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Abstract

Serverless computing is increasingly used for data-processing applications in both science and business domains. At the core of
serverless data-processing systems is the scheduler, which ensures dynamic decisions about task and data placement. Due to the
variety of user, cluster, and workload properties, the design space for high-performance and cost-effective scheduling architectures
and mechanisms is vast. The large design space is difficult to explore and characterize. To help the system designer disentangle this
complexity, we present ExDe, a framework to systematically explore the design space of scheduling architectures and mechanisms.
The framework includes a conceptual model and a simulator to assist in design space exploration.

We use the framework, and real-world workloads, to characterize the performance of three scheduling architectures and two
mechanisms. Our framework is open-source software available on Zenodo.

1. Introduction

Scientific data analysis [1], business analytics [2], search-
based decision-making [3], and other data-driven workloads
with near-interactive deadlines require their computation to com-
plete within short time spans. The short duration and the fre-
quently changing quantity of resources required by these work-
loads [4] form a natural fit for serverless computing, which lets
users lease only the resources required for a short period of
time [5, 6, 7]. Both academia (e.g., funcX [1], Starling [8]) and
industry (e.g., Snowflake [4], Databricks [9]) have recognized
this synergy and have proposed systems to leverage it.

Serverless data-processing systems run their computation
on distributed clusters of virtual machines or containers as nodes
and use remote object storage (e.g., AWS S3, Azure Blob Stor-
age). The data-processing applications are workflows composed
of tasks. A task is a piece of computation that reads data, pro-
cesses it, and writes out the intermediate or output result. The
scheduler is a crucial component of these systems: it directs the
tasks to different nodes in the cluster at the right time, based on
resource requirements, locality-awareness, and other schedul-
ing policies.

A scheduler is defined by its architecture, mechanisms, and
the actions they enable. Architecture refers to how multiple
schedulers coordinate to make resource management decisions [10].
Mechanisms refer to the set of all inter-component communi-
cation and bookkeeping that make policy enforcement possi-
ble [11]. The architecture and mechanisms enable the scheduler
to enact a scheduling policy through actions. Actions are re-
source management and communication decisions like allocat-
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Figure 1: Distribution of median task slowdown (lower is better) per trace when
using different scheduler architecture.

ing resources, preempting tasks, and sending completion events
that a scheduler can take to achieve policy goals.

Scheduler architecture and mechanisms can significantly
affect serverless system performance. Figure 1 shows the im-
pact of the scheduler architecture on interactive data-processing
task performance. The figure depicts the median task slowdown
across multiple traces when using different architectures. The
slowdown is the ratio of the actual task completion time to the
ideal completion time. We observe that the decentralized archi-
tecture can result in 2× the amount of task slowdown than the
centralized one. The traces are from the IBM COS dataset [12],
each containing 3 million tasks, and simulated on a cluster sized
to run each trace at 80% utilization. The cluster size ranges
from 15 to 31 nodes depending on the trace.

Although much work focuses on policy (algorithm) design
for scheduling, the design of the entire scheduler remains a key
but underserved challenge, e.g., Which architectures to lever-
age? Which mechanisms to include? Proper exploration of
scheduling design space is challenging. Changing the archi-
tecture or adding new mechanisms requires time-consuming en-
gineering efforts, as in the case of Condor [13] and Borg [14],
making design space exploration expensive. Often the mecha-
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nisms, and the actions they enable, are under-specified and im-
plicit in the system design. The implicitness makes isolating
and modifying them difficult, rendering the systematic explo-
ration hard [15, 16]. Finally, we observe that not all actions in
the scheduling reference architecture [15, 17] are available to
all schedulers [18, 19]. While some actions can be implemented
by changes to local bookkeeping mechanisms in the scheduling
policy, many cannot, depauperating exploration options.

In this work, we address these challenges by proposing
ExDe, a framework to systematically and conveniently explore
the design space of scheduler architectures and mechanisms
for serverless computing.

With ExDe, we introduce the concept of a scheduler frame 1

to encompass all such actions and the architecture and mecha-
nisms that enable them.

Formally, we define the scheduler frame as the set of
all mechanisms in the scheduler that enable actions not
possible by any local modification of the scheduler algo-
rithm and policy. Instead, a frame requires coordination
between multiple scheduler components.

The host software (e.g., hypervisor, kubelet [20]), the bro-
ker, and the data manager (e.g., Pocket [21]) are examples of
scheduler components. The components are described further
in Section 2. Hierarchical scheduling and work stealing are ex-
amples of mechanisms that constitute a scheduler frame.

ExDe uses scheduler frames to allow system designers to
explicitly define and explore actions that require the coordina-
tion of multiple scheduler components to occur. It comes with
various scheduler frames ready to be used and modeled after
the state-of-the-art alternatives available for each design choice.
ExDe relies on trace-based discrete event simulation [22]. We
justify our design choice with the following observations. First,
existing serverless data-processing systems perform other tasks
besides scheduling [23, 1], and it can be challenging to iso-
late the impact of the scheduler frame. Using simulation, the
user can evaluate different frames in isolation. Second, many
existing approaches use a limited set of workloads or individ-
ual applications in their evaluation as it is expensive and time-
consuming to evaluate each system on a wide variety of work-
loads [24]. By resorting to simulation, we conduct thousands of
performance evaluations in a timely and cost-effective manner.

The use of simulation presents a challenge in terms of val-
idation. To overcome this challenge, we adopt a two-step ap-
proach. First, we utilize real-world measurements in our net-
work model, which makes our simulations more closely ap-
proximate the real-world [25, 26, 27]. Second, we transform
our simulation model into an emulated system implementation,
conduct experiments, and compare the results from the two sys-
tems.

