Gradel0O: A Framework for Performance
Characterization of Distributed Graph Processing

Tim Hegeman
VU Amsterdam
t.m.hegeman @vu.nl

Abstract—Graph processing is one of the most important
and ubiquitous classes of analytical workloads. To process large
graph datasets with diverse algorithms, tens of distributed graph
processing frameworks emerged. Their users are increasingly
expecting high performance for diversifying workloads. Meeting
this expectation depends on understanding the performance
of each framework. However, performance analysis and char-
acterization of a distributed graph processing framework is
challenging. Contributing factors are the irregular nature of
graph computation across datasets and algorithms, the semantic
gap between workload-level and system-level monitoring, and
the lack of lightweight mechanisms for collecting fine-grained
performance data. Addressing the challenge, in this work we
present Gradel0, an experimental framework for fine-grained
performance characterization of distributed graph processing
workloads. Gradel0 captures the graph workload execution as
a performance graph from logs and application traces, and
builds a fine-grained, unified workload-level and system-level
view of performance. Gradel() samples sparsely for lightweight
monitoring and addresses the problem of accuracy through a
novel approach for resource attribution. Last, it can identify
automatically resource bottlenecks and common classes of per-
formance issues. Our real-world experimental evaluation with
Giraph and PowerGraph, two state-of-the-art distributed graph
processing systems, shows that Gradel(can reveal large differ-
ences in the nature and severity of bottlenecks across systems
and workloads. We also show that Gradel0 can be used in
debugging processes, by exemplifying how we find with it a
synchronization bug in PowerGraph that slows down affected
phases by 1.10 — 2.50x. Gradel0 is an open-source project
available at https://github.com/atlarge-research/gradel0.

Index Terms—Performance analysis, Distributed graph pro-
cessing, High performance computing, Performance Engineering

I. INTRODUCTION

Graphs are convenient data structures used in a variety of
domains, such as social media, Internet technologies, bioin-
formatics, logistics, road networks, and machine learning [1],
[2]. Following trends in increasingly big data [3], graphs
are becoming ever larger and their processing pipelines ever
more complex. Although many distributed graph processing
frameworks already exist [4]-[8], they need to adapt to these
trends and process graphs increasingly faster. There are many
timely performance challenges specific to graph processing—
e.g., irregular workloads, idiosyncratic operation of graph pro-
cessing frameworks—, which generic performance character-
ization frameworks [9]-[11] cannot fully address. In contrast,

Animesh Trivedi
VU Amsterdam
a.trivedi@vu.nl

Alexandru losup
VU Amsterdam
a.iosup@vu.nl

in this work we propose GradelO, a specialized performance
characterization framework for distributed graph processing.

Performance characterization and analysis have a long and
successful tradition. Generic tools and frameworks [9]-[11]
are helpful in identifying performance issues, scalability bot-
tlenecks, and execution inefficiencies. However, performance
analysis and characterization of a distributed graph processing
framework remains daunting. We identify and address in this
work three challenges. Firstly, graph workloads are irregular
and dynamic. Unlike typical data processing, where the run-
time depends mostly on input size, graph processing times
depend on the graph size, structure, and associated vertex
values and edge semantics [12]-[15], thus leading to irregular
work per iteration. For example, in a top-down graph traversal
algorithm, per iteration work is proportional to the size of the
traversal-frontier as well as the number of outgoing edges in
the frontier [16]. Furthermore, many graph algorithms, like
PageRank, dynamically iterate until the output of the algorithm
converges, so the number of steps in the algorithm typically
depends on the graph structure and per vertex values [17].
Hence, due to the irregular and dynamic nature, modeling
graph workload remains challenging. Instead, the community
uses empirical approaches to characterize, validate, and cali-
brate real-world performance profiles for graph workloads.

Secondly, there is a semantic gap between the data re-
quired for performance characterization from system-level and
workload-level monitoring. As large-scale graph processing is
distributed in nature, system-level distributed monitoring tools,
such as Graphite [18] and Ganglia [19] can reveal typical
performance issues, such as resource saturation or skewed load
across multiple machines. However, as black-box approaches,
they are unable to provide insights into performance character-
istics across graph workload-level concepts, such as iteration
boundaries, and workload skew due to poor graph partitioning.
In contrast, workload-level monitoring as provided by frame-
works themselves (e.g., Giraph [5], Spark [20]), can correlate
some metrics like runtime, with workload-level concepts of
iteration counts, partition sizes, or number of active vertices.
Yet, workload-level monitoring also falls short of providing
observability by linking workload-level performance issues
(e.g., slow iteration) to a potential system-level root cause
(e.g., network under-utilization). We posit combining both
approaches to bridge the semantic gap is key to understanding
the performance of graph processing workloads.

Lastly, there is a trade-off between the accuracy of per-
formance data and monitoring overhead. As with distributed
graph processing many performance-critical events, e.g., syn-
chronization, task scheduling, message passing, happen on a
fine time granularity, we need to monitor and collect data
accurately and with fine granularity to identify rapidly shifting
performance bottlenecks in the system [21]. However, fine-
grained instrumentation of a data processing framework can
be invasive and has high overheads [22]-[24]. We posit that
a lightweight, low-overhead monitoring process is possible
for graph processing, but it requires specialized approaches
to upscale the low-resolution monitoring data.

To tackle these challenges, in this paper we propose
Gradel0, a framework for fine-grained performance character-
ization of distributed graph processing workloads. Our main
contributions are:

1) We systematically study and analyze the requirements
(R1-R5 in § II) for characterizing the performance of
distributed graph processing frameworks.

2) Based on this analysis, we design GradelO (§ III) for
graph-workload peformance characterization. GradelO
collects detailed workload-level execution traces and aug-
ments them with coarsely collected systems-level moni-
toring data through a novel resource-attribution process
to produce a fine-grained performance profile (§ III-D).
From this profile, Gradel0 identifies resource and perfor-
mance bottlenecks, and associates them with individual
graph workload-level concepts.

3) We conduct a real-world experimental evaluation of
Gradel0 (§ IV) to validate the ideas proposed in this work
on two state-of-the-art graph processing frameworks, Gi-
raph [5] and PowerGraph [4].

4) We open-source the Grade10 software, and make it avail-
able at: https://github.com/atlarge-research/grade10.

II. PERFORMANCE CHARACTERIZATION REQUIREMENTS

In this section, we start by synthesizing the requirements
for graph performance analysis and characterization.

A. System Model

Graph processing is often an iterative, multi-phase opera-
tion [2], [12], [25]. Distributed graph processing frameworks
have in common some architectural patterns, such as iterative
and concurrent processing, distributed load balancing, and
communication by message passing. However, beyond these
high-level commonalities, graph frameworks span a broad
range of different programming and execution models [1].

Due to the large variety of graph processing systems
available—including native implementations written using
low-level languages, and systems implemented on top of
managed runtimes [21]—many kinds of resources and services
can be used to process graphs. These resources include hard-
ware provided by the underlying infrastructure, such as CPU,
network, storage, and accelerators. Software resources include
locks and queues, or even runtime services such as a garbage
collector (GC), a data store, or a synchronization service.

TABLE I: Overview of related work and requirements synthe-
sized from § II-B. We indicate for each work if it does (v),
does not (X), or partially (~) fulfills a requirement.

