
A Trace-driven Performance Evaluation of Hash-based Task
Placement Algorithms for Cache-enabled Serverless Computing

Sacheendra Talluri
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

s.talluri@vu.nl

Nikolas Herbst
University of Würzburg
Würzburg, Germany

nikolas.herbst@uni-wuerzburg.de

Cristina Abad
ESPOL

Guayaquil, Ecuador
cabadr@espol.edu.ec

Animesh Trivedi
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

a.trivedi@vu.nl

Alexandru Iosup
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

a.iosup@vu.nl

ABSTRACT
Data-driven interactive computation is widely used for business
analytics, search-based decision-making, and log mining. These ap-
plications’ short duration and bursty nature makes them a natural
fit for serverless computing. Data processing serverless applica-
tions are composed of many small tasks. Application tasks that use
remote storage encounter bottlenecks in the form of high latency,
performance variability, and throttling. Caching has been used to
mitigate this bottleneck for intermediate data. However, the use of
caching for input data, albeit widely used in industry, has yet to be
studied. We present the first performance study of scaling, a key
feature of serverless computing, on serverless clusters with input
data caches. We compare 8 task placement algorithms and quantify
their impact on task slowdown and resource usage before and after
scaling. We quantify the consequences of using work stealing. We
quantify the performance impact of scaling in the buffer period
immediately after scaling. We find up to a 420% increase in task
slowdown after scaling without work stealing and a 22% slowdown
with work stealing. We also find that cache misses after scaling can
lead to an additional 21% resource usage.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • The-
ory of computation → Caching and paging algorithms; •
General and reference → Performance.

KEYWORDS
serverless, caching, scheduling, performance

ACM Reference Format:
Sacheendra Talluri, Nikolas Herbst, CristinaAbad, Animesh Trivedi, andAlexan-
dru Iosup. 2023. A Trace-driven Performance Evaluation of Hash-based
Task Placement Algorithms for Cache-enabled Serverless Computing. In
20th ACM International Conference on Computing Frontiers (CF ’23), May

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CF ’23, May 9–11, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0140-5/23/05.
https://doi.org/10.1145/3587135.3592195

9–11, 2023, Bologna, Italy. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3587135.3592195

1 INTRODUCTION
Business analytics, search-based decision-making, and other data-
driven workloads with near-interactive deadlines require their com-
putation to complete within short time spans. The short duration
and frequently changing quantity of resources required [39] form a
natural fit for serverless computing, which allows users to lease only
the necessary resources for a short time [2, 13, 17]. Both academia
(e.g., Lambada [26], Starling [30]) and industry (e.g., Snowflake [39],
Databricks [4]) have recognized this synergy and have proposed
systems to leverage it. However, storage has emerged as a bottle-
neck [9, 34] for such systems. Caches have been used to mitigate
this bottleneck for intermediate data generated by applications
during their execution and then used only once [21, 31]. In con-
trast, caching input data that gets reused multiple times, albeit
much used in industrial serverless systems such as Snowflake [39],
Databricks [1] and others [3, 5, 40] has yet to be studied. Input
caching serverless systems often use hash-based placement algo-
rithms such as consistent hashing [19] to decide data location and
application execution location. In this work, we characterize the
performance of input caching serverless clusters using hash-based
placement algorithms using trace-driven simulation.

Interactive data processing workloads are composed of jobs. Jobs
in these interactive workloads are short with a median runtime of 1
second and a 90th-percentile runtime of 7 seconds (from the dataset
used in [39]. Supported by [22, 32]). The jobs are composed of tasks
which run for 100s milliseconds. Tasks reading from remote storage
such as AWS S3, common in data processing workloads, experience
a storage bottleneck in the form of an additional 13ms latency, with
a 99th-percentile latency of over 1,200ms [9]. The 99th-percentile
latency is over ten times the duration of the average task and is
longer than the duration of the median job. The read bandwidth is
also highly variable [9, 31, 34] and reads are even throttled.

Interactive data processing applications often reuse data. The
reuse can be due to the user exploring the data using different
queries, or due to different users accessing the same data. Cloud stor-
age access pattern analysis reveals that data reuse is common [14].
To take advantage of this data reuse, and remedy the storage bottle-
neck of remote cloud storage, serverless data processing platforms
such as Snowflake [39], Databricks [1] and others [3, 5, 40], use a

https://doi.org/10.1145/3587135.3592195
https://doi.org/10.1145/3587135.3592195
https://doi.org/10.1145/3587135.3592195

CF ’23, May 9–11, 2023, Bologna, Italy Talluri et al.

local cache on each node. While remedying the storage bottleneck,
the cache-enabled nodes raise a scheduling challenge. Objects ac-
cessed by tasks need node assignments, and tasks which access an
object need the same node assignments repeatedly for caching to be
effective. It is common for clusters which use cache-enabled nodes
to use a hash-based placement policy such as ring-based consistent
hashing [5, 39] and rendezvous hashing [3]. The placement policy
hashes the object identifier and always redirects a task reading a
certain data object to the same node.