Towards improving the design space exploration process for
serverless data-processing system scheduler design, we make a
three-fold contribution:

1The term is inspired by the structural frame used in construction. The
building’s frame cannot change, but the layout and composition of the floors
can. The word framework shares the same etymological roots.
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Figure 2: The scheduler frame model differentiated from the mechanism-policy
separation and pluggable mechanism conceptual models. The scheduler frame
consists of the parts of the systems which require multiple components to be
changed to enable new features.

1. We design a conceptual model of scheduler frames (Sec-
tion 2). We classify a number of existing scheduler de-
signs into design frames. The designs we classify include
different scheduling architectures and mechanisms.

2. We design, implement, and validate a trace-driven sim-
ulator to enable design space exploration of scheduler
frames for serverless data-processing systems (Section 3).
Our simulator provides first-class support for inter-component
communication enabling ergonomic scheduler frame im-
plementation.

3. We conduct systematic design space exploration using
ExDe (Section 4). We evaluate representative design frames
related to scheduler architecture, work stealing, and data
migration across different cluster and workload config-
urations, considering a set of 54 real-world traces from
IBM [12].

We make ExDe open-source and easily extensible to enable
practitioners to re-run the experiment as storage and network
characteristics change in the future. It is available at https:
//zenodo.org/record/7829151. Our approach ensures that
the simulations accurately reflect real-world scenarios and can
be applied in practical computer systems.

2. Conceptual Model of Scheduler Frames

In this section, we describe the motivation behind the con-
ceptual model, expand on the definition of the scheduler frame,
describe scheduler components, introduce how frames encom-
pass mechanisms, and how the conceptual model can help sched-
uler design.

The flexibility in scheduler design makes it difficult for the
system designer to qualitatively and quantitatively compare dif-
ferent scheduler designs. The community has tackled this prob-
lem for a long time and has adopted mechanism and policy
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Table 1: The components affected and actions made available by different mechanisms. Actions are changes to system state that the mechanisms enable. (DM =
Data manager)

Mechanism Components used Implementations Frame actions
Placer(s) Broker Host Client Metadata DM (Not exhaustive)

Architecture
Centralized [28, 29], decentralized [30, 4],
delegated [31, 13], hybrid [32, 33]

Pick scheduler,
read metrics

Preemption Threshold-based [34], fair sharing [24] Migrate

Control-flow Push/pull [35], speculative exec. [36]
Pull/push task,
rollback state

Data placement Shuffle [27], intermediate data [21] Store, move, etc.
Fault tolerance Checkpoint [37], retry [38] Recover, retry
Networking NetHint [39] Change placement
Barriers Gang scheduling [18, 40] Reserve hosts

split as a standard practice [11] (Figure 2a). All the compo-
nents, subsystems (e.g.: containers, caches), and communica-
tion mechanisms which enable the policy to manage resources
are the mechanisms. The policy itself can be split into the op-
timization goal we wish to achieve and the algorithm we use
for optimization [41]. However, the comparison and systemati-
zation of the mechanism have received less attention than the
algorithms [42, 43] and the policies [44, 45].

Mechanisms which can be plugged into the system during
runtime were introduced in OS design in the 1980s with vir-
tual resources [46]. Pluggable mechanisms (Figure 2b) have
been used to enable programmable caches [47] and scheduler
mechanisms such as gang scheduling [18]. In Figure 2b, virtual
resources such as the cache are used by the scheduler to sched-
ule tasks. These virtual resources in-turn are scheduled onto
the physical resources. The scheduler can have virtual resource
specific scheduling policies. For example, the cache resource
can have a corresponding eviction policy which is irrelevant to
other resources.

We present the conceptual model of scheduler frames to
help the system designer tackle the difficulty of mechanism
design. Comparing different alternative designs and assessing
their fit for the requirements is integral to the design process.
Using scheduler frames, the designer can compare if two dif-
ferent scheduler designs can support the same mechanisms. If
they cannot, the designer can qualitatively compare the effort
of implementing the necessary features to support additional
mechanisms. This comparison is possible because a scheduler
frame can explicate the actions a design needs to support the
desired mechanisms.

2.1. Components of a Scheduler Frame
We depict an example scheduler model with the scheduler

frame highlighted in Figure 2c. The scheduler is composed
of multiple components. The components interact to provide
mechanisms related to workflow scheduling, data storage, spec-
ulative execution, and more. The figure depicts the frame over-
laid on top of the interacting components. The scheduler frame
provides common features and the data model used by the com-
ponents to coordinate with each other. Once a frame is designed
and implemented, components can use it to implement mecha-
nisms.

We describe briefly components in used Figure 2 and Ta-
ble 1 here.
Placer (Scheduler): Placer is the part of the scheduler that as-
signs application tasks to appropriate resources. In Figure 2, it
is a part of the scheduler. A scheduler can have multiple plac-
ers. In a fully decentralized scheduler, placers might not even
interact with each other or only interact occasionally.
Broker (Scheduler): In some distributed schedulers, placers in-
teract via a centralized component called the broker. The broker
decides which subset of the resources each placer is responsible
for.
Host software: The host software is responsible for interact-
ing with the scheduler enforcing the scheduler’s decisions on
the host. Kubelet [20] in Kubernetes and different hypervisors
are examples of host software. Host software limits the actions
available to the scheduler. For example, a scheduler cannot im-
plement migration or preemption without host software which
support that feature. The hostlet in Figure 2 represents the host
software.
Client: The client uses the scheduler to schedule applications.
It can provide the scheduler with relevant information for better
scheduling. For example, a client can inform the scheduler of
data objects the application accesses so that the application can
be scheduled closer to the data location.
Metadata: Different scheduler components use the metadata
storage component to store resource state and application state.
The Kubernetes project uses etcd for this purpose. For example,
if an application needs access to a particular system service, the
metadata helps locate that service using its service discovery
feature.
Data manager: Application data needs to be tracked, repli-
cated, and secured even when applications are not using the
compute resources. The data manager keeps inventory of the
data objects on each physical node. It moves and replicates the
data objects to balance load.