~
1S

R2 R3 R4

~
n

Approach

Blocked time analysis [9]
Retro [10]
Tian et al. [11]

Distributed tracing [26]-[28]
Critical path analysis [29]
Benchmarks [13], [30]
Comparative studies [31]—[33]
Profiling/tracing [34], [35]
Logging [24], [36]-[38]
Distributed monitoring [39]-[42]

Gradel0

>\
i

i
1}

>
ANANRN

[S EAN
N XX NN

N

SISO XN ! XXX [N\
L NI NI N
S NI N N NI N N N I N N

N[>\
<
N

B. Requirement Synthesis

We now synthesize requirements from both the need for
generic performance characterization and the graph-specific
challenges. Table I summarizes our discussion and comparison
with various state-of-the-art approaches (more in § VI).

(R1) Identify resource bottlenecks: A resource bottleneck
refers to a workload execution period during which a
particular hardware/software resource is saturated, thus,
creating a bottleneck. Bottleneck identification can guide
implementation and optimization efforts toward the re-
source(s) that limits the performance of the workload.

(R2) Identify performance issues: Beyond bottlenecks,
graph processing systems suffer from a variety of per-
formance issues. For example, workload imbalance can
cause stragglers, synchronization can impose significant
overhead, and applications can fail to saturate any re-
source due to a variety of reasons. Identifying common
classes of performance issues is key to comprehensive
characterization of graph workload performance.

(R3) Characterize performance with fine granularity: Due
to irregular and rapidly changing workloads, fine-grained,
per-resource performance characterization is necessary to
study the effect of short-term bottlenecks. Furthermore,
attributing bottlenecks and performance issues to fine-
grained stages in a workload execution, as opposed to
treating large parts or even the entire workload as a black
box, aids in bridging the semantic gap between system-
level and workload-level monitoring.

(R4) Impose low monitoring overhead: Fine-granular per-
formance characterization needs fine-granular workload
monitoring. However, fine-granular monitoring can lead
to high overheads, which can cause perturbations in an
application’s execution and change the order or nature
of bottlenecks and other performance issues [22]-[24].
Furthermore, due to large variations in graph workload
performance across inputs, algorithms, and setups, per-
formance characterization at smaller scale or in isolated
environments may not be representative. Thus, monitor-
ing must be lightweight to characterize the performance
of production workloads at a fine time granularity.

(R5) Maintain framework- and workload-independence:
The diversity of graph frameworks, datasets, algorithms,
and runtime environments necessitates that any perfor-
mance characterization tool must be graph framework or
workload agnostic. With a modest engineering effort it
must be portable across many distributed graph process-
ing frameworks, as the system model in § II-A indicates.

III. GRADE10 DESIGN

Gradel0 is a novel performance characterization framework
for distributed graph processing workloads. Given a graph pro-
cessing framework executing a workload, Grade10 generates a
fine-grained performance profile and analyzes it automatically
to find performance issues. It generates this profile through a
complex but predominantly self-managed lifecycle (described
in § III-A). At the core of this process are execution and
resource models given by the user (§ II-B), which are
augmented with fine-granularity traces (§ III-D) built from
monitoring data (§ III-C) to identify resource bottlenecks and
performance issues (§ III-E and III-F).

A. Life Cycle of a Performance Characterization Operation

We begin with an overview of a performance characteriza-
tion operation conducted with GradelO. Figure 1 shows the
overall steps and components. As input, the user provides
the system under test (SUT) and the graph workload. The
SUT (component 1 in the figure) encompasses both a graph
processing framework (e.g., Giraph) and associated infrastruc-
ture. The workload (component 2) can either be a benchmark
(e.g., Graphalytics [13]) or a specific, user-defined workload
like PageRank on a web dataset. During execution, the SUT
captures monitoring and logging data (component 3), for both
the framework and the infrastructure (§ III-C).

Gradel0’s performance characterization process takes two
additional inputs from the user: an execution model and a
resource model of the SUT (components 4 and 5, explained
in § III-B). The execution model defines how the framework
executes the various phases of a workload, whereas the
resource model describes the diverse hardware and software
resources. Gradel0’s data collection process (component 6)
uses these models to combine monitoring and logging data into
a structured view of the application’s execution. The resulting
execution and resource traces feed the characterization.

Gradel0’s performance characterization proceeds in three
stages. Firstly, in the resource attribution stage (component 7,
§ II-D) the execution and resource traces are combined (by
upsampling) and analyzed to generate a fine-grained resource
utilization attribution to individual execution phases of a
workload. The upsampling process helps to attribute resource
traces to an execution phase at a finer granularity than the
resource traces are collected at. We analyze the accuracy of
upsampling in § IV-B. Secondly, based on the attribution
process, GradelO identifies bottleneck resources which are
fully consumed in different phases of execution (component
8). Finally, the fine-grained attribution and execution trace are
further analyzed via a simulation process to identify several

S - J

& E — Framework — Grade10 Result
resentation
A

2
G
User fx Expert
Y
Performance Issue
Identification

[+~ Refine

Workload Execution || Resource
(Graphalytics)(Custom) _Model Model

Bottleneck
® Identification

Collection ®)

e]
H Framework O Monitoring &
e 10}

Fig. 1: The Gradel0 architecture.

Resource
Attribution

classes of performance issues and their estimated impact on
the execution time of the graph application (component 9).
Gradel0’s result visualization (component 10) can help an
analyst to identify promising optimization and tuning direc-
tions, and a domain-expert to refine performance models.

B. Execution and Resource Models

We now detail the execution and resource models used by
GradelO to facilitate systematic performance analysis across
diverse graph processing systems and workloads, meeting RS.

The execution model describes the types of operations or
phases that occur throughout the execution of a workload on
a specific framework. A phase is a single logical operation. An
execution model is a hierarchical direct acyclic graph (DAG)
in which nodes represent phases, and directed edges represent
the order of execution (Figure 2(a)). The model is nested:
a node can be itself a DAG, to decompose a high-level
phase into a graph of lower-level phases. For example, an
execution model for Giraph may describe a Giraph application
as three sequential, high-level phases: (P1) load the graph,
(P2) perform the graph algorithm, and (P3) write results. P2
is further decomposed into a sequence of low-level superstep
phases (i.e., iterations of a graph algorithm, P2.x), where
each superstep phase is further decomposed into (P2.x.1)
preparing Giraph’s workers, (P2.x.2) processing a set of graph
partitions, and (P2.x.3) synchronizing through a global bar-
rier. By modeling graph applications as nested, hierarchical
DAGs, GradelO can characterize application performance by
first relating system-level performance to fine-grained, low-
level phases, and then propagating performance data up the
hierarchy to characterize the performance of high-level phases.

The resource model defines which resources are available
in the SUT. We use the term “resources” broadly, to include
typical systems resources (e.g., CPU or network), software
resources (e.g., queues or locks), and runtime services (e.g.,
garbage collection). Gradel0 models the diverse resources
used in graph processing as two distinct classes, consumable
resources and blocking resources. Consumable resources (e.g.,
CPU cycles, network bandwidth) have a limited capacity.
If a workload’s demand for a consumable resource exceeds
its capacity, then the workload slows down. Blocking re-
sources (e.g., locks, queues) do not affect the execution of
a phase when available, but block a phase’s execution when
unavailable. Grade10 models such resources as a sequence of

blocking events, i.e., time intervals during which the resource
was not available. Runtime services such as garbage collectors
can also be modeled as blocking resources; e.g., workload ex-
ecution is periodically blocked to perform garbage collection.

We envision that the execution and resource models are
defined once, typically by a domain expert. Then, with cal-
ibration, they can be used repeatedly by multiple users for the
same graph framework and infrastructure.

