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ABSTRACT
The proliferation of big data processing platforms has led to radi-
cally different system designs, such as MapReduce and the newer
Spark. Understanding the workloads of such systems facilitates tun-
ing and could foster new designs. However, whereas MapReduce
workloads have been characterized extensively, relatively little pub-
lic knowledge exists about the characteristics of Spark workloads in
representative environments. To address this problem, in this work
we collect and analyze a 6-month Spark workload from a major
provider of big data processing services, Databricks. Our analysis
focuses on a number of key features, such as the long-term trends
of reads and modifications, the statistical properties of reads, and
the popularity of clusters and of file formats. Overall, we present
numerous findings that could form the basis of new systems studies
and designs. Our quantitative evidence and its analysis suggest
the existence of daily and weekly load imbalances, of heavy-tailed
and bursty behaviour, of the relative rarity of modifications, and of
proliferation of big data specific formats.
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1 INTRODUCTION
Big data is at the core of many different applications relevant to
our society, for example, in healthcare [19] [22], finance [24], and
gaming [7]. To address more diverse and sophisticated uses of big
∗Much of this work was done while the author was interning at Databricks.
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data, system designers are creating radically different systems de-
signs. For example, Spark [27] emerged at the beginning of the
2010s, as a response to changes in the needs previously addressed
by MapReduce [8] and related systems in the 2000s. Understanding
the workload of Spark-based ecosystems is important not only for
computer systems research, but also for ecosystem tuning, for ex-
ploring new system designs [26], for tuning techniques [12], and for
taking business operations decisions [14]. However, relevant Spark
workloads are difficult to find, and so far relatively little is known
about them outside the companies deploying such ecosystems. To
address this problem, in this work we collect and characterize a
detailed trace of Spark running in a prominent deployment, at
Databricks.

The difference between designs is significant, even radical. For
example, Spark addresses the current need of many users to run
their big data workloads on-demand, by building an ecosystem
that runs commonly in small clusters of virtual machines (VMs),
provisioned from clouds, and attached to remote object storage
systems. In contrast, the MapReduce and GFS [10] ecosystem cham-
pions statically deployed [11], tightly coupled physical clusters,
with integrated storage.

The radical change in system designs is not arbitrary. Until the
mid-2000s, large organizations alone could afford to operate large
compute clusters containing tens of thousands of computers, shared
between the multiple organizational units; small- and medium-scale
organizations could not access easily such resources. Through the
advent of cloud computing, individual organizational units in both
large and small organizations can lease resources on-demand from
a cloud provider. Cloud computing has reduced the barrier to com-
putation by enabling many to access significant compute resources
for only a short period of time, at accessible cost. After overcoming
initial performance-related [16] and technical challenges, cloud
computing resources are now used in many fields, including for big
data processing [15].

For big data processing, the use of clouds introduces many new
parts, in contrast to traditional data processing. A key difference
resulting from the transition between self-hosting and cloud com-
puting infrastructure is the architecture used for persistent storage,
where data gets stored and from which it is retrieved. In the cloud, a
common storagemedium for large amounts of data is the object store
provided by the cloud vendor. Examples of storage sub-systems op-
erating as object stores and available in the cloud include Amazon
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Web Services (AWS) S3, the Microsoft Azure Blob storage, and the
Google Cloud Storage.

As revealed by our systematic survey [18] of related work (details
in Section 9), no characterization of Spark-based storage workloads
currently exists. This hampers optimization and innovation related
to Spark-based operations in the cloud, because workload char-
acterization is a key tool in improving systems and their design,
and later in benchmarking them for comparison and business deci-
sions. Characterization studies can sometimes be replaced by the
presence of representative workload traces. Although many Spark
deployments exist, as indicated by the activity of the Apache Spark
repository, and by the large audience and the technical talks at the
Spark Summit and many scientific venues, workload traces and
other operational data from relevant Spark deployments have so
far been kept private.

Motivated by the importance of Spark-based systems processing
big data in the cloud, by the novelty introduced by their cloud
storage sub-systems, and by the scarcity of information publicly
available about Spark storage workloads, we endeavor to answer
the following research question: What are the characteristics of big
data storage workloads in the cloud? Toward answering this question,
our contribution is four-fold:

(1) We collect and process long-term workload traces from a
relevant Spark deployment, at Databricks (Section 3). Our
data spans over 6 months of operation, resulting in over
600 TB of log data. We devise a method for pre-processing
and for the statistical analysis of these traces.

(2) We analyze the long-term trends (Section 4).We focus on two
key I/O operations, reads and modifications. We investigate
if diurnal and weekly patterns occur, if long-term patterns
emerge, and if reads and modifications occur with relatively
similar frequency.

(3) We analyze statistically the read operations (Section 5). (We
focus on reads because we find that modifications are rela-
tively rare.) We study if heavy-tails and burstiness appear in
the distributions of the number and size of reads.

(4) We analyze statistically the popularity of clusters and of
file types (Sections 6 and 7). We investigate if the clusters
deployed on-demand are similarly used, and if the big data
file formats and compression schemes are similarly popular.

As further conceptual contribution, we analyze several threats
to the validity of this study (Section 8), and conduct a systematic
survey [18] to compare our study with related work (Section 9).

This work aligns with our long-term vision, of Massivizing Com-
puter Systems [17]. It aligns with the principle of creating a science
of computer systems (principle P8 of the vision) by providing not
only new knowledge, but reaffirming existing results about the
behavior of storage workloads. It also aligns with the principle
of increased awareness about the emerging properties of ecosys-
tems (P9), by informing ourselves and the community about this
workload. We specifically tackle in this work the challenge of under-
standing this emerging workload (challenge C19, “understanding
the New World”).

