
Future Generation Computer Systems 123 (2021) 156–177

V

g
a
o
r
o
f
p
s
a
a
t
a

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A survey of domains inworkflow scheduling in computing
infrastructures: Community and keyword analysis, emerging trends,
and taxonomies
Laurens Versluis ∗, Alexandru Iosup
rije Universiteit Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 2 November 2020
Received in revised form 9 March 2021
Accepted 21 April 2021
Available online 27 April 2021

Dataset link: https://atlarge-research.com/d
ata/2020_fgcs_aip.pgsql

Keywords:
Cloud
Cluster
Grid
Workflow
Scheduling
Survey
Taxonomy
Formalism
Allocation
Provisioning
Applications
Services
Policies
Community
Meta-analysis

a b s t r a c t

Workflows are prevalent in today’s computing infrastructures as they support many domains. Different
Quality of Service (QoS) requirements of both users and providers makes workflow scheduling challeng-
ing. Meeting the challenge requires an overview of state-of-art in workflow scheduling. Sifting through
literature to find the state-of-art can be daunting, for both newcomers and experienced researchers.
Surveys are an excellent way to address questions regarding the different techniques, policies, emerging
areas, and opportunities present, yet they rarely take a systematic approach and publish their tools
and data on which they are based. Moreover, the communities behind these articles are rarely studied.
We attempt to address these shortcomings in this work.

We introduce and open-source an instrument used to combine and store article meta-data.
Using this meta-data, we characterize and taxonomize the workflow scheduling community and four
areas within workflow scheduling: (1) the workflow formalism, (2) workflow allocation, (3) resource
provisioning, and (4) applications and services. In each characterization, we obtain important keywords
overall and per year, identify keywords growing in importance, get insight into the structure and
relations within each community, and perform a systematic literature survey per part to validate and
complement our taxonomies

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Datacenters and cloud providers are increasingly becoming the
o-to point for leasing additional computing power. Both industry
nd academia are embracing this new paradigm of computation
n demand, ranging from financial institutes [1] to bioinformatics
esearch communities [2,3]. Remaining up-to-date with the state-
f-the-art and emerging trends through surveys is important
or both scientists and engineers as improvements and new ap-
roaches are being introduced continuously. Interestingly, few
urveys use a systematic approach to search for relevant articles
nd no surveys discuss the communities behind these articles. To
ddress these aspects, in this work, we complement the use of
raditional search methods with a systematic approach through
n in-house developed instrument. Using this instrument, we

∗ Corresponding author.
E-mail address: l.f.d.versluis@vu.nl (L. Versluis).
ttps://doi.org/10.1016/j.future.2021.04.009
167-739X/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
obtain a dataset of meta-data on relevant articles, which in turn
enables community analyses and systematic searches through the
use of database queries. Additionally, this leads to large parts of
our work becoming reproducible, something science as a whole is
increasingly focusing on in general, and enables other researchers
to re-use our dataset for future surveys, including different areas
than covered in this work, as all software and the dataset itself
are offered as open-access FAIR data.

Nowadays, many applications that run on cluster and cloud
resources are workflows. These workflows can be modeled differ-
ently. The simplest model is the that of Coffman and Graham [4].
In this model, a workflow is represented as a Directed Acyclic
Graph (DAG) where each vertex represents a task (i.e., a unit
of work) and an edge a computation/data constraint. Other for-
malisms such as BPMN allow for cycles and human-in-the-loop
elements. These workflows origin from various domains, rang-
ing from bioinformatics to finance and from geology to astron-
omy. Datacenters, clusters, and clouds receive tens to millions
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2021.04.009
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.04.009&domain=pdf
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
http://creativecommons.org/licenses/by/4.0/
mailto:l.f.d.versluis@vu.nl
https://doi.org/10.1016/j.future.2021.04.009
http://creativecommons.org/licenses/by/4.0/


L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177

w
c
s
s
r

w
w
i
g
m
b
a
i
l
f
l

i
s
i
w

T
o
a
p
p
i
n

f
w
F
a
i
m
s
a
t
w
r
r

Fig. 1. The structure of and process applied in this survey. Left: obtaining a
database of paper meta-data. Right: the usage of this meta-data for four type
of analyses.

of such workflows per hour [5]. A key component in executing
these workflows efficiently is the scheduler [6]. Scheduling these
orkflows to make efficient use of the available resources is a
hallenging task, demonstrated by the sheer amount of proposed
cheduling systems and policies. Moreover, nowadays, the re-
ource providers must adhere to different Quality of Service (QoS)
equirements that can differ per workflow.

Performing well in workflow scheduling requires keeping up
ith the most recent advances in workflow scheduling. Especially
ith the recent developments in edge and serverless comput-

ng [7,8], it is important to remain up-to-date. The accelerating
rowth of the number of workflow scheduling articles published
akes it a daunting task to get insights into the attempts made
y research to solve these complex challenges. Semantic Scholar
lso underlines this challenge: ‘‘The rate of scientific publication
s increasing every year, with more than 3 million papers pub-
ished across 42,500 journals in 2018 alone. This unprecedented
low of information makes staying up-to-date with the scientific
iterature an increasingly pressing challenge for scholars’’.1

Questions arise such as: Which different techniques are be-
ng used nowadays to schedule workflow or resources? What
tructures do these schedulers have? What is currently important
n the community? Which areas and topics are emerging? and
hich opportunities for research are there?
Surveys are an excellent way to get answers to such questions.

hey provide an overview of the current field by using tax-
nomies and other means such as tables to present and compare
pproaches, enumerate emerging topics and list challenges and
ossible directions for future work. Yet, survey articles rarely
ublish the tools and data on which they are based. This data is
mportant to reproduce the survey’s findings, verify the complete-
ess, and use as a base for extensions.
In this work, aligned with our vision that scheduling is a

irst-class component when massivizing computer systems [9],
e address these issues by following the process visualized in
ig. 1. Using an instrument we developed that parses and filters
rticle meta-data, we gain insights into the workflow schedul-
ng and four sub-communities. Additionally, we use our instru-
ent to find relevant articles per topic next to using traditional
earch methods such as Google scholar. Using relevant articles
nd related work, we construct, extend existing, and validate
axonomies. We do not perform quantitative comparisons where
e discuss and compare different algorithms. Such an endeavor
equires an exploration of workload, metrics, operational envi-
onment, and careful details such as software versions which

1 https://pages.semanticscholar.org/about-us.
157
are out of scope due to the broad scope of this survey. Previous
studies even on a small subset of these parameters have shown
there are significant differences, and no conclusion about superi-
ority can be drawn, i.e., no single best scheduling approach exists.
An example of such a study is done by Kwok and Ahmad [10],
where they compare in-depth several policies. The complexity
and variety of today’s policies would require even more work and
detail.

Overall, we make the following five main contributions in this
work:

1. We assemble a unique dataset of meta-data on relevant ar-
ticles and create a specialized instrument to process it (Sec-
tion 2). Our dataset combines data from three major cura-
tors into a comprehensive dataset for the computer sys-
tems community. Additionally, we develop a suite of tools
for combining, filtering, and analyzing this dataset.

2. We perform a novel survey of the workflow scheduling
community (Section 2). We propose a method for analyz-
ing article meta-data on workflow scheduling, focusing on
emerging keywords and community structure.

3. Using results from Section 2, we focuses on four areas in
workflow scheduling (Sections 3–7). Our work proposes
novel taxonomic aspects and significantly extends state-
of-the-art taxonomies [11–13] on workflow scheduling in
areas such as formalisms for workflow specification; work-
flow allocation policies, strategies, and structures; elasticity
and serverless in resource provisioning; and various types
of resources used in current applications and services. For
each area, we also make observations about community,
trending keywords, and emerging trends in the timespan
2011–2020.

4. We validate our taxonomies by mapping well-cited and
recently introduced workflow allocation and resource pro-
visioning policies using a systematic survey (Section 8). We
map several elements of allocation and resource provision-
ing policies to our taxonomies to validate our taxonomies
contain these elements.

5. The instrument, article meta-data database, and other soft-
ware (e.g., scripts) used in this work are offered as open-
source artifacts for the community to use. The database is
suitable for similar studies on different topics. The instru-
ment and tools are extensible and can be added to include
more information sources and capture more properties.
The database on which this article is based can be found at
https://atlarge-research.com/data/2020_fgcs_aip.pgsql, AIP
and other tools used to generate all floats in this article can
be found at https://github.com/atlarge-research/AIP.

2. Analyzing and obtaining a dataset of article meta-data

As science is aiming for becoming increasingly reproducible
and the amount of articles published per year is increasing, a
more systematic approach is required next to traditional search
methods. To facilitate such a systematic approach, we decided
to develop an instrument, AIP, that gathers article meta-data
from various sources and parses, complements, and filters this
meta-data to store it in a database.

AIP filters and unifies data from DBLP [14], Semantic Scholar
[15], and AMiner [16] to obtain meta-data on articles from the
systems community. We outline the workings and details of AIP
in our technical report [17]. As AIP uses a relational database, re-
producibility and systematic searches become available through
the use of queries. Additionally, these queries provide an comple-
mentary search method next to the traditional search methods
(e.g., using Google scholar).

Using queries and AIP’s database, we analyze:

https://pages.semanticscholar.org/about-us
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://github.com/atlarge-research/AIP


L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177
Fig. 2. An overview of the workflow scheduling community.
Query 1: SELECT * FROM publications WHERE year BETWEEN
2011 AND 2020 AND (lower(title) LIKE ’%workflow%’ OR
lower(abstract) LIKE ’%workflow%’) AND (lower(title)
LIKE ’%schedul%’ OR lower(abstract) LIKE ’%schedul%’)

1. Community analysis, where we inspect the structure of the
community and its characteristics. This can be useful for
community managers and organizers.

2. Overall trend analysis, where we obtain the top-n most
important keywords.

3. Analysis of trends over time, where we obtain the top-n
most important keywords per year.

4. Emerging keyword analysis, where we attempt to identify
new and rising keywords.

In this section, we introduce each analysis separately using
articles on workflow scheduling, the main theme of this article,
published in timespan 2011–2020, i.e., the last decade. Using
insights obtained from each analyses, we select four sub-domains
to survey in-depth.

2.1. Analysis of the workflow scheduling community

We take a look at the workflow scheduling community by
visualizing the collaborations and determine how many math-
ematical cliques are within that community. To construct each
component (i.e., community), we draw an edge from one vertex
(an author) in the component to another if they have co-authored
an article. To determine cliques, we use the definition of a clique
introduced by Luce and Perry [18]. Additionally, we look at the
clique sizes, the amount of citations per author on average and at
maximum per clique, and how often authors co-author together.
When ranking authors or communities, self-isolated cliques are
often seen as less desirable [19]. A community with a lot of
interaction between different (groups of) authors are signs of a
healthy community. This kind of information is of interest to com-
munity leader and event organizers; how large is a community,
how diverse are the collaborations, how is the organization of the
community, etc.

To get insights into the workflow scheduling community, we
analyzed the author and citation information of articles returned
by Query 1. Fig. 2(a) present the structure of the community.
From this figure we observe many large collaborating commu-
nities, which indicates a dynamic and collaborating community.
158
Additionally, we observe plenty of authors forming ‘‘bridges’’
between two or more groups. We believe such bridges are posi-
tive, as they may facilitate individuals in these respective groups
working together and gaining knowledge from the other groups.

Fig. 2(b) shows the number of cliques per clique size. As we
observe, most cliques are of size 2–5, which is a normal set
of authors on a single article, forming a clique per definition.
Overall, there are only a few large cliques. Together with the
visual of the community, it seems that the community is of a
more collaborative nature than forming tightly connected, yet
closed groups.

If we look at clique size versus average and maximum citation
count per clique, visualized in Fig. 3(a), we observe that well-
cited authors, both in maxima and on average, are not forming
or participating in large cliques. This further adds to the intuition
of a collaborative community.

Finally, Fig. 3(b) shows a CDF of the number of articles pub-
lished per author in the workflow scheduling community.
Roughly 80% of the authors publish a single article in the work-
flow scheduling domain in the span 2011–2020, with a long tail
having authors publish up to twenty articles.

2.2. Method for keyword analysis

Identifying keywords is an effective way to obtain important
topics within text [20]. What keywords are important given a set
of articles? How often do we see the same keyword appear? Does
the importance of keywords change over time? To obtain im-
portant keywords from articles matching a certain scope, defined
by a database query, we apply the following process to sanitize
and refine the data and then use Term Frequency–Inverse Data
Frequency (TF-IDF). TF-IDF is a commonly applied technique in
the information retrieval domain to obtain important keywords
from text [21]. The process we apply is as follows.

First, two queries are defined. The first query is to construct
a corpus that we will use to compare articles against. Such a
corpus is required using TF-IDF to determine the commonality of
words and thus rank their ‘‘uniqueness’’. The second query is to
fetch articles of interest, e.g., articles having certain keywords in
their title or abstract. The corpus we compare against is broader;
it contains more articles using a broader scope, so that TF-IDF
can identify the unique words within the community of interest
targeted by the second query. In this work, we use as corpus all



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177

u

W
o
r
r
n
u
d

I
m

T
u
f

t
i

2

O

Fig. 3. Clique size vs. author citation count (average and max) and a CDF of number of articles authored.
Fig. 4. Top-10 keywords in scheduling workflow articles in the past decade per year. Colored lines are part of 2020’s top-10 and have a decreasing line thickness
for better visual tracking. The legend shows the colored curves in order, and gray curves out of order.
Table 1
Top-10 keywords in articles on scheduling workflow published between 2011 and 2020.
Rank 1 2 3 4 5 6 7 8 9 10

Word Workflow Scheduling Cloud Algorithm Task Cost Application Time Data Deadline
i
k
a

t
t
w
w

a
f
p
b
(
‘
w
z
o
d

2

O

O

articles from the systems community, i.e., the contents of the AIP
database.

Text of articles that match these queries are preprocessed
sing a process similarly to [22].
Next, we compute keywords unique per article using TF-IDF.
e extract the top-50 most important keywords per article based
n their TF-IDF values. We count and store in a list the occur-
ences (term frequency) of the top-50 keywords found to obtain a
anking for all articles that match our second query. We limit the
umber of words we extract per article, otherwise we would end
p counting all words in all articles matching the second query,
efeating the purpose of TF-IDF.
We can then use this list to, e.g., create a top-n of keywords.

f this top-n contains words that have no significant meaning, we
anually filter them out and take the next meaningful word.
Scikit-learn 0.23.2 was used to compute the TF-IDF vector,

extBlob 0.15.3 was used for Lemmatization, Pandas 1.1.2 was
sed for computing and cleaning data, and NLTK 3.5 was used
or stop word filtering along with a list of custom stop words.

To support reproducibility and FAIR data, all instruments and
ools, scripts, and the database containing article meta-data used
n this article are available as open-source artifacts.

.3. Analysis of keywords in workflow scheduling articles

bservation-1 (O-1): The keywords ‘‘task’’, ‘‘time’’, ‘‘cost’’, and
‘‘deadline’’ are often mentioned in articles on workflow
scheduling, highlighting the focus of the community on

these topics.

159
To inspect what the focus is of articles working on schedul-
ng and workflows, we first look at the top-10 most important
eywords using the method described in Section 2.2. We inspect
rticles returned by Query 1.
The results are in Table 1. From this table we observe, besides

he ‘‘workflow’’ and ‘‘scheduling’’, that the notion of clouds is
he important keyword. This makes sense as most articles on
orkflow scheduling target either public or private cloud settings,
hich also explains why ‘‘cloud’’ is ranked third.
Consequently, ‘‘tasks’’, ‘‘application’’, ‘‘computing’’, and ‘‘cost’’

re popular keywords as these are closely aligned with work-
low scheduling in clouds. In particular, plenty of scheduling
olicies focuses on the duo ‘‘cost’’ and ‘‘deadline’’. This can also
e observed in our keyword analysis for workflow allocation
Section 5.1) and in the mapping in Section 8. As mentioned prior,
‘data’’ is a keyword that we did expect. Plenty of research on
orkflow scheduling produces or relies on data, from characteri-
ation to simulation studies. Scientific workflow applications are
ften used as a use-case for experimentation, but rarely is the
ata provided as auxiliary data for reproducibility purposes [5].