2.2. Scheduler Frames in Existing Systems

Examples of scheduler frames include communication pro-
tocols for interacting between scheduler components, the con-
sistency models the components use to agree upon data cor-
rectness, coordination mechanisms for migration and rollback,
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etc. The Kubernetes data model is an example of communica-
tion protocols which form the frame. Users can implement new
mechanisms in Kubernetes through operators [48]. The oper-
ators need to make use of the Kubernetes data API to interact
with other Kubernetes components and operators. Even a ba-
sic action such as starting a container requires using the API.
The consistency models used in Omega [49] are another exam-
ple of a scheduler frame. Omega explores different consistency
models for distributed schedulers. For a scheduler to effectively
enforce its scheduling policies, all components of a distributed
scheduler need to adhere to the same consistency policy.

The architecture involves implementing the appropriate mech-
anisms in the placers, the broker, and the client. Even a decen-
tralized architecture where the placers do not communicate with
each other could use a broker to coordinate global actions such
as node addition and removal. The control-flow mechanism re-
quires the implementation in host, placer, and broker. Work
stealing requires control-flow support for hosts to steal tasks
from other hosts via the placer. Speculative execution requires
host and place modification [36]. Speculative execution also re-
quires support from the data manager to read not yet committed
data, commit data of successful speculative executions and roll-
back stored data from failed speculation. The data placement
mechanism uses the metadata to estimate the load and object
popularity across different hosts and uses the data manager to
migrate data to improve load balance.

Multiple components need to coordinate and work together
for the mechanisms to function. This is the essence of a sched-
uler frame. A policy implemented in just one component, such
as the placer or the host, cannot implement these mechanisms
by itself. The policy is limited in the actions it can perform by
the frame. For example, the host cannot implement pull-based
work stealing alone. The placer must support hosts pulling
tasks and remove stolen tasks from other host queues.

We summarize some mechanisms, systems that implement
them, and the frames requires by them in Table 1. We mark
each component that is modified by one of the systems with
a checkmark ( ). We list the actions made available to the
scheduling policy by each mechanism. Actions are changes to
system state that the mechanisms enable.

Using the scheduler frames concept, system designers can
systematically reason about the actions that will be available to
implement scheduling mechanisms and policies. They can then
evaluate the engineering cost of implementing the mechanism
and the performance (throughput, cost, energy, or other metrics)
benefit of making the corresponding actions available.

3. Simulation-based Process for Scheduler Frame Charac-
terization

Evaluating the performance of a scheduler frame requires
characterizing the mechanisms that utilize the frame. Imple-
menting all the mechanisms in a real system can be onerous and
cost a lot of engineering resources. Therefore, we turn to simu-
lation to characterize and explore different scheduler frames.

Figure 3 depicts the process a system designer would use to
evaluate a scheduler frame using simulation. We start with a set
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Figure 3: The process to characterize a scheduler frame.

Table 2: Mechanisms implemented in the ExDe simulator.

ExDe additions Already in OpenDC

Architecture-support Simulator core
Work stealing Scheduling policies
Locality-awareness Preemption
Caching Trace readers
I/O latency models Energy models

of workload traces 1 . The traces are combined 3 with scenar-
ios 2 the designer wants to characterize to come up with a set
of simulations to run. The distributed simulation runner 4 exe-
cutes the simulations on a cluster of machines. Each simulation
run consists of three phases. The simulator 5 is first run with
an approximate set of parameters. The simulator parameters are
then calibrated 6 using the results of the previous simulation
to meet system utilization constraints. The calibration is nec-
essary because different traces require different sized cluster to
achieve the same utilization. Finally, the simulation is run again
with calibrated parameters 7 . The simulation results are then
analyzed by the designer using distributed analysis tools 8 we
provide, or the designer herself develops. The designer uses the
analysis results to configure the scenarios for the next round of
the process. The process is repeated until the designer is satis-
fied with the results.

We use the Ray [50] framework to implement our distributed
simulation runner. The designer supplies simulation parameters
as rows in a Pandas [51] dataframe. The rows are then con-
verted to command-line arguments that are passed on to each
individual OpenDC simulator run. We also use Ray and Pandas
to implement the tools to analyze simulation results.

3.1. Implementing Scheduler Frames in the Simulator

We extend the OpenDC simulator [22], implementing a frame-
work to support scheduler frame characterization. The frame-
work consists of easily-extensible components and mechanisms
that can be combined to make a scheduler frame. The simulator
has constructs to ergonomically model communication between
components. Both the simulator and ExDe are implemented in
the Kotlin programming language.
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Figure 4: SchedulerFrame Interface Outline

The user can easily define a new scheduler frame by imple-
menting the SchedulerFrame interface depicted in Listing ??.
The interface offers metadata storage 1 components required
by mechanisms such as data placement and networking. A set
of blocking queues 2 is used to represent asynchronous com-
munications between scheduler components. Each host server
has a queue, but other queues can be created based on mecha-
nism needs. The select 3 functionality allows a component to
implement multiple strategies for receiving asynchronous com-
munication from other components. The blocking queues are
not FIFO, but can be used like them. Users can inspect all tasks
in the queue, sample tasks, or specify priorities to implement
custom scheduling policies. A task can be dequeued from any
position in the queue. Apart from these policies, there are local
scheduling policies unrelated to communication that are built
into OpenDC.