The workload intensity in data processing clusters can change by
an order of magnitude over a short period of time [39]. The number
of nodes in the cluster are increased or decreased to match workload
intensity using an autoscaler. When the number of nodes in the
cluster changes, the data to node mapping changes, and tasks are
directed to different nodes. Cluster scaling, changing the number
of nodes, is a common operation in serverless clusters. While many
hash-based placement algorithms were evaluated for object load
balancing performance [7, 10, 11, 25, 28], none consider the impact
on data processing task performance. We are the first to quantify
the performance slowdown experienced by tasks scheduled onto a
cluster using hash-based scheduling as cluster size changes.

A common problem when using hash-based task placement is an
imbalance in task load allocated to nodes. Work stealing is a popular
technique to help with this problem. Work stealing reallocates tasks
from busy nodes to free nodes. The typical trade-off with work
stealing is that it reduces response times but increases cache misses.
We evaluate the impact of work stealing on task performance.

The key contributions of this work are:

(1) We design and implement a trace-based cache-enabled server-
less system simulator in the OpenDC [23] datacenter simu-
lator to evaluate the performance of hash-based task place-
ment algorithms. The simulator allows us to assess the per-
formance of tens of traces on hundreds of scenarios. We
describe the system model we implement in Section 2, and
the experimental setup we implement in Section 3.

(2) We evaluate the performance of cache-enabled serverless
clusters when using 6 hash-based task placement algorithms
in Section 4. We evaluate the performance before and after
scaling events, as scaling is common in serverless clusters.
We quantify the impact of combining work stealing with
hash-based task placement algorithms. We quantify both the
performance gain and the decrease in hit rate.

(3) We quantify the additional resource usage incurred by server-
less clusters after scaling due to cache misses caused by data
movement in Section 5. The quantification allows practi-
tioners to design better autoscalers taking the additional
resource consumption after scaling into account.

(4) We analyze the time immediately after a scaling event, and
compare it to the slowdown during the rest of the time af-
ter the scaling event in Section 6. The comparison allows
us to identify if there is any unique behavior that occurs
immediately after scaling that increases task slowdown.

T1

T1

D1

Scheduler

T2

T2

D1

SchedulerScale Up

Legend

T1

D1

N1

$

Task

Object

Node +
Cache
Object
Read

Logical
Move

N1 N3

$ $

D1 Cache
MissRemote Storage

1

2

3

4

6

7

8

9

5

Figure 1: A server data processing cluster with per-node
cache, scaling from 2 to 3 nodes. The logical location of some
data objects is moved during scaling. Tasks which access the
moved objects have to read it from remote storage leading to
a cache ($) miss.

2 SERVERLESS DATA PROCESSING CLUSTER
SYSTEM MODEL

In this section, we first describe the data processing cluster system
model, and the technical terms we will use throughout the rest of
the paper.

2.1 System Model
Figure 1 depicts the system model of a serverless data processing
cluster. Data processing applications are structured as workflows
of tasks (1 in Figure 1). The scheduler 2 schedules the tasks to run
on a cluster of nodes 3 (servers). The tasks read data objects 4 they
process from remote storage 5 (e.g.: AWS S3, IBMCOS, etc.). Remote
storage has concurrency limits leading to throttling and high tail
latency, which increase application runtime. Many serverless data
processing platforms use a local cache $ on each node in the cluster
to avoid the increased runtime. The scheduler uses a hash-based
placement algorithm to direct all tasks which require a particular
object to the same node. The object identifier of the object the task
needs to access is hashed and used by the scheduler to direct tasks.
A key feature of serverless clusters is that the number of nodes
in the cluster scales 6 , increases or decreases, according to the
workload intensity.

Scaling, up and down, causes the placement algorithm to change
the object to node mappings so that the number of objects mapped
to each node is balanced. When the mapping changes, the objects
are not actually moved, it is only a logical move (Node 1 to Node 3
in Figure 1). Only the object to node mapping is updated. When
subsequent tasks 7 access the moved object, they are directed to
the newly mapped node 8 by the scheduler. This new node will
not have the object in its local cache 9 . The object will be read
from remote storage by the task.