.4. Analysis of keyword trends over time

-2: The keyword ‘‘cloud’’ grew in importance over time, and
remained in the top 5 since 2013, highlighting the impor-
tance of this topic.

-3: The ranks of ‘‘task’’, ‘‘deadline’’, ‘‘user’’, ‘‘cost’’, ‘‘time’’,
‘‘heuristic’’, ‘‘makespan’’, and ‘‘algorithm’’ fluctuate, yet are

often in the top-10 during the years 2011–2020.



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177

w
y
m

p
c
w
f
o
v
w
‘
i
‘
m
b

2

O

a
k
a
e

N

R

l
k

2

a

f

r
o
r
‘

To see how the focus of the community working on scheduling
orkflows shifted, we visualize in Fig. 4 the top-10 keywords per
ear. We take the output of Query 1 per year, and apply the same
ethod as described in Section 2.2.
From this figure, we observe that ‘‘cloud’’ already became a

opular term in 2011. Since 2013, the term has been in the top-4
onsistently. We also see a clear shift in focus: whereas ‘‘grid’’
as a popular term before ‘‘cloud’’ emerged, ‘‘grid’’ disappeared

rom the top-10 after 2013. We conjecture the general concept
f ‘‘cloud’’ and related concepts such as Infrastructure as a Ser-
ice (IaaS) increasing in popularity in industry and academia,
ith similar meaning and thus taking over. The keywords ‘‘cost’’,

‘deadline’’, and ‘‘heuristic’’ are keywords that have been rising in
mportance in recent years. Other keywords such as ‘‘algorithm’’,
‘task’’, and ‘‘data’’ appear to be consistently important, which
akes sense provided they are general concepts and building
locks in workflow scheduling.

.5. Discussion on emerging trends

-4: Multi-objective and in particular makespan and deadline-
aware scheduling are growing in popularity.

Emerging trends are often a good topic for research as they
re deemed interesting by the community. We investigate which
eywords increased in attention. Emerging keywords can indicate
further increase of attention in the future. We attempt to detect
merging trends in two ways:

ew keywords: Keywords that were found by our method to be
among the most common/important keywords in recent
years, but did not come up in previous years. This type
of analysis highlights keywords that previously were not
common/important or are new and gaining traction fast.
In this survey, we compare half of the selected time span,
i.e. 2016–2020, with the remainder (2011–2015).

ising keywords: Keywords that throughout the investigated
years kept monotonically increasing in rank since their
appearance. This type of analysis finds keywords of two
categories:

1. Keywords that received more (or the same amount
of) attention each year and thus indicates an interest.

2. Keywords that became emerging in the last year of
the timespan checked.

For each year that we investigate, we apply the method out-
ined in Section 2.2, and take the top-10 most important/frequent
eywords.

.5.1. Emerging trends in workflow scheduling
We attempt to discover new and emerging keywords using

rticles that match Query 1.
The keywords found during new keywords analysis are as

ollows.
‘‘deadline’’ ‘‘makespan’’ ‘‘model’’ ‘‘multi’’ ‘‘objective’’

We observe the keywords ‘‘deadline’’ and ‘‘multi’’, ‘‘objective’’
esearch the top 10 in the last 5 years. This underlines the focus
f workflow schedulers on several, often multi-objective met-
ics. ‘‘Makespan’’ is common metric which relates to deadlines.
‘Model’’ may relate to the workload or

If we look at rising keywords, we obtain the following.

‘‘workflow’’ ‘‘model’’ ‘‘multi’’ ‘‘objective’’
160
Fig. 5. The four areas within workflow scheduling focused on in this article.

Table 2
Possible relationships between all keywords in Fig. 4 and the areas related to
workflow scheduling.

Area Keywords found as important in
Section 2.4

Workflow formalism Task, data, graph, application,
environment, job, user

Workflow allocation Task, deadline, cost, algorithm,
heuristic, graph, grid, application,
time, environment, job, performance,
user, optimization, objective,
makespan

Resource provisioning Task, cost, algorithm, heuristic, graph,
grid, application, time, environment,
job, performance, user, provisioning,
optimization, objective, makespan

Applications and services Data, cost, graph, grid, application,
time, environment, job, performance,
user, provisioning, optimization,
makespan, scheduler

Again, we see the keywords ‘‘multi’’ and ‘‘objective’’, yet this
time alongside ‘‘workflow’’. ‘‘workflow’’ is expected as it is the
focus of our query. We observed from Fig. 4 that it is consis-
tently at number one, thus being monotonically increasing. As for
the keywords ‘‘multi’’ and ‘‘objective’’, they entered the top-10
in 2020, thus monotonically increasing. These keywords indi-
cates that multi-objective schedulers are becoming more popular.
From experience, single-metric schedulers no longer deliver the
required performance with the diverse set of functional and non-
functional requirements both the cloud provider and its users
have; we expect the focus of multi-objective schedulers will
remain and increase.

2.6. Future research directions inspired by meta-data analysis

Both the important keyword section and the emerging trend
section suggest that non-functional requirements such as costs
and deadlines are important. Moreover, multi-objective sched-
ulers are increasing in importance, which makes sense given
the complexity and demands around clouds and the applications
being run. Our conjecture is that being deadline-aware whilst op-
timizing for other metrics such as costs, and energy consumption
will continue to grow in importance and is an excellent topic for
future work. Further refining these analyses and introducing new
angles of investigation is another interesting item for future work.

3. Investigating and taxonomizing four areas within workflow
scheduling

Taxonomies provide a structured and detailed decomposition
of a certain topic and/or field. Decomposition allows for a good
overview of possible and attempted avenues to tackle challenges.
Using the overview, researchers attempt to find a feasible or
optimal solution to challenges. These taxonomies can also provide
new ideas for methods and/or combinations not attempted yet.

To limit the scope of this survey, using the keywords ob-
tained in Section 2.4, we focus on four areas within workflow

scheduling, depicted in Fig. 5: Workflow Formalism, Workflow



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177
Query 2: SELECT * FROM publications WHERE year BE-
TWEEN 2011 AND 2020 AND (lower(title) LIKE ’%work-
flow%’ OR lower(abstract) LIKE ’%workflow%’) AND
((lower(title) LIKE ’%formalism%’ OR lower(abstract)
LIKE ’%formalism%’) OR (lower(title) LIKE ’%lan-
guage%’ OR lower(abstract) LIKE ’%language%’))

Allocation, Resource Provisioning, and Applications and Services.
We select these four as they relate closely to the keywords found
in Section 2.4. Table 2 shows our selection of keywords, per area.

Formalisms describe the way workflows are represented, and
the possible features they can have, i.e., different for-
malisms support different notions of computation. Not
many surveys focus on this aspect, yet we believe it is
important as the formalism defines what properties can
and cannot be captured.

Workflow allocation is the problem of assigning units of work
to the available resources to adhere to the various QoS con-
straints set, while potentially attempting to improve other
aspects such as resource utilization or power consumption.

Resource provisioning covers the research of when to allocate
resources and how many given current and predicted de-
mand. Adding the right amount of resources is crucial in
lowering costs and improving the overall resource utiliza-
tion, while avoiding slowdowns and other issues in the
system.

Application and services cover the different type of resources,
the execution model, and services that are considered in
literature and available today.

These four main elements will be covered in the next four sec-
tions, each with their respective (sub-)taxonomies.

4. Taxonomy of workflow formalisms

A workflow formalism provides a language to construct work-
flows with. To create an overview and taxonomy of formalisms
commonly used with workflow scheduling, we perform a system-
atic search to find articles on this topic and complement it with
our experience. The query used to obtain articles on workflow
formalisms for our systematic search is visible in Query 2.

Complementing the workflow structure taxonomy of
Yu et al. [11], our taxonomy of workflow formalism is pre-
sented in Fig. 6 (left) and consists of two main branches: the
enabled structure and what we call the core language, covered
in Sections 4.2 and 4.3 , respectively.

4.1. Community and emerging keywords analysis

Based on results presented in our technical report [17], we
make the following observations:

O-5: The formalism community is a small yet healthy com-
munity. A few large components exist and most author-
relations are one-time.

O-6: Many of the emerging trend keywords indicate that users
and convenience of use are growing in importance.

O-7: Larger cliques have a lower citation author citation count
both on average and in maxima.

O-8: Over 90% author a single article.

O-9: Authors do not (co-)author more than two articles in this
space.
161
4.2. Taxonomy of enabled structures

The enabled structure refers to the constructs possible within
the workflow. We differentiate between Directed Acyclic Graph
(DAG) and non-DAG. Due to the constraints between tasks and to
prevent increasing complexity when having to deal with (com-
plex) loops, most papers use the DAG formalism to represent
workflows [23]. The DAG formalism is a simple and general
concept often used in other fields. However, since this formalism
is abstract, many implementations exist that allow developers to
express their programs as a DAG.

Non-DAGs have the same entities as DAG, yet offer one ad-
ditional instruction: iteration (or looping) [24]. Some workflow
management systems support the non-DAG formalism, yet most
well-known systems use DAGs. Many formalisms implementing
a (non-)DAG formalism exist that are used by various other
systems. Bastos et al. [25] look at the different structures of work-
flow formalisms for interchanging specification between work-
flow management systems.

Fig. 6 (right) presents a non-exhaustive overview of how
workflow formalisms relate to the common abstracts of DAG and
Non-DAG formalisms.

4.3. Taxonomy of core languages

Next to the structure enabled by the formalism, we use the
term core language of the formalism to depict the language used
to construct these workflows. We introduce this term to avoid
ambiguity between the terms ‘‘formalism’’, and ‘‘language’’ which
are used interchangeably in literature. Core languages can be
generic purpose languages such as CSV, XML, YAML, and JSON.
Example of formalisms based on generic core languages include
AGWL, JS4Cloud, DAX, DIS3GNO, and CWL. We manually inspect
the articles return by Query 2 and cover the core languages
mentioned, if any.

The AGWL is a formalism from the grid era based on XML [26].
The language explicitly models parallelism, loops, and forks such
as if-else statements.

JS4Cloud is a JavaScript based workflow formalism for defining
and executing data analysis workflows [27]. It has been imple-
mented in the data mining cloud framework.

The Pegasus project uses an abstract workflow formalism
called DAX. A DAX file describes a workflow as a DAG in XML
format.

Cesario et al. [28] introduce a DAG-based workflow formal-
ism for designing and executing distributed knowledge discov-
ery workflows in their workflow executing framework named
DIS3GNO.

The Common Workflow Language (CWL) is a formalism to
describe command line tools and create a workflow out of them
[29]. The formalism focuses on portability. An example of the
usage of CWL in this context is done by Jansen et al. who use
CWL to create a reducible file format called RED to improve
the reproducibility of deep learning workloads and data-driven
experiments [30].

Formalisms that use a specialized core language include
BPMN, Petri net, YAWL, WED-Make, and UML.

Business Process Model and Notation (BPMN) is a formalism
commonly used in businesses to outline workflows or processes
within a company [31]. The formalism is comprehensive as it fea-
tures over 100 symbols, including support for cycles and human
interaction in workflows.

Petri net (PN) is a formalism commonly used in chemistry
to model chemical processes and reactions. It is similar to the
DAG formalism, yet uses tokens and weights on links to de-
scribe dependencies [32]. Many variations of the original Petri net



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177

f
e
h

s
i
D
s

t
U
a

a
l
‘
a

s
e

p

4

p
f
f
b
e
d
t
C
f
c

w
a
i
d
a

5

o
a

l

Fig. 6. Left: the taxonomy of workflow formalisms. Right: a Venn diagram showing how workflow formalisms relate to the abstract formalism of (non-)DAG.
i
t

5

m

O

O

O

O

5

i
e

ormalism have been introduced to enhance its capabilities, for
xample the use of colored Petri nets [33]. Hoheisel et al. show
ow Petri nets can be used to model DAGs [34].
Yet Another Workflow Language (YAWL) is a formalism in-

pired by PNs [35]. It features similar constructs to BPMN yet
s more simple in its constructs. YAWL can be used to construct
AGs [36]. The formalism supports dynamicity and has extensive
upport for (unexpected) error handling.
WED-Make is a workflow formalism introduced by the Elba

oolkit to define dependencies and commands for execution [37].
sing the formalism, hidden and implicit dependencies are found
nd declared, guaranteeing they are respected.
CARMA is a workflow language aimed at stochastic process

lgebra for the representation of systems developed in the Col-
ective Adaptive Systems [38]. The authors describe it as an
‘attribute-based availability model’’ where both the workload
nd the physical machines can be modeled with.
Song and Tilevich introduce a dataflow-based DSL for con-

tructing workflows for microservices to reliably and efficiently
xecute them [39].
Other formals such as UML and control and data flow ap-

roaches are also used [40].

.4. Future directions

There are several future directions that we believe are worth
ursuing in the context of workflow formalisms. We believe non-
unctional requirements (NFRs) can be better incorporated in the
ormalisms. Our preliminary investigation [23] found the ‘‘DAG’’-
ased solutions are the most common and the most simple to
xtend, but further investigation is required. Another interesting
irection is to allow the environment to give hints or suggestions
o the workflow management system through the formalism. The
WL-project is investigating incorporating this aspect into their
ormalism through the form of splitters,2 where an ‘‘executor’’
an provide tools to split and combine chunks.
Capturing provenance related elements has been a focus for a

hile by the community. In general, reproducibility has received
ttention as of late. We believe incorporating provenance details
n the formalism, such as input parameters, file names, hardware
etails, and other (potentially) important elements deserves more
ttention.

. Taxonomy of workflow allocation

Workflow allocation is the process of placing the workflows
nto available resources in such a way that the scheduling targets
re met (see Section 5.2) while not violating any constraint. To

2 https://github.com/common-workflow-language/common-workflow-
anguage/issues/446.
162
Query 3: SELECT * FROM publications WHERE year BETWEEN
2011 AND 2020 AND (lower(title) LIKE ’%workflow%’ OR
lower(abstract) LIKE ’%workflow%’) AND (lower(title)
LIKE ’%schedul%’ OR lower(abstract) LIKE ’%schedul%’
OR lower(title) LIKE ’%plan%’ OR lower(abstract)
LIKE ’%plan%’ OR lower(title) LIKE ’%allocat%’ OR
lower(abstract) LIKE ’%allocat%’)

achieve this, a workflow scheduler needs to take into considera-
tion both global and/or local constraints and focus on a single or
multiple criteria (see Section 5.3).

In this section, we focus on the diverse sub-parts of workflow
allocation, see the taxonomy in Fig. 7. Each of the sub-parts
will be discussed with their respective sub-taxonomies, some of
which extend state-of-the-art taxonomies, e.g., [11,12].

Query 3 is used to find articles related to workflow allocat-
ng, which in turn are used to verify the completeness of our
axonomies regarding workflow allocation.

.1. Community and emerging keywords analysis

Based on results presented in our technical report [17], we
ake the following observations:

-10: The workflow allocation community is reasonably big.
Many relationships are one-time. Plenty of authors exists
that ‘‘bridge’’ two groups, i.e., being the single link between
two connected components.

-11: ‘‘Deadline’’, ‘‘cost’’, and ‘‘multi-objective’’ are emerging and
important topics within the workflow allocation commu-
nity. We observed the same for workflow scheduling arti-
cles, and as allocation is more common focus than resource
provisioning (based on number of articles and community
sizes), this result makes sense.

-12: Similar to the workflow formalism community, larger
cliques tend to have a lower average citation count among
the authors. Different from the workflow formalism com-
munity, the maxima can be found in both larger and
smaller sized cliques.

-13: Over 80% of authors author a single article, yet a small
number authored up to sixteen papers in the timespan
2011–2020.

.2. Taxonomy of scheduling targets

In this section we cover the optimization metrics described
n Taxonomy 8, which significantly extends the taxonomy of Yu
t al. [11]. These metrics are obtained by combining personal

https://github.com/common-workflow-language/common-workflow-language/issues/446
https://github.com/common-workflow-language/common-workflow-language/issues/446


L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177

e
t
m
d

5

s
s
u
o
f
r
b

5

m
s
p
o

5

C
r
e
b

F
r

o
e

5

a
n
f
a
G
c
i

Fig. 7. Workflow allocation taxonomy.
Fig. 8. The optimization target taxonomy. The gray box represent a collection and does not impose any difference between the elements.
xperience complemented with analyzing the articles returned by
he queries in this work, most noticeably Query 3. There are likely
ore optimization targets that policies use, yet the taxonomy
iscussed here covers a significant portion of them.