The getNextTask 4 method is used by the hosts to retrieve
the next task to run. It supports both push-based and pull-based
scheduling. The offerTask 5 method is used by clients to en-
queue tasks for scheduling. All components required to imple-
ment a scheduler are injected, and their interactions are speci-
fied in the scheduler frame. The scheduler frame is also respon-
sible for transferring the task objects to the required compo-
nents. All components are provided with a virtual clock which
they can advance on a per-task basis. The time duration a task
spends using a resource is sampled from a user-specified em-
pirical model [52], linear model [27], or stochastic model [53]
(e.g., Pareto distribution).

The scheduler frame interface abstracts away numerous de-
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Figure 5: Serverless data-processing system model with possible design deci-
sions.

tails necessary for simulation, such as reading the workload
trace, writing the results, warming up the simulator for steady-
state execution, the host model, the network model, and more.
Table 2 lists all the components and mechanisms we imple-
mented in ExDe and the ones already available through OpenDC.

With this approach, we enable users to specify accurate stor-
age and network models to enable the exploration of different
cloud computing paradigms, from virtual machines to server-
less computing.

4. Using ExDe to Characterize Frames for Serverless Data-
processing

We use ExDe to characterize the impact of different sched-
uler frames on serverless data-processing systems. The model
of the system we characterize is depicted in Figure 5. Data-
processing applications are structured as workflows of tasks 1 .
The placer 2 assigns the tasks to nodes 3 . Tasks read data ob-
jects 4 they process from local cache 5 or remote storage 6 .

In our scheduler frame, we consider the following proper-
ties invariant: i) the local cache is partitioned across nodes; and
ii) the placer is locality-aware and tries to schedule tasks in a
locality-aware manner. Locality-aware scheduling means that
the scheduler knows in which node an object is likely to be
cached and directs tasks accessing that object accordingly.

The design space that we consider for inclusion in our sched-
uler frame consists of the scheduler architecture (centralized,
decentralized, or delegated), work stealing 7 , and data migra-
tion 8 .

We characterize the impact of this design space across dif-
ferent cluster sizes 9 and node sizes 10 . We also characterize
the impact of cluster scaling (size change) and workload proper-
ties like the popularity distribution. Next, we describe in detail
the design space outlined above.

Scheduler Architecture. The scheduler architecture affects en-
gineering complexity, performance (task execution latency), and
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scalability (number of tasks it can timely schedule as they ar-
rive). We consider three design alternatives: Centralized, de-
centralized (ring hash), and delegated.

A centralized scheduler consists of a single placer and is the
easiest to implement correctly, but can not increase scheduling
throughput by adding more placers. When the workload re-
quires more throughput than can be provided by a centralized
scheduler, one can choose between a decentralized scheduler
architecture (e.g.: Snowflake-like [4]), or a delegated sched-
uler architecture (e.g.: Atoll-like [31]) with multiple central-
ized placers coordinating using a broker 11 . Out of these two
designs, the decentralized one is easier to engineer than the del-
egated one as it requires no coordination between the nodes.

All schedulers we implement use a locality-aware greedy
scheduling policy. Locality-awareness means that the scheduler
tries to assign tasks to a node where the data object required by
the task is already available. The centralized scheduler is aware
of the location of all data objects and the load of all nodes. So, it
schedules a task to a node with the required object, and the least
loaded node if the object is not cached. The delegated scheduler
has multiple placers which assign tasks to nodes. The fraction
of nodes managed by each placer are dynamic and depend on
the node of the placer. The node to placer allocation is balanced
every 5 minutes of simulation time. The decentralized sched-
uler uses a consistent hash to always schedule a task requiring
a certain object to the same node. The object identifier is used
as input to the hash function.

The centralized scheduler is aware of the load of all nodes.
In the delegated case, the placers are aware of the load of the
nodes assigned to them. The broker periodically reallocates the
nodes as it is aware of the load of each placer. The decentralized
scheduler is not load aware. A decentralized load-aware version
is possible by using two different hashes and trying power of
two random choices between the output. But, it would still be
unaware of the load of all other nodes.

Schedulers queue tasks at the worker nodes. When mul-
tiple placers in the decentralized scheduler queue tasks at the
same worker node, they are added to the queue. The queue is
processed in a FIFO order.

Work Stealing. When work stealing is supported by the sched-
uler, a node with execute capacity can pull a task from another
node’s queue (e.g., from the node with the largest wait queue)
and execute that task. This allows the nodes to correct schedul-
ing decisions that have led to the overload of some workers
while some others have spare capacity. This technique leads to
reduced task latency at the cost of extra scheduling logic. Un-
like traditional workload stealing, in locality-aware scheduling
the issue of heterogeneous task execution latency is an issue:
the stealing node can execute the task sooner, but the task may
take longer to execute. The increased latency is because the
stealing node does not have the task’s data in the cache, but the
original node likely does.

In a centralized scheduler, whenever a node doesn’t have
any tasks in the queue, the centralized scheduler picks a task
from the busiest node to assign to it. In the delegated scheduler,
the empty node contacts two other schedulers and picks a task

Table 3: Overview of experiments.

Section Varying
parameters

Fixed
parameters Metrics

§ 5.1
Cluster size
(utilization)

Workload,
Tasks per node = 4

Slowdown,
storage delay,
wait time

§ 5.3 Tasks per node
Workload,
Utilization = 0.8 Slowdown

§ 5.4
Workload
(doubles in size
after half time)

Utilization = 0.8,
Tasks per node = 4

Slowdown,
Resource
usage

§ 5.5
Workload
(Object popularity
distribution)

Utilization = 0.8,
Tasks per node = 4 Slowdown

to execute from the busiest one. In the decentralized case, the
empty node also contacts two random schedulers and picks a
task from the busiest one.