C. Monitoring, Logging, and Data Collection

In addition to the models, which describe properties of any
graph application run on the SUT, GradelO collects execution
logs and monitoring data, which describe a particular execu-
tion of a workload. Monitoring collects periodically resource
utilization data from existing cluster monitoring systems (e.g.,
Ganglia). Execution logs provide workload-specific data that
includes (with help from a domain expert) timestamps for
many performance critical events.

GradelO discretizes time into a sequence of timeslices,
assuming that during a timeslice the SUT is in a steady state,
i.e., resource consumption during a timeslice is constant and
phases can only start/end at the start/end of a timeslice. This
assumption can be held true for reasonably small timeslices,
thus supporting requirement R3. Hence, the timeslice duration
is an important parameter in tuning GradelO’s performance
characterization process, because it controls how fine-grained
Gradel0’s analysis is with respect to time. In practice, the
timeslice duration can be set as low as tens of milliseconds.

Ideally, both monitoring data and execution logs should
match the short timeslice duration, i.e., their data must be col-
lected at least every timeslice. Though possible for execution
logs, timeslice-granular monitoring generates large amounts
of data and imposes a high overhead on the system. To solve
this challenge, GradelO includes a novel resource attribution
method (see § III-D) through which coarsely collected mon-
itoring data (often over multiple timeslices, thus with low
overhead) can be converted to timeslice granularity. We show
empirically in § IV-B that our upsampling method is effective
and can accurately upsample multi-timeslice monitoring data
to reach single-timeslice granularity (thus, achieving R4).

Gradel0 uses the execution and resource models provided
by the user to parse the monitoring and logging data, building
an execution trace and a resource trace. The former is a
detailed execution trace of phase executions, at the granularity
of a timeslice. For each phase, GradelO extracts a start and
an end time from the execution logs. The resource trace
is a list of all resources in the SUT that were monitored
during an application’s execution, including coarsely collected
consumable resource monitoring data, and framework-specific
resource usage metrics (e.g., queue occupancy, GC informa-
tion, blocking events) extracted from execution logs. The two
traces have different granularity: whereas the execution trace
uses the granularity of a single timeslice, the resource trace is
at a coarser, multiple-timeslice granularity. In the next section,
we explain how the resource trace is upsampled to match
execution trace during the resource attribution process.

D. Resource Attribution

As described in the previous section, performance analysis
requires fine-grained data (to meet R3), but to maintain low
overhead GradelO only collects coarse-grained monitoring
data (R4). To address this challenge, the GradelO resource
attribution process takes as input coarse-grained resource
traces and infers per phase the resource consumption, over
time, with fine granularity (i.e, one timeslice duration). The
process consists of three steps. Firstly, GradelO estimates
the demand over a timeslice for a given resource. Secondly,
for each resource, GradelO upsamples the resource trace to
increase its granularity to match the timeslice duration. Finally,
for each timeslice, GradelQ attributes the consumption of
each resource to individual phases. Figure 2 explains this
process through a constructed example, about the execution
of a graph workload with four phases, P1 through P4, which
can utilize three available resources, R1, R2, and R3 (e.g.,
CPU, network, storage). Figure 2(a) shows the execution trace
of the workload, depicting phase-lengths in timeslices on the
horizontal axis and concurrent phase-execution on the vertical.

1) Resource Demand Estimation: The intuition behind this
step is that, for a given workload, resource consumption is
correlated with the resource demand of phases. Resource
demand estimation is guided by resource attribution rules
given by an expert user in Gradel0. These rules define a matrix
with columns for each phase P and rows for each resource R,
each matrix element indicating the rule linking the demand for
R to P. Figure 2(b) shows an example of such matrix. Rules
may be different, leading to cells with different kinds of values.
Currently, Gradel0 supports three resource attribution rules:

R1. The None rule indicates that phase P does not use
resource R. For example, “-” in Figure 2(b) indicates
resources 2 and R3 are not used by phase P1.

R2. The Exact rule indicates that a phase P has an exact
demand for a resource R. This rule has one parameter, the
proportion. In the figure, phase P3 uses 50% of resource
R2 (e.g., half of R2’s CPU cores).

R3. The Variable rule indicates that phase P may use re-
source R as much as possible, but with an unknown,
variable, and/or relative demand. These are represented as
variables (z, y) in the figure. In our running example, the
exact demand of phase P2 on resource 21 is unknown,
but its demand is twice that of phase P1 (2z vs. 1x).

From these basic rules, Grade10 builds a timeslice-granular
resource demand estimation matrix. From the execution traces,
Gradel0 determines which phases are active (i.e., the phase
has started, has not yet ended, and is not interrupted by a
blocking event) at a given time slice (Figure 2(a)). GradelO
then sums up the demands of active phases with Exact rules to
determine known demand, and sums up the active phases with
Variable rules to determine the variable demand. The result of
this process is a timeslice-granular resource demand estimation
matrix for every resource, including expanded forms of the
variables given by rules, as shown in Figure 2(c).

6 & o
@ @ P1 P2 P3
@ R1| 1x 2x 1x
|T| R2| - ly 50%
[Pt | [ps [r4] R3| - 80% 40%
——t——ttt+—+>
0 1 2 3 4 5
o Time slices e Time slice
0-1 2-3 4-5 0 1 2 3
R1| 60% 75% 30% R1|30% 90% 60% 90%
R2 | 20% 40% 30% R2 | 0% 40% 15% 65%
R3 | 30% 90% 20% R3 | 0% 60% 80% 100%

ly

Time slice
P4 0 1 2 3 4 5
R1 | 1x 3x 2x 3x 1x -
R2 - ly ly 50%+1ly 50% 1y
R3 80% 80% 120% 40%
() Time slice
4 5 0 1 1 2 3 3 4 5
60% 0% R1 [30% 30%||60% 60% 60%||30% 60%|| -
50% 10% R2 | - - ||40% 15% 15%][|50% 50%| |10%
40% 0% R3 | - - 60% 80% 67%|[33% 40%|| -
P1 P2 P3 P4

Fig. 2: Constructed example of Gradel(’s resource attribution process. Execution DAG and phase execution (in (a)) are derived
from the execution model and trace. Resources R1, R2, and R3 can represent typical resources such as CPU, network, and
storage. Monitoring data is collected at a 2x timeslice quanta (shown in (d)). Highlighted entries are discussed in § III-D.

2) Upsampling Resource Traces: Recall from § III-C that
resource monitoring data is collected at coarser granularity
(multiple timeslices) than the execution traces (single times-
lice). In Figure 2(d), the monitoring data for each resource
is collected at two quanta, i.e., each data point represents a
measurement over two timeslices. Each resource consumption
measurement represents the average rate of consumption since
the previous measurement. For coarse-grained monitoring,
the period between consecutive measurements can be long
(to reduce the monitoring overheads) and the average rate
of consumption may not accurately reflect actual use of a
resource (e.g., coarse-grained monitoring misses burstiness).