.2.1. Makespan
Makespan (or runtime) is a common targeted metric when

cheduling jobs. Makespan is the total time elapsed between the
tart and finish of the entire job. Several techniques have been
sed to minimize the makespan of jobs, including Particle Swarm
ptimization [41], simulated annealing [42], and min-cut/max-
low [43]. Dealing with latency sensitive applications also may
equire low makespans. An example of such a system is provided
y Bonvin et al. [44].

.2.2. Deadline
Related to makespan as scheduling target, deadlines are a

ore strict and may require different decisions of a scheduling
ystem. Deadlines cover the total turnaround time, which is com-
osed of wait time(s), makespan, and latency of submitting and
btaining a response [45].

.2.3. Costs
Another common, yet important target for optimizing is costs.

loud providers offer a pay-as-you-go model for leasing
esources. Traditionally billing would be on an hourly basis, how-
ver, several cloud providers have moved towards a second-based
illing granularity [46,47].
Cost is closely related to resource utilization (see Section 5.2.5).

or example, autoscalers already are concerned with costs since
esources pricing schemes differ per cloud provider.

Alkhanak et al. [48] provide an extensive overview and taxon-
my of cost-aware approaches of workflow scheduling in cloud
nvironments.

.2.4. Energy consumption
With the growing importance of green computing, energy-

ware scheduling is emerging, with new approaches and tech-
iques being introduced. In 2014, datacenters already accounted
or 2% of energy consumption in the US [49]. Datacenter operators
re focusing on becoming energy-neutral, including Amazon [50],
oogle [51], and Microsoft [52]. Especially in high performance
omputing, the number of flops per watt has become increasingly
mportant.3

3 Keynote CCGrid 2018.
163
Articles in this domain focus on least-loaded machines [53],
trade-offs between makespan and energy efficiency [54], Pareto-
based scheduling [55], dynamic voltage and frequency scaling
[56], power minimization in networks and protocols, and self-
adaptive systems [57]. These techniques are sometimes combined
as demonstrated in [58].

5.2.5. Resource utilization
Resource utilization denotes the efficient use of allocated re-

sources. With the growth of cloud popularity, this metric is be-
coming increasingly important for cloud operators. Resource uti-
lization levels of 70% are possible in domains such as super
computing [59], yet the utilization of clouds is as low as 6%–12%
are reported [60–62].

Cloud providers employ autoscalers (i.e. provisioning policies)
to automatically scale resources based on the resource demand
of the client. Autoscalers minimize under- and overprovisioning
to improve resource utilization while not violating any QoS of the
client. Especially when facing challenging, e.g., bursty or unpre-
dictable workloads, autoscalers tend to perform differently [63,
64]. The interplay between allocation and provisioning then be-
comes increasingly important to make sure resources are utilized
properly.

5.2.6. Load balance
Some schedulers attempt to balance the load, i.e., distribute

the work over workers in such a way that they are roughly
equally loaded. This load can measured using various metrics;
CPU utilization and RAM utilization are common metrics. Net-
work can also be a target to balance [65]. Load balancing is related
to Resource Utilization, yet differs on a few critical points that we
believe warrant its own category:

1. You can have (non-uniform) load balancing, possibly with-
out improving or even ‘‘worsening’’ resource utilization.

2. A lack of (uniform) load balancing can lead to higher failure
rates for more highly utilized machines, so load balancing
is not merely resource utilization maximization.

3. The two may even conflict in a multi-objective setting,
latency and cost might lead to a conflicting state where
a higher resource utilization is desired to reduce cost, but
leads to a higher (tail) latency.

Load balancing can be used to impact other scheduling targets
including latency, costs, throughput, and response time. Load bal-
ancing also plays a role in minimize resource contention, i.e., jobs
delaying due to insufficient resources caused by all jobs requiring
the same resources at the same time [66].



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177

5

n
s
w

s
t
t

5

o
i
a
e
p
t
c
o

5

b
s
C
f
p
j

5

p
r
l
s

o

p
h
A
a
h

5

c
n
c
d

t
s
r

o
s

p

.2.7. Fairness
The notion of fairness can have multiple definitions. Fair-

ess can relate to an equal share of resources [67], sharing re-
ources [68], equal slowdown [69], fair use in multi-resources
ith placement constraints [70], and slowdown [71].
Quang et al. [72] present a comparative analysis of two

cheduling mechanisms for virtual screening workflows sharing
he same infrastructure. They focus on fairness, overall system
hroughput, and response time.

.2.8. (User-defined) priority
Some workflow execution systems support (user-defined) pri-

rities. Deng et al. mention the use of priority-driven execution
n their scheme [73]. An example of a policy taking priorities into
ccount is PISA [74]. PISA differentiates between user priority lev-
ls e.g. free-tier and pay-tier users when scheduling. The level of
riority determines the speed at which the user will be assigned
he required resources when resource contention occurs. In the
luster traces released by Google, priority is also exposed as one
f the field used to schedule [75].

.2.9. Risk
Risk relates to allowing resource contention within acceptable

ounds to reduce costs whilst still meeting the QoS requirements
et by the customers. Van Beek et al. [76] describe risk based on
PU contention while running business-critical workloads. While
ocusing primarily on security, Li et al. [77] compute the risk rate
roportional to the security levels and the distribution of risk to
udge if it is within bounds.

.2.10. Security & privacy
As public clouds are freely accessible by design, for some ap-

lications security is a desirable goal. Trust-based scheduling and
esult verification are necessary in these situations. Proposed so-
utions range include quiz systems [78], risk rate constraints [77],
ecure key sharing and fine-grained access control [79].
Shishido et al. [80] propose an extension to measure security

verhead in CloudSim.
Following the recently enforced GDPR legislation in the Euro-

ean Union (EU), processing and storing data of EU citizens must
appen on systems located in Europe. Data Protection Impact
ssessments (DPIAs) methods are employed to identify and risks
nd rights of entity regarding data [81]. Countries such as Russia
ave similar legislation [82].

.2.11. Fault tolerance
Fault tolerance is of vital importance when running business

ritical applications and required at several levels when run-
ing workflows. Replication, preemption, and checkpointing are
ommon techniques to fault tolerance when executing tasks in
atacenters.
Both availability and reliability are within the scope of fault-

olerance [83] where availability expresses the fraction of time a
ystem is operational, and reliability the fraction of the system
emaining operational during the processing of a task.

Fault-tolerance has been investigated when using spot and
n-demand instances [84], using task replication and other re-
ubmission techniques [85–87], challenges and tools [88].
A survey on the topic of fault-tolerance and taxonomies is

rovided by Poola et al. [89].
164
5.2.12. Data locality
With IO-intensive workflows, data locality can reduce the

runtime and cost of workflows. It is especially important when
sending data to and from cloud environments. Typically, sending
data within the same cluster is free, yet communication to and
from the cluster is not. Being data locality aware may also help
in reducing costs by not having to send data.

Especially in the Map-Reduce domain, IO-intensive work-
flows are common. A well-know article on this topic is Xie
et al. [90] who introduce a data placement scheme for MapRe-
duce applications running on heterogeneous nodes. Articles such
as [91] and [92] also focus on data-locality in MapReduce appli-
cations. The study by Wang et al. [92] has similarities to e.g. Duro
et al. [93] who focus on the trade-off between data-locality and
load balancing when executing generic workflow applications.
Recent efforts also focus on data locality for entry (starting) tasks
of workflows [94]. More articles on workflow scheduling with
data locality exist, e.g. [95] and [96].

5.2.13. Fidelity
Fidelity relates to the quality of output of a workflow [11]. Car-

doso et al. refer to fidelity as a function of effective design and in
intrinsic property or characteristic of a good produced or service
rendered [97]. Video streaming is a good example where fidelity
versus computation power can be a trade-off. Another example is
using dynamic voltage and frequency scaling to trade-off quality
with power consumption [98].

5.2.14. Throughput
Throughput focuses on completing as many tasks in an as

short as possible timespan. Different from focusing on makespan,
throughput related approaches may not attempt to speed up the
duration of tasks themselves by running them on, e.g., special
hardware. Simply running more tasks in parallel could already be
an feasible approach to improve throughput.

5.2.15. Bandwidth
Related to data locality, yet different, bandwidth can be a

target as well. Some scheduling strategies involve messaging be-
tween components, where reducing bandwidth becomes impor-
tant. An example of such work is that of Momenzadeh et al. [99].
Their work focuses on workflow segmentation to execute work-
flows on multiple Virtual Machines (VMs). Bandwidth, due to the
message communication, becomes an important metric in such
systems.

5.2.16. Latency
Latency defines the time it takes for the data to arrive at

the computing infrastructure. Good examples of latency can be
found in the IoT domain [100]. For example, Shell deploys IoT
workflows for measuring pressure, temperatures, etc. in their oil
refineries [101].

5.2.17. Response time
The total time it takes from submission to receiving the an-

swer, i.e., output is the response time. Several policies exist that
focus on this metric [102].

The latency, wait time (time spent in queue), processing time,
and data transfer times to and from the computing infrastructure
make up the response time, hence this metric can be improved
across several dimensions.



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177

5

c
g
r
m
v
h
(
m
S
w
s
A
t
e

i
m
c
t
b
s
a

i
r
w
w
o
T
a
s
c

5

p
O
t

a
f
e
e

Fig. 9. Optimization strategy taxonomy.
.3. Taxonomy of optimization strategies

The optimization strategy of policies varies in both focus and
onstraint. Fig. 9 presents the taxonomy for optimization strate-
ies. The focus can be on a single criterion or multiple crite-
ia. Popular single criterion for minimization are cost [103] and
akespan [71]. Examples where policies must match a specific
alue can be found for example in Galaxy’s workflow scheduler
aving to match tool versions [104], and Function as a Service
FaaS) instances relying on specific library versions [105]. Maxi-
ization policies focus on e.g. throughput [106] or fairness [71].
atisficing is about generating ‘‘good enough’’ solutions. The term
as introduced by Herbert A. Simon [107]. Jaeger et al. [108] use
atisficing to modify business information system models using
I techniques. Zhang et al. [109] use iterative ordinal optimiza-
ion to schedule scientific workflows in elastic cloud computing
nvironments that satisfice the problem.
Multi-criteria policies consider multiple metrics at once. Sim-

lar to single criterion policies, multi criteria policies can both
aximize, minimize and match certain criteria. New to multi-
riteria is optimize. With optimize, two or more metrics are
rade-off to create an overall better outcome. A popular com-
ination of criteria to optimize is cost while meeting deadlines
uch as [110]. Recently, energy-aware workflow scheduling is
lso becoming more prevalent, see e.g. [111,112].
Constraints can be both local and global. Some schedulers take

nto consideration all eligible workflows and the entire available
esource environment and device a best plan across the entire
orkload, e.g., globally. Some schedulers only focus on a single
orkflow at a time without even though multiple may be eligible,
r focus on only one specific (part of the) resource environment.
his may lead to the best placement of workflow currently being
llocated, yet may not lead to the overall best outcome. We con-
ider the constraints these schedulers target to be local. Policies
an use a mixture of both.

.4. Taxonomy of scheduler structures

In the past decades, several scheduling structures have been
roposed. Fig. 10 presents the taxonomy of different structures.
ften, scheduler structures are divided into centralized, decen-
ralized, and hierarchical structures, which is quite coarse grained.

The first differentiation is to be made between single-cluster
nd multi-cluster architectures. Next, for each of these levels, we
ocus on multiple different structures within these levels. This
xtends significantly the characterization done by of Moghaddam

t al. [12].

165
5.4.1. Single-cluster architectures
For a single-cluster scheduling architecture, one can use either

a centralized or a decentralized architecture in which the boot-
strapping problem is solved centrally. Both of these architectures
have their trade-offs.

A centralized scheduler, sometimes called a headnode, acts
as a coordinator and keeps track of the global state. Using such
architecture makes it easier to manage resource yet may become
a bottleneck or single point of failure. An example of a central-
ized single cluster scheduling architecture is that of Kubernetes.
Centralized systems are generally monoliths and can evolve into
sophisticated systems that are hard to change, e.g., the situation
at Google prior to Omega [113].

In a decentralized architecture, schedulers are responsible for
a part of the resources. A decentralized scheduler is more resilient
to failures, yet keeping a global state is more difficult and comes
at the cost of having to communicate between the schedulers.
HTCondor is an example of a distributed scheduler in which a
central matchmaker delegates the work to nodes. Due to this
centralized component, the bootstrapping problem is avoided.

5.4.2. Multi-cluster architectures
With a centralized meta-scheduler, a centralized headnode

sends jobs to different clusters. Using such architecture makes it
easier to manage resource yet may become a bottleneck or single
point of failure. Firmament [43] is an example of a centralized
workflow scheduler that is fast, even at large scale.

In a fully decentralized setting, costumers can check compare
each cluster and independently submit to these clusters (obser-
vational scheduling). When load-sharing happens, this can turn
into a fully decentralized, federated architecture, for example,
OurGrid [114].

Hierarchical architectures attempt to combine some of the
benefits centralized and decentralized architectures offer. In a
hierarchical architecture, tasks often pass multiple schedulers in
a layer fashion [115]. Examples of hierarchical schedulers are
PUNCH, CCS, Moab/Torque, and Flux. PUNCH and CSS were one
of the first tools to use a hierarchical architecture for scheduling
in large-scale distributed environments with CSS being able to
operate both in cluster and supercomputer environments [116].
Moab/Torque is a commercial scheduler that to date is still used
in distributed environments. Flux is a scheduler framework that
aims for scalable, easy-to-use, and portable execution of large
workloads [117]. Flux enables (and encourages the use of) a hi-
erarchical setup for scheduling using their APIs. For example, the
Los Alamos National Laboratory uses Moab, as can be observed
from recent workflow traces that originate from this lab [118].

With delegated matchmaking, instead of performing load-
balancing by sending jobs to other clusters, clusters resources
usage rights are delegated, rather than jobs [119]. Questions
regarding who controls the delegation and notions of fairness

arise in such architectures.



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177

f
s
t

b
d
i
a

5

Fig. 10. Taxonomy of scheduler structures.
Shared-state scheduling is a special kind of fully decentralized,
ederated approach. It involves a situation in which multiple
chedulers have an overview of and can manage and lay claim
o all resources in a given environment. To schedule using this
structure, you need to provide a unified notion of when resource
allocations are permitted and a notion of precedence (who wins
when competing). The Omega scheduler [113] is a well-known
example of using shared-state scheduling.

Other arbitrary architectures includes architectures such as
y a TAGS-based policy in which clusters serve different job
epending on their runtime. This is implemented in KOALA-C
n where jobs that run too long are preempted and moved to
nother queue for execution.

.5. Taxonomy of allocation techniques

The technique used by a scheduler determines how the sched-
ule is created. It has been shown that computing the optimal
schedule is an NP-hard problem. Computing the optimal sched-
ule is therefore infeasible in terms of time, especially with the
ever-increasing dynamic workload.

To this end, many different techniques have been proposed to
generate an optimal or near optimal schedule in feasible time.
In this section we will discuss various techniques employed for
task placement. Fig. 11 presents the taxonomy of task placement
techniques.

5.5.1. Greedy
Selecting jobs and/or resources greedily sometimes helps in

reducing time required to compute a schedule, or push a solution
to a local optimum. Greedy algorithms are often used to generate
‘‘good enough’’ solutions within a timely manner.

Xiang et al. [120] introduce a greedy ant colony optimization
algorithm that performs greedy machine allocation with low
overhead. Yu et al. [121] mention several greedy algorithms for
scheduling workflows in grid environments.

5.5.2. Game theory
Game Theory is another technique employed by schedulers to

meet scheduling targets. The ICENI scheduler uses game theory
for scheduling workflows, for example [122]. Yaghoobi et al. [123]
use a game theory approach for scheduling workflows in grid
environments to minimize turnaround time and cost. Duan et al.
[124] introduce a workflow scheduling policy based on game
theory that attempts to optimize for both makespan and cost
while taking network bandwidth and storage into account.

5.5.3. Random
Scheduling eligible tasks randomly is often done to obtain

a baseline when experimenting. First-come-first-serve (FIFO) is
usually used as an allocation policy in this case. For example, Wu
et al. [74] use the FIFO sequence for a random baseline.