1. Virtual Cluster

5. Driver

4. Worker 4. Worker

2. Job

3.
Task

3.
Task

EC2 Instance

6. Amazon S3 (Storage)Data Read

. . . 

Control Assignation

Figure 1: System architecture of a virtual cluster running on
AWS. The workload analyzed in this paper comes from vir-
tual clusters operated by Databricks.

2 SYSTEM MODEL
We introduce in this section a system model for the operation
of (Spark-based) big data workloads in the cloud. This model is
inspired by deployments we have observed in practice across many
organizations, in particular, in big data operations at Databricks.
Figure 1 depicts the system model. We focus on the workload of
requests issued to the storage layer, between the system workers
(component 4 in the figure) and the system storage (6).

2.1 Workload Model
In our model, the workload consists of jobs arriving in the system
as a stream. Jobs are either interactive and non-interactive. For
interactive jobs, the arrival time is decided by the data analyst.
For non-interactive jobs, e.g., batch or periodic, the system itself
schedules when the job should run.

Each job (component 2 in Figure 1) is a unit of work that reads
some input data from persistent storage, processes it, and produces
an output. The output can be stored in persistent storage or directly
displayed to the user.

A job is composed of at least two tasks (3), data generation
(read) and data processing; other tasks, including tasks that produce
data (modification), may also appear. Jobs have a directed acyclic
graph (DAG) structure, with nodes representing tasks, and directed
relationships between nodes representing dependencies ( A○→ B○
means that task B cannot start before task A completes).

2.2 System Architecture
Wemodel the class of system analyzed in this work after a common
architecture used by organizations around the world when using
Spark or Hadoop in the cloud. This architecture is comprised of
one or more virtual clusters running as sets of virtual machines
(VMs) leased from a cloud provider, such as Amazon Web Services,
and organized into a logical group using a virtual network. Virtual
clusters get deployed on-demand—when needed, for as long as



needed. Further, each virtual cluster is comprised of a set of core
components, running on VMs obtained on-demand.

Figure 1 depicts the architecture of one virtual cluster. The virtual
cluster corresponds to a single deployment of the data processing
software, for example, the Databricks Runtime (components 4 and 5,
explained later in this section). The virtual cluster is connected at
runtime to a source of incoming data, from which it reads. In our
model, a typical source of data is a cloud-based, persistent, object-
store (component 6), for example, Amazon S3. If the processing
results in data modifications, the virtual cluster is further connected
at runtime to a data sink, for example, also Amazon S3.

A typical instance of this model appears at Databricks, whose
Runtime system extends Apache Spark [27] with techniques to
achieve high performance and usability. With the Databricks Run-
time, VMs are occupied by one or several Spark workers (compo-
nent 4), and a driver. The single driver schedules jobs onto each
worker. Workers process tasks, by performing the computation and
I/O related to the task. This involves reading data from a persistent
source or another worker, running computations such as maps and
filters, and storing the data locally or to persistent storage.

2.3 Storage Workload Model
In our model, workers read data from the object store. All the
requests from all jobs to the object store form the workload under
study.

The object store is eventually consistent and has a key-value
interface. It supports a hierarchy of files like a traditional file system
bymeans of having a path as a key to an object. A directory structure
can be achieved by having all the files in the directory have the
directory name followed by a ’/’ as a prefix. A file can have several
prefixes, simulating a hierarchy of directories. The files stored in an
object store are much larger than the size of the key. It is possible
to read only part of a file specifying a range of bytes to read. AWS
S3 and Azure Blob Storage are examples of object stores. S3 is the
store accessed in this workload.

Files are stored in several popular formats. Parquet, JSON, CSV
and Avro are some examples. Some file types such as parquet make
use of metadata to store column statistics and other index informa-
tion. The Databricks runtime takes advantage of the S3 ability to
read specific byte ranges to read this metadata for efficient filtering
and index traversal.

Files are compressed using popular compression schemes such
as Snappy or Gzip. Some files, those formatted in CSV and such
formats, are compressed as a whole. Other file formats, such as
Parquet, have a higher granularity than whole file. For example,
data in parquet is stored in row-groups in a file. In these cases,
compression is applied at the row-group level. This makes row-
groups self contained and readable without reading the whole file.

3 PROCESS FOR DATA COLLECTION,
PROCESSING, AND ANALYSIS

The goal of our analysis is to gain a statistical understanding of the
series of accesses to the object store by various Spark-based appli-
cations deployed in the cloud. The operational data corresponding
to Spark-based storage workloads presents many collection, pro-
cessing, and analysis challenges. Monitoring many small virtual

Figure 2: Characterization workflow.

clusters across organizational boundaries is challenging, which
raises a complex data collection problem. Pre-processing the data
needs to balance preserving meaningful information, with the need
to protect the anonymity and corporate information. Analyzing the
rare information raises the same challenge facing basic research—
finding a balance between the breadth and depth of explored con-
cepts. Addressing these issues, in this section we introduce a pro-
cess to collect, process, and analyze storage-workload data from
cloud-based Spark operations.

3.1 Overview of the Process
Our process for cloud-based Spark operations consists of large-scale
data monitoring, done concurrently with data pre-processing and
preliminary analysis, followed by in-depth analysis.

Figure 2 depicts the core of our process. Log Data (component
1 in the figure) performs log collection. It continuously collects
monitoring data and stores it into logs ready to be parsed (queried).
To achieve this goal, this component must be highly reliable and
redundant, stream monitoring data in and process it rapidly, use
batch processing to compact and store data, and generate indexes
to make querying tractable. Although for this component we rely
on the Databricks Runtime system out-of-the-box, such features are
provided by many of the monitoring systems based on the Apache
ecosystem, e.g., using Kafka as communication pipeline, a streaming
platform such as Apache Storm or Spark, and a big data platform
such as MapReduce or Spark; the indexing, high availability, and
redundancy features require domain-specific engineering.

