect LSTM Transformer
Performance Acceptable Slight Better
Consistency High Moderate
Train Time (Epoch) around 50s around 30s
Inference Time around 5.6ms/pred around 13ms/pred
Model Size Large(171k+) Small(17k+)
Param Efficiency Lower Higher
Retrain Stability Stable Varies

Table 6.5 elucidates the strengths and weaknesses of both the LSTM and Transformer models
in the context of our application. Several insights emerge from this direct comparison.

The Transformer, while exhibiting slightly superior predictive performance, is plagued by in-
consistencies during retraining sessions. Beyond mere performance metrics, the Transformer ex-
hibits inconsistency during retraining. This unpredictability, especially when retaining the same
hyperparameters, positions it as a less dependable choice in settings that necessitate regular model
recalibrations. The LSTM, on the other hand, stands out for its remarkable stability and predict-
ability across training sessions. In such environments, the LSTM’s consistency becomes invaluable.
It remains steadfast and predictable across training sessions, highlighting its robustness and reli-
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ability for iterative training with evolving data.
When it comes to training speed, the Transformer is faster than the LSTM. However, this

advantage gets reduced during inference, where the LSTM works faster. This difference highlights
the need to know where and how we plan to use these models, especially when deciding which
part (training or inference) should be more efficient.

There’s a clear difference between the two models when we look at their design and the number
of parameters they use. The LSTM has many more parameters, which might make it seem more
complicated compared to the simpler design of the Transformer. What’s surprising is that the
Transformer, even with fewer parameters, performs really well. This shows that the Transformer’s
design is efficient and can do a lot with less.

Based on another dataset spanning a different time period, both models exhibit comparable
performance. When comparing outcomes to the current dataset, the LSTM model shows variances
of approximately 5%, 3%, and 7% for CPU utilization, Temperature, and Power Usage, respect-
ively. Meanwhile, the Transformer model exhibits differences of 6%, 2%, and 5% for the same
metrics.

Our examination of performance across various time steps suggests that the Transformer’s in-
herent self-attention mechanism might be adept at capturing and leveraging longer dependencies
within the data. This capacity makes the Transformer particularly suited for scenarios requiring
predictions across extended steps. Consequently, when the task necessitates longer-term forecast-
ing or when the data’s dependencies span across extended intervals, the Transformer emerges as
a more favorable choice compared to models without such attention-based capabilities.

At the same time, in our context of forecasting energy and resource consumption, the capacity
to continually retrain with fresh data — without compromising the robustness of a previously high-
performing model — is paramount. Given that the reductions in parameters didn’t significantly
enhance the training speed, the inclination would still be toward the reliability of the LSTM.
Consequently, given its consistent performance and efficiency, the LSTM’s reliability stands out
as particularly suited to our specific requirements.

6.6 Summary

In this chapter, we meticulously crafted experiments to assess the efficacy of modeling techniques,
particularly focusing on LSTM and Transformer models. When applied to estimation and predic-
tion tasks, both models demonstrated significant prowess. For estimation, there was an impressive
over 80% uptick in accuracy relative to contemporary statistical methods. In a 4-step ahead pre-
diction, the models consistently produced results with around 5% relative error for power usage,
2% for temperature, and an RMSE ranging from 3.46 to 3.8 for CPU utilization.

Delving deeper, we undertook a thorough assessment, pitting the LSTM against the Trans-
former, specifically in the domain of HPC data centers. This comparative analysis yielded valu-
able insights, spotlighting the aptness of each model for distinct applications, and consequently,
charting the path toward enhanced sustainability and operational proficiency in high-performance
computing scenarios. Notably, the Transformer, fortified by its self-attention mechanism, outper-
forms in tasks demanding the discernment of long-term patterns, making it especially suitable for
extended forecasting endeavors. On the other hand, for applications such as energy and resource
consumption forecasting, where continual model updates are paramount, the LSTM stands out for
its unwavering stability and reliability. While trimming parameters doesn’t necessarily accelerate
the Transformer’s training, the LSTM’s track record of consistency in dynamic datasets often
earmarks it as the preferred pick for such nuanced tasks.
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Chapter 7

Conclusion and Future Work

In this chapter, we conclude the main contributions of this thesis, propose several potential direc-
tions for future research, and clarify the threats to validity.

7.1 Conclusion

In this paper, we address the main problem of characterizing and modeling resource use and
energy consumption in large-scale data center infrastructures, aiming to enhance societal sustain-
ability. Our methodology hinges on three research questions, focusing on the characterization and
modeling of resource and energy consumption, leveraging machine learning for accurate estima-
tion and prediction. Addressing these concerns has multifaceted societal implications: it aligns
with fostering operational savings that could benefit end consumers and empowers organizations
to anticipate resource needs, ensuring uninterrupted and efficient digital services. Through our
findings, we seek to contribute to a sustainable, economical, and dependable digital future. To be
more specific, we address three main research questions on characterizing and modeling Resource
Usage and Energy consumption using machine learning including estimation and prediction as
shown below. Original contributions are also indicated.

• RQ1: How to Characterize and Analyse Resource and Energy?
In Chapter 4, we present an exhaustive characterization of resource and energy consumption
trends, transitioning from a macroscopic view right down to granular, node-specific obser-
vations. Our investigation covers a vast spectrum, yet simultaneously catches the frequently
overlooked details at the rack level. We highlight peak insights, examine matrix correlations,
analyze daily trends, and ultimately uncover three dominant recurring patterns.

• RQ2: How to Design An Accurate and Efficient ML Model for Data Center
Resource and Energy Estimation and Prediction?