Data Migration. When data migration is supported by the sched-
uler, data objects are migrated from busy nodes to idle nodes
based on a trigger. We evaluate three triggers in this work. The
global trigger periodically migrates the most popular objects
from busy nodes to idle nodes till load balance is achieved. The
popularity of an object is computed based on the number of
tasks that read the object. The per task trigger migrates a task
based on the time since insertion or last migration. On timer ex-
piration, the scheduler checks if a node with a lower load than
the object’s current node and migrates the object. The work-
steal trigger can only be used when work stealing is enabled.
When a task is stolen, it moves the object the task is accessing
from the original node to the stealing node. Data migration can
lead to increased storage delay if triggered too frequently. But,
with the appropriate policy, it can even out load imbalances.

4.1. Experiment Setup

We run a series of experiments using our simulator to char-
acterize the impact of the aforementioned design decisions on
scheduler performance. We choose a realistic network model
for the simulation based on real-world measurements. For com-
munication with remote storage, we use an empirical distribu-
tion with bandwidth and latency values from recent work [25,
26]. According to Bian and Ailamaki [25], the median latency
to remote storage (AWS S3) is 13 ms and the tail latency can ex-
ceed 1,000 ms. The average read bandwidth is 80 MBps [54].
We set the latency for communication between components to
1 ms based on recent characterization of networking between
virtual machines [52, 55]. The latency and bandwidth distri-
butions can be changed by the user, and the characterization
rerun, to update the results for the changing ecosystem. We
use the FIFO scheduling policy for all experiments. In the case
of decentralized and delegated architectures, the policy is local
FIFO per placer.

For our simulation, we use 54 real-world traces of data ac-
cess patterns from the IBM COS dataset [12]. We use the traces
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to generate a simulable trace of task executions. Each simula-
ble trace consists of 3 million tasks executed over three hours.
The median task runtime is 100 milliseconds. In total, we run
10,230 simulations for this characterization. Each simulation
ran for approximately 1.5 minutes. All experiments consumed
over 255 hours of CPU time. Including the exploratory exper-
iments, and other experiments not analyzed in the paper, the
simulations consumed over 1,000 hours of CPU time. As run-
ning many simulations is an embarrassingly parallel problem,
we parallelized the evaluation over a cluster of 20 physical ma-
chines.

The experiments we run to characterize the design are out-
lined in Table 3. We characterize the impact of architecture,
work stealing, and data migration as a function of the varying
parameters. All parameters are configurable and easy to change
using command-line arguments. This allows users to quickly
rerun the characterization, and reevaluate their design decisions
with a different set of parameters as their cluster setup changes.

5. Frame Characterization Results

Using simulation, we characterize the performance of dif-
ferent decisions that are part of a scheduler frame across dif-
ferent cluster configurations (node utilization, node size, and
scaling). Table 3 summarizes the different experiment configu-
rations.

We quantify system performance using the task slowdown
metric, defined as the ratio of the actual execution time of a task
over its ideal execution time. Task slowdown is a ratio and has
no units. Because we use multiple traces, and each trace has its
task slowdown distribution, we analyze them using summary
metrics representing their distribution. We use the median and
the tail latency (99th percentile) of the task slowdown distribu-
tion for each trace. In the following, we refer to them as the
tracemed and tracetail, respectively. We quantify both the
median and the dispersion between the 25th and 75th percentile
values of the summary metrics. The dispersion between the
75th percentile and 25th percentile values is the Inter Quartile
Range (IQR)

The actual execution time of a task is the sum of the time
spent processing, waiting in the scheduler queue (wait delay),
and waiting for remote storage (storage delay). A high wait
delay is caused by a load imbalance across cluster nodes in sys-
tems running below saturation (100% utilization) for most of
the experiment duration [56]. All our experiments meet this
criterion. Hence, we use wait delay as a proxy for the amount
of load imbalance in the system. The storage delay is a proxy
for the number of tasks experiencing cache misses and access-
ing remote storage. We further investigate the root cause of the
slowdown in-depth for a specific experiment in Section 5.2.

5.1. Impact of Utilization-level

One cluster configuration parameter available to the system
designer is the number of nodes in the cluster (cluster size). For
the same workload, a lower number of nodes implies higher
system utilization. It is important for the system designer to

know which scheduler frames can help her meet performance
objectives at a given utilization. In this section, we investigate
how and why the performance of different scheduling frames
varies with cluster utilization using simulation. Cluster utiliza-
tion is the ratio of time the cluster resources are being used
to the total time they are available. The cluster size used in the
simulation is different for different traces. For results to be com-
parable, the different traces are simulated in configurations such
that the average utilization for each simulation is the same. Fix-
ing the utilization required us to vary the cluster size per trace.
The specific cluster size for a simulation is determined in the
calibration phase specified in Section 3. The cluster size ranges
from 15 to 31 nodes.

We consider four scenarios. In scenario ➀ we compare the
three considered scheduler architectures. In scenario ➁ we con-
sider the same frames but with the work stealing mechanism
enabled. Each frame has an architecture-specific work steal-
ing implementation. Scenario ➂ compares two data migration
policies for two frames. We only choose two because the fully
decentralized frame does not support the central coordination
required for data migration. Finally, in scenario ➃ we quantify
data migration combined with work stealing.

The tracemed and tracetail for all four scenarios con-
sidered are depicted in Figure 6. For each scenario, the top plot
depicts the median slowdown per trace (tracemed), and the
bettom plot shows the tail slowdown (tracetail) per trace.
The horizontal axis in each figure shows the system utilization,
and the vertical axis the task slowdown per trace. The lines in
the plot depict the trend of median tracemed and tracetail.
The points in the plot are the median measurements. The whiskers
around the median indicate the IQR. The points and whiskers
have minor horizontal adjustments to improve clarity.

Considering scenario ➀, the centralized scheduler exhibits
the lowest median tracemed and the decentralized scheduler
the highest (worst) at all utilization levels. The tracemed dis-
tribution exhibits high IQR for all architectures at high utiliza-
tion (0.8). The centralized architecture also exhibits the lowest
median tracetail for all utilization levels up to 0.7. All ar-
chitectures exhibit high tracetail IQR at all utilizations. The
decentralized architecture exhibits an order of magnitude worse
tracetail performance than the delegated and the centralized
architectures.