For this work, the operations (accesses) recorded in the log are
reads andmodifications. Modifications are namespace modifications
performed by the runtime, i.e., create, delete, bulk delete, create
directory, and rename operations. Overall, the analysis focuses on
features. A feature is a property of the access that can be computed
by virtue of the item being accessed, such as popularity, or by
virtue of its relative position to another (previous) access, such as
interarrival time. These features can take on different values called
variates.

Following log collection, the process branches into the analysis
of long-term trends and the analysis of current features, both of
which are conducted periodically in parallel with the log collection



Table 1: Format of a pre-processed log line.
hashed file path hashed cluster id hashed worker id

size timestamp operation

Table 2: Information about the analyzed logs.

Name Period Log Data Size

F 6 months 600TB
W1 1 week 15TB
W2 1 week 30TB

process, but with frequency under the control of the system analyst.
(This assumes the system operator collects monitoring data at much
higher frequency than the analyst needs updated results, which
is typically the case; in practice, a re-analysis of monitoring data
could occur every day for business decision.)

For the analysis of long-term trends, the raw monitoring data is
both too large (big data) and includes sensitive information.We thus
first pre-process it into a compact format and apply a normalization
step, which we describe in Section 3.3. Then, we perform a typical
long-term analysis, observing the evolution of the number of reads
and modifications, and of the sizes of each of these operations
(component 2 in Figure 2).

For the feature analysis, we use a diverse set of statistical tools
on selected features: we compute the empirical probability density
function (EPDF) and the empirical cumulative distribution function
(ECDF), descriptive statistics, the Hurst parameter for long-term
dependence, etc. We describe the key elements of this analysis in
Section 3.4.

A key feature of our process is that it is primarily aimed at human
analysis, for which it always concludes its operational branches
with visualization (plotting)—components Plot (3 and 6 in Figure 2).

3.2 Log Collection
Table 1 summarizes the logs collected for this work. All accesses
are timestamped, with timestamps were recorded at the time of
logging as time since Unix Epoch, in milliseconds. Overall, the
traces correspond to the combined workloads of organizations
spanning healthcare, manufacturing, web services, and advertising.
(We address the bias inherent to these traces in Section 8.)

Trace Full (F) collects all data accesses, both reads and mod-
ifications, over the entire 6-month period. We use F to analyze
long-term trends. Collecting this data results in a massive log; the
F trace exceeds 600 TB. In addition to the full workload, we collect
over shorter periods of time more detailed data, useful for comput-
ing the histograms of features such as popularity and interarrival
time. We thus collect one-week traces Week 1 (W1) and Week 2
(W2). The size of these smaller traces was of 15 TB and of 30 TB,
respectively.

3.3 Pre-Processing
The collected logs were pre-processed into a compact format for
analysis, which we depict in Table 1. Any data fields in the logs that

are unrelated to our analysis were removed. The cluster and worker
identifiers were originally strings, which both go contrary to the
privacy needs of Databricks, and increased the storage, memory
and computation costs. They were hashed using Murmur3 hash,
and stored the most significant 64 bits of the 128-bit numbers of
the hash. Thus, we had no access to any identifiable information
during the analysis. Murmur3 was used for its performance and
uniform distribution over the key space.

The magnitudes of variates of a features were normalized. This
was done to keep the popularity and costs of the company a secret.
However, the relative difference between magnitudes of variates
and across features is still true and remains applicable. For long-
term trends, the normalization was performed by dividing the count
of an event by a normalizing factor. For example, the number of
reads per day plotted is not the real number of reads that were
performed on that day. For the statistical properties of individual
features, data is presented in the form of a empirical cumulative
distribution functionwhich is normalized by definition. The variates
themselves are not normalized. For example, when considering the
size of reads, the sizes themselves are real.

3.4 Statistical Analysis
For ECDF plots, in some cases, we use a symlog axis instead of a
pure logarithmic axis. We do this when the 0 variate is important to
the plot. A symlog axis is a logarithmic axis where the are regions
close to 0 are on a linear scale. Thus, we avoid the issue of loд(0)
being undefined.

In many plots, such as Figure 7, we depict two similarly shaped
curves. Each such curve corresponds to one the two different one-
week-long periods in Table 2. For these figures, the purple curve
represents the data from W1; the green one, the data from W2.

We observe that even though there is a large increase in the
accesses from January to May, the general distribution does not
change significantly. To quantify this claim, we use two tests to mea-
sure the similarity between two empirical distributions: Kolmogorov-
Smirnov (KS) test [6] and Pearson’s χ2 test [23]. The KS test mea-
sures the maximum difference between the two cumulative distri-
bution functions. We use the two-sample KS test, which measures
the maximum difference between two empirical cumulative distri-
bution functions. We chose this because it is easy to understand
and the reader can visually see the quantitative distance output
by this test in the graphs. Another reason is that it is distribution
independent, unlike the Anderson-Darling test. Thus, we do not
require critical value tables to measure goodness of fit. This is use-
ful as we do not know the underlying distributions of the samples
we have. The result of the KS test is used as an indicator of diver-
gence. The χ2 test measures the difference between histograms
of two empirical distributions. i.e., it measures the difference in
the probability at each variate. This was also chosen to be easy to
understand and gives a complete view of the distribution instead
of just at the location where the difference is maximum. This helps
identify minor differences.