In Chapter 5, we design two contemporary machine learning architectures: LSTM and Trans-
former. These models are specifically tailored for the estimation and prediction of CPU
utilization and power consumption in our dataset. Our approach involves a comprehensive
process of data preprocessing, model tuning, and validation to ensure that the ML models
are not only accurate but also efficient for real-world applications in data centers.

• RQ3: How to Evaluate the ML Models to Understand Resource Use and Energy
Consumption?

In Chapter 6, we design experiments to evaluate the performance of the modeling. For
estimation and prediction modeling, both LSTM and Transformer models show sufficient
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predictable power. For estimation, they achieve over 80% enhancement in estimation ac-
curacy compared to current statistical methods. For 4 steps ahead prediction, both models
achieve approximately 5% relative error for power usage, 2% for temperature, and an RMSE
value range between 3.46 and 3.8 for CPU utilization.

We further offer a comprehensive evaluation and comparison between LSTM and Trans-
former within the context of HPC data centers. This provides insights into the best-suited
applications of each model, laying a foundation for improved sustainability and operational
efficiency in high-performance computing environments. The Transformer, with its self-
attention mechanism, excels in capturing long-term dependencies, making it ideal for tasks
demanding extended forecasting. Conversely, for applications like energy and resource con-
sumption forecasting where constant model updates are vital, the LSTM’s stability and
consistency shine through. While parameter reductions don’t significantly boost the Trans-
former’s training speed, the LSTM’s proven reliability in evolving datasets often positions it
as the go-to choice for such specific requirements.

• Original Contribution:

1. Comprehensive characterization on multi-level, fine-grained dataset:

We delve into an in-depth study on the dataset which is unique due to its detailed
granularity and multi-layered hierarchy. Such intricate data holds the potential to
unlock sophisticated patterns and insights that are typically overlooked in less refined
datasets. This depth and breadth lay the foundation for more robust modeling and
insightful characterizations.

2. Analysis spanning multiple levels (node, rack, overview): We carry out char-
acterization and analysis across multiple levels, offering insights from each distinct
level. At the node level, we investigate individual computational components. At the
rack level, we grasp the synergy between nodes. The overview provides a macroscopic
perspective, ensuring holistic insights.

3. Employment of frequency domain analysis for enhanced pattern detection:

We integrate frequency domain analysis to identify recurring patterns in HPC data
centers, detecting underlying periodicities fundamental to understanding HPC beha-
vior.

4. ML model comparison and insights into HPC data center: By leveraging ma-
chine learning models and assessing their efficacy against practical metrics in the HPC
data center landscape, we illuminate their precise advantages and areas of strength.
This analytical process provides pivotal insights into optimizing these models specific-
ally for high-performance computing infrastructures, underscoring their potential to
significantly enhance operations and efficiency in the HPC data center domain.

7.2 Directions for Future Research

In this section, we propose several potential directions for future research.

Conduct simulation experiments to validate the model One promising avenue for future
research lies in conducting simulation experiments to validate the model. Simulated environments
allow for the controlled testing of various parameters and scenarios, ensuring a comprehensive
understanding of the model’s strengths and limitations. By employing simulations, we can generate
synthetic data under controlled conditions, offering a more rigorous testing ground for our model’s
robustness. This approach not only supplements real-world validation but also highlights potential
areas of improvement that might not be evident under typical operating conditions. It would be
valuable to determine how the model performs under varying conditions, which can help refine it
further for optimal real-world performance.
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Proactive resource and energy scheduling: harnessing estimation and prediction al-
gorithms for optimized HPC operations Building upon our current research, a significant
direction for future exploration would be the development of a systematic energy and resource
scheduling mechanism, grounded in the estimation and prediction algorithms we’ve examined.
Such a scheduling system would aim to optimize the allocation and use of resources in real time,
harnessing the predictive power of our algorithms to anticipate future demands. This proactive
approach could lead to substantial energy savings, minimize resource wastage, and ensure the
highest possible operational efficiency. Further, integrating feedback loops into the system could
refine prediction accuracy over time, making the scheduler increasingly adaptive to the evolving
demands and patterns of the HPC clusters.

7.3 Threats to Validity

In our related work part, we recognize several validity threats. Firstly, the selection process might
unintentionally favor specific viewpoints due to our set criteria, such as limiting our scope to
scientific research and English language publications. This approach overlooks valuable insights
from commercial sectors and non-English sources. Moreover, publication bias, favoring positive
outcomes, could lead to a skewed representation, potentially exaggerating effect sizes. Lastly,
given the ever-evolving nature of research, our review, though current, may soon miss the latest
studies, affecting its long-term relevance.

In the characterization, while our work is already detailed and fine-grained, it’s essential to
recognize its inherent limitations. The scope and matrixes of data can still be expanded upon. As
we dive into our findings, it’s pivotal to remember that there’s always room for broadening the
data spectrum and refining our interpretations based on emerging datasets.

In the modeling part, different architectural variations or custom modifications may be more
suitable for specific tasks than others. For example, the number of layers, the size of the atten-
tion heads, and the overall dimensionality in the Transformer model can influence the model’s
performance. The wide array of possible design choices, each potentially affecting the outcome,
means that ensuring the most appropriate design for a given task becomes a complex and critical
endeavor. The flexibility in model design, while a strength, can lead to uncertainties in the choice
of configurations and parameters, which can be a threat to validity.

In addition to the architectural considerations, the scope of our experiments was constrained
to specific nodes and a singular resource within the dataset. This focused approach, though
streamlined, might introduce limitations. Testing only on designated nodes could reduce the
generality of our results, potentially making them less applicable across different nodes or datasets.
Furthermore, by concentrating solely on one resource of the dataset, we might miss out on nuances
or patterns present in other resources, which could offer valuable insights or even challenge our
current findings. For a more comprehensive understanding, future studies should contemplate
expanding the experimentation landscape.
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