
A Programming Environment for Heterogeneous
Stream Analytics

Roshan Bharath Das, Marc X. Makkes, Alexandru Uta, Lin Wang, Henri Bal
Vrije Universiteit Amsterdam

{r.bharathdas, m.x.makkes, a.uta, lin.wang, h.e.bal}@vu.nl

I. INTRODUCTION

Sensor-based applications using Big Data are of increasing
importance in various fields. A typical example of such use
cases is building health-care applications [1], [2]. In this case,
a smartwatch measures the patient’s heart rate. A smartphone
can then analyze the gathered data and identify patterns in
the patient’s heart rate. However, if the data analysis is too
complex to be performed on a smartphone, the computation
could be offloaded to a nearby cloudlet or a remote cloud. The
analysis is usually followed by a decision, and an actuation
is performed accordingly (e.g., a message is sent to either
the patient or the doctor). Developing such an application is
intrinsically complex, as the programmer needs to reconcile
different APIs specific to different platforms.

To reduce development complexity, we advocate a frame-
work with a unified programming model for stream analytics
on low power devices. Such a framework helps programmers
by providing a set of unified APIs that are easy to use. We
believe that a sensing-processing-actuating model is sufficient
to build the majority of sensor-based applications that are
based on stream analytics.

In this paper, we propose a unified programming environ-
ment for building sensor-based applications that can perform
sensing-, processing-, and actuation-tasks in heterogeneous
environments. Such devices include the wearables, phones,
and edge or cloud nodes. For this purpose, we extend our
Cowbird [3] framework to add support for sensing on wear-
ables and enable actuation on both phones and wearables. We
also extend our domain specific language SWAN-Song [4] to
support both local and remote actuation.

II. EXTENDED COWBIRD FRAMEWORK

Here, we discuss the architecture and the programming
abstraction of the extended Cowbird framework. It aims at
helping developers to build context-aware applications in a
heterogeneous environment. We focus on improving the pro-
gramming environment for small footprint edge devices (such
as smartphones, Rasberry Pis, smartwatches) by providing
simple (less expressive) functionality at the edge. Our work
can be combined with complex analytic systems like Storm [5]
and Spark [6] to provide analytics across the whole IoT
ecosystem.

Middleware

Twitter
Sensor

Thing
Speak
Sensor

IoT
Sensor

Cloudlet

Sound
Sensor

GPS
Sensor

Smartphone

Light
Sensor

Accelero-
meter

Sensor

Heart
rate

Sensor
Step

count
Sensor

Smartwatch
Vibrate

Actuator

HTTP
Actuator

Volume
Actuator

File
Actuator

DB
Actuator

Notifi-
cation

Actuator

Vibrate
Actuator

MQTT
Actuator

Notifi-
cation

Actuator

 API

 A

PI

 A
PI

M
id

dl
ew

ar
e

M
iddlew

are

Fig. 1: An overview of the extended Cowbird architecture.
(Sensors are light blue, actuators are dark green.)

A. Architecture

Figure 1 shows the architecture of the extended Cowbird
framework. It contains three different types of nodes, the
watch, the phone, and the cloudlet. The watch and the phone
interact with each other using Bluetooth communication. Both
the watch and the phone interact with the cloudlet using
WiFi or 4G communication. In a heterogeneous environment,
every node can perform sensing, processing, actuation, or a
combination of it. We note that the watch, the phone, and the
cloudlet can perform all three functions: sensing, processing,
and actuation. Also, multiple watches and phones can interact
with each other via the cloudlet. Currently, the framework
supports both Android and Java-based IoT devices.

Next, we describe the components of the extended Cowbird
framework.

1) Sensors: Sensors generate continuous data that needs
to be processed. Sensors can be either hardware (e.g., GPS,
accelerometer, gyroscope) or software (e.g., weather, twitter,
news, stock). In the case of software sensors, the data may be
generated locally or gathered remotely. Different types of sen-

TABLE I: Middleware support for sensor-based applications.
P implies partial support and X implies not supported.