In some cases, we use more than one trace in the same part of
the analysis. Because the variates for these cases may be different,
we rebin the data into 100 logarithmic bins so that the distributions
can be compared. Where rebinning without interpolation is not



Table 3: Descriptive statistics about number of reads and
data read per day.

total mean median std. dev.

num. reads 5.57 × 105 3.06 × 103 2.83 × 103 1.11 × 103
bytes read 1.84 × 1012 1.00 × 1010 9.60 × 109 3.18 × 109

possible, we use 10 logarithmic bins or linear bins. The KS statistic
is not sensitive to the number of bins. The χ2 statistic is very
sensitive to the number of bins chosen. Increasing the number of
bins by an order of magnitude increases the χ2 statistic by an order
of magnitude, especially when it is small. However, the p-value
doesn’t change, making it a valid test. We use the implementation
of χ2 from the SciPy scientific computing library, version 1.1.0.

For each empirical distribution presented, we also present de-
scriptive statistics. This includes the median, mean and standard
deviation which are widely known. We also provide additional de-
scriptive statistics. To quantify the dispersion of the data, we use
the Coefficient of Variation (CV), which is the ratio of the stan-
dard deviation to the mean, and the Inter Quartile Range (IQR),
which is the difference between the value at 75th percentile and
25th percentile. Tail weight is the sum of magnitudes of those
elements which are in the 99th percentile as a fraction of the sum
of magnitudes of all the elements.

For features where it is relevant and informative, the Hurst pa-
rameter is used to estimate long-range dependence [9]. It specifies
if the value at a certain time would be higher, lower or randomly
distributed based on the previous values. A Hurst parameter be-
low 0.5 indicates a tendency of the series to move in the opposite
direction of the previous values. i.e., highs are followed by lows.
Thus, appearing to have high jitter. A value of 0.5 indicates random
Brownian motion and above 0.5 indicates a tendency towards well
defined peaks. We use the rescaled range (R/S) method to estimate
the Hurst parameter.

4 LONG-TERM TRENDS
We highlight the following long-term trends:

MF4.1 The number of reads and bytes read per day have dou-
bled over 6 months.

MF4.2 The number of modifications per day has remained at
the same level throughout the analysis period.

MF4.3 Both reads and modifications follow a diurnal pattern.
MF4.4 Large imbalance in number of reads and bytes read per

hour occur on daily and weekly basis.
MF4.5 There are 2 orders of magnitude less modifications hap-

pening than reads.
MF4.6 Most modifications are file creations.

4.1 Reads
We analyze the trends in number of reads and in bytes read, and
find both increase significantly over the period we analyze (MF4.1).
Figure 3 depicts the number of reads and bytes read per day over a
6 month period. Excluding the variation between days of the same
week, the number of reads (Figure 3a) has increased from about
2.0 × 103 to over 4.0 × 103. We observe a similar phenomenon for
number of bytes read (Figure 3b). We conjecture that this is due to

(a) Number of reads per daywithweeklymean as the blue
trend line

(b) Bytes read per daywithweeklymean as the blue trend
line

Figure 3: Number of reads and total amount of bytes read per
day over a period of 6 months (normalized).

Table 4: Descriptive statistics about number of reads and
data read per hour for a selected week.

total mean median std. dev.

num. reads 3.25 × 104 193.4 193.1 60.6
bytes read 9.36 × 1010 5.57 × 108 5.57 × 108 1.95 × 108

a combination of more users using the subset of ecosystem under
study and existing users increasing their usage.

The descriptive statistics for the metrics “number of reads per
day” and “bytes read per day” are summarized in Table 3. The high
standard deviation indicates that days which experience significant
higher or lower number of reads and bytes read occur. The similar
values of mean and median indicate that the deviation from the
mean is evenly distributed across low activity and high activity
days.

We analyze the number of reads per hour and bytes read per hour
over a period of one week, and find that significant load imbalances
occur on a weekly and daily basis (MF4.4). Figure 4 depicts the
number of reads and bytes read over a 1 week period. The number
of reads (Figure 4a) changes from day to day. It peaks on Tuesday
and bottoms out on Saturday. This is the same pattern that is also
visible as variation in Figure 3. The number of reads also vary on
a hourly basis, with the peak occurring during noon GMT and
the period of least activity around midnight GMT (MF4.3). This
is a diurnal pattern. Both the aforementioned variations (weekly
and diurnal) also occur in number of bytes read (Figure 4b). A



(a) Number of reads per hour

(b) Bytes read per hour

Figure 4: Number of reads and total amount of bytes per hour
over a period of one week (normalized).

Table 5: Descriptive statistics about number ofmodifications
per day over 6 months and per hour for a selected week.

total mean median std. dev.

per day 1.37 × 104 75.03 64.23 19.19
per hour 594.3 3.5 3.4 0.8

likely hypothesis is that a lot of jobs contributing to the peak are
interactive jobs users submit during working hours.

The observation that there is an imbalance of usage during the
week can prompt organizations to schedule their workload to fall
on less busy days. In the same day, jobs can be scheduled during less
busy hours of the night. This helps organizations take advantage of
spot auction markets on EC2, to lower their compute costs, derived
from the assumption that the spot market costs would be lower if
there are fewer users bidding for the same compute resource.

4.2 Modifications
We analyze the number of modifications per day, and find that the
number of modifications has remained about the same throughout
the analysis period (MF4.2). Figure 5a shows the number of modifi-
cations per day. Excluding the variation between days of the same
week, the number of modifications remains at approximately the
same level. Figure 5b depicts the number of modifications per hour.
A diurnal pattern is readily apparent (MF4.3).

Table 5 presents the descriptive statistics characterizing the num-
ber of modifications per day and per hour. The total and mean
number of modifications are two orders of magnitude lower than
the number of reads in Tables 3 and 4 (MF4.5). Table 6 presents
the distribution of number of modifications across operation types.