The aim of the upsampling process is to infer from mon-
itoring accurate data at timeslice granularity. Intuitively, the
demand (at timeslice granularity) and actual consumption (av-
eraged over multiple timeslices) are known and can be su-
perimposed to accurately generate resource comsumption at
a timeslice granularity. GradelO takes this approach, by con-
sidering independently each measurement for each resource.
First, the total resource consumption is divided over the multi-
ple timeslices, proportionally to the known resource demand in
each time slice, without exceeding the demand or the capacity
of the resource (whichever is lower). If the total resource
consumption exceeds the Exact demand during a measurement
period, the remainder is divided proportionally (load-balanced)
to the estimated Variable demand. For example, the total
demand for resource R2 for timeslices 2-3 is known to be
50% + 2y (in Figure 2(c), sum of the two matrix elements),
whereas the actual average consumption over 2 timeslices is
40% (in Figure 2(d), the single matrix element for R2 and 2-3).
Putting these together, Gradel0 computes the actual resource
consumption to be at 15% and 65% for timeslices 2 and 3,
respectively. This output is part of the complete timeslice-
granular resource-consumption matrix computed by GradelO,
which Figure 2(e) depicts.

3) Attribution to Phases: The final step in GradelO’s re-
source attribution process is attributing resource consumption
to individual phases of execution within a single timeslice.

The attribution step is applied independently for each resource
and timeslice. First, Gradel0 identifies which phases with an
Exact attribution rule (see § III-D1) are active during the
timeslice. The upsampled resource consumption is attributed
to each Exact phase proportionally to and not exceeding their
resource demand. Next, any remaining resource consumption
is proportionally distributed based on the relative demands
(calculated from Variable attribution rules) of all active phases.

The result of this process is a 3d-array: the timeslice-
granular resource consumption for each execution phase, as
exemplified in Figure 2(f). In the example, at timeslice 3,
only the phases P2 and P3 are active. (To see why, compare
Figures 2(a) and (f).) Both of these active phases need resource
R2 for execution, with the total demand of 50% + 1y (Fig-
ure 2(c), element for R2 and timeslice 3). The actual resource
consumption is at 65% (Figure 2(e), same element). Hence,
by giving the first 50% to P3 (Exact assignment), we are left
with 15% for P2 (Variable assignment). These values appear
in the corresponding elements, in Figure 2(f).

E. Resource-Bottleneck Identification

To address R1, the GradelO performance characterization
pipeline uses a specialized process for detecting resource
bottlenecks. Resource bottlenecks are important guides for
performance engineering. For example, whenever an applica-
tion saturates the bandwidth of a network link, that part of
the application is bottlenecked by the network and can only
be sped up by increasing the performance of the network or
reducing the amount of data sent across the network.

To identify resource bottlenecks, GradelO uses separate
approaches for blocking and for consumable resources. Bot-
tlenecks on blocking resources are straightforward to detect.
Whenever a phase is blocked on a resource, that resource is de-
laying the execution of the phase and thus forms a bottleneck.
Because a list of blocking events is part of GradelO’s input,
Gradel0 can compute for each phase how much time that
phase spent bottlenecked (blocked) on each blocking resource.
These bottlenecks are comparable to the notion of blocked
time [9], but work in another context; they both refer to

a phase/task halting execution until the operation occupying
some resource completes (e.g., a GC-event in Gradel0, a disk
read or network transfer in blocked time analysis).

Bottlenecks on consumable resources can occur in two
different situations: when a resource is saturated, and when
a phase reaches its upper limit on how much of a resource it
needs. When a resource is saturated, i.e., reaches full (100%)
utilization, all phases that compete for this resource are expe-
riencing a bottleneck. GradelO identifies such bottlenecks by
analyzing the upsampled resource metric (see § III-D2) of each
resource for extended periods of full utilization. Next, Grade10
determines which phases were using that resource during
periods of saturation and marks those phases as bottlenecked.
For example, in Figure 2(e), resource R3 is consumed 100%
during timeslice 3. During timeslice 3, both P2 and P3 are
active, and both are dependent on R3. Hence, Grade10 marks
both P2 and P3 as resource bottlenecked on R3 during this
timeslice, and suggests to developers that providing more of
R3 would help with the performance of both phases.

One of the least understood phenomena in graph processing
is that resource bottlenecks can still occur even when a
resource is not saturated. When a phase is limited to using
only part of a resource (e.g., a phase limited to using only 2
out of 4 CPU cores, expressed in Grade10 as Exact rule, 50%),
that phase is bottlenecked on a resource if it uses as much as
its upper limit allows, regardless of whether the resource itself
is saturated. Gradel0 identifies such bottlenecks by analyzing
the per-phase resource usage produced by its resource attri-
bution process for phases with an Exact attribution rules. For
example, P2 can use 80% of R3 (Figure 2(b)). In the final
outcome of the resource attribution process, in Figure 2(e), we
observe P2 uses 80% of R3 during timeslice 2. Here, P2 is
bottlenecked on R3, as its 80% Exact demand is met, despite
the resource itself not being 100% utilized. Hence, GradelO
recommends to configure P2 to use 100% of R3 (instead of
80%), which would likely yield better performance.

F. Performance-Issue Detection

To detect performance issues (R2), GradelO systematically
determines for each phase in a given workload which kinds
of performance issues might apply, from several classes of
issues Gradel0 has been designed to detect. For each possible
performance issue, Gradel0 uses simulation to estimate how
the execution of an application would change if some potential
performance issue was fixed. Our approach is similar to
blocked time analysis [9], which uses simulation to estimate
the performance that could be gained by removing disk or
network bottlenecks, but applied to the different context of
graph processing (with different execution models, different
kinds of resources, and different types of performance issues).

Gradel0 simulates applications by replaying the captured
execution trace. Gradel(Q’s simulator assumes a simplified
system model whereby each phase has a fixed duration as
recorded in the execution trace, with no delays between
phases. While replaying a trace, GradelO obeys the prece-
dence constraints (defined in the execution model), as well as

scheduling constraints related to concurrency and locality (if
available). For example, in many distributed graph processing
frameworks, compute tasks cannot migrate between machines
to avoid expensive data movement.

For each potential performance issue, GradelO first deter-
mines how solving that issue would change the duration of a
specific set of phases. Next, it simulates the application with
adjusted phase-durations to derive an optimistic application
makespan. Finally, Grade10 compares the optimistic makespan
with the simulated makespan of the original execution trace,
and obtains an upper bound on the reduction in makespan
possible by fixing a specific performance issue. Gradel0 only
reports these performance issues if the possible reduction in
makespan is larger than an arbitrary minimum threshold.

Using this general approach for detecting performance
issues, GradelO is currently able to identify two common
classes of performance issues in distributed graph processing,
extensive resource bottlenecks and imbalanced execution (see
§ IV-C and IV-D for evaluation). Firstly, to detect and evaluate
the impact of resource bottlenecks, GradelQ systematically
considers combinations of phases and resources, and simulates
how completely removing bottlenecks on some resource could
speed up the application. To simulate removing a bottleneck,
Gradel0 computes how much shorter a phase could become
until another resource becomes bottlenecked. For the example
in Figure 2, if we are to optimize R3, which is at 100% during
timeslice 3, then R1 becomes the next bottleneck, and the gain
margins are limited. However, removing the R1 bottleneck as
well could yield more performance, as the next bottleneck is
caused by R2, which is only at 65% at that moment.

Secondly, to detect and evaluate the impact of imbalanced
execution, Gradel0 identifies sets of concurrent phases of the
same type and simulates how the application execution would
change if those phases were perfectly balanced. GradelO
assumes that only the work performed by concurrent phases of
the same type is interchangeable (e.g., compute phases during
one iteration of a graph algorithm, but not from different
iterations). GradelO also assumes that, absent the imbalance,
each phase in a set of concurrent phases would have the same
duration and the total duration of all phases is preserved.