Next, in scenario ➁ we look at the impact of the work steal-
ing operational technique on all architectures. In this case, the
median tracemed increases from 2 to 2.5 with work stealing
for the centralized and delegated architectures at utilizations be-
low 0.6. The decentralized architecture has the least tracemed.
The tracemed IQR at 0.8 utilization decreases significantly for
all architectures with work stealing. Work stealing significantly
impacts the tracetail distribution of all architectures. The
median tracetail decreases from 10 to 5 for the centralized
and decentralized architectures at low utilization (0.5). At high
utilization (0.8), the median tracetail decreases an order of
magnitude for all architectures.

In scenario ➂, we quantify the slowdown of two different
data migration policies. The two policies, global and per task,
are described in Section 4. We observe that the migration policy
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Figure 6: The impact of scheduler architecture and operational techniques on performance, represented by the task slowdown per trace, at different system utilization
levels. The lower, the better. Horizontal axes are normalized, while vertical axes use different scales to appreciate differences. The points and whiskers have minor
horizontal offset to improve clarity. The tracemed and tracetail of scenarios ➀, ➁, ➂, and ➃ are represented.
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has no effect on the tracemed. At high utilization (≥ 0.7),
data migration reduces the median tracetail by an order of
magnitude for centralized and delegated architectures. But, it
has no effect on the tracetail IQR.

In scenario ➃, we quantify the slowdown of combining work
stealing with data migration. We term this combination mech-
anism migsteal for ease of reference. We use two migration
policies, per task and worksteal, to represent two ways to com-
bine work stealing with data migration. For per task, we com-
bined the per task data migration policy (similar to ➂) with a
work stealer. For worksteal, we trigger data migration on a
work steal event. We observe that combining work stealing with
migration does not reduce slowdown any better than just using
work stealing.

5.2. Slowdown Attribution

In this section, we analyze the root causes for all four sce-
narios from Section 5.1 of the slowdown for one experiment
configuration. The configuration we use is the 0.8 utilization
one. We investigate by attributing the delay experienced by a
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task, over its ideal runtime, into wait delay and storage delay.
We find the cause for both the median value of tracemed and
tracetail, and the dispersion. This attribution helps us under-
stand how well the different frames balance load among cluster
nodes. It also helps us understand how the different frames nav-
igate the trade-off between better load balance and more remote
storage reads.

Figure 7 depicts the normalized delay distribution across
all workload traces for the three frames involving only the ar-
chitecture. The distribution is depicted for five categories (four
quartiles and the tail) for each frame. The distribution across all
workloads is depicted using boxes and whiskers. The box and
whiskers have their usual meaning. The delay is normalized by
dividing the cumulative delay in each category (quartile/tail) by
the number of tasks in that category. We need to normalize at
the tail category has much fewer tasks than the quartile cate-
gories. Normalizing per task makes the tail comparable to the
other categories. We plot the individual quartiles instead of the
CDF as each quartile has measurements for multiple traces. A
combined CDF for all traces would be unreadable.

Figures 8, 9, and 10 depict the reduction (gain) in delay
due to the frame including mechanisms in addition to the archi-
tecture. The gain is also normalized. The gain is obtained by
subtracting the delay experienced when using mechanism from
the delay experienced by the architectures without any mech-
anisms. A positive gain is an improvement. A negative gain
means the delay worsened. Note that all plots have a log scale.

Considering scenario ➀ (Figure 7), we observe that the wait
time, and therefore imbalance, is the leading cause of slowdown
at the higher quartiles. We observe that the storage delay has
low dispersion, while the wait delay has high dispersion q3, q4,
and the tail. From this, we can attribute the high IQR we ob-
served for the tracemed and the tracetail to the wait delay.
We observe that the decentralized architecture experiences an
order of magnitude higher tail delays than the centralized or
delegated architectures. A high wait delay is caused by imbal-
ance. Imbalance causes head of line blocking on the busy nodes
leading to high wait times. The decentralized architecture has
high imbalance because each placer in our implementation of
the decentralized architecture independently makes decisions,
either using consistent hashing, which is sometimes combined
with power of two random choices. Therefore, the placer is not
aware of the load across the cluster and only aware of the node
across two nodes in the case of two random choices.

High wait delay can also be caused by complex scheduling
policies and insufficient scheduler resources. We use a simple
scheduler policy and allocate plenty of resources to the sched-
uler to control for these factors in our experiments. We do
not further explore the impact of these factors. But a differ-
ent scheduler policy can result in different findings from what
we obtain.

In scenario ➁ (Figure 8), we observe that the decentralized
architecture experienced the most gain due to work stealing.
The decentralized architecture experiences gain in all quartiles.
This implies that even lower quartile tasks experience block-
ing with the decentralized scheduler. The centralized architec-
ture and the delegated architectures also experience gains in the

0

5

10

15

T
as

k
sl

ow
do

w
n

Architecture (median)

Scheduler architectures

Centralized Decentralized Delegated

0

5

10

15
Arch. + Steal (median)

2 4 8 16
1

10

102

103

Architecture (tail)

2 4 8 16

Tasks per node

0

20

40

60

80

Arch. + Steal (tail)

Figure 11: Impact of node size on task slowdown.

higher quartiles. The negative gain for the centralized scheduler
in the lower quartiles explain the increase in median tracemed

from 2.5 to 3. Work stealing reduces head of line blocking at
the expense of median latency for the centralized architecture.