(a) Number of modifications per day over 6 months with
weekly mean as the blue trend line

(b) Number of modifications per hour over 7 days

Figure 5: Modifications trend (normalized).

Table 6: Types of modifications over the 6-month period.

Create Delete DeleteMultiple MkDirs Rename

1.15 × 104 2.13 × 103 2.28 41.89 28.47

The number of creation operations is much higher than any other
operation (MF4.6).

5 STATISTICAL ANALYSIS OF READS
Reads constitute a large majority of this workload and are the type
of accesses that are frequently optimized through caching, tiering
or other techniques to improve system performance. It can be seen
from the long term trends in Section 4 that reads overwhelmingly
dominate the workload. This can also be inferred analytically, as
big data processing (this workload) is concerned with reading large
amounts of data and processing it in different ways to gain valuable
insight. In this section, we focus on the statistical properties of
reads.

A single read has several features which we look at: the file that
is being read, popularity of the file, size of the read, interarrival
time and reuse time. Our major observations are:

MF5.1 The number of reads and bytes read exhibit negative
long range time dependence.

MF5.2 All features (size, popularity, etc.) have a heavy tail.
MF5.3 Reads occur in bursts.
MF5.4 The distributions of features are stationary over long

time periods.



Figure 6: Hurst parameter estimation for number of reads
in a time window.

Figure 7: ECDF Read size vs. fraction of reads with logarith-
mic horizontal axis.

5.1 Count
We analyze the number of reads per time window, and find evidence
of inverse long range time-dependence (MF5.1), and bursty behav-
ior (MF5.3). We estimate the decay of this dependence using the
Hurst Parameter for different window sizes in Figure 6. The Hurst
parameter is particularly relevant to stationary time series, and we
assume that the series of reads is stationary at small intervals.

The period we look at is one thousand times the window size for
every window size; for example, if the window size is 10 millisec-
onds then we look at a period of 10 seconds. The Hurst parameter
is lower than 0.4 for all window size, except one. This is evidence
of inverse long term time-dependence. That means that over a spe-
cific period, the number of reads might increase or decrease but
generally falls back towards the mean. This contrasts other studies
of time dependence in big data workloads which present a positive
long range time-dependence [1].

A burst is defined as a period of high number of reads (high
activity) surrounded by a period of low number of reads (low ac-
tivity). Negative long range time-dependence necessarily implies
that periods of low activity are followed by high activity and vice
versa. Thus, periods of high activity are surrounded by periods of
low activity, satisfying the definition of a burst. Therefore, number
of reads exhibits bursty behavior.

5.2 Read Sizes
The read size refers to the number bytes transferred from the cloud
storage to the local machine per request. While checking for long
term dependence, it refers to the number of bytes transferred in a
time window. We analyze read sizes, and find evidence of inverse

long range time-dependence (MF5.1), a heavy tail (MF5.2), bursty
behaviour (MF5.3), and stationarity (MF5.4). Figure 7 depicts an
empirical cumulative distribution of read sizes with logarithmic
horizontal axis.

Visually and also from the descriptive statistics in Table 7, we
observe that most requests read little data with the median request
reading 3 or 4 bytes. Most of the bytes transferred are due to reads of
large items. This is most visible in the “tail” item in the descriptive
statistics. That shows that more than 80% of the data transferred in
both periods is due the 99th percentile of requests sorted by size. We
conjecture that this is a result of a large number of requests being
metadata reads. They take advantage of the S3 feature which allows
one to read certain range of bytes in a file instead of the whole file.
These reads can be used to read file headers and assorted metadata
and make decisions, such as to read the file or not. Thus, metadata
reads account for most reads while data transfer for processing
accounts for most of the data transferred.

The read size is small compared other studies with 90% reads
smaller than 1KB. In other studies 90% of reads are smaller than
1KB in web caches [2], 100KB in HPC [3], 1MB in HPC [13], 4MB
in consumer cloud [20], 10MB in video delivery [25] and 15MB in
HBase [14].

Figure 7 depicts that distributions of the two traces W1 and W2
are not too different. The similarity has been quantified in Table 8.
The variates were rebinned into 10 logarithmic bins for this purpose.
We know from Figure 3 that the number of reads and bytes read
has changed. This indicates that magnitude of number of reads or
total data read has minor influence on the distribution of read sizes.
Thus, the distributions remain stationary over long time periods.

Figure 8:Hurst parameter estimation for bytes read in a time
window.

We use the Hurst parameter to estimate the time-dependence
of the series at different time scales, as done for counts. For every
time window the sum of the bytes read by all reads in that window
is considered as the value of the window. Figure 8 indicates that for
all considered window sizes the Hurst parameter was estimated to
be less than 0.35. The value is low, indicating an inverse correlation
between subsequent values and a tendency of the series to fall
back towards the mean—more so for small windows. This leads to
periods of high activity surrounded by periods of low activity. The
bursty behavior of the workload is characterized by the calculated
Hurst parameter.



Table 7: Descriptive statistics about read size.

Period median mean std. dev. CV IQR tail
weight

W1 4 100 31,535 316 11 0.84
W2 3 136 54,191 400 9 0.89

Table 8: Quantifying similarity of size distributions during
two periods.

KS distance χ2 distance χ2 p-value

0.03 0.01 1.0

Figure 9: ECDF of Popularity vs. number of files with that
popularity with logarithmic horizontal axis.