Another random method is lottery ticket scheduling [125].
Resources get assigned a certain amount of tickets and for each
task, a ticket is drawn at random. The task is then assigned to the

corresponding resource if it fits, else a new ticket is drawn.

166
5.5.4. Heuristic
Heuristic approaches apply best-effort methods that work well

for a given setting, e.g. workload of workflows, or use specific
elements from a domain. Since scheduling tasks is a NP-hard
problem, many policies rely on heuristic for task placement deci-
sions. Examples of specific domain properties related to workflow
scheduling can be task runtime, task size, etc.

Examples of policies that use heuristics are SJF [42] and HEFT
[126].

5.5.5. Meta-heuristic
Meta-heuristics are the class of heuristic that are problem

independent. Examples of such meta-heuristics applied for work-
flow scheduling are ant colony optimization [127], cat swarm
optimization [128], Shuffled Frog Leaping [129], evolutionary al-
gorithms such as genetic algorithms [130], and simulated an-
nealing [131]. Wu et al. [132] present a revised particle swarm
optimization approach.

5.5.6. Machine learning
Machine learning describes the notion where a system can

make decisions based on prior seen (similar) situations. These
systems require prior training before being able to classify new
cases. Due to the agnostic principle of machine learning, it can
be used for many different purposes, including scheduling. With
the recent surge in interest for machine learning, the number of
approaches in scheduling and autoscaling using this technique
have increased too.

Vukmirovic et al. [133] use artificial neural networks for dy-
namically executing scheduling algorithms. Bauer et al. use ma-
chine learning for autoscaling multi-tier micro services [134].

5.5.7. Exhaustive search
Exhaustive search algorithms compute the optimal planning

given a workload and resource settings. However, as scheduling
workflows is NP-hard, in practice such solutions are infeasible.
One of the most famous examples of scheduling is bin packing.
Exhaustive search algorithms are infeasible in practice where
real-time decisions need to be taken.

Examples of exhaustive search algorithms are ILAO and CO-
LAO [135].

5.5.8. (Non-)linear programming
(Non-)linear programming can be used to construct mathe-

matical models in which requirements can be specified by (non-
)linear relationships. Such models can then be used to compute
the optimal outcomes given the constraints. (Non-)linear pro-
gramming has been used to construct workflow schedules, often
with Service Level Objective (SLO) defined as constraints. Such
schedules can be either used for verification or benchmarking
purposes (comparison), or to use as scheduler (functionality).

The applicability of (non-)linear programming ranges from
executing workflows in grid environments [136], multi cloud

environments [137], to scheduling pipelined workflows [138].



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177
Fig. 11. Allocation policy technique taxonomy.
p
o
p
m
o

5.5.9. Ordinal optimization
Ordinal optimization was introduced by Ho et al. [109] to

effectively generate local-optimal solutions (or ‘‘good enough’’)
to NP-Hard problems. Zhang et al. [109] extended ordinal opti-
mization and included an iterative approach to reduce the search
space and overhead. Ordinal optimization has also been used
in combination with other techniques. El-Zarif et al. [139] use
ordinal optimization to improve parameter selection for their
genetic algorithm approach. While this work is not in the context
of (workflow) scheduling, this approach could be tested since
genetic algorithm approaches have been introduced by related
work (see Section 5.5.5).

5.5.10. Reinforcement learning
With reinforcement learning, the system contains a feedback

loop that tunes parameters according to the feedback obtained. If
implemented correctly, a system containing such a feedback loop
will correct itself to changes in environment and workload. Ex-
amples of workflow scheduling using reinforcement learning are
Ma et al. [101] who combine a Q-learning approach to portfolio
scheduling, Wang et al. [140] apply a Deep-Q-network in a multi-
agent reinforcement learning setting to improve both workflow
makespan and cost,

5.6. Workflow instantiation

Yu et al. define the notion of abstract and concrete work-
flows [141]. An abstract workflow defines the tasks and their
dependencies, yet lacks the detail of where each task will be ran
and where the data should be read from and written to, which the
concrete workflow entails. The concrete workflows is therefore an
instantiation of the abstract workflow.

The process of instantiation can be done statically or dynam-
ically. In the static case, concrete workflow plans are generated
before execution in accordance to the latest state of the system.
Any dynamic changes in this state are not taken into account.
Dynamic schemes do make use of the dynamics in state as well
as static information beforehand to make scheduling decisions at
runtime.

User-directed and simulation-based scheduling are common
when creating static schemes. In user-directed scheduling, the
consumers themselves emulate the scheduling process and as-
sign resources to tasks, or modify workflows themselves [11].
This process is often done by human experts who rely on their
knowledge and can also incorporate preferences and/or other QoS
criteria such as performance or availability. In simulation based
scheduling, the ‘‘best’’ schedule is picked after simulating the
workload on a set of resources according to defined metrics.

5.6.1. Partitioning technique
Other aligned methods arose to instantiate workflows. For

example in graph processing where partitioning techniques are
applied to the graphs first. The graph is partitioned based on
the graph itself and the algorithm (often workflows) to be ap-
plied [142]. Similarly to workflow allocation policies managing
data locality, the partitioning of the graph determines how the
workflow is instantiated and which tasks of the workflows run
where and on what data.
167
Query 4: SELECT * FROM publications WHERE year BE-
TWEEN 2011 AND 2020 AND (lower(title) LIKE ’%work-
flow%’ OR lower(abstract) LIKE ’%workflow%’) AND
(lower(title) LIKE ’%provision%’ OR lower(abstract)
LIKE ’%provision%’ OR lower(title) LIKE ’%autoscal%’
OR lower(abstract) LIKE ’%autoscal%’)

5.6.2. Workflow and task optimization
Several workflow management systems perform optimization

steps when having created an concrete workflow. An example of
such a system is Pegasus [143]. First, the Pegasus Mapper holds
the abstract workflow. The Mapper can e.g. reorder, group or
prioritize tasks to improve performance. This workflow is then
passed on to DAGMan, which turns the abstract workflow into
a concrete workflow, by e.g. determining where each task will
run and where the data will reside. DAGMan then monitors the
execution of the workflow and tracks if task dependencies have
been met. Finally, the HTCondor scheduler executed the workflow
on the targeted resources.

5.7. Future research directions inspired by meta-data analysis

Cost and deadline-aware scheduling remains an important and
growing topic within the workflow allocation community as seen
in Section 5.1. Given the recent emerging topics of Edge/Fog,
IoT, and serverless computing, we believe there are plenty of
opportunities within this domain.

Metrics such as Risk and Fidelity are less studied in the context
of workflow allocation. We believe especially for business critical
workflows, these metrics are important. More work on these
topics, especially in emerging areas as Edge/Fog etc.

Another topic we believe will grow in importance is green
computing, i.e., a focus on reducing power consumption while
adhering to all functional and non-functional requirements. Sus-
tainable energy sources are already invested in heavily. With
datacenters being major power consumers, and the power con-
sumption is likely to rise, it is worthwhile investing into this
topic [144].

Finally, we believe policies with multiple criteria or objectives
will become the norm. Already, we see many policies focusing on
more than one metric (see Section 8).

6. Taxonomy of resource provisioning

In this section, we discuss resource provisioning. The scope
of this section is limited as this topic deserves a survey itself.
As workflows do play an important role in several autoscalers,
we will cover both provisioning in general and autoscalers. Novel
compared to related work, we cover elasticity and the offloaded
provisioning model.

Query 4 is used to find articles related to workflow resource
rovisioning, which in turn are used to verify the completeness
f our taxonomies. For each article, we check if the proposed ap-
roach can be mapped onto our taxonomy, incrementally adding
issing elements. We will show that recent policies map well to
ur taxonomy in Section 8.



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177
Fig. 12. Autoscaler taxonomy.
p
r
a

l
d
m
a

f
t
s
r
v
p
p
i
p

6.1. Community and emerging keywords analysis

Based on results presented in our technical report [17], we
make the following observations:

O-14: The resource provisioning community is relatively small.
Many authorship relationships are one-time. The
connected components of size greater or equal to five are
quite diverse and dynamic.

O-15: Elasticity and the environment seem to be emerging and
trending keywords within the resource provisioning com-
munity.

O-16: The average and maximum citation count per clique sit-
uation is very similar to that of the workflow allocation
community. The only difference is that there are less out-
liers.

O-17: Similar to the workflow formalism community, around
82% of authors author a single article. The highest number
of co-authored papers by a single author was six in the year
span 2011–2020.

6.2. Taxonomy of provisioning

We select from and extend the provisioning taxonomies of
Smanchat et al. [13] and Shoaib et al. [145]. We only focus on
the provisioning model, decision making, elasticity, and dynamic
provisioning strategies as they relate closely to our scope of
workflow scheduling (see Fig. 12).

Provisioning decisions are divided into three categories: algo-
rithms that make decisions, (static) scaling decisions based on
measurements, and scaling decisions based on models [145].

Algorithms typically consider multiple parameters, including
deadlines, costs of resources, the workload, etc. These algorithms
may incorporate models to make decisions.

Scaling decisions based on measurements are more simplistic.
For example, when scheduling a bag-of-tasks, assuming that each
task requires one CPU core, the amount of allocated machines
might be straight forward.

Resource provisioning systems can also rely on performance
models to make decisions. Shoaib et al. [145] refer to several in
their survey.

Elasticity defines how well a provisioning approach scales
with the need for resources. Ilyushkin et al. [63] define sev-
eral novel metrics for system elasticity. We cover this topic in
Section 6.4.

Dynamic provisioning refers how autoscalers respond to
changes in resource requirements. Proactive approaches pre-
dict changes and act accordingly, to attempt to avoid over- and
underprovisioning scenarios. The danger of such an approach
is miscalculating the required resources. Reactive approaches
respond to changes that have already taken place or are tak-
ing place. Reactive approaches might lead to short periods of

over- and underprovisioning, yet follow changes in demand more a

168
Fig. 13. Autoscaler taxonomy.

closely albeit delayed. Finally, hybrid approaches combine both
techniques. A typical combination is changing resources on a
reactive basis approach when facing, e.g., bursts, yet be proactive
with common patterns such as diurnal use of resources.

Finally, the provisioning model can vary. Long-term, unre-
liable, and on-demand provisioning are covered by Smanchat
et al. [13]. Long-term resources are rented for extended periods of
time, up to years. Unreliable provisioning relates to resources that
may not always be available at a certain price, or simply available
at all. Amazon’s Spot Instances is an example of such unreliable
resources. On-demand provisioning is the model of getting re-
sources from a (usually) a fixed list from cloud providers. When
scaling resources up and down to deal with sudden flash crowds,
typically on-demand provisioning models using autoscalers are
used. We cover this topic more in-depth in Section 6.3. Finally,
we add to this category the offloaded model. In this case, the
provisioning of resources is managed by the resource provider. An
example of this is using the autoscalers of Amazon’s autoscaling
service.

6.3. Taxonomy of autoscalers

Autoscalers are employed to scale resources during chang-
ing resource requirements of workflows following a provisioning
olicy. The provisioning policy dictates how many and when
esources are (de)allocated. Fig. 13 presents the taxonomy of
utoscalers based on Ilyushkin et al. [63].
In workflow execution, autoscalers that solely monitor server-

evel information as their information source for making scaling
ecisions are agnostic to the workload. Examples of informative
etrics used are current throughput, length of the task queue,
nd amount of available resources.
Workflow-specific autoscalers exploit the structure of work-

lows to improve provisioning decisions. Examples include es-
imating the level of parallelism in workflows [146] and con-
truction partial execution plans for eligible tasks [63]. In our
ecent work [64], we demonstrated that autoscaler performance
aries as the workload, environment, and other system com-
onents change. This indicates that careful benchmarking and
roper identification of strengths and weaknesses of autoscalers
s required. Such new insights can be exploited into new ap-
roaches and possibly new scheduler designs where allocation
nd provisioning are co-designed.



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177

t
t
l
a
d
d
m
o

t
r
C
d

6

o
d
w
c
s
l
e
o
t
i
n

6

m
w
e
t
d
i
d
c
r

t
b
i
a
i
a

6

p
i
s
l
a

e
a
a
t
S
t
a

s
t

7

f

O

O

O

O

7

7

t
I
l
r
v
l

7

t
t
l
(
i
e
c

Timeliness of information refers to how recent the data is
hat is being used to estimate incoming workloads. There are
wo classes in this branch: short-term or current information and
ong-term. Autoscalers that only operate on the current incoming
mount of workload or very recent information. There is no clear
efinition on how ‘‘recent’’ information should be, generally this
iffers per autoscaler. Long-term information spans days to even
onths or years where diurnal or even seasonal patterns can be
bserved.
The level at which autoscalers can operate is either single-

ier or multi-tier. Single-tier autoscalers typically manage the
esources for a single application. Multi-tier autoscalers such as
hamulteon [147] and FAHP [148] scale resources for multiple,
ifferent applications.

.4. Elasticity

When additional resources are required, the autoscaler must
btain enough resources as fast as possible, potentially in accor-
ance with other NFRs such as adhering to a budget. Similarly,
hen resources are no longer required, they should be deallo-
ated to avoid unnecessary costs. Elasticity defines how well a
ystem responds to changes in resource requirements without
ooking at the secondary requirements. The work of Ilyushkin
t al. [63] use and introduce several metrics for elasticity. Among
ther elements, these metrics capture overprovisioning, i.e. the
ime and amount of resources that were idle and underprovision-
ng, i.e. the time and amount of resources that were required but
ot provisioned.

.5. Allocation and provisioning policy interplay

The allocation policy can have a direct impact on the perfor-
ance of an autoscaler (and the provisioning policy that goes
ith it). Versluis et al. [64] demonstrate that without task pre-
mption resources may remain in use, yet underutilized due to
he autoscaler being unable to deallocate these resources. An-
readis et al. [6] demonstrate that scheduler components, includ-
ng the allocation and provisioning policies, are systematically un-
erspecified. Underspecification of such policies and components
an lead to significant differences in performance, hampering
eproducibility.

Understanding both how resources are used through alloca-
ion and how they are provisioned are vital in creating a well-
alanced system. Work such as that of Malawski et al. [149]
nvestigate scheduling techniques that perform both resource
llocation and provisioning. We conjecture that this interplay is
mportant to investigate in order to improve resource efficiency
nd understanding systems better.

.6. Future directions

Emerging areas present plenty of opportunities for resource
rovisioning research. With Edge datacenters becoming emergent
n the Edge/Fog domain, resource provisioning policies should
tart taking these types of resources into account. Typically, for
atency sensitive applications, the cost vs. benefit ratio can play
n important role.
The rise in popularity of containerized applications through

.g. Docker is also gaining in popularity. Already products such
s Docker Swarm and Kubernetes for container orchestrations
re widely adopted by both academia and industry. Especially in
he area of FaaS resource provisioning is an important aspect.
tarting a VM or container incurs significant delay in function
urnaround time as VMs or containers with specific libraries
nd/or versions have to be booted. Already work such as that
169
Query 5: SELECT * FROM publications WHERE year BE-
TWEEN 2011 AND 2020 AND (lower(title) LIKE ’%cloud%’
OR lower(abstract) LIKE ’%cloud%’) AND (lower(title)
LIKE ’%service%’ OR lower(abstract) LIKE ’%service%’)

of Aumala et al. [150] focus on package aware load balancing to
speedup function deployment.

Moghaddam et al. [12] provide an extensive survey on re-
source provisioning and performance management. Several direc-
tions for future work are included in their work.

Another item for future work is reviewing and improving the
interplay of the allocation and the provisioning policies. Improv-
ing this may lead to improved resource utilization and reduced
resource consumption.

7. Taxonomy of applications and services

Cloud providers offer several kinds of different services nowa-
days, most of which still eventually translate into running work-
flow applications. To this end, we divide this space using the
taxonomy in Fig. 14. Each of these branches are covered in this
section.

Query 5 is used to find articles related to cloud computing
ervices, which in turn are used to verify the completeness of our
axonomies.

.1. Community and emerging keywords analysis

Based on results presented in our technical [17], we make the
ollowing observations:

-18: 86.8% of co-authorship relations are one time.

-19: The cost and performance keywords became more impor-
tant in the last five years in the span 2011–2020. The term
‘‘cloud’’ has been rising in importance as well.