In scenario ➂ (Figure 9), we observe that the centralized
architecture benefits from multiple orders of magnitude higher
gain than the delegated architecture. The gain is highest in the
tail. This indicates that data migration reduces load imbalance,
and hence head of line blocking for the centralized architecture.
The median gain for the delegated architecture is negative, but
we see high 75th percentile gains in the tail. This implies that
data migration combined with the delegated scheduler reduces
blocking for some traces, but not others.

In scenario ➃ (Figure 10), we observe that work stealing
combined with data migration results in gains across all quar-
tiles for both the centralized and decentralized architectures.
The gain for the delegated architecture is similar to using only
work stealing (Figure 8). The centralized architectures see higher
gain in the lower quartiles compared to just using work stealing.

Key takeaways: All architectures exhibit similar perfor-
mance at low utilizations. Work stealing improves tail perfor-
mance by an order of magnitude in all cases. Data migration is
only beneficial with the centralized architecture. The decentral-
ized architecture, while simple to implement and horizontally
scalable, comes at a performance cost. The performance cost
is greatly reduced by work stealing. The delegated architecture
approaches the performance of the centralized architecture with
work stealing, but requires more implementation effort.

5.3. Impact of Node Size
The node size refers to the number of tasks a node can pro-

cess simultaneously. The system designer can choose to pop-
ulate her cluster with a few large nodes instead of many small
nodes. In this experiment, we evaluate the performance spec-
trum between these two extreme scenarios. We evaluate the
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Figure 12: Impact of scaling on task slowdown.

performance of cluster configurations ranging from many small
nodes with 2 processing slots each, all the way to a configura-
tion with a few large nodes with 16 processing slots each. The
total number of resources (task processing slots) in the cluster
and the cluster utilization (0.8) remain the same throughout the
experiment. Similar to Section 5.1, the cluster size used in the
simulation is different for different traces to ensure that the uti-
lization is the same for all traces. The specific cluster size for
a simulation is determined in the calibration phase specified in
Section 3. The cluster size ranges from 7, in a scenario with
16 processing slots per node, to 60, in a scenario with 2 pro-
cessing slots per node.

Figure 11 depicts the results of our evaluation under two
scenarios: with and without work stealing. The horizontal axis
represent the node size in number of tasks a node can process.
The vertical axis represents the tracemed and tracetail. We
observe that the tracemed decreases for all architectures with
increasing node size. The tracetail also decreases over an
order of magnitude for centralized and delegated architectures
with increasing node size. It decreases two orders of magni-
tude for the decentralized architecture Work stealing can result
in low tracemed and tracetail even at small node sizes. At
large node sizes, all architectures achieve performance close to
work stealing, but without the engineering effort of implement-
ing work stealing.

Key takeaway: Low slowdown, comparable to that achieved
with work stealing, can be achieved by using a small-sized clus-
ter with large nodes.

5.4. Impact of Scaling

Changing the number of nodes in a cluster dynamically while
it is in operation, using autoscaling, is a common operation
in serverless data-processing clusters. We investigate if differ-
ent architectures impact the task performance after the dynamic
scaling operation. We observed similar results for doubling the
workload and halving the workload. Therefore, we only present
results for doubling case. For this experiment, we double the
workload intensity halfway through the trace. The cluster is
then scaled such that the system utilization after scaling is the
same as the system utilization before scaling, 0.8 in our case.

Figure 12a depicts the performance of three architecture
before and after scaling. We observe that there is no signifi-

0 0.1 0.2 0.3 0.4
Object popularity skew

0

4

8

12

M
ed

ia
n

sl
ow

do
w

n

Architecture
Centralized

Decentralized

Delegated

0 0.1 0.2 0.3 0.4
Object popularity skew

100

102

104

Ta
il

sl
ow

do
w

n

Figure 13: Impact of object popularity distribution on task slowdown.

cant difference in task slowdown before and after scaling. Fig-
ure 12b depicts the additional resources required after scaling
to maintain the same resource utilization. We observe that a
median of 4% additional resource are required to maintain the
same resource utilization, and hence obtain the same perfor-
mance.

Key takeaway: We exemplify that scaling the number of
nodes according to the workload as a valid approach with rea-
sonable overhead to keep performance stable in a serverless
data-processing context.

5.5. Impact of Object Popularity

Skewed object popularity is present in the real-world traces [12]
and impacting the resulting performance. In Figure 13, we plot
the median (left) and tail (right) slowdown compared to object
popularity skew for the three architecture variants in compari-
son. Object popularity skew measures the fraction of tasks that
access the top 1% objects. In other words, 0.1 means that 10%
of accesses go to the top 1% objects. The x-axis is cut at 0.4
as none of our traces exhibit a higher skew, except one outlier
trace.

The negative impact on performance for increasing skew
value is visible both in median and tail for all three architec-
ture variants. The centralized and delegated architectures both
cope in a similar way with the skewed object accesses. With
few exceptions but matching expert intuition, the decentralized
architecture is suffering most from skewed object accesses both
in median and tail slowdown.

Key takeaway: Centralized and delegated architectures can
handle skewed object popularity better than the decentralized
architecture, when not using additional mechanisms.

6. Validating the Simulation

To validate our simulations, we compare the results from
one of our experiments with those from a real-world setup.
Specifically, we compare the task slowdown at 0.8 utilization
and 4 tasks per node for all three architectures. In the real-world
setup, we deploy the scheduler in an OpenWhisk-like [29] server-
less system. The system makes a network call to our scheduler
for every scheduling decision. In the real-world setup, we mock
the data processing and the latency to remote storage with the
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same parameters we use in the simulation (Section 4). Mock-
ing the data processing allows us to run more workers than we
have physical cores available. All scheduler components are de-
ployed on the same physical machine: An Ubuntu 22.04 server
with two Xeon 4210R CPUs and 256GB of RAM. We run 17
workers executing the tasks and 1 (centralized) to 5 (delegated
and decentralized) scheduler nodes based on the experiment
configuration.