IV. EXPERIMENTAL RESULTS

In this section we evaluate Gradel0 by using it to character-
ize the performance of two state-of-the-art distributed graph
processing systems (thus, meeting RS) on our experimental
setup (§ IV-A). Our key findings are:

1) Coarse-grained system-level monitoring data can be used
as a high fidelity source for fine-grained performance
modeling using GradelO’s resource attribution process
(thus, meeting R3, R4). The process produces high-
quality traces with less than 20% upsampling errors for
tuned models where monitoring data is collected at the
8% timeslice granularity. (§ IV-B)

2) Fine-grained performance profiles generated by Gradel0O
can correctly identify resource bottlenecks while confirm-
ing the apriori knowledge in the field (thus, meeting R1,

CPU usage [# cores]
>

[2]
2
- O I
n T T T
0 500 1000 1500 2000
Time [ms]

(a) Resource attribution without attribution rules.

CPU usage [# cores]
>

Status

2000

500 1000

Time [ms]

1500

(b) Resource attribution with attribution rules.

Fig. 3: Outcome of Gradel0’s resource attribution process for an exemplary Compute phase. (fop) Attributed CPU usage (shaded
area), estimated resource demand (curve), and the number of compute threads (dashed line) over time. (bottom) Presence of

CPU bottlenecks (shaded red if present), over time.

R2). For example, message queues in Giraph, not the
network as expected in a distributed setting, are the most
impactful bottleneck for 7 out of 8 jobs, accounting for
up to 57.8% of the processing time, thus confirming the
observation (lack of CPU or network related bottlenecks)
in a previous Giraph study [33] (§ IV-C).

3) GradelO is an effective performance debugging tool. It
helped us identify a synchronization bug in PowerGraph
that slows down affected phases by 1.10—2.50%. (§ IV-D)

A. Experiment Setup

We use in our experiments two state-of-the-art distributed
graph processing systems, Giraph [5] and PowerGraph [4].
We instrumented Giraph and PowerGraph with 38 and 37
additional logging statements to capture performance-critical
events in the execution logs. As graph workloads, we run
four graph algorithms (BFS, CDLP, PR, and WCC) from the
Graphalytics benchmark [13] on two graph datasets (Datagen-
1000 and Graph500-26). All experiments were run on a local
cluster (DAS-5 [43]) with 10 dedicated machines with dual
Intel Xeon E5-2630v3, 64 GiB memory, and FDR InfiniBand.

B. Validation of Resource Attribution Process

We validate Gradel(Q’s resource attribution process by
closely analyzing two key steps in it. First, we study the
impact of resource attribution rules (§ III-D1) on the resource
attribution process. Second, we quantify the accuracy of the
upsampling process (§ III-D2) by comparing its results to
a (partial) ground truth. The aim of this section is to demon-
strate that Grade10 can produce intuitive and sound results.
Impact of Attribution Rules: We manually inspect the results
of resource attribution in two configurations: one with tuned
resource attribution rules, and another without. We run a
PageRank application on Giraph (more thorough analysis and
examples available online [44]) and model the execution of
one worker node during a single algorithm iteration as two
concurrent phases: Compute and Communicate. The Compute
phase in turn comprises a set of ComputeThread phases. The
attributed resource usage is the sum over all ComputeThreads

in a single Compute phase. In all settings, we calculate the
Compute phase resource usage as well as demand. In case no
rules are provided, Grade10 assumes an implicit Variable rule
with a parameter of 1z for every phase.

Figure 3 depicts the result of our experiment. The top sub-
plots depict the attributed CPU usage and estimated CPU
demand of the Compute phase over time for two configurations
(with and without rules). The bottom sub-plots depict the
presence of CPU bottlenecks over time, as identified by
Grade10. The figure shows three distinct situations: @ a period
in which most compute threads were consistently active and
message queues were not yet full, @ a GC pause halting
execution, and @ a period in which message queues were full
with short bursts of activity as messages left the queue.

When no attribution rules are provided (Figure 3a), we
observe in @ that Grade10 erroneously estimates CPU demand
above 23 cores, i.e., the number of compute threads Giraph
was using. GradelO wrongly concludes that during @, the
Compute phase is rarely bottlenecked on the CPU, while
intuitively compute threads should be primarily CPU-bound
when not blocked on message queues or GC. During the GC
pause (), Gradel0 correctly finds that the Compute phase is
not using the CPU. Finally, when Giraph’s message queues
are full (@), GradelO correctly identifies that CPU demand
fluctuates over time, but overestimates the precise demand,
which should be one CPU core per active thread (not depicted).

Figure 3b depicts the same phase analyzed by GradelO
with comprehensive attribution rules. In particular, we indi-
cate in our resource model that an active compute thread is
expected to always use precisely one CPU core (Exact rule,
100%/#cores). The outcome of Gradel0’s resource attribution
process using this configuration matches better our intuition
and understanding of Giraph. For example, we observe that
Gradel0’s estimate of CPU demand never exceeds the num-
ber of threads during @, and that the CPU usage GradelO
attributes to the Compute phase during @ is (close to) one core
per active compute thread. This leads GradelO to correctly
conclude that whenever a compute thread is not blocked, it is
bottlenecked by the CPU.

TABLE II: Relative sampling error produced by resource attribution with or without Gradel0’s upsampling method.

Monitoring Interval

Framework Upsampling Method Tuned Model? 50ms 100ms 200ms 400 ms 800 ms 1600 ms 3200 ms
Constant N/A 0.00% 12.03% 20.43% 31.57% 47.32% 68.52% 82.97%
Giraph Gradel0 X 0.03% 1524% 26.89% 4126% 58.30% 80.78% 91.02%
rade
4 0.03% 737% 11.91% 18.83% 29.75% 46.37% 56.71%
Constant N/A 0.00% 32.82% 5897% 81.95% 94.94% 97.96% 98.71%
PowerGraph
Grade10 v 0.12% 736% 1127% 11.62% 11.87% 13.23% 15.28%
Accuracy of the Upsampl}ng Process: To quantify .the accu- Datagen-1000 Graph500-26
racy of Gradel(Q’s upsampling process, we compare its output g 75
to a (partial) ground truth. Collecting resource usage metrics g Resource
per phase at timeslice granularity (e.g., 10 milliseconds) is not & %07 cPU
feasible, so we prepare monitoring data collected per machine E . Ge
at 50 ms intervals as ground truth. We downsample the = 251 Msg. Queue
. . . . 8])
collected monitoring data by averaging up to 64 consecutive &
05 g . . : ; ; ;
E BFS CDLP PR WCC BFS CDLP PR WCC

measurements to produce a coarse-grained resource trace.
We apply GradelO’s upsampling process to resource traces
with varying granularity and compute for each 50 ms period
how closely Gradel0’s upsampled resource trace matches the
original monitoring data.

Table II depicts the relative sampling error of GradelO
attributing CPU usage of a PageRank job run on Giraph and
PowerGraph. The relative sampling error expresses the sum of
absolute differences between GradelO’s upsampled resource
trace and ground truth trace, as a percentage of the total
resource consumption. We compare GradelO’s upsampling
method, using resource demand estimation and attribution
rules, to a strawman approach of assuming constant resource
usage during a measurement period. We find that the constant
approach to upsampling performs poorly for coarse-grained
resource traces (3200 ms, 64 x longer than the ground truth),
with sampling errors of 82.97 — 98.71%. Gradel0’s upsam-
pling method performs comparably poorly (91.02% error) for
Giraph when the attribution process is not tuned. However,
after tuning Giraph’s model by modeling garbage collection
events, Gradel0’s error for Giraph improves to 56.71%. For
more moderate upsampling ratios, Gradel(Q’s error rate are
significantly better (e.g., up to 18.83% at 400 ms, or 8). Our
execution model for PowerGraph is comprehensive and tuned,
and it allows Gradel0 to reach sampling errors under 15.28%,
even when upsampling by 64x. Although we are not able
to compare to a ground truth at timeslice granularity broken
down per phase, we conclude that GradelO can upsample
resource traces with good accuracy. Based on our results, we
conservatively recommend upsampling by up to 8 to achieve
a good balance between accuracy and reduced monitoring
overhead, although higher upsampling ratios can be selected
for finely tuned models (e.g., PowerGraph).