-20: Also for the applications and services communities holds
that members of large cliques tend to have a lower total
citation count on average and in maxima.

-21: Around 70% of authors authored a single article in the
timespan 2011–2020. This is surprising given the scope of
this community (and our query).

.2. Service types

.2.1. IaaS
IaaS is the notion of renting resources from a cloud opera-

or. These resources can either be virtualized or real. Typically,
aaS resources come with an clean OS on which dependencies,
ibraries, and packages, etc. have to be installed by the client. Until
ecently, resources were leased per hour, however most major
endors including Amazon and Microsoft now offer a per-second
easing granularity.

.2.2. PaaS
Platform as a Service (PaaS) is the category of cloud services

hat allow users to install, configure, deploy, run, and manage
heir own applications without having to deal with any under-
ying infrastructure. It was derived from Software as a Service
SaaS) [151]. The deployment, maintenance, and upgrading of
nfrastructure are outsourced to the cloud provider. This service
nables e.g. specific versioning or configuration of software when
ompared to SaaS.



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177
Fig. 14. Taxonomy of cloud computing services. Gray boxes depict a group of entities that fall under the same category.
7.2.3. SaaS
SaaS is a more restrictive form of both IaaS and PaaS that

encapsulates a model where applications are offered as a ser-
vice. Rather than having to install and set-up their own soft-
ware, the hosting and installations are provided transparently by
the cloud provider, eliminating any hosting intermediary. It is
therefore that the cloud provider, hosting service, developer, and
maintainer of the software are usually the same entity.

7.2.4. Edge/fog computing
Edge computing is an emerging paradigm where

micro-datacenters and/or devices are put closer to the customer,
often referred to as the edge of the network. This is also re-
ferred to as Fog computing [152]. By introducing such micro-
datacenters, latency is reduced compared to sending data to
the larger datacenters, further away. The general consensus is
that such micro-datacenters are more expensive to use, as the
datacenter operator must perform more management, often in
various locations. In particular, IoT applications and mobile of-
floading strategies benefit from this new paradigm, enabling
real-time processing and streaming of data.

For work done on Edge/Fog computing, the International Con-
ference on Fog and Edge Computing (ICFEC) provides a good
starting point. Surveys also provide starting points for open chal-
lenges and introduction to different concepts and applications, for
example see [153] and [154]. Topics within Edge/Fog computing
range from applications such as video streaming to resource con-
sumption methods such energy-efficient scheduling, much alike
traditional cloud topics.

7.2.5. Serverless
Serverless is an emerging paradigm where clients can choose

not to (temporarily) own, or manage resources. In most cases,
resource requirements still have to be specified, yet do not man-
ually have to be provisioned and managed. This area recently
gathered a lot of attention from the (cloud) community. The
perceived benefits lie in the flexibility, cost-effectiveness, and
availability properties. Several articles introduce both problems
and opportunities for this new paradigm [155–157].

While emerging, the domain is growing fast with different
areas of the domain being explored. Published articles range from
historical [158] to frameworks. [159], and from exploration and
characterization [160] to caching [105].

Examples of proposed applications using serverless are graph
processing [161], chat bots [162], image processing [163,164], and
data analytics [165].
170
7.3. Type of environments

Computing services can be offered on different type of en-
vironments. Traditionally, (local) clusters are used for additional
computing. These are generally managed by a single department
within a company/institution. Multi-cluster environments such
as the Dutch DAS5 [166] offer resources in often geographically
distributed clusters. These clusters can be managed by a single
department or by the different institutions hosting them. Data-
centers often comprise multiple clusters within a single location.
These clusters can belong to a single or multiple entities, but
generally, a datacenter consists of clusters belonging to mul-
tiple entities, either leased or bought. Geo-distributed datacen-
ters are datacenters that are geographically distributed, often
for fault-tolerance or legislation purposes. The different envi-
ronments covered so far often have well-defined architectures
and the hardware and infrastructure is known. Grids, Clouds,
and Edge/Fog environments are more vague. Clouds are often
composed of geographically distributed datacenters, where you
can rent virtual machines in different physical locations using
the now popular pay-as-you-go model. What makes the environ-
ments vague is that cloud providers rarely describe (in detail) the
underlying hardware, schedulers, policies, and protocols in place.
Grids are a mixture of hardware as they were often composed
of a mixture of commodity and state-of-the-art hardware. This
makes it difficult to assess the accessible hardware, nor were
there any guarantees that a machine connected to the grid would
not suddenly become unavailable. Finally, the Edge/Fog consists
of many different devices ‘‘at the edge’’ of the network. These
can be micro-datacenters, routers, mobile devices, smart devices,
etc. Additionally, the communication established between these
devices may be arbitrary.

7.4. Execution model

As Smanchat et al. [13] describe, when using computing ser-
vices, the execution model can vary. Public resources are available
to the public and can be leased from cloud providers. Private
resources are only available to a single entity, e.g. company, it
is not possible to execute work on these resources if you do not
have (private) access. A hybrid model combines both public and
private resources. Often when additional compute power is re-
quired, an entity can run (part of) the workload on a public cloud.
Community resources such as the earlier mentioned DAS5 [166]
enable a community to share maintain resources collectively.



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177
Fig. 15. Taxonomy of resource types.

Fig. 16. Scheduling dynamicity taxonomy.

7.5. Taxonomy of resource types

When scheduling, different algorithms may consider different
resources as the working unit. Fig. 15 depicts the taxonomy of
resource types, which significantly extends the taxonomy pre-
sented in [13]. With different granularity possible and the het-
erogeneity of today’s systems, plenty of work differentiates in
resource considered. Typically, literature focuses on cores [167],
VMs [140], and CPU [168]. Especially one task per CPU or VM
is common [146,169]. Ma et al. [101] consider as resource types
threads while scheduling tasks of an industrial IoT environment.
Containers started receiving attention as possible alternatives
to VMs. As a container does not include an operating system,
the overhead can be reduced when using containers. With the
popularity of Docker and Kubernetes, articles are investigating
the use cases of containers [170,171]. Schedulers considering ma-
chines are used in e.g. parallel workflow computing [172]. Cluster
schedulers were quite ubiquitous in Grid environments [42], and
can be found in cloud environments as well [173,174]. The section
‘‘none’’ covers situations such as serverless (see Section 7.2.5)
where cloud users need not consider the resources used. Natu-
rally, resources are still consumed, yet these are entirely man-
aged by the cloud operator and hidden from clients. Scheduling
at the entire scale of a datacenter is common when dealing
with super computers. Several applications that run on (a part)
of a super computer can for example be found in the super
computing community. For example, the algorithm for particle
simulation that was deployed across a large part of the CORAL
supercomputers [175].

7.6. Taxonomy of scheduling dynamicity

Scheduling dynamicity describes how allocation policies plan
their allocations. Fig. 16 presents the taxonomy of scheduling dy-
namicity. Offline policies construct a total plan for all tasks yet to
be scheduled in the system. The system must then adhere strictly
to this plan. Any issues or runtime variations (e.g. stragglers) are
not taking into account at runtime, while some plans do include
some slack in their schedules. Online policies construct plans
responsively. Incoming tasks are appended to the plan, or the
plan is (partially) reconstructed to optimize for the optimization
goal. Hybrid solutions use a combination of offline and online
dynamicity. Hybrid policies often create an initial execution plan
that is then changed proactively.
171
Query 6: SELECT * FROM publications WHERE (lower(title)
LIKE ’%workflow%’ OR lower(abstract) LIKE
’%workflow%’) AND ((lower(title) LIKE ’%allocat%’
OR lower(abstract) LIKE ’%allocat%’) OR (lower(title)
LIKE ’%schedul%’ OR lower(abstract) LIKE ’%schedul%’)
OR (lower(title) LIKE ’%plan%’ OR lower(abstract)
LIKE ’%plan%’)) ORDER BY n_citations DESC

8. Mapping allocation and provisioning policies

The process of scheduling workflows in computing environ-
ments consists of many distinct steps [6]. In general, it boils down
to two main elements; the workflows and theirs tasks need to
be placed on resources (allocation), where these resources should
be acquired accordingly (provisioning). Managing these two parts
can be done separately using agnostic policies, or can be done in
synergy where the two policies work together.

To demonstrate the different policies for both allocation and
provisioning can be mapped to our taxonomies, in this section, we
map a number of recent state-of-the-art and well-known policies
to our taxonomies. As we cannot possibly map all existing policies
to our taxonomies, we believe mapping well-known and state-
of-the-art policies provide adequate empirical examples of the
applicability and coverage of our taxonomies. We first describe
our method used to obtain these lists of policies followed by an
enumeration of their main properties.

8.1. Method

To obtain our list of policies, we use a systematic approach.
We first create a query to filter for allocation and provisioning
policies, respectively. Using this query, we extract sixteen policies
per category: ten described in the most recent articles according
to our database (using citation count as tie-breaker) and the six
most popular by citation count. Articles that are a false positive,
i.e., do not describe a policy are skipped.

As we have run these queries on an older version of our
database for an earlier version of this article, we have amended
more recent published articles leading to mapping twenty-six
policies in Section 8.2 and eighteen policies in Section 8.3.

For allocation policies, we note the optimization goal, strategy,
target, and technique used as well as if the policy computes the
scheduling plan offline ahead of time, or dynamically at runtime.
For provisioning policies, we note the type of decision-making,
dynamic provisioning method, and provisioning model used. Ad-
ditionally, for each article we also list the number of citations to
provide a rough indication of popularity.

8.2. Allocation policies

In this section we provide an overview of well-cited and
state-of-the-art workflow allocation policies. Table 3 presents a
list of the six most cited and twenty recent allocation policies,
sorted by citations. We focus on the scheduling technique used,
the optimization goal and scheduling strategy. To obtain articles
based on citation count we use Query 6. To obtain the most recent
policies, we use Query 7.

8.3. Provisioning policies

In this section we provide an overview of well-cited and state-
of-the-art resource provisioning policies. Table 4 presents a list of
the six most cited and twelve recent provisioning policies, sorted
by citations. Ten originate from the first version of this article,
since then two articles matching Query 9 were added to the



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177
Table 3
Overview of allocation policies.
Name #Citations Year ST OG OS

Titan [176] 522 2003 H Makespan, Deadline, Resource
Utilization

Multi/Min/Global

SCS [177] 433 2011 G Cost Multi/Min/Global
Min–min task [2] 383 2005 H Runtime Single/Min/Local
Blythe et al. [2] 383 2005 G+R Runtime Single/Min/Local
Weighted min–min [2] 383 2005 H Runtime Single/Min/Local
IC-PCP [178] 360 2012 H Deadline, Cost Multi/Min/Global

NN-DNSGA-II [179] 1 2020 MH+ML Makespan, Cost, Energy
consumption, Load balance,
Reliability, Resource Utilization

Multi/Min+Max/Global

Ebadifard et al. [180] 0 2020 MH Makespan, Cost, Resource
Utilization

Multi/Min+Max/Global

COMSE [181] 0 2020 H Deadline, Cost Multi/Min/Global
GRP-HEFT [182] 0 2020 G Makespan, Cost Single/Min+Satisfice/Local
MOWO [183] 0 2020 MH Response time, Fault tolerance,

Cost
Multi/Min+Max/Global

Genez et al. [184] 0 2020 (I)LP Deadline, Cost Single/Satisfice+Min/Local
NearDeadline [185] 0 2020 H Energy consumption, Fairness Multi/Optimize/Global
Barika et al. [186] NA 2020 MH Cost Single/Min/Local
SERAS [187] NA 2020 G Energy consumption, Fault

Tolerance, Deadline
Multi/Min+Satisfice/Local

CLOSURE [188] NA 2020 GT+H Security Single/Min/Global

Qureshi [189] 5 2019 H Cost, Power, Resource
Utilization

Multi/Min+Max/Local

FDHEFT [190] 5 2019 H Cost, Makespan Multi/Min/Global
WSADF [99] 3 2019 H Bandwidth, Resource

Utilization, Throughput
Multi/Min+Max/Global

Stavrinides et al. [98] 3 2019 H Power Consumption, Cost Multi/Min/Local
BDAS [191] 2 2019 H Cost, Deadline Multi/Min/Local
MOGA [192] 2 2019 MH Makespan, Cost, Deadline,

Power Consumption
Multi/Min/Global

PSFS [193] 1 2019 H Deadline, Cost Multi/Opt/Global
CSFS-H [193] 1 2019 H Cost Single/Min/Global
DNCSPO [194] 1 2019 MH Makespan, Cost Multi/Opt/Global
Wu et al. [195] 1 2019 MH Makespan, Cost Multi/Opt/Global

Header: ST = scheduling technique, OG = optimization goal, OS = optimization strategy. ST column: G = Greedy, H = Heuristic, MH = Meta-heuristic,
R=Random, ML = Machine Learning, (I)LP = (Integer) Linear Programming, GT = Game Theory.
Query 7: SELECT * FROM publications WHERE (lower(title)
LIKE ’%workflow%’ OR lower(abstract) LIKE
’%workflow%’) AND ((lower(title) LIKE ’%allocat%’
OR lower(abstract) LIKE ’%allocat%’) OR (lower(title)
LIKE ’%schedul%’ OR lower(abstract) LIKE ’%schedul%’)
OR (lower(title) LIKE ’%plan%’ OR lower(abstract)
LIKE ’%plan%’)) ORDER BY year DESC, n_citations DESC,
id ASC

Query 8: SELECT * FROM publications WHERE
(lower(title) LIKE ’%workflow%’ OR lower(abstract)
LIKE ’%workflow%’) AND (lower(title) LIKE
’%provision%’ OR lower(abstract) LIKE ’%provision%’
OR lower(title) LIKE ’%autoscal%’ OR lower(abstract)
LIKE ’%autoscal%’) ORDER BY n_citations DESC

Query 9: SELECT * FROM publications WHERE (lower(title)
LIKE ’%workflow%’ OR lower(abstract) LIKE
’%workflow%’) AND (lower(title) LIKE ’%provision%’ OR
lower(abstract) LIKE ’%provision%’ OR lower(title)
LIKE ’%autoscal%’ OR lower(abstract) LIKE
’%autoscal%’) ORDER BY year DESC, n_citations DESC,
id ASC

database. We focus on the information source used, the timeliness
of information on which decisions are based, and the level at
which the autoscaler operates.

To obtain articles based on citation count we use Query 8. To
obtain the most recent policies, we use Query 9.
172
Table 4
Overview of provisioning policies.
Name NC Year IS ToI L

DPDS [149] 236 2015 R Short-term Single-tier
WA-DPDS [149] 236 2015 R+J Short-term Single-tier
SPSS [149] 236 2015 J Current Single-tier
Dörnemann et al. [196] 173 2009 R Current Single-tier
PBTS [197] 153 2011 J Current Single-tier
Singh et al. [198] 107 2007 J Current Single-tier

GRP-HEFT [182] 0 2020 J Current Single-tier
Nguyen et al. [199] 0 2020 J Current Single-tier
CLUES [200] 0 2019 R Current Single-tier
Prob [201] 0 2019 J Current Single-tier
EPSM [202] 15 2018 J Current Single-tier
React [63] 10 2018 R Short-term Single-tier
Adapt [63] 10 2018 R Short-term Single-tier
Hist [63] 10 2018 R Long-term Multi-tier
Reg [63] 10 2018 R Long-term Single-tier
ConPaaS [63] 10 2018 R Long-term Single-tier
PPDPS [203] 8 2018 J Current Single-tier
BioCloud [204] 6 2018 J Current Single-tier

Header: NC = Number of Citations, IS = Information Source, ToI = Timeliness of
Information, L = Level. IS column: R = Resource, J = Job.

9. Related work

There are several surveys that either overlap this work or
that present formalisms which we extend. As we mention and
cite articles of which we use elements or extend directly in the
sections themselves, we discuss our contributions in contrast to
several categories of related work. For a differentiation per article,
we refer to our technical report [17].