Generally, we notice the real-world experiments have a much
higher overhead per task than we modeled in the simulator. We
believe these overheads in the real system can be reduced us-
ing busy polling, a thread per core architecture, and a better OS
scheduler [16]. Nevertheless, the overheads we observe are rep-
resentative of deployed systems that are not highly optimized.
We plan to add models for these systems with higher overheads
to the simulator. We also noticed queue build-ups when we re-
ceive task completion acknowledgment in the load generation
application. Therefore, for now, we separate the acknowledg-
ments from load generation. We plan to investigate this further.

Figure 14 compares the serverless system results with the
simulation results for the same trace. In the right plot (loga-
rithmic scale), we observe that the high tail slowdown of the
decentralized architecture in simulation is also matched by the
serverless system. The tail slowdown is 16% lower for the cen-
tralized architecture in the serverless system. On the other hand,
the tail slowdown is 26% higher in the serverless system for the
delegated architecture. Given the overheads in the serverless
system, we consider results in the same order of magnitude and
a maximum difference of 26% valid for the tail slowdown.

In the left plot, we observe that the centralized architec-
ture experiences a 20% lower median slowdown in the server-
less system. The decentralized architecture experiences a 78%
higher median slowdown in the serverless system compared to
simulation. The decentralized architecture experiences a 26%
higher median slowdown. Despite the differences, we observe
that the relative order of performance across the three architec-
tures remains the same.

Based on the similar performance trend across three archi-
tectures we observe in both the serverless system and the simu-
lation, we consider the results of our characterization indicative
of real-world performance. A better simulation model that takes
into account the considerable overhead of real systems is nec-

essary before the precise performance measurements from the
simulator can be used in a real-world setting.

7. Threats to Validity

Incomplete conceptual model: We demonstrated that the sched-
uler frame conceptual model covers architectures and six dif-
ferent mechanisms in Section 2. But, there is no proof that
the conceptual model is complete and exhaustive. We define a
frame as the set of mechanisms which cannot be implemented
without communication between scheduler components. The
communication constraint is only a necessary condition and not
sufficient. Our model does not cover specific bookkeeping and
implementation changes should be made to the components.
Simulator validity: We use traces and realistic parameters for
our experiments. We also validate one of our experiments by
comparing with the results of a real-world emulation. But, the
results we obtain are only indicative of real-world performance.
A better network model and a sensitivity study of the network-
related parameters would improve the applicability and gener-
ality of our results.
Other scheduling policies: We characterize three scheduler ar-
chitectures and two mechanisms. But, our characterization uses
only the FIFO scheduling policy. Scheduling policies have a
major impact on system performance [24]. Other, more so-
phisticated, scheduling policies can lead to increase or decrease
in the performance gap between different architectures and can
even result in an inversion in the performance ranking. Our
framework can be used to evaluate different scheduling policies
across multiple architectures quickly and consistently.

8. Related Work

Simulation: Closest to our work are existing simulators like
CloudSim [45], GangSim [44], and OpenDC [22]. CloudSim
has been particularly successful with its many extensions for
fog computing [57], data placement [58], fault tolerance [59],
energy awareness [60], and more. These extensions indicate
that adding new architectures and mechanisms to simulators
like CloudSim required significant effort. We propose the con-
ceptual model of scheduler frames to reduce this effort. We
enable easier scheduler mechanism design and exploration by
providing first-class support for inter-component communica-
tion in our conceptual model and our simulator.
Systematic characterization: Ahmad and Kwok performed one
of the early characterization of task graph scheduling algorithms [42].
But, they do not consider multiple architectures and mecha-
nisms. Serverless scheduling [24] and multi-core scheduling [16]
have been systematically characterized recently. Both stud-
ies use the centralized scheduler architecture. Both charac-
terize task placement policies and resource allocation policies.
We characterize multiple scheduler architectures, and the work
stealing and data migration mechanisms. Work stealing proved
to be a successful mechanism for multi-core scheduling [16],
just like it did for serverless scheduling in this work.
Scheduler architectures: Many scheduler designs which use
different architectures exist: centralized [28, 29], decentralized [30,
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4, 61], delegated [31, 13, 10], and hybrid [32, 33, 62]. Each
scheduler explores different trade-offs and their ideas were in-
tegrated into other schedulers that succeeded them. We propose
a model to integrate the different architectures into one concep-
tual model to ease design space exploration without building
the whole system. All the distributed scheduler papers explore
the impact of distribution on fair resource allocation, which we
do not explore in this work.
Serverless scheduling: Many existing serverless systems using
centralized scheduling [29, 63, 64, 65, 24], but other designs
have been proposed [31, 1]. Some serverless systems imple-
ment work stealing [66, 65], but only for the centralized archi-
tecture. We characterize the impact of work stealing across dif-
ferent architectures. Data management for serverless systems
has seen much exploration [21, 67, 68, 69]. We only explore
the data migration technique, and not others such as fusion and
prefetching.

9. Conclusion

The scheduler is a crucial component in serverless data-
processing systems: its architecture, mechanisms, and their in-
teractions can dramatically impact the system’s performance.

In this work, we proposed ExDe, a framework to help sys-
tem designers explore the vast design space of scheduler archi-
tectures and mechanisms thoroughly and conveniently. Rea-
soning on the concept of scheduler frames, the users explicitly
define and explore actions that require the coordination of mul-
tiple scheduler components to occur. ExDe relies on discrete-
event simulation to evaluate different frames in isolation and
conduct thousands of performance evaluations in a timely and
cost-effective manner.

ExDe is open-source and thanks to its interface, can be eas-
ily extended by practitioners, favoring the explorations of other
different variants of schedulers. It is available at https://
zenodo.org/record/7829151.
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