C. Resource Bottlenecks in Graph Processing

Gradel0’s resource bottleneck detection and performance
issue identification processes provide an optimistic estimate
of the impact of different types of bottlenecks (i.e., an upper
bound on how much the application’s performance could

Algorithm
(a) Giraph’s bottlenecks. Network bottlenecks (< 0.1%) not depicted.

oy Datagen-1000 Graph500-26
£ 75
S Resource
o 4
& %0 CPU
G
2 254 |: Net. In
g . Net. Out
©
= BFS CDLP PR WCC BFS CDLP PR WCC

Algorithm

(b) PowerGraph’s bottlenecks. GC and Msg. Queue not applicable.

Fig. 4: Optimistic estimation of impact of resource bot-
tlenecks on the processing time of graph processing jobs
spanning 2 frameworks, 2 datasets (Datagen-1000 and
Graph500-26), and 4 algorithms (defined in § IV-A).

improve by eliminating all bottlenecks on a resource). In
this experiment, we use GradelO to detect bottlenecks in
Giraph and PowerGraph on eight workloads (combining the
two datasets and four algorithms introduced in § IV-A).

Figure 4 depicts the estimated impact of bottlenecks on
processing time (i.e., the algorithm execution phase, excluding
loading the input and writing the output). For Giraph (Fig-
ure 4a), full message queues are the most impactful bottle-
neck for 7 out of 8 jobs, accounting for up to 57.8% of
the processing time. The next largest bottleneck is garbage
collection at around 25%. Bottlenecks on hardware resources
are much less impactful: CPU bottlenecks account for around
10% (with an outlier at 26.6%), and the impact of network
throughput bottlenecks is below 0.1% for all jobs. The lack
of CPU and network bottlenecks confirms findings by Satish
et al. [33], who found that Giraph achieved poor CPU and
network utilization in each of their experiments.

In contrast, PowerGraph (Figure 4b) is primarily CPU-
bound, although the impact of CPU bottlenecks varies be-

W ExchangeMessages Bl ReceiveMessages Wl Gather
Phase

B Apply Scatter

wce _ I)
PR (- o5

£ CDLP =
£ BFs | v
S wee [)
< PR N1
CDLP g
BFS] ?

0 10 20 30 40 50

Impact [% of processing time]

Fig. 5: Optimistic estimation of the impact of imbalance on the
processing time of PowerGraph jobs, for key types of phases.

tween 20.0% and 69.9% across our selection of workloads.
Network bottlenecks occur in PowerGraph, but their impact is
insignificant at up to 5.5%. Due to differences in architecture,
PowerGraph does not experience the garbage collection or
message queue bottlenecks that are prevalent in Giraph. In
particular, PowerGraph is written in C++ and therefore does
not use a garbage collector, and its communication subsystem
uses a different approach to message queues that does not lead
to explicit stalls. Overall, our findings open up avenues for
future work to improve Giraph’s communication subsystem to
better utilize available resources, or to identify and address the
possible overhead that prevents PowerGraph from utilizing all
available compute resources across different workloads.

D. Discovery of a Synchronization Bug in PowerGraph

To demonstrate how GradelO can be used to detect per-
formance issues, we describe in this section how we use
Gradel0’s automated analysis of workload imbalance to dis-
cover a synchronization bug in PowerGraph. GradelO is
especially useful in identifying this bug, because GradelO’s
low overhead and automated process make it feasible to
characterize the performance of many jobs, and thus find
performance issues that occur only sporadically.

Figure 5 summarizes the output of Gradel(Q’s workload
imbalance detection for eight different jobs run on Power-
Graph. The figure depicts the estimated impact of workload
imbalance in five key types of phases. We observe that
workload imbalance accounts for a significant portion of
PowerGraph'’s algorithm execution time, up to 43.7%. Notably,
GradelO finds that imbalance during “Gather” steps of the
CDLP algorithm is highly impactful (38.3-42.7%). Thus, by
improving PowerGraph'’s load balancing during Gather phases,
the runtime of CDLP jobs could be reduced by up to 42.7%.

Next, we explore in more detail one of the jobs most
affected by imbalance. Figure 6 depicts the duration of each
worker thread used by PowerGraph during its first iteration
of the Gather step. We observe that PowerGraph’s imbalance
has two causes. First, there is a large imbalance between
the median duration of threads on different workers, ranging
from 6.4-20.5s. This is most likely caused by poor workload
distribution, which is typical for graph applications due to
their irregularity. Second, we observe that some threads take

Worker ID

Fig. 6: Duration of Gather threads in the first superstep of
PowerGraph running CDLP on Graph500-26. The horizontal
“thick lines” are narrow boxplots. Points are outliers.

significantly longer than other threads on the same worker.
For example, one thread on worker 6 takes 2.88x as long
as the mean thread on that worker. In this example, GradelO
finds that the presence of such outliers increases the runtime
of this Gather step from 20.5s (slowest thread without outliers,
worker 4) to 48.7s (slowest outlier) for an estimated slowdown
of 2.38x. Overall, GradelO finds similar outliers affect 20%
of non-trivial processing steps (phases lasting > 1s), with
slowdowns of 1.10 — 2.50x.

After using GradelO to detect outliers in gather threads
when running the CDLP algorithm, we use traditional perfor-
mance analysis tools to analyze one job in more depth and
we locate a bug in PowerGraph’s handling of cross-thread
barriers. In particular, we find that PowerGraph interleaves
computation and communication in each worker thread. Each
thread processes a set number of vertices in the graph, then
handles any pending communication, and repeats until the
entire graph is processed. Then, all threads synchronize using
a barrier, handle any remaining communication, and finally
proceed to the next step in the graph algorithm. Occasionally,
all threads but one reach the barrier after finding there are
no pending messages. Next, a stream of messages arrives
before the last thread checks for and starts processing pending
messages. If the incoming message rate exceeds the rate at
which one thread can process messages, that thread continues
to process messages until no new messages arrive, while all
other threads are idly waiting at the barrier.

V. DISCUSSION, LIMITATIONS, AND ONGOING WORK

Need for expert input: Gradel0Q’s performance characteriza-
tion processes currently rely on expert input (execution and
resource models, resource attribution rules) to achieve good
accuracy. However, expert input only needs to be defined and
fine-tuned once for a given graph processing framework (not
workload), and can be reused by many users. A complete
modeling and fine-tuning of PowerGraph took only a week.
Modeling and tuning of Giraph took an additional week to
also include its complex, software resources such as internal
message queues, and GC interference. From our experience,
we believe GradelO’s requirement of expert input is not in-
hibitive. As ongoing work, we are exploring how expert input
can be reduced or even eliminated, e.g., by using machine
learning techniques to infer resource attribution rules, or by
extracting execution models directly from source code.