Characteristics Edgent [7] Sentio [8] Flink [9] Cowbird [3]
Easy sensor access X X X X
Perform actuation X X X X

Support for offload stream processing X X X X
Use of domain specific language X X X X

Works with low-power, heterogeneous devices P X X P
Open source X X X X

sors generate data at different frequencies. Some sensors also
allow different frequencies. For example, an accelerometer
sensor can generate data at four different levels of frequencies
where the fastest is used for gaming purposes and the slowest
for screen orientation changes.

2) Actuators: The sensor data is evaluated, and the result
is sent to the application for further action. The actuation
can be hardware-based such as vibrate, turn on the flashlight
or software-based (e.g., send notifications, log, make HTTP
requests). For sending the evaluation result from the phone to
a server, actuators such as HTTP or MQTT 1 are used. The
result received at the server as a part of actuation from the
phone can be used as sensor data for further processing. In
this way, we can enable data flow between nodes.

3) Middleware: The middleware is responsible for four
main tasks: a) gathering relevant sensor data from various
sensors b) processing the gathered sensor data based on a
given window size, frequency and operation c) performing
both local and remote actuation d) inter-device communication
such as Bluetooth communication between the watch and the
phone and WiFi communication between watch or phone to
the cloudlet.

4) API: The extended Cowbird API handles incoming
requests from other devices or third-party applications. Using
this API, developers can subscribe to sensor data, trigger
actions, or get the list of sensors and actuators available on a
device.

Some preliminary functionalities for building such a frame-
work have already been provided by existing solutions, as
shown in Table I. Our existing Cowbird [3] framework already
runs on resource-constrained devices, and provides support for
distributed sensing, offloads computation from phone to cloud,
performs stream analytics on the cloudlet, preserves privacy in
the cloud [10], and makes use of a domain specific language
called Swan-song [4]. We extend it to support both local and
remote actuation on watches, phones and cloudlets.

B. Programming Abstraction

The extended Cowbird framework allows application devel-
opers to easily interact with various sensors and actuators. The
developers can register expressions written using an extension
of Swan-song to perform actuation locally and remotely.

Out of all possible types of scenarios, the paper focuses
on two representative scenarios that include local and remote
sensing, processing, and actuation. The first scenario LLM
performs the sensing and processing on the deviceL and the

1https://mqtt.org/

actuation on the deviceM and the expression for this scenario
is written as:

deviceL@sensor:path{operationX,timeWindowY}
THEN
deviceM@actuate:path

where the sensing expression and the actuation expression
are separated by THEN , deviceL represents the location
of sensing and deviceM represents the location of actuation,
sensor : path implies the type of the sensor and the value path
(e.g., location:latitude), operationX represents the type of
operation (e.g., MEAN, MAX) and timeWindowY represents
the time window (e.g., 10s for 10 seconds), actuate : path
represents the type of the actuation and the value path (e.g.,
vibrator:vibrate). The expression computes the operation over
a time window on the data generated by the sensor on the
deviceL, and the result is sent to the deviceM for actuation.

The second scenario is LMN where the first expression
only gathers data from the sensor on the deviceL and sends it
to the deviceM without doing processing (also called as ANY
processing) and in the second expression the deviceL gathers
the actuated data as a sensor and performs processing. The
result is sent to the deviceM for actuation. The expressions
are written as:

/∗ Expression registered on deviceL ∗/
deviceL@sensor:path{ANY,0s}
THEN
deviceM@sensorA:pathE
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/∗ Expression registered on deviceM ∗/
deviceM@sensorA:pathE{operationX,timeWindowY}
THEN
deviceN@actuate:path

C. Application

We built two applications [11] using the extended Cowbird
framework: 1) An elderly care app that measures the average
heart rate from the watch of an elderly person and displays
it on the care taker’s phone. 2) An environmental monitoring
app that measures the average light from multiple watches and
sends it to the cloudlet for further analysis.

III. RELATED WORK

Various solutions exist that can help in building
context-aware applications. IFTTT [12] uses trigger action-
programming to build context-based recipes. They do not
focus on building recipes based on sensor data. Tasker [13]
allows adding rules through a graphical interface. However,
they are not suitable for use as middleware for building
complex sensor-based applications.