5.3 Popularity
The popularity of files is a measure of the number of times a file has
been accessed. We analyze the popularity of files, and find a heavy
tail (MF5.2) and stationarity (MF5.4). We compute popularity of
files from hashed file paths in the anonymized data. Figure 9 depicts
the empirical cumulative distribution function of popularity of files
with a logarithmic horizontal axis. The descriptive statistics of
popularity of files are presented in Table 9.

Visually and also from the descriptive statistics in Table 9, we
observe that most files are not popular with a median and mean of
3 and 18. From the tail weight statistic, 0.37%-0.44% of reads are to
the 99th percentile (1%) of files. But, 90% of reads are due to 70th
percentile (30%) of files. This matches the observation in [1] that
90% of reads are due to 71st to 78th (29% to 22%) percentile. The
tail of popularity of files is less heavy than read size, but it is heavy
nonetheless.

Figure 9 depicts that distributions of the two traces W1 and W2
are not too different. Their similarity is quantified in Table 10. The
variates were rebinned into 100 logarithmic bins for this purpose.
We know from Figure 3 that the number of reads is higher during
the second period. This is evidence towards the stationary nature
of this distribution of popularity across a sufficiently large period,
even if the magnitude of number of reads changes.

5.4 Interarrival Times
Interarrival time of a read is the time elapsed between the read and
the previous read. We analyze interarrival times, and find near zero
values at the ecosystem level.

Large ecosystems such as the one at Databricks do not operate
as a single monolith; i.e., it is not just one large compute system

Table 9: Descriptive statistics about popularity.

Period median mean std. dev. CV IQR tail
weight

W1 3 18 355 20 7 0.37
W2 2 16 615 40 6 0.44

Table 10: Quantifying similarity of popularity distributions
during two periods.

KS distance χ2 distance χ2 p-value

0.07 0.2 1.0

Figure 10: ECDF of interarrival time vs. number of reads.

Table 11: Descriptive statistics about interarrival of reads.

Period median mean std. dev. CV IQR tail
weight

W1 0 0.16 0.38 2.32 0 1.0
W2 0 0.08 0.27 3.38 0 1.0

making requests to a storage system. These ecosystems consist of
numerous systems which themselves contain multiple sub-systems.
As mentioned in Section 2, the ecosystem at Databricks consists
of numerous Spark clusters, each of which is further composed
of multiple workers. Storage related operations such as metadata
management and caching operate in these layers and not globally.
Storage accesses from different clusters and from different workers
may not exhibit the same behavior as that of the whole system.
Thus, we study interarrival time behavior at the whole ecosystem
level and the level of individual virtual clusters.

Figure 10 depicts the empirical cumulative distribution function
of interarrival times with linear axes. From the figure and the de-
scriptive statistics in Table 11, an overwhelming number reads have
a 0 interarrival time, when measured with millisecond precision.
The number of reads falls precipitously with increasing interarrival
time, highlighting the high frequency of reads in the system.

Figure 10 depicts the ECDFs for W1 and W2 having a similar
distribution. This similarity has been quantified in Table 12. The
first six categories of the histograms were considered for this quan-
tification. The reads are more frequent (smaller mean interarrival
time) in May than they were in January. This is a consequence of a
higher total reads by the system as presented in Section 4.



Table 12: Quantifying similarity of interarrival time distri-
butions during two periods.

KS distance χ2 distance χ2 p-value

0.08 0.12 0.99

Figure 11: ECDF of interarrival time at cluster level of all
clusters vs. number of reads with logarithmic horiz. axis.
Table 13: Descriptive statistics about interarrival times at
cluster level.

Period median mean std. dev. CV IQR tail
weight

W1 2 136 127,558 936 5 0.96
W2 1 95 104,626 1101 4 0.95

Table 14: Quantifying similarity of cluster level interarrival
time distributions during two periods.

KS distance χ2 distance χ2 p-value

0.08 0.03 1.0

We define interarrival time at cluster level to be the time difference
between a read and a previous read from the same cluster. We
analyze interarrival times at the cluster level, and find a heavy tail
(MF5.2), bursty behavior (MF5.3) and stationarity (MF5.4). Figure
11 depicts the empirical cumulative distribution function of this
feature. Unlike interarrival times at the ecosystem level, where
more than 75% reads had 0 interarrival time, the fraction of reads
with 0 interarrival time is only around 25% at the cluster level.

The descriptive statistics for this feature are presented in Table 13.
The median interarrivals of 2 and 1 indicate that reads are still
frequent at this level of granularity. But, there are long periods with
no reads as evidenced by the high mean value and the extremely
high standard deviation, which is over 1000 times larger than the
mean. So, there are reads which occur very close together and there
are long periods of no activity. This is again evidence of burstiness.

Figure 11 depicts the similarity between distributions for W1
and W2. This similarity is quantified in Table 14. Thus, the distribu-
tions remain stationary over long time periods. The variates were
rebinned into 100 logarithmic bins for this purpose.

5.5 Reuse Times
Reuse time refers to the time elapsed between two reads to the same
file. We analyze the reuse times, and find a heavy tail (MF5.2), and
stationarity (MF5.4). Figure 12 depicts the empirical cumulative

Figure 12: ECDF of reuse time vs. number of reads with log-
arithmic horizontal axis.

Table 15: Descriptive statistics about reuse times.

Period median mean std. dev. CV IQR tail
weight

W1 2,720 5.77 × 106 2.46 × 107 4 6.77 × 105 0.30
W2 3,042 5.10 × 106 2.47 × 107 5 3.55 × 105 0.35

Table 16: Quantifying similarity of reuse time distributions
during two periods.