Current limitations: Though GradelO identifies resource
and performance bottlenecks by bridging the gap between
workload-level and system-level performance data, it does
not present solutions regarding how to alleviate identified
bottlenecks. Some bottlenecks can be trivially solved by tuning
a configuration parameter, others might require more intimate
knowledge about the system. We envision that resource at-
tribution at source or machine code level would significantly
help a targeted performance optimization effort. Furthermore,
the current GradelO resource model does not support re-
sources that do not fit in its consumable or blocking resource
archetypes, e.g., CPU cache hit rates, or IPC counts. We are
also aware that the simplified simulator (see § III-F) is limited
by the execution trace it replays, and thus it does not assume
performance variability, does not consider that eliminating a
performance issue may cause another to gain prominence, etc.
Extending to other domains: Although designed for graph
processing, we believe that Gradel(0’s modeling and perfor-
mance characterization approach can be extended to broader
DAG-based data processing systems such as Spark and Ten-
sorFlow. We are in the process of characterizing Spark work-
loads by extending Grade10’s methods to model Spark’s fine-
grained sub-millisecond phases and asynchronous remote data
accesses (e.g., through distributed tracing [26]-[28]). Such
extensions are necessary to maintain high resource attribution
accuracy. For machine learning workloads, we are considering
modeling of accelerator resources and for supporting new
classes of performance issues, e.g., data movement between
accelerator and system memory.

VI. RELATED WORK

In this section, we survey related work on performance
characterization and comparison of big-data applications, and
on general-purpose performance characterization, including
tracing, logging, and monitoring. Currently, GradelO is the
first specialized performance characterization framework for
distributed graph processing.

Ousterhout et al. [9] propose blocked time analysis to
estimate the impact of blockable hardware disk and network
resources on Spark applications. In contrast, Grade10 includes
a broader class of hardware as well as software resources
to identify multiple types of performance issues, not just
blocking. In a similar spirit to Grade10, Retro [10] does hard-
ware and software resource modelling with usage attribution
for efficient resource management in a multi-tenant setting.
In comparison, GradelO offers more fine-grained resources
utilization by upsamling to individual execution phases for
single-workload bottleneck detection. Closest to GradelO is
work from Tian et al. [11] which also does performance
characterization using a DAG-based computation model with
system-level resource monitoring. However, Grade10 captures
a more comprehensive set of performance issues (e.g., includ-
ing burstiness, imbalance), does more fine-grained attribution
across time and execution phases (in comparison to coarser
machine learning based attribution used by Tian et al.), and
is more thoroughly evaluated with two state-of-the-art graph

frameworks, 2 datasets, and 4 algorithms (than just two
workloads by Tian et al.).

Other performance characterization approaches for big-data
applications include distributed tracing [26]-[28] and critical
path analysis [29], which can reveal many workload-level
performance issues, but do not bridge the gap to system-level
performance metrics. Benchmarks [13], [30] and comparative
performance studies [31]-[33] use high-level metrics, such as
makespan and aggregate resource utilization, to draw broad
conclusions about the performance of a set of systems. In
this work, we focus on characterizing the performance of
individual graph applications in depth.

Beyond the big-data-oriented approaches already discussed,
there is a rich field of general-purpose performance charac-
terization techniques that can be applied. Traditional profiling
and tracing techniques [34], [35] can be used to capture a wide
range of performance metrics at machine and source code
level. Our approach considers also workload-level attributes
and metrics. Recent advances in logging allow for automatic
placement of log statements [36], [37], lower latencies [24],
and can aid in root-cause analysis [38]. These approaches are
complementary to our work as they could make it possible to
collect richer performance data with less development effort.
State-of-the-art in (distributed) monitoring [39]-[42] enables
rich data collection at large scale with low overhead, but does
not reach the fine granularity that GradelO requires.

VII. CONCLUSION

The current state of distributed graph processing, of increas-
ing presence and demand for performance analysis, requires a
new generation of specialized performance tools. In this work
we have presented GradelO, a performance characterization
framework for this context.

We designed GradelO to facilitate building fine-grained
performance profiles of graph workloads with low resource
monitoring overheads, yet useful for performance analysis.
Gradel0 is a detailed and practical architecture, whose key de-
sign features are: (i) a fine-grained, unified workload-level and
system-level view of performance; (ii) specialized execution
and resource models, which capture in direct acyclic graphs
the iterative, irregular nature of graph processing workloads,
and both hardware (e.g., CPU, memory, network) and software
resources (queues, locks); (iii) a novel resource attribution pro-
cess, whose upsampling capabilities can compensate coarse-
grained monitoring without significant loss of accuracy; (iv)
a specialized process to identify resource bottlenecks; and (v)
a specialized process to detect performance issues and their
maximal impact on system performance, leading to meaningful
advice given to users of distributed graph processing.

We are in the process of extending the GradelO framework
to other workloads such as relational data processing and
machine learning. Gradel0 is open-source:

https://github.com/atlarge-research/grade 10

ACKNOWLEDGMENT

This research is supported by the Dutch NWO through
project Vidi MagnaData.

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

S. Heidari, Y. Simmhan, R. N. Calheiros, and R. Buyya, “Scalable
graph processing frameworks: A taxonomy and open challenges,” ACM
Comput. Surv., vol. 51, no. 3, Jun. 2018.

R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
A survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Comput. Surv., vol. 48, no. 2, Oct. 2015.

D. Reinsel, J. Gantz, and J. Rydning, “Data age 2025: the
digitization of the world from edge to core,” Seagate, 2018. [Online].
Available: https://www.seagate.com/files/www-content/our-story/trends/
files/idc-seagate-dataage- whitepaper.pdf

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Power-
Graph: Distributed Graph-Parallel Computation on Natural Graphs,” in
10th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, 2012.
A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” PVLDB, vol. 8,
no. 12, pp. 1804-1815, 2015.

J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph processing in a distributed dataflow
framework,” in 71th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 14, Broomfield, CO, USA, October 6-8,
2014, 2014, pp. 599-613.

A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos:
scale-out graph processing from secondary storage,” in Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015, 2015, pp. 410-424.

G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing,” in Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2010, Indianapolis, Indiana,
USA, June 6-10, 2010, 2010, pp. 135-146.

K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B. Chun,
“Making Sense of Performance in Data Analytics Frameworks,” in 12th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 15, Oakland, CA, USA, May 4-6, 2015, 2015, pp. 293-307.

J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi, “Retro: Targeted
resource management in multi-tenant distributed systems,” in Proceed-
ings of the 12th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI'15, 2015, pp. 589-603.

H. Tian, Q. Weng, and W. Wang, “Towards framework-independent,
non-intrusive performance characterization for dataflow computation,”
in Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop on
Systems, APSys 2019, Hangzhou, China, Augsut 19-20, 2019, 2019, pp.
54-60.

M. Han, K. Daudjee, K. Ammar, M. T. Ozsu, X. Wang, and T. Jin, “An
Experimental Comparison of Pregel-like Graph Processing Systems,”
PVLDB, vol. 7, no. 12, pp. 1047-1058, 2014.

A. Tosup, T. Hegeman, W. L. Ngai, S. Heldens, A. Prat-Pérez, T. Man-
hardt, H. Chafi, M. Capota, N. Sundaram, M. J. Anderson, I. G. Tanase,
Y. Xia, L. Nai, and P. A. Boncz, “LDBC graphalytics: A benchmark for
large-scale graph analysis on parallel and distributed platforms,” PVLDB,
vol. 9, no. 13, pp. 1317-1328, 2016.