L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177

o

h
a
t
t
a

m
n
o

o
s
o
t
W
l
i
m
r
d
m
t
i

e
b
w

1

w

i
f
s
e
i
e
r
g

i
o
o
s

n
s
m
a
y
a
f
i
p

s
t
r
b

Surveys on workflow allocation. Several surveys cover parts
f the taxonomies we present [13,48,89,205–209].
Surveys on workflow provisioning. Resource provisioning

as been surveyed before [12,13,63,206,208]. Our work primarily
dds the recent additions on elasticity, provisioning models, and
he level at which autoscalers operate. The focus of related work
hat we do not cover includes anomaly detection, multi-tenancy,
nd static vs. dynamic provisioning.
Workflow formalisms Several articles discuss workflow for-

alisms and their model [25,40]. Our survey focuses on the
otion of DAG vs. non-DAG and the core language, which is not
r less extensively addressed by related work.
Additionally, our survey contains some novel elements none

f the mentioned related work performs. The first element is the
urvey of the community as we present in this article. Collab-
rative relationships have been investigated before, but not at
he granularity and on the topics that we cover in this survey.
e feel there is room for additional work in this direction, but

eave it as future work due to limit in scope. A second element is
nvestigation of important keywords per topic. Related work does
ention emerging trends and recommend future directions, yet

arely is this based on techniques from the information retrieval
omain. Extracting keywords from sparse text such as paper
eta-data is a challenging problem due to limited length of the

ext. Using different techniques such as LDA or LSI to obtain more
nsights is left for future work.

Finally, most of our taxonomies are either new or significantly
xtend those of related work. We have validated taxonomies
y mapping well-cited and state-of-the-art approaches on them,
hich lacks in most related work as well.

0. Threats to validity

We perceive four main threats to the validity of this work,
hich we address in this section.
The first main threat is the lack of depth by, e.g., compar-

sons between policies, workloads, parameters, a combination of
ormer, etc. As outlined in Section 1, a comparison even for a
ubset of policies using an identical workload and computing
nvironment is already difficult for several reasons. First, even
f all parameters are known, not all sources are available. From
xperience, these source code used to experiment with, or other
elated configuration files are important as even the smallest
uess work can lead to significant differences in performance [6].
Second, by design our survey is meant to be broad instead of

n-depth. Due to the areas we are covering, going in-depth is out
f scope. Third, we already compare both well-cited and state-
f-the-art policies in Section 8 on a high-level where we outline
everal properties per policy.
Third, in several instances, the outcome of TF-IDF produced

oise, i.e., false positives. This is mainly due to titles and ab-
tracts being sparse text. Extracting meaningful keywords auto-
atically form sparse text is difficult and ongoing work in both
cademia and industry. We believe we got meaningful results,
et approaches using Latent Dirichlet Allocation or text clustering
pproaches might yield interesting insights too. We leave this for
uture work. Perhaps obtaining the full article text may lead to
mproved results. However, extracting text from PDFs is a tough
roblem.4
Finally, the fourth threat is the combination of traditional

earch methods for relevant articles and the use of queries. On
he one hand, using solely traditional search methods makes
eproducibility of results very hard if not impossible due to search
ubbles when, e.g., using Google scholar. On the other hand,

4 See for example https://www.filingdb.com/pdf-text-extraction.
173
solely relying on queries on article meta-data databases such as
introduced in this article may lead to missing important results
if the query is not covering the field adequately or will yield
a large set of false positives if defined too broad. The cover-
age of queries also requires knowledge of which keywords to
search on, something that requires the use of traditional search
methods to become familiar with all synonymous terms used
in the community. We therefore decided to combine these two
techniques when searching for related work to complement the
results. Next to outlining all queries used, situations that did
allow for full reproducibility of results by only using queries
were included where possible, such as the mapping of articles
describing allocation policies in Section 8.2 and provision policies
in Section 8.3. Overall, we believe the use of our article meta-data
database already exceeds the effort of related surveys that solely
rely on traditional search methods.

11. Conclusion

Clouds and other infrastructures have been widely adopted to
run workloads on. In particular, workflows are a popular work-
load model nowadays as they support the workload of many
domains. The mixture of QoS requirements, different scheduling
targets from both the user and resource provider makes workflow
scheduling a complex problem. Getting insight into research done
in this topic can be a daunting task, with the high-volume of
publications in this research area, which is likely to intensify in
the future.

Surveys are an excellent way to learn about the current sta-
tus of a field, emerging trends, and open challenges. Unfortu-
nately, surveys rarely publish the data on which their survey is
based. Moreover, surveys rarely focus on the community itself;
the structure, authors relationships, and citation information can
provide insight into their health and operations, which can be
interesting to community leaders and organizers.

In this work, we address these issues by performing various
types of analyses.

We start by introducing and making open-source our instru-
ment used to gather, filter, and unify article meta-data. Using
this meta-data, we obtain insights into the workflow scheduling
community and four related areas. For each, we analyze in-depth
the community, look at important keywords both overall and per
year, and identify emerging keywords. Additionally, using this
meta-data we were able to perform a systematic literature survey
to construct and validate our taxonomies.

We observe that for all areas, 70+% of the authors only author a
single article in the timespan 2011–2020. Furthermore, our meta-
data suggests that larger cliques tend to have members with a
lower average and maximum citation count when compared to
small and moderately sized cliques. This may indicate that the
likelihood junior researchers are part of such cliques is higher,
and that well-cited authors do not engage with all members of
large communities. However, more research in this direction is
required to draw more definitive conclusions. Our provided open-
source instrument provides an excellent start for such future
work.

Finally, using our instrument we map the most recent and top-
cited allocation and provisioning policies to our taxonomies to
demonstrate their completeness.

All software and artifacts that we introduce to obtain paper
meta-data and visualizations are made open-source. We believe
these tools are valuable to the community for finding related
work (we already experienced this multiple times first-hand),
reproduce or perform a survey similar to this study, or redo this
study in the future to observe new trends.

Besides the directions for future work that were provided
in each section, we believe more directions can be investigated

https://www.filingdb.com/pdf-text-extraction


L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177

a
a
m
s
m
a
I
r
a
t
p
c
t
i

D

c
t

A

o
b
f
t
A

A

K
i
T

R

nd surveyed. In particular, our taxonomies can be extended
nd integrated in other taxonomies; several surveys that we
arked as related work expand in different directions with re-
pect to our work. Deeper analysis into the communities using
ore data, different angles, and statistical methods may provide
dditional insights. As for promising research directions, Edge,
oT, and serverless are emerging fields with many potential di-
ections. Another directions that is worth pursuing across all
reas is energy efficiency. With the increasing power consump-
ion due to the growth of datacenters, even a small reduction
ercentage-wise will have a major impact on the absolute power
onsumption. Research on efficiently reducing energy consump-
ion while adhering to all QoSs is gaining traction and will grow
n importance.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

vailability of data and software artifacts

All data and instruments used in this work are available as
pen-access, FAIR data. The database on which this article is
ased can be found at https://atlarge-research.com/data/2020_
gcs_aip.pgsql, AIP and other tools used to generate all floats in
his article can be found at https://github.com/atlarge-research/
IP.

cknowledgments

We thank Erwin van Eyk, Sacheendra Talluri, Oana Inel, Benno
ruit, and Alexandru Uta for their helpful comments. This work
s sponsored by COMMIT, The Netherlands and Vidi MagnaData,
he Netherlands.

eferences

[1] Ron, Why cloud computing matters to finance, Strateg. Financ. 92 (2011)
(2011).

[2] Blythe, et al., Task scheduling strategies for workflow-based applications
in grids, in: CCGrid, 2005.

[3] Stein, The case for cloud computing in genome informatics, Genome
biology 11 (2010) (2010).

[4] Edward G. Coffman Jr., Ronald L. Graham, Optimal scheduling for
two-processor systems, Acta Inf. 1 (1972) (1972).

[5] Versluis, et al., The Workflow Trace Archive: Open-Access Data from
Public and Private Computing Infrastructures – Technical Report, 2019,
arXiv 2019.

[6] Andreadis, et al., A reference architecture for datacenter scheduling:
design, validation, and experiments, in: SC, 2018.

[7] Shi, Edge computing: Vision and challenges, IOTJ 3 (2016) (2016).
[8] Eyk, et al., Serverless is more: From PaaS to present cloud computing, IC

22 (2018) (2018a).
[9] Iosup, Versluis, et al., Massivizing computer systems: A vision to under-

stand, design, and engineer computer ecosystems through and beyond
modern distributed systems, in: ICDCS, 2018, pp. 1224–1237.

[10] Kwok, Ahmad, Static scheduling algorithms for allocating directed task
graphs to multiprocessors, ACM Comput. Surv. 31 (1999) (1999).

[11] Yu, Buyya, A taxonomy of scientific workflow systems for grid computing,
SIGMOD 34 (2005) (2005).

[12] Kardani-Moghaddam, et al., Performance-aware management of cloud
resources: A taxonomy and future directions, CSUR 52 (2019) (2019).

[13] Smanchat, Viriyapant, Taxonomies of workflow scheduling problem and
techniques in the cloud, FGCS 52 (2015) (2015).

[14] The dblp team: dblp computer science bibliography, Monthly snapshot
release of 2019, 2019, https://dblp.org/xml/release/dblp-2019-11-01.xml.
gz.

[15] Ammar, et al., Construction of the literature graph in semantic scholar,
in: NAACL, 2018.
174
[16] Tang, et al., Arnetminer: extraction and mining of academic social
networks, in: SIGKDD, 2008.

[17] Versluis, Iosup, A Survey and Annotated Bibliography of Workflow
Scheduling in Computing Infrastructures: Community, Keyword, and
Article Reviews – Extended Technical Report, 2020, arXiv e-prints 2020.

[18] R. Duncan Luce, Albert D. Perry, A method of matrix analysis of group
structure, in: Psychometrika, (1949) 1949.

[19] Liu, et al., Co-authorship networks in the digital library research
community, IPM 41 (2005) (2005).

[20] Onan, et al., Ensemble of keyword extraction methods and classifiers in
text classification, J. ESWA 57 (2016) (2016).

[21] Zhang, et al., TFIDF, LSI and multi-word in information retrieval and text
categorization, in: ICSMC, IEEE, 2008.

[22] Gupta, et al., A survey of text mining techniques and applications, JETWI
1 (2009) (2009).

[23] Versluis, et al., An analysis of workflow formalisms for workflows with
complex non-functional requirements, in: HotCloudPerf, 2018a.

[24] Li, et al., Trust-based and qos demand clustering analysis customizable
cloud workflow scheduling strategies, In: Cluster workshops, 2012.

[25] Bastos, et al., Scientific workflow interchanging through patterns:
Reversals and lessons learned, in: E-Science, 2015.

[26] Fahringer, et al., Specification of grid workflow applications with AGWL:
an abstract grid workflow language, in: CCGrid, Vol. 2, 2005.

[27] Marozzo, et al., JS4Cloud: script-based workflow programming for
scalable data analysis on cloud platforms, CCPE 27 (2015) (2015).

[28] Cesario, et al., Programming knowledge discovery workflows in
service-oriented distributed systems, CCPE 25 (2013) (2013).

[29] Amstutz, et al., Common workflow language, Draft 3 (2016) (2016).
[30] Christoph Jansen, et al., Reproducibility and performance of deep learning

applications for cancer detection in pathological images, in: CCGRID,
2019.

[31] Börger, Approaches to modeling business processes: a critical analysis of
BPMN, workflow patterns and YAWL, SOSYM 11 (2012) (2012).

[32] Aalst, The application of Petri nets to workflow management, J. Circuits
Syst. Comput. 8 (1998).

[33] Aalst, et al., Modelling and analysing workflow using a Petri-net based
approach, in: CSCW Workshop, Petri nets and related formalisms, 1994..

[34] Hoheisel, Der, Dynamic workflows for grid applications, in: Cracow Grid
Workshop, Vol. 3, 2003.

[35] Van, Ter, YAWL: yet another workflow language, Information systems 30
(2005) (2005).

[36] Wüst, et al., Generation of interactive questionnaires using YAWL-based
workflow models, Manage. Stud. 3 (2015) (2015).

[37] Rodrigo Alves Lima, et al., Systematic construction, execution, and re-
production of complex performance benchmarks, in: Cloud, Vol. 11513,
2019.

[38] Hongwu Lv, et al., An attribute-based availability model for large scale
IaaS clouds with CARMA, TPDS 31 (2020) (2020).

[39] Zheng. Song, Eli. Tilevich, Equivalence-enhanced microservice workflow
orchestration to efficiently increase reliability, in: ICWS, 2019.

[40] Deelman, et al., Workflows and e-science: An overview of workflow
system features and capabilities, FGCS 25 (2009) (2009).

[41] Zhan, Huo, Improved PSO-based task scheduling algorithm in cloud
computing, JICS 9 (2012) (2012).

[42] Yu, et al., Workflow scheduling algorithms for grid computing, in: MSDCE,
2008.

[43] Gog, et al., Firmament: Fast, centralized cluster scheduling at scale, in:
OSDI, 2016.

[44] Bonvin, et al., Autonomic SLA-driven provisioning for cloud applications,
in: CCGrid, 2011.

[45] Abrishami, et al., Deadline-constrained workflow scheduling algorithms
for infrastructure as a service clouds, FGCS 29 (2013) (2013a).

[46] Jeff Barr, New–Per-Second Billing for EC2 Instances and EBS Volumes
| Amazon Web Services, 2018, https://aws.amazon.com/blogs/aws/new-
per-second-billing-for-ec2-instances-and-ebs-volumes/.

[47] Becky. Peterson, Google takes a page from amazon web services and
adds per-second billing for its cloud, 2017, http://uk.businessinsider.com/
google-cloud-matches-amazon-web-services-with-per-second-billing-
2017-9.

[48] Alkhanak, et al., Cost-aware challenges for workflow scheduling ap-
proaches in cloud computing environments: Taxonomy and opportunities,
FGCS 50 (2015) (2015).

[49] [N. d.] here’s how much energy all US data centers consume, 2019,
https://www.datacenterknowledge.com/archives/2016/06/27/heres-how-
much-energy-all-us-data-centers-consume, (Accessed: 2019-07-22).

[50] [N. d.] amazon plans wind farm to power its datacenters, 2019,
https://phys.org/news/2015-01-amazon-farm-power-datacenters.html,
(Accessed: 2019-07-22).

[51] [N. d.] renewable energy - data centers, 2019, https://www.google.com/
about/datacenters/renewable/, (Accessed: 2019-07-22).

https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://atlarge-research.com/data/2020_fgcs_aip.pgsql
https://github.com/atlarge-research/AIP
https://github.com/atlarge-research/AIP
https://github.com/atlarge-research/AIP
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb1
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb1
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb1
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb2
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb2
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb2
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb3
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb3
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb3
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb4
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb4
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb4
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb5
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb5
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb5
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb5
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb5
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb6
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb6
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb6
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb7
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb8
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb8
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb8
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb9
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb9
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb9
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb9
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb9
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb10
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb10
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb10
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb11
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb11
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb11
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb12
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb12
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb12
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb13
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb13
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb13
https://dblp.org/xml/release/dblp-2019-11-01.xml.gz
https://dblp.org/xml/release/dblp-2019-11-01.xml.gz
https://dblp.org/xml/release/dblp-2019-11-01.xml.gz
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb15
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb15
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb15
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb16
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb16
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb16
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb17
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb17
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb17
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb17
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb17
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb18
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb18
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb18
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb19
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb19
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb19
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb20
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb20
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb20
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb21
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb21
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb21
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb22
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb22
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb22
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb23
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb23
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb23
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb25
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb25
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb25
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb26
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb26
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb26
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb27
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb27
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb27
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb28
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb28
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb28
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb29
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb30
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb30
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb30
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb30
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb30
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb31
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb31
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb31
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb32
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb32
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb32
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb34
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb34
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb34
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb35
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb35
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb35
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb36
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb36
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb36
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb37
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb37
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb37
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb37
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb37
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb38
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb38
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb38
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb39
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb39
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb39
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb40
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb40
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb40
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb41
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb41
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb41
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb42
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb42
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb42
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb43
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb43
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb43
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb44
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb44
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb44
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb45
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb45
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb45
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
http://uk.businessinsider.com/google-cloud-matches-amazon-web-services-with-per-second-billing-2017-9
http://uk.businessinsider.com/google-cloud-matches-amazon-web-services-with-per-second-billing-2017-9
http://uk.businessinsider.com/google-cloud-matches-amazon-web-services-with-per-second-billing-2017-9
http://uk.businessinsider.com/google-cloud-matches-amazon-web-services-with-per-second-billing-2017-9
http://uk.businessinsider.com/google-cloud-matches-amazon-web-services-with-per-second-billing-2017-9
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb48
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb48
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb48
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb48
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb48
https://www.datacenterknowledge.com/archives/2016/06/27/heres-how-much-energy-all-us-data-centers-consume
https://www.datacenterknowledge.com/archives/2016/06/27/heres-how-much-energy-all-us-data-centers-consume
https://www.datacenterknowledge.com/archives/2016/06/27/heres-how-much-energy-all-us-data-centers-consume
https://phys.org/news/2015-01-amazon-farm-power-datacenters.html
https://www.google.com/about/datacenters/renewable/
https://www.google.com/about/datacenters/renewable/
https://www.google.com/about/datacenters/renewable/


L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177
[52] [N. d.] with our latest energy deal, microsoft’s cheyenne datacenter
will now be powered entirely by wind energy, keeping us
on course to build a greener, more responsible cloud, 2019,
https://blogs.microsoft.com/on-the-issues/2016/11/14/latest-energy-
deal-microsofts-cheyenne-datacenter-will-now-powered-entirely-wind-
energy-keeping-us-course-build-greener-responsible-cloud, (Accessed:
2019-07-22).