KS distance χ2 distance χ2 p-value

0.05 0.008 1

distribution function of reuse times. The histogram of reuse times
had over 90 million categories. This is interesting as other features
such as size and popularity had histograms with multiple orders
of magnitude fewer categories. This shows that reuse times are
dispersed over the number line with little grouping behaviour when
considered at the millisecond scale. There is also a steep increase
in reads with reuse time between 10 and 100 milliseconds.

The descriptive statistics for reuse time are quantified in Table 15.
The median reuse time is high at 2720ms for W1 and 3042ms at W2
compared to the median interarrival times of 0-4 observed. There-
fore, reads of the same file are necessarily interspersed with reads
of other files most of the time. The tail weight of 0.30 corresponds
to a heavy tail.

Figure 12 depicts the similar distribtuion of reuse times for W1
andW2. This has been quantified in Table 16. Thus, the distributions
remain stationary over long time periods.

6 DISTRIBUTION ACROSS CLUSTERS
The Databricks ecosystem is composed of many of systems and
subsystems working in concert to deliver results. The distribution
of reads across clusters refers to the number of reads contributed
by each cluster to the total workload. We analyze the distribution
of number of reads and bytes read across clusters, and our major
finding is:

MF6.1 The distribution of number of reads and bytes read over
clusters is heavy tailed.

Figure 13 depicts the empirical cumulative distribution function
of the number of reads by each cluster. Most clusters perform a
small number of reads, and the majority of the reads are by a very
small number of clusters. The tail is very heavy which is apparent



Figure 13: ECDF of number of reads by a cluster vs. fraction
of clusters with logarithmic horizontal axis.

Table 17: Descriptive statistics about distribution of reads
across clusters.

Period median mean std. dev. CV IQR tail
weight

W1 67 44,694 764,354 17 1,332 0.78
W2 606 69,841 999,796 14 6,769 0.69

Table 18: Quantifying similarity of distribution of reads
across clusters.

KS distance χ2 distance χ2 p-value

0.20 0.17 1.0

Figure 14: ECDF of bytes read by a cluster vs. fraction of clus-
ters with logarithmic horizontal axis.

from the statistics in Table 17. Particularly from the tail weight
statistic that 70% of the reads are from the 99th percentile of the
most popular clusters.

The empirical cumulative distributions in Figure 13 depict that
the distributions of W1 and W2 are similar. There is a slight differ-
ence and this is quantified in Table 18. The variates were rebinned
into 10 logarithmic bins for this purpose.

6.1 Bytes Read by Clusters
Figure 14 depicts the empirical cumulative distribution function
of bytes read by each cluster. Unlike all other distributions in this
work, this one is also flat on the lower end (closer to 0) and not
just the higher end of the horizontal axis. The steep incline in the
middle indicates that the majority of the clusters read a moderate
amount of data, between 10MB and 10GB. We hypothesize that the
prevalence of cluster little data read is due to failed or newly started

Table 19: Descriptive statistics about distribution of bytes
read across clusters.

Period median mean std. dev. CoV IQR tail
weight

W1 7.36 × 107 1.87 × 1011 3.61 × 1012 19 2.36 × 109 0.90
W2 4.37 × 108 2.01 × 1011 4.17 × 1012 21 6.54 × 109 0.82

Table 20: Quantifying similarity of distribution of bytes read
across clusters.

KS distance χ2 distance χ2 p-value

0.18 1.51 1.0

Figure 15: File format popularity for W2.

clusters. It is a very heavy tailed curve from descriptive statistics in
Table 19. Particularly the tail weight statistic that 82%-90% of reads
are from 99th percentile of most popular clusters.

The empirical cumulative distributions in Figure 14 depicts that
the distributions during W1 and W2 are close. There is a slight
difference and this is quantified in Table 18. The variates were
rebinned into 100 logarithmic bins for this purpose.

7 DISTRIBUTION ACROSS FILE TYPES
The distribution of reads across file types helps understand what
formats and file features are prevalent. This leads to informed deci-
sion making about what formats to optimize and support. In this
section, we look at two features of files: storage format and com-
pression. The storage format is the structure according to which
bytes are stored on disk; examples include JSON, CSV and Parquet.
The compression algorithm is the one used to compress stored data;
examples include gzip and snappy. We obtain the information of the
storage format and compression algorithms from the file extensions
extracted from read requests and not from the data in files stored
on the filesystem. Our major findings are:

MF7.1 Parquet is the most popular file format.
MF7.2 Snappy and Gzip are the most popular compression

schemes.

7.1 File Format Popularity
Figure 15 depicts the distribution of file formats in trace W2. We see
that Parquet is the most popular format. This is mainly due to its



Figure 16: Popularity of compression schemes for W2.

suitability for big data analysis; in addition, it is the default format
for storage in the Databricks ecosystem. A surprise to us was that
this was followed by accesses to file without any file extension.
This means that they did not have any string with a “.” (dot) in them
after the last “/” (slash). We conjecture that reads with no filetype
are comprised of parquet or other files without any extension. This
is followed by an almost equal fraction of accesses to JSON and
files with unknown file format; JSON is a popular data format,
particularly for web applications. The reads with the unknown
extension are those whose paths were truncated or did not have
an extension apart from the extension of the compression scheme
used. The number of unknown files was a surprise; this is evidence
that a significant fraction of the files are deeply nested, thus having
long file paths, or are in compressed archives without any special
file formatting such as Parquet. Finally, popular big data file formats
like CSV, Avro, and ORC, also make an appearance.

7.2 Compression Scheme Distribution
Figure 16 depicts the distribution of compression schemes in trace
W2. Gzip and Snappy are, by far, the most popular compression
schemes, with an order of magnitude higher fraction of reads than
anything else. The unknown fraction refers to files where the com-
pression schema is not present in the extension or the file path was
truncated.