A key characteristic of the system model that influences the
results of our experiments is latency to remote storage. We as-
sume a simple network topology where all nodes in the cluster
are part of the same network with full bidirectional bandwidth
between each other. The cluster is connected to a remote storage
service with worse latency than the latency between the cluster

A Performance Evaluation of Hash-based Task Placement Algorithms for Serverless Computing CF ’23, May 9–11, 2023, Bologna, Italy

nodes [9, 34]. Specifically, for our experiments, we use the latency
figures from the Pixels paper [9]. A more complex cluster topol-
ogy with multiple storage and network tiers would result in more
complete performance characterization. But, we limit the scope
of our work to comparing hash-based algorithms. This means our
results are only applicable to a two-level network topology with
the network characteristics similar to ones we use. We believe the
network characteristics we use representative of the remote storage
access latency at this time.
However, network characteristics can change over time and inval-
idate our results. We release our simulation and analysis tools as
open source software so that our experiments can be repeated with
a simple change in network parameters as systems evolve and their
latency characteristics change.

2.2 Terms and Metrics to Understand Serverless
Data Processing Clusters

We now describe the terms and metrics we use to understand the
performance of a data processing workload on a serverless cluster.

Scaling up is increasing the number of nodes in the cluster to deal
with an increase in workload intensity. The increased workload
intensity can be due to a higher number of tasks per second, in-
creased average task duration, increased storage latency, increased
average task resource requirements, or other reasons. Scaling down
is decreasing the number of nodes in the cluster to deal with a
decrease in workload intensity. The reasons for the decrease are
the same as the reasons for the increase, except in the opposite
direction.

All the nodes in a cluster do not process an equal portion of the
workload. Making sure that each node processes an equal portion
of the workload (load balancing) is an NP-hard problem, even with
perfect information. The imperfect object distribution due to hash-
based object placement and the load unawareness of the placement
algorithms only adds to the difficulty.

Imbalance is the difference between the portion of the workload
processed by a node compared to the average workload processed
by the cluster. We quantify peak imbalance during a specific time
period, such as a minute, five minutes, or the whole workload
duration. We quantify imbalance during a period using the ratio of
the maximum active workload allocated to any node in the cluster
and the mean workload of all nodes in the cluster during that time
period.

Tasks scheduled onto a node can experience a cache miss if the
object they need to read is not in the local cache of the assigned
node. We consider three categories of cache misses in this work.
Compulsory cache miss is the absence of the object from the cache
because it is the very first time it is accessed. Capacity cache miss
is the absence of the object that was present earlier in the cache,
but was evicted to make space for other objects. Scaling cache miss
is the absence of the object from the cache because the object was
remapped to a new node due to scaling and does not exist yet in
the cache of the new node.

We quantify the performance of a task using the slowdownmetric.
We define slowdown as the ratio of the actual makespan of a task to
the ideal makespan in the input trace. The actual makespan includes
the wait time for the task before an empty slot becomes available

Storage
Traces

Generate
Scenarios

Distributed
Sim. Runner

...

Analyze Sim.
Results

Duration and
Arrival Time

Simulate Calibrate Control Flow

1 3 4 5

6
2

78

9

Figure 2: The experimental process we use to generate traces,
and calibrate and run experiments.

for it to execute, the duration supplied in the trace (ideal makespan),
and additional time to read an object from remote storage if it is a
cache miss. A lower value of slowdown is better. It means that the
task was completed close to its ideal duration.

Hash-based task placement algorithms, combined with a cache,
reduce the number of reads from tasks to remote storage. But, they
also constrain the nodes a task can be scheduled to. In Section 4
we quantify the slowdown of tasks when using hash-based task
placement and compare it to slowdown using greedy and random
data oblivious task placement algorithms.

3 EXPERIMENTAL METHOD TO DETERMINE
THE IMPACT OF SCALING ON
CACHE-ENABLED SERVERLESS CLUSTERS

We use trace-based simulation to study the impact of cluster scaling
on task slowdown and workload resource usage. Our experiment
setup consists of a trace generator which derives simulable traces
from publicly available traces, the simulator that simulates the gen-
erated traces, and programs to analyze the output of the simulator.
Our experimental process is depicted in Figure 2

For the input traces, we combine (3 in Figure 2) the sequence of
object identifiers from the real-world IBM COS traces [14] 1 with
a real-world inspired distribution [9] 2 of task durations and inter-
arrival times. Controlling the task durations and interarrival-times
enables us to control resource utilization in the cluster under simu-
lation. A controlled resource utilization helped us run controlled
experiments on scaling behavior which would be difficult with a
fully realistic trace which, has non-uniform resource usage.

The IBMCOS traces [14] are the second largest publicly available
set of storage traces at the time of writing. The IBM COS dataset
consists of 99 different traces. Only 31 of them had a length greater
than 2.8 million reads which we required for our simulations. The
trace generator takes the 31-longest IBM COS traces and the sce-
narios we want to simulate as the input and combines them with
task durations sampled from a realistic distribution [22, 32, 39]. We
sample the task duration from a Pareto distribution with shape
factor 1.44, with a median task duration of 100 milliseconds. We
issue either 120 or 240 tasks per second, depending on the work-
load intensity we target. The simulated time duration of the trace
is around 2.5 hours. We generate simulable traces for three scenar-
ios 4 : doubling workload intensity, halving the workload intensity,
and constant workload intensity. Of the 31, we use 29 traces for

CF ’23, May 9–11, 2023, Bologna, Italy Talluri et al.

our simulations. The two excluded traces lead to suspicious results
like median slowdown in the thousands. We plan to analyze them
further in the future.