A. Lumsdaine, D. P. Gregor, B. Hendrickson, and J. W. Berry, “Chal-
lenges in parallel graph processing,” Parallel Process. Lett., vol. 17,
no. 1, pp. 5-20, 2007.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “TAO: Facebook’s
distributed data store for the social graph,” in 2013 USENIX Annual
Technical Conference (USENIX ATC 13). San Jose, CA: USENIX
Association, Jun. 2013, pp. 49-60. [Online]. Available: https://www.
usenix.org/conference/atc 13/technical-sessions/presentation/bronson

S. Beamer, K. Asanovic, and D. A. Patterson, “Direction-optimizing
breadth-first search,” in SC Conference on High Performance Computing
Networking, Storage and Analysis, SC ’12, Salt Lake City, UT, USA -
November 11 - 15, 2012, J. K. Hollingsworth, Ed., 2012, p. 12.

S. Au, A. Uta, A. Ilyushkin, and A. Iosup, “An elasticity study of dis-
tributed graph processing,” in 18th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGRID 2018, Washington,
DC, USA, May 1-4, 2018, 2018, pp. 382-383.
“Graphite,” Accessed on 2020-05-24. [Online].
//graphiteapp.org/

Available: https:

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Comput., vol. 30, no. 5-6, pp. 817-840, 2004.

“Spark — monitoring and instrumentation,” Accessed on 2020-05-24.
[Online]. Available: https://spark.apache.org/docs/latest/monitoring.html
A. Uta, A. L. Varbanescu, A. Musaafir, C. Lemaire, and A. Iosup,
“Exploring HPC and big data convergence: A graph processing study
on intel knights landing,” in /IEEE International Conference on Cluster
Computing, CLUSTER 2018, Belfast, UK, September 10-13, 2018, 2018,
pp. 66-77.

W. L. Ngai, T. Hegeman, S. Heldens, and A. Iosup, “Granula: Toward
fine-grained performance analysis of large-scale graph processing plat-
forms,” in Proceedings of the Fifth International Workshop on Graph
Data-Management Experiences & Systems, ser. GRADES’17. New
York, NY, USA: Association for Computing Machinery, 2017.

C. Lai, J. Kimball, T. Zhu, Q. Wang, and C. Pu, “milliscope: A fine-
grained monitoring framework for performance debugging of n-tier web
services,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), 2017, pp. 92-102.

S. Yang, S. J. Park, and J. Ousterhout, “Nanolog: A nanosecond scale
logging system,” in Proceedings of the 2018 USENIX Conference on
Usenix Annual Technical Conference, ser. USENIX ATC *18. USA:
USENIX Association, 2018, p. 335-349.

Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and
T. L. Willke, “How Well Do Graph-Processing Platforms Perform? An
Empirical Performance Evaluation and Analysis,” in 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, Phoenix,
AZ, USA, May 19-23, 2014, 2014, pp. 395-404.

B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” 2010.

J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in Proceedings of the 25th Sympo-
sium on Operating Systems Principles, ser. SOSP ’15, 2015, pp. 378-
393.

X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm, “Non-intrusive
performance profiling for entire software stacks based on the flow
reconstruction principle,” in 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016, K. Keeton and T. Roscoe, Eds., 2016, pp. 603-618.
M. Hoffmann, A. Lattuada, J. Liagouris, V. Kalavri, D. C. Dimitrova,
S. Wicki, Z. Chothia, and T. Roscoe, “Snailtrail: Generalizing critical
paths for online analysis of distributed dataflows,” in I5th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2018, Renton, WA, USA, April 9-11, 2018, 2018, pp. 95-110.

T. Rabl, M. Frank, M. Danisch, H. Jacobsen, and B. Gowda, “The
Vision of BigBench 2.0,” in Proceedings of the Fourth Workshop on
Data analytics in the Cloud, DanaC 2015, Melbourne, VIC, Australia,
May 31 - June 4, 2015, 2015, pp. 3:1-3:4.

O. Marcu, A. Costan, G. Antoniu, and M. S. Pérez-Hernandez, “Spark
versus flink: Understanding performance in big data analytics frame-
works,” in 2016 IEEE International Conference on Cluster Computing,
CLUSTER 2016, Taipei, Taiwan, September 12-16, 2016, 2016, pp. 433—
442.

W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, and E. M. Nguifo, “An
experimental survey on big data frameworks,” Future Generation Comp.
Syst., vol. 86, pp. 546-564, 2018.

N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A.
Hassaan, S. Sengupta, Z. Yin, and P. Dubey, “Navigating the maze of
graph analytics frameworks using massive graph datasets,” in Interna-
tional Conference on Management of Data, SIGMOD 2014, Snowbird,
UT, USA, June 22-27, 2014, 2014, pp. 979-990.

S. Shende and A. D. Malony, “The TAU Parallel Performance System,”
IJHPCA, vol. 20, no. 2, pp. 287-311, 2006.

A. Kniipfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Miiller, and W. E. Nagel, “The Vampir Performance Analysis
Tool-Set,” in Tools for High Performance Computing - Proceedings of
the 2nd International Workshop on Parallel Tools for High Performance
Computing, July 2008, HLRS, Stuttgart, 2008, pp. 139-155.

X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles, ser. SOSP ’17, 2017, pp. 565—
581.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou, and
S. Savage, “Be conservative: Enhancing failure diagnosis with proactive
logging,” in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’12, 2012, pp. 293-306.
L. Luo, S. Nath, L. R. Sivalingam, M. Musuvathi, and L. Ceze,
“Troubleshooting transiently-recurring errors in production systems with
blame-proportional logging,” in 2018 USENIX Annual Technical Con-
ference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018., 2018,
pp. 321-334.

A. Agelastos, B. A. Allan, J. M. Brandt, P. Cassella, J. Enos, J. Fullop,
A. C. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. T.
Showerman, J. Stevenson, N. Taerat, and T. W. Tucker, “The lightweight
distributed metric service: A scalable infrastructure for continuous
monitoring of large scale computing systems and applications,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2014, New Orleans, LA, USA, November 16-
21, 2014, 2014, pp. 154-165.

J. Thalheim, A. Rodrigues, 1. E. Akkus, P. Bhatotia, R. Chen,
B. Viswanath, L. Jiao, and C. Fetzer, “Sieve: Actionable insights from
monitored metrics in distributed systems,” in Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, 2017, pp. 14-27.

B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan,
Y. Yang, J. Zhai, W. Liu, and W. Xue, “End-to-end I/O monitoring on
a leading supercomputer,” in /6th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2019, Boston, MA, February
26-28, 2019., 2019, pp. 379-394.

A. K. Paul, R. Chard, K. Chard, S. Tuecke, A. R. Butt, and 1. T.
Foster, “Fsmonitor: Scalable file system monitoring for arbitrary storage
systems,” in 2019 IEEE International Conference on Cluster Computing,
CLUSTER 2019, Albugquerque, NM, USA, September 23-26, 2019, 2019,
pp. 1-11.

H. E. Bal, D. H. J. Epema, C. de Laat, R. van Nieuwpoort, J. W. Romein,
F. J. Seinstra, C. Snoek, and H. A. G. Wijshoff, “A Medium-Scale
Distributed System for Computer Science Research: Infrastructure for
the Long Term,” IEEE Computer, vol. 49, no. 5, pp. 54-63, 2016.
“GitHub: Gradel0,” Contains code, documentation, and additional
technical specifications. Accessed on 2020-05-25. [Online]. Available:
https://github.com/atlarge-research/grade10