8 THREATS TO VALIDITY
Our work has several limitations. We discuss in this section the
three main limitations, the correlation between features, the bias
inherent to our traces, and the lack of an example of direct use of
the main findings.

Two features are said to be positively (negatively) correlated if
an increase or decrease in one necessarily causes a corresponding
(inverse) increase or decrease in the other. Not checking for correla-
tions can lead to biased characterizations, because the reader is left
with the impression that the variables under study are independent.
Although not presented in this work, we have conducted a pre-
liminary analysis of the linear correlation between the measured
features. We have calculated the Pearson correlation coefficient
between all possible pairs of features, at different levels of magnifi-
cation. As expected, most correlations were between 0.1 and -0.1,
indicating low correlation. Notably, among all the correlations we
calculate, a few were above 0.9 (high correlation), but all others
were between -0.17 and 0.25, which indicates these features are
independently varying.

The bias inherent in trace use is that it is possible that our results,
albeit valid for the traces used in the work, are not representative
at-large. We argue that this trace is representative of remote storage
used by collections of small clusters. The different clusters which
are part of the trace are used by widely different organizations
including healthcare, manufacturing, web services, and advertising.
We also observed that the workloads from clusters from diverse
organizations looked similarly across the different characteristics.

It has become common in recent characterization studies to
include in the publication an example of direct use of the main
findings, for example, for tuning a component of the system under
study. To the proponents of this approach, providing such an ex-
ample can reduce the threat that the findings may be useless. In
our view, doing so is actually more of a threat to validity than not
conducting such an experiment, because (i) the analyst has a direct
incentive to select specific results over others, (ii) the construction
of a useful example removes resources (and, ultimately, pages) from
the characterization itself, and (iii) in the long-run, implying char-
acterizations are not enough diminishes the scientific standing of
our community.

9 RELATEDWORK
We compare our work with previous studies on real-world, large-
scale storage workloads, including big data. Overall, because of our
focus on object stores, our work complements the body of work
done on hardware-level storage for big data workloads, e.g., [21].

We conduct a systematic survey [18] of over 20 high quality
venues in large-scale systems (HPDC, SC, etc.), systems and oper-
ating systems (NSDI, OSDI, etc.), and performance (SIGMETRICS,
ICPE, etc.). Because the common type of storage studied in this
work, object stores hosted in the cloud, is relatively new, we include
in our systematic survey only work published since 2010. Table 21
summarizes the main results of our systematic survey. We observe
that the studies we find differ in the type of system, the resources
available, and the types of analysis included in the study. Ours is
the first study to cover systematically all the dimensions covered in
the table; in this sense, it complements each of the previous studies
along at least one dimension.

Closest to our work we find the previous work by Abad et al. [1]
and by Chen et al. [5] on big data workloads that read from a dis-
tributed storage system. Our work complements these studies with
analysis of long-term trends, time-dependence, bursts, stationarity,
and distribution across clusters. Our work also extends and sup-
ports the characterization of file popularity, interarrival time, reuse
time, and file formats.

10 CONCLUSION
Characterization studies help system operators tune their systems
and system designers create new techniques, based on observed
behaviour of existing systems. Motivated by the emergence of cloud-
based big data processing, and in particular by the emergence of
Spark as a new class of big data processing systems, in this study
we have conducted the first workload characterization of a repre-
sentative cloud-based Spark deployment.

We have collected from Databricks a combined Spark and S3
workload trace spanning over 6 months of operation, and designed
a method to process and analyze this trace. Our method focuses



Table 21: Comparison of our work with previous characterization studies, ordered chronologically.

Type Pop. TimeDep. Interarrival Size Levels SysPop. Ops.

Chen 2011 [4] Enterprise ✓ ✓
Carns 2011 [3] HPC ✓ ✓
Abad 2012 [1] MapReduce + HDFS ✓ ✓ ✓ ✓ ✓
Chen 2012 [5] MapReduce + HDFS ✓ ✓ ✓
Atikoglu 2012 [2] Web Cache ✓ ✓ ✓ ✓
Liu 2013 [20] Consumer Cloud ✓ ✓ ✓
Harter 2014 [14] Messaging + HDFS ✓ ✓ ✓
Gunasekaran 2015 [13] HPC ✓ ✓
Summers 2016 [25] Video Delivery ✓ ✓

This Work Spark + S3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

on investigating the long-term trends appearing in the read and
modification operations, the statistical properties of the number
and size of reads, and the relative popularity of clusters and of file
formats.

Overall, our study contains several novel insights, but also cor-
roborates well the findings of previous studies of big data storage
workloads. This work also gives quantitative evidence that Spark
and previous (e.g., MapReduce) storage workloads differ. Collected
from Sections 4–7, our main findings are:

MF4.1 The number of reads and bytes read per day have dou-
bled over 6 months.

MF4.2 The number modifications per day has remained at the
same level throughout the analysis period.

MF4.3 Both reads and modifications follow a diurnal pattern.
MF4.4 Large imbalance in number of reads and bytes read per

hour occur on daily and weekly basis.
MF4.5 There are 2 orders of magnitude less modifications hap-

pening than reads.
MF4.6 Most modifications are file creations.
MF5.1 The number of reads and bytes read exhibit negative

long range time dependence.
MF5.2 All features (size, popularity, etc.) have a heavy tail.
MF5.3 Reads occur in bursts.
MF5.4 The distributions of features are stationary over long

time periods.
MF6.1 The distribution of number of reads and bytes read over

clusters is heavy tailed.
MF7.1 Parquet is the most popular file format.
MF7.2 Snappy and Gzip are the most popular compression

schemes.

For the future, we plan to investigate the impact of our findings
on the design and tuning of Spark-based ecosystems.
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