[53] Li, et al., An energy-efficient scheduling approach based on private clouds,
JICS 8 (2011) (2011).

[54] Durillo, et al., Multi-objective workflow scheduling: An analysis of the
energy efficiency and makespan tradeoff, in: CCGrid, 2013.

[55] Durillo, et al., Multi-objective energy-efficient workflow scheduling using
list-based heuristics, FGCS 36 (2014) (2014).

[56] Pietri, Sakellariou, Energy-aware workflow scheduling using frequency
scaling, in: ICPPW, 2014.

[57] Berl, et al., Energy-efficient cloud computing, CJ 53 (2010) (2010).
[58] Benoit, et al., Performance and energy optimization of concurrent

pipelined applications, in: IPDPS, 2010.
[59] Jones, Nitzberg, Scheduling for parallel supercomputing: A historical

perspective of achievable utilization, in: JSSPP, 1999.
[60] Vasan, et al., Worth their watts? - an empirical study of datacenter

servers, in: HPCA, 2010.
[61] Heinze, et al., Auto-scaling techniques for elastic data stream processing,

in: DEBS, 2014.
[62] Dougherty, et al., Model-driven auto-scaling of green cloud computing

infrastructure, FGCS 28 (2012) (2012).
[63] Ilyushkin, et al., An experimental performance evaluation of autoscalers

for complex workflows, TOMPECS 3 (2018) (2018).
[64] Versluis, et al., A trace-based performance study of autoscaling workloads

of workflows in datacenters, in: CCGrid, 2018b.
[65] Thomas Bauer, et al., Intra-subnet load balancing in distributed workflow

management systems, IJCIS 12 (2003) (2003).
[66] Alexandru Uta, et al., Is big data performance reproducible in modern

cloud networks?, in: NSDI, 2020.
[67] Bittencourt, Madeira, Towards the scheduling of multiple workflows on

computational grids, JGC 8 (2010) (2010).
[68] Ghodsi, et al., Dominant resource fairness: Fair allocation of multiple

resource types, in: Nsdi, Vol.11, 2011.
[69] Zhao, Sakellariou, Scheduling multiple DAGs onto heterogeneous systems,

in: IPDPS, 2006.
[70] Wang, et al., Multi-resource fair sharing for datacenter jobs with

placement constraints, in: SC, 2016b.
[71] Genez, et al., A flexible scheduler for workflow ensembles, in: UCC, 2016.
[72] Quang, et al., A comparative analysis of scheduling mechanisms for virtual

screening workflow in a shared resource environment, in: CCGrid, 2015.
[73] Deng, et al., A scheme for scheduling hard real-time applications in open

system environment, in: ECRTS, 1997.
[74] Wu, et al., A priority constrained scheduling strategy of multiple

workflows for cloud computing, in: ICACT, 2012.
[75] John. Wilkes, More Google cluster data. Google research blog, 2011,

Posted at http://googleresearch.blogspot.com/2011/11/more-google-
cluster-data.html.

[76] Beek, et al., [n. d.] A CPU Contention Predictor for Business-Critical
Workloads in Cloud Datacenters, ([n. d.]).

[77] Li, et al., A security and cost aware scheduling algorithm for het-
erogeneous tasks of scientific workflow in clouds, FGCS 65 (2016)
(2016).

[78] Zhao, Result Verification and Trust-Based Scheduling in Open Peer-To-
Peer Cycle Sharing Systems, 2004.

[79] Zhu, Jiang, A secure anti-collusion data sharing scheme for dynamic
groups in the cloud, TPDS 27 (2016) (2016).

[80] Shishido, et al., A cloudsim extension for evaluating security overhead in
workflow execution in clouds, in: CANDAR, 2018.

[81] Alnemr, et al., A data protection impact assessment methodology for
cloud, in: Annual Privacy Forum, 2015.

[82] RF Federal Law, [N. d.] on amendments to certain legislative acts of
the Russian Federation in connection with the improvement of the legal
status of the State (municipal) institutions of may 08, 2010, 83-FZ.

[83] Arun K. Somani, Nitin H. Vaidya, [n. d.]Understanding Fault Tolerance and
Reliability - Guest Editors’ Indroduction, in: Computer 30, ([n. d.]).

[84] Poola, et al., Fault-tolerant workflow scheduling using spot instances on
clouds, Procedia Comput. Sci. 29 (2014) (2014).

[85] Ramakrishnan, et al., Vgrads: enabling e-science workflows on grids and
clouds with fault tolerance, in: SC, 2009.

[86] Jayadivya, et al., Fault tolerant workflow scheduling based on replication
and resubmission of tasks in cloud computing, JCSE 4 (2012) (2012).

[87] Zhu, et al., Fault-tolerant scheduling for real-time scientific workflows
with elastic resource provisioning in virtualized clouds, TPDS 27 (2016)
(2016).

[88] Bala, Chana, Fault tolerance-challenges techniques and implementation in
cloud computing, IJCSI 9 (2012) (2012).
175
[89] Poola, et al., A taxonomy and survey of fault-tolerant workflow man-
agement systems in cloud and distributed computing environments, in:
SABDC, 2017.

[90] Xie, et al., Improving mapreduce performance through data placement in
heterogeneous hadoop clusters, in: IPDPSW, 2010.

[91] Guo, et al., Investigation of data locality in mapreduce, in: CCGrid, 2012.
[92] Wang, et al., Maptask scheduling in mapreduce with data locality:

Throughput and heavy-traffic optimality, TON 24 (2016) (2016a).
[93] Duro, et al., Exploiting Data Locality in Swift/T Workflows using Hercules,

(2014) 2014.
[94] Georgios L. Stavrinides, Helen D. Karatza, Orchestration of real-time

workflows with varying input data locality in a heterogeneous fog
environment, in: FMEC, 2020.

[95] Choi, et al., Data-locality aware scientific workflow scheduling methods
in HPC cloud environments, JPP 45 (2017) (2017).

[96] Tanaka, Tatebe, Workflow scheduling to minimize data movement using
multi-constraint graph partitioning, in: CCGrid, 2012.

[97] Cardoso, et al., Workflow quality of service, in: ICEIMT, 2002.
[98] Stavrinides, Karatza, An energy-efficient, QoS-aware and cost-effective

scheduling approach for real-time workflow applications in cloud com-
puting systems utilizing DVFS and approximate computations, FGCS 96
(2019) (2019).

[99] Momenzadeh, Safi-Esfahani, Workflow scheduling applying adaptable and
dynamic fragmentation (WSADF) based on runtime conditions in cloud
computing, FGCS 90 (2019) (2019).

[100] Raafat Omar Aburukba, et al., Scheduling Internet of Things requests
to minimize latency in hybrid Fog-Cloud computing, FGCS 111 (2020)
(2020).

[101] Ma, et al., Ananke: A Q-learning-based portfolio scheduler for complex
industrial workflows, in: ICAC, 2017.

[102] Simranjit. Kaur, Pallavi. Bagga, Rahul. Hans, Harjot. Kaur, Quality of
Service (QoS) aware workflow scheduling (WFS) in cloud computing: A
systematic review, AJSE 44 (2019) (2019).

[103] Bittencourt, Madeira, HCOC: a cost optimization algorithm for workflow
scheduling in hybrid clouds, JISA 2 (2011) (2011).

[104] Goecks, et al., Galaxy: a comprehensive approach for supporting acces-
sible, reproducible, and transparent computational research in the life
sciences, Genome Biol. 11 (2010) (2010).

[105] Abad, et al., Package-aware scheduling of faas functions, in: CHotCloud-
Perf, 2018.

[106] Liu, et al., A throughput maximization strategy for scheduling
transaction-intensive workflows on SwinDeW-G, CCPE 20 (2008) (2008).

[107] Simon, Rational choice and the structure of the environment, Psychol.
Rev. 63 (1956) (1956).

[108] Jaeger, et al., A framework for automatic improvement of workflows to
meet performance goals, in: ICTAI, 1994.

[109] Zhang, et al., Ordinal optimized scheduling of scientific workflows in
elastic compute clouds, in: CloudCom, 2011.

[110] Yu, Buyya, Scheduling scientific workflow applications with deadline and
budget constraints using genetic algorithms, SP 14 (2006) (2006).

[111] Goiri, et al., Greenslot: scheduling energy consumption in green
datacenters, in: SC, 2011.

[112] Yassa, et al., Multi-objective approach for energy-aware workflow
scheduling in cloud computing environments, SWJ 2013 (2013) (2013).

[113] Schwarzkopf, et al., Omega: Flexible, Scalable Schedulers for Large
Compute Clusters, 2013, (2013).

[114] Andrade, et al., Ourgrid: An approach to easily assemble grids with
equitable resource sharing, in: JSSPP, 2003.

[115] Deng, Liu, Scheduling real-time applications in an open environment, in:
RTSS, 1997.

[116] Iosup, A framework for the study of grid inter-operation mechanisms,
(2009) 2009.

[117] Dong H. Ahn, et al., Flux: Overcoming scheduling challenges for exascale
workflows, FGCS 110 (2020) (2020).

[118] Amvrosiadis, et al., On the diversity of cluster workloads and its impact
on research results, in: ATC, 2018.

[119] Iosup, et al., Inter-operating grids through delegated matchmaking, SP 16
(2008) (2008).

[120] Xiang, et al., Greedy-ant: ant colony system-inspired workflow scheduling
for heterogeneous computing, IEEE Access 5 (2017) (2017).

[121] Yu, et al., Deadline/budget-based scheduling of workflows on utility grids,
MOGUC 200 (2009) (2009).

[122] McGough, et al., Workflow enactment in ICENI, in: UK E-Science All Hands
Meeting, Vol. 9, 2004.

[123] Yaghoobi, et al., A non-cooperative game theory approach to optimize
workflow scheduling in grid computing, in: PACRIM, 2013.

[124] Duan, et al., Multi-objective game theoretic schedulingof bag-of-tasks
workflows on hybrid clouds, TCC 2 (2014) (2014).

[125] Waldspurger, Weihl, Lottery scheduling: Flexible proportional-share
resource management, in: OSDI, 1994.

https://blogs.microsoft.com/on-the-issues/2016/11/14/latest-energy-deal-microsofts-cheyenne-datacenter-will-now-powered-entirely-wind-energy-keeping-us-course-build-greener-responsible-cloud
https://blogs.microsoft.com/on-the-issues/2016/11/14/latest-energy-deal-microsofts-cheyenne-datacenter-will-now-powered-entirely-wind-energy-keeping-us-course-build-greener-responsible-cloud
https://blogs.microsoft.com/on-the-issues/2016/11/14/latest-energy-deal-microsofts-cheyenne-datacenter-will-now-powered-entirely-wind-energy-keeping-us-course-build-greener-responsible-cloud
https://blogs.microsoft.com/on-the-issues/2016/11/14/latest-energy-deal-microsofts-cheyenne-datacenter-will-now-powered-entirely-wind-energy-keeping-us-course-build-greener-responsible-cloud
https://blogs.microsoft.com/on-the-issues/2016/11/14/latest-energy-deal-microsofts-cheyenne-datacenter-will-now-powered-entirely-wind-energy-keeping-us-course-build-greener-responsible-cloud
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb53
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb53
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb53
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb54
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb54
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb54
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb55
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb55
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb55
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb56
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb56
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb56
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb57
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb58
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb58
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb58
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb59
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb59
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb59
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb60
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb60
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb60
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb61
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb61
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb61
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb62
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb62
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb62
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb63
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb63
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb63
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb64
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb64
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb64
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb65
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb65
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb65
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb66
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb66
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb66
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb67
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb67
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb67
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb68
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb68
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb68
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb69
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb69
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb69
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb70
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb70
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb70
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb71
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb72
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb72
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb72
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb73
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb73
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb73
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb74
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb74
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb74
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb77
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb77
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb77
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb77
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb77
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb78
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb78
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb78
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb79
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb79
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb79
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb80
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb80
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb80
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb81
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb81
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb81
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb82
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb82
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb82
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb82
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb82
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb84
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb84
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb84
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb85
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb85
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb85
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb86
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb86
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb86
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb87
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb87
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb87
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb87
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb87
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb88
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb88
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb88
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb89
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb89
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb89
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb89
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb89
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb90
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb90
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb90
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb91
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb92
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb92
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb92
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb93
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb93
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb93
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb94
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb94
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb94
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb94
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb94
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb95
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb95
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb95
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb96
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb96
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb96
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb97
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb98
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb98
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb98
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb98
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb98
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb98
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb98
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb99
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb99
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb99
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb99
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb99
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb100
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb100
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb100
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb100
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb100
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb101
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb101
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb101
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb102
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb102
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb102
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb102
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb102
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb103
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb103
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb103
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb104
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb104
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb104
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb104
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb104
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb105
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb105
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb105
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb106
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb106
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb106
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb107
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb107
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb107
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb108
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb108
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb108
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb109
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb109
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb109
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb110
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb110
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb110
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb111
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb111
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb111
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb112
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb112
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb112
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb113
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb113
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb113
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb114
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb114
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb114
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb115
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb115
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb115
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb116
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb116
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb116
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb117
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb117
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb117
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb118
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb118
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb118
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb119
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb119
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb119
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb120
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb120
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb120
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb121
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb121
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb121
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb122
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb122
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb122
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb123
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb123
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb123
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb124
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb124
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb124
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb125
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb125
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb125


L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177
[126] Zhao, Sakellariou, An experimental investigation into the rank function of
the heterogeneous earliest finish time scheduling algorithm, in: Euro-Par,
2003.

[127] Chen, Zhang, An ant colony optimization approach to a grid workflow
scheduling problem with various QoS requirements, TSMC 39 (2009)
(2009).

[128] Bilgaiyan, et al., Workflow scheduling in cloud computing environment
using cat swarm optimization, in: IACC, 2014.

[129] Kaur, Mehta, Resource provisioning and work flow scheduling in clouds
using augmented Shuffled Frog Leaping Algorithm, JPDC 101 (2017)
(2017).

[130] Song, et al., Security-driven Heuristics and a fast genetic algorithm for
trusted grid job scheduling, in: IPDPS, 2005.

[131] Young, et al., Scheduling architecture and algorithms within the ICENI
grid middleware, in: UK E-Science All Hands Meeting, 2003.

[132] Wu, A revised discrete particle swarm optimization for cloud workflow
scheduling, in: CIS, 2010.

[133] Vukmirović, et al., Optimal workflow scheduling in critical infrastructure
systems with neural networks, JART 10 (2012) (2012).

[134] Bauer, et al., Chameleon: A hybrid, proactive auto-scaling mechanism on
a level-playing field, in: TPDS, (2018) 2018.

[135] Malik, et al., Co-locating and concurrent fine-tuning MapReduce
applications on microservers for energy efficiency, in: IISWC, 2017.

[136] Afzal, et al., Qos-constrained stochastic workflow scheduling in enterprise
and scientific grids, in: GRID, 2006.

[137] Genez, et al., Using time discretization to schedule scientific workflows
in multiple cloud providers, in: CLOUD, 2013.

[138] Benoit, et al., A survey of pipelined workflow scheduling: Models and
algorithms, CSUR 45 (2013) (2013).