There are several stream processing platforms [6], [5] built
for distributed processing on large clusters. They focus on
processing data collected from smartphones and wearables in
the cloud. However, they are not suitable for some scenarios
that require processing locally to save energy. Alternatively,
Edgent [7] is built to run on low-end devices. However, there

is no domain-specific language to build applications easily.
Some frameworks have been proposed to build context-based
applications. Sentio [8] focus on virtualization of sensors and
runs as middleware on the watch, the phone, and the cloud.
They do not provide programming support for offloading the
processing in a heterogeneous environment.

Our solution is different in that we enable programmers to
build context-aware applications in a heterogeneous environ-
ment that contains different types of nodes.

IV. CONCLUSION

We designed the extended Cowbird framework that allows
developers to build context-aware applications in a hetero-
geneous environment using a unified programming API that
follows a sensing-processing-actuating model. The extended
Cowbird framework reduces the application development com-
plexity by allowing local and remote sensing, processing, and
actuation on different categories of devices, such as the watch,
the phone, and the cloudlet.

ACKNOWLEDGMENT

This work is funded by the municipality of Alkmaar, The
Netherlands. It takes place in the context of Data Science
Alkmaar led by Frans Feldberg.

REFERENCES

[1] K. Sakuma, A. Abrami, G. Blumrosen, S. Lukashov, R. Narayanan, J. W.
Ligman, V. Caggiano, and S. J. Heisig, “Wearable nail deformation sens-
ing for behavioral and biomechanical monitoring and human-computer
interaction,” Scientific reports, vol. 8, no. 1, p. 18031, 2018.

[2] F. Firouzi, A. M. Rahmani, K. Mankodiya, M. Badaroglu, G. V. Merrett,
P. Wong, and B. Farahani, “Internet-of-things and big data for smarter
healthcare: from device to architecture, applications and analytics,”
2018.

[3] R. B. Das, N. V. Bozdog, and H. Bal, “Cowbird: A flexible cloud-based
framework for combining smartphone sensors and iot,” in Mobile Cloud
Computing, Services, and Engineering (MobileCloud), 2017 5th IEEE
International Conference on. IEEE, 2017, pp. 1–8.

[4] N. Palmer, R. Kemp, T. Kielmann, and H. Bal, “Swan-song: A flexible
context expression language for smartphones,” in Third Workshop on
Sensing Applications on Mobile Phones. ACM, 2012, p. 12.

[5] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@ twitter,”
in Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014, pp. 147–156.

[6] M. Zaharia et al., “Apache spark: a unified engine for big data process-
ing,” Communications of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[7] T. A. S. Foundation, “Apache edgent,” 2016. [Online]. Available:
http://edgent.apache.org/

[8] H. Debnath, N. Gehani, X. Ding, R. Curtmola, and C. Borcea, “Sen-
tio: Distributed sensor virtualization for mobile apps,” in 2018 IEEE
International Conference on Pervasive Computing and Communications
(PerCom). IEEE, 2018, pp. 1–9.

[9] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[10] M. X. Makkes, A. Uta, R. B. Das, V. N. Bozdog, and H. Bal, “P2-swan:
Real-time privacy preserving computation for iot ecosystems,” in Fog
and Edge Computing (ICFEC), 2017 IEEE 1st International Conference
on. IEEE, 2017, pp. 1–10.

[11] R. B. Das, M. X. Makkes, A. Uta, L. Wang, and H. Bal, “Aves: A
decision engine for energy-efficient stream analytics across low-power
devices,” in 2019 IEEE International Conference on Big Data. IEEE,
2019.

[12] B. Ur, M. Pak Yong Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard,
D. Schulze, and M. L. Littman, “Trigger-action programming in the
wild: An analysis of 200,000 ifttt recipes,” in Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems. ACM,
2016, pp. 3227–3231.

[13] Kitxoo, “Tasker for android,” 2019. [Online]. Available: https:
//tasker.joaoapps.com/index.html

http://edgent.apache.org/
https://tasker.joaoapps.com/index.html
https://tasker.joaoapps.com/index.html

	Introduction
	extended Cowbird Framework
	Architecture
	Sensors
	Actuators
	Middleware
	API

	Programming Abstraction
	Application

	Related Work
	Conclusion
	References