[139] El-Zarif, Awad, An ordinal optimization like GA for improved OFDMA
system carrier allocations, in: ICIS, 2012.

[140] Wang, et al., Multi-objective workflow scheduling with Deep-Q-
network-based multi-agent reinforcement learning, IEEE Access 7 (2019)
(2019).

[141] Yu, Shi, A Planner-Guided Scheduling Strategy for Multiple Workflow
Applications, In: ICPP Workshops, 2008.

[142] Guo, et al., Modeling, analysis, and experimental comparison of streaming
graph-partitioning policies, JPDC 108 (2017) (2017).

[143] Deelman, et al., Pegasus and DAGMan from concept to execution:
Mapping scientific workflows onto today’s cyberinfrastructure, in: HPC,
2006.

[144] Whitney, Delforge, Data center efficiency assessment, in: NRDC, (2014)
2014.

[145] Shoaib, Das, Performance-oriented Cloud Provisioning: Taxonomy and
survey, 2014, CoRR abs/1411.5077 2014.

[146] Ilyushkin, et al., Scheduling workloads of workflows with unknown task
runtimes, in: CCGrid, 2015.

[147] Bauer, et al., Chamulteon: Coordinated auto-scaling of micro-services, in:
ICDCS, 2019.

[148] Khorsand, et al., FAHP Approach for autonomic resource provisioning of
multitier applications in cloud computing environments, Softw. - Pract.
Exp. 48 (2018) (2018).

[149] Malawski, et al., Algorithms for cost- and deadline-constrained provision-
ing for scientific workflow ensembles in IaaS clouds, FGCS 48 (2015)
(2015).

[150] Aumala, et al., Beyond load balancing: Package-aware scheduling for
serverless platforms, in: CCGrid, 2019.

[151] [N. d.] google angles for business users with ’platform as a service’, 2018,
https://www.theguardian.com/technology/2008/apr/17/google.software,
(Accessed: 2018-06-14).

[152] Mahmud, et al., Quality of Experience (QoE)-aware placement of
applications in Fog computing environments, JPDC 132 (2019) (2019).

[153] Yi, et al., A survey of fog computing: concepts, applications and issues,
in: Mobidata, 2015.

[154] Mahmud, et al., Fog computing: A taxonomy, survey and future directions,
in: Internet of Everything, 2018.

[155] Baldini, et al., Serverless computing: Current trends and open problems,
in: Research Advances in Cloud Computing, 2017.

[156] Fox, et al., Status of serverless computing and function-as-a-service (faas)
in industry and research, 2017, arXiv 2017.

[157] Eyk, et al., A SPEC RG cloud group’s vision on the performance challenges
of FaaS Cloud Architectures, in: HotCloudPerf, 2018c.

[158] Eyk, et al., Serverless is more: From paas to present cloud computing, IC
22 (2018) (2018b).

[159] Pérez, et al., [n. d.] On-premises Serverless Computing for Event-Driven
Data Processing Applications, ([n. d.]).

[160] Wang, et al., Peeking behind the curtains of serverless platforms, in: ATC,
2018.

[161] Toader, et al., [n. d.]Graphless: Toward Serverless Graph Processing. ([n.
d.]).

[162] Yan, et al., Building a chatbot with serverless computing, in: MOTA, 2016.
176
[163] Akkus, et al., SAND: Towards high-performance serverless computing, in:
ATC, 2018.

[164] Oakes, et al., SOCK: Rapid task provisioning with serverless-optimized
containers, in: ATC, 2018.

[165] Nastic, et al., A serverless real-time data analytics platform for edge
computing, IC 21 (2017) (2017).

[166] Bal, et al., A medium-scale distributed system for computer science
research: Infrastructure for the long term, IEEE Comput. 49 (2016) (2016).

[167] Lee, et al., Resource-efficient workflow scheduling in clouds, Knowl.-
Based Syst. 80 (2015) (2015).

[168] Topcuoglu, et al., Performance-effective and low-complexity task
scheduling for Heterogeneous computing, TPDS 13 (2002) (2002).

[169] Seo, Energy efficient scheduling of real-time tasks on multicore
processors, TPDS 19 (2008) (2008).

[170] Gerlach, et al., Skyport: container-based execution environment manage-
ment for multi-cloud scientific workflows, in: DataCloud, 2014.

[171] Liu, et al., Flexible container-based computing platform on cloud for
scientific workflows, in: ICCCRI, 2016.

[172] Rajakumar, et al., Workflow balancing strategies in parallel machine
scheduling, JAMT 23 (2004) (2004).

[173] Verma, et al., Large-scale cluster management at Google with Borg, in:
EuroSys, 2015.

[174] Pollard, et al., Evaluation of an interference-free node allocation policy
on fat-tree clusters, in: SC, 2018.

[175] Berkowitz, et al., Simulating the weak death of the neutron in a
femtoscale universe with near-exascale computing, in: SC, 2018.

[176] Cao, et al., Gridflow: Workflow management for grid computing, in:
CCGrid, 2003.

[177] Mao, Humphrey, Auto-scaling to minimize cost and meet application
deadlines in cloud workflows, in: SC, 2011.

[178] Abrishami, et al., Deadline-constrained workflow scheduling algorithms
for infrastructure as a Service Clouds, FGCS 29 (2013) (2013b).

[179] Goshgar Ismayilov, Haluk Rahmi Topcuoglu, Neural network based multi-
objective evolutionary algorithm for dynamic workflow scheduling in
cloud computing, FGCS 102 (2020) (2020).

[180] Fatemeh Ebadifard, Seyed Morteza Babamir, Scheduling scientific work-
flows on virtual machines using a Pareto and hypervolume based black
hole optimization algorithm, TJS 76 (2020) (2020).

[181] Hao Wu, et al., Scheduling large-scale scientific workflow on virtual
machines with different numbers of vCPUs, in: TJS, (2020) 2020.

[182] Hamid Reza Faragardi, et al., GRP-HEFT: a budget-constrained resource
provisioning scheme for workflow scheduling in iaas clouds, TPDS 31
(2020) (2020).

[183] Vincenzo De Maio, Dragi Kimovski, Multi-objective scheduling of extreme
data scientific workflows in Fog, FGCS 106 (2020) (2020).

[184] A.L. Thiago, Genez, et al., [n. d.]Time-discretization for speeding-up
scheduling of deadline-constrained workflows in clouds, FGCS 107, ([n.
d.]).

[185] Emile Cadorel, et al., Online multi-user workflow scheduling algorithm
for fairness and energy optimization, in: CCGRID, 2020.

[186] Mutaz Barika, et al., Cost effective stream workflow scheduling to handle
application structural changes, FGCS 112 (2020) (2020).

[187] Hadeer A. Hassan, A smart energy and reliability aware scheduling
algorithm for workflow execution in DVFS-enabled cloud environment,
FGCS 112 (2020) (2020).

[188] Yawen Wang, et al., CLOSURE: A cloud scientific workflow scheduling
algorithm based on attack-defense game model, FGCS 111 (2020) (2020).

[189] Qureshi, Profile-based power-aware workflow scheduling framework for
energy-efficient data centers, FGCS 94 (2019) (2019).

[190] Zhou, et al., Minimizing cost and makespan for workflow scheduling in
cloud using fuzzy dominance sort based HEFT, FGCS 93 (2019) (2019b).

[191] Arabnejad, et al., Budget and deadline aware e-science workflow
scheduling in clouds, TPDS 30 (2019) (2019).

[192] Rehman, et al., Multi-objective approach of energy efficient workflow
scheduling in cloud environments, CCPE 31 (2019) (2019).

[193] Pietri, Sakellariou, A Pareto-based approach for CPU provisioning of
scientific workflows on clouds, FGCS 94 (2019) (2019).

[194] Xie, et al., A novel directional and non-local-convergent particle swarm
optimization based workflow scheduling in cloud-edge environment,
FGCS 97 (2019) (2019).

[195] Wu, et al., An integrated algorithm for multi-agent fault-tolerant
scheduling based on MOEA, FGCS 94 (2019) (2019).

[196] Dörnemann, et al., On-demand resource provisioning for BPEL workflows
using Amazon’s elastic compute cloud, in: CCGrid, 2009.

[197] Byun, et al., Cost optimized provisioning of elastic resources for
application workflows, FGCS 27 (2011) (2011).

[198] Singh, et al., A provisioning model and its comparison with best-effort
for performance-cost optimization in grids, in: HPDC, 2007.

[199] Minh Nguyen, et al., A black-box Fork-join latency prediction model for
data-intensive applications, TPDS 31 (2020) (2020).

http://refhub.elsevier.com/S0167-739X(21)00130-8/sb126
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb126
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb126
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb126
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb126
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb127
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb127
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb127
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb127
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb127
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb128
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb128
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb128
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb129
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb129
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb129
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb129
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb129
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb130
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb130
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb130
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb131
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb131
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb131
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb132
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb132
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb132
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb133
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb133
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb133
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb134
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb134
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb134
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb135
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb135
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb135
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb136
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb136
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb136
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb137
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb137
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb137
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb138
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb138
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb138
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb139
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb139
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb139
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb140
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb140
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb140
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb140
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb140
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb142
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb142
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb142
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb143
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb143
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb143
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb143
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb143
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb144
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb144
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb144
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb145
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb145
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb145
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb146
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb146
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb146
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb147
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb147
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb147
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb148
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb148
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb148
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb148
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb148
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb149
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb149
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb149
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb149
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb149
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb150
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb150
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb150
https://www.theguardian.com/technology/2008/apr/17/google.software
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb152
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb152
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb152
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb153
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb153
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb153
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb154
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb154
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb154
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb155
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb155
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb155
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb156
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb156
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb156
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb157
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb157
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb157
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb158
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb158
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb158
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb160
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb160
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb160
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb162
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb163
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb163
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb163
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb164
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb164
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb164
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb165
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb165
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb165
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb166
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb166
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb166
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb167
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb167
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb167
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb168
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb168
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb168
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb169
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb169
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb169
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb170
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb170
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb170
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb171
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb171
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb171
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb172
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb172
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb172
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb173
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb173
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb173
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb174
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb174
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb174
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb175
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb175
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb175
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb176
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb176
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb176
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb177
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb177
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb177
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb178
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb178
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb178
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb179
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb179
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb179
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb179
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb179
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb180
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb180
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb180
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb180
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb180
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb181
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb181
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb181
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb182
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb182
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb182
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb182
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb182
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb183
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb183
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb183
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb185
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb185
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb185
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb186
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb186
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb186
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb187
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb187
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb187
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb187
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb187
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb188
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb188
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb188
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb189
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb189
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb189
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb190
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb190
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb190
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb191
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb191
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb191
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb192
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb192
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb192
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb193
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb193
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb193
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb194
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb194
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb194
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb194
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb194
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb195
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb195
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb195
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb196
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb196
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb196
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb197
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb197
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb197
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb198
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb198
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb198
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb199
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb199
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb199


L. Versluis and A. Iosup Future Generation Computer Systems 123 (2021) 156–177
[200] Pérez, et al., On-premises serverless computing for event-driven data
processing applications, in: Cloud, 2019.

[201] Zhou, et al., Incorporating probabilistic optimizations for resource
provisioning of data processing workflows, in: ICPP, 2019a.

[202] Rodriguez, Buyya, Scheduling dynamic workloads in multi-tenant
scientific workflow as a service platforms, FGCS 79 (2018) (2018).

[203] Singh, et al., A novel cost-efficient approach for deadline-constrained
workflow scheduling by dynamic provisioning of resources, FGCS 79
(2018) (2018).

[204] Senturk, et al., A resource provisioning framework for bioinformatics
applications in multi-cloud environments, FGCS 78 (2018) (2018).

[205] Hilman, et al., Multiple workflows scheduling in multi-tenant distributed
systems: A taxonomy and future directions, 2018, CoRR abs/1809.05574
2018.

[206] Rodriguez, Buyya, A taxonomy and survey on scheduling algorithms for
scientific workflows in IaaS cloud computing environments, in: CCPE,
(2016) 2016.

[207] Wieczorek, et al., Towards a general model of the multi-criteria workflow
scheduling on the grid, FGCS 25 (2009) (2009).

[208] Wu, et al., Workflow scheduling in cloud: a survey, TJS 71 (2015) (2015).
[209] Mainak Adhikari, et al., A survey on scheduling strategies for workflows

in cloud environment and emerging trends, ACM Comput. Surv. 52 (2019)
(2019).
177
Laurens Versluis received his B.Sc. and M.Sc degrees in
computer science from Delft University of technology,
The Netherlands.

Currently, he is a Ph.D. student with the Massiving
Computer Systems Group of the Department of Com-
puter Science, Faculty of Sciences, VU Amsterdam, The
Netherlands.

His research interests include cloud computing,
distributed systems, scheduling, complex workflows,
and data science. Contact him at l.f.d.versluis@vu.nl

Alexandru Iosup is tenured full Professor and Uni-
versity Research Chair with the Vrije Universiteit
Amsterdam, the Netherlands. He is also Chair of the
SPEC Research Cloud Group. He received a Ph.D.
in computer science from TU Delft, the Netherlands
(2009). He was awarded the yearly Netherlands Prize
for Research in Computer Science (2016), the yearly
Netherlands Teacher of the Year (2015), and several
SPECtacular awards (2012–2017). His research interests
are in massivizing computer systems, that is, making
computer systems combine desirable properties such as

elasticity, performance, and availability, yet maintain their ability to operate ef-
ficiently in controlled ecosystems. Topics include cloud computing and big data,
with applications in big science, big business, online gaming, and (upcoming)
massivized education.

http://refhub.elsevier.com/S0167-739X(21)00130-8/sb200
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb200
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb200
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb201
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb201
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb201
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb202
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb202
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb202
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb203
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb203
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb203
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb203
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb203
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb204
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb204
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb204
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb205
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb205
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb205
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb205
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb205
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb206
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb206
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb206
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb206
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb206
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb207
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb207
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb207
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb208
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb209
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb209
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb209
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb209
http://refhub.elsevier.com/S0167-739X(21)00130-8/sb209
mailto:l.f.d.versluis@vu.nl

	A survey of domains in workflow scheduling in computing infrastructures: Community and keyword analysis, emerging trends, and taxonomies
	Introduction
	Analyzing and obtaining a dataset of article meta-data
	Analysis of the workflow scheduling community
	Method for keyword analysis
	Analysis of keywords in workflow scheduling articles
	Analysis of keyword trends over time
	Discussion on emerging trends
	Emerging trends in workflow scheduling

	Future research directions inspired by meta-data analysis

	Investigating and taxonomizing four areas within workflow scheduling
	Taxonomy of workflow formalisms
	Community and emerging keywords analysis
	Taxonomy of enabled structures
	Taxonomy of core languages
	Future directions

	Taxonomy of workflow allocation
	Community and emerging keywords analysis
	Taxonomy of scheduling targets
	Makespan
	Deadline
	Costs
	Energy consumption
	Resource utilization
	Load balance
	Fairness
	(User-defined) priority
	Risk
	Security & privacy
	Fault tolerance
	Data locality
	Fidelity
	Throughput
	Bandwidth
	Latency
	Response time

	Taxonomy of optimization strategies
	Taxonomy of scheduler structures
	Single-cluster architectures
	Multi-cluster architectures

	Taxonomy of allocation techniques
	Greedy
	Game theory
	Random
	Heuristic
	Meta-heuristic
	Machine learning
	Exhaustive search
	(Non-)linear programming
	Ordinal optimization
	Reinforcement learning

	Workflow instantiation
	Partitioning technique
	Workflow and task optimization

	Future research directions inspired by meta-data analysis

	Taxonomy of resource provisioning
	Community and emerging keywords analysis
	Taxonomy of provisioning
	Taxonomy of autoscalers
	Elasticity
	Allocation and provisioning policy interplay
	Future directions

	Taxonomy of applications and services
	Community and emerging keywords analysis
	Service types
	iaas
	paas
	saas
	Edge/fog computing
	Serverless

	Type of environments
	Execution model
	Taxonomy of resource types
	Taxonomy of scheduling dynamicity

	Mapping allocation and provisioning policies
	Method
	Allocation policies
	Provisioning policies

	Related work
	Threats to validity
	Conclusion
	Declaration of competing interest
	Availability of data and software artifacts
	Acknowledgments
	References