We use a distributed simulation runner 5 to run many scenarios
concurrently across a cluster. The runner takes the list of scenarios
along with input file locations as the input, runs the distributed
cache simulator, and produces the output files at the specified loca-
tions.

We implement our cache-enabled serverless cluster simulator (6
and 8), which simulates the system model in Section 2, using
the OpenDC [23] open-source datacenter simulator. The simulator
takes the simulable trace and the experiment parameters as the
input. The experiment parameters include the object placement
algorithm, the autoscaler, the manual scaler, the workstealer, and
their respective options. We use six hash-based data-aware task
placement algorithms: Ring [19], Rendezvous [38], Maglev [11],
Multiprobe [7], Dx [10], and Anchor [25]. The hash-based algo-
rithms assign a task to a node in the cluster based on the hash of
the object name the task will read. We also use two data-oblivious
algorithms: Greedy and Random to have a point of comparison.
The greedy algorithm assigns a task to the cluster’s least loaded
node. The manual scaler triggers a scaling event of a user-defined
magnitude at a user-defined time. The manual scaler enabled us to
run our controlled experiment. The workstealer allows for a free
node to run a task from another node with the longest wait queue.
Work stealing is successful at multi-core scheduling [24] and at
least one serverless data processing platform [39] uses it.

The simulator uses a pre-warming mechanism to populate the
caches before the actual simulation. For the pre-warming, we run
half the simulable workload to populate the caches before starting
the simulation that we use for our analysis. We use infinite-sized
caches for the node-local caches in the simulator. The large cache
size is representative of the extremely large (100 GBs or even TBs)
caches available to data processing serverless clusters [14, 39]. We
observe that our results are not sensitive to cache size. The perfor-
mance difference between an infinite-sized cache and a cache of
1000 objects was node was only 5% at the median and 3.5% at the
99th percentile. Using an infinite-sized cache means no capacity
cache misses occur.
The lack of capacity cache misses means all the performance im-
pact we observed can be solely attributed to scaling cache misses.
This aligns with the paper’s goal to characterize the performance
impact of scaling. Running the simulations with a limited cache and
classifying cache misses in post processing would complicate the
setup. It would require deeply instrument the simulator such that
the cache eviction component is aware of the scaling component.
That would strongly couple all components and limit extensibility.
We could also classify cache misses in analysis, but that would re-
quire duplicating the eviction mechanism outside the simulator and
re-running the whole eviction process on the trace during analysis.
The duplication is error prone and double the the compute time
required by the simulation and analysis process.

We maintain the same resource utilization before and after the
autoscaling events (80%). We use two techniques for this. First, we
control the ideal resource use of the input workload by adjusting
the number of tasks (workload intensity) per second. We go from
240 tasks per second to 120 if we need to half the workload for an

experiment. But, we still have unpredictable resource utilization
due to the reads from remote storage due to compulsory and scaling
cache misses. To calibrate 7 the post-scaling resource utilization,
we first simulate without calibration 6 . For example, 11 nodes
before scaling and 22 after scaling. Then, we measure the number
of misses and storage delays incurred after scaling and adjust the
number of nodes to maintain the desired utilization with the new
workload 8 . For example, increase the nodes from 22 to 24 to
account for the additional resource usage and maintain the same
resource utilization. We analyze 9 the additional resource required
by a workload after scaling in Section 5.

Apart from resource usage, the primary metric we measure dur-
ing our analysis 9 of simulation results is the slowdown. We ana-
lyze the p50 and p99 slowdown for different traces across all sce-
narios. We compare the slowdown before and after a cluster scaling
for both an increase and a decrease in cluster size. We analyze the
slowdown results in Section 4.

4 SLOWDOWN DUE TO HASH-BASED TASK
PLACEMENT

We analyze the performance of hash-based task placement algo-
rithms using the slowdown metric with the following main obser-
vations:

O-1: Hash-based task placement algorithms than the data obliv-
ious load-based greedy algorithm, when we do not use work-
stealing.

O-2: The median slowdowns caused by different hash-based
task placement algorithms do not differ. Themaximum varies
only by about 2× for p99 tasks. The little variation might
be the reason why simple ring based consistent hashing is
widely used in commercial systems despite the existence of
more modern algorithms.

O-3: The median p50 and p99 task slowdown increases after
scaling when using hash-based algorithms. The distribution
of the p99 slowdown is wider, and the extremes are higher
after scaling.

O-4: Hash-based placement algorithms perform significantly
better than the data-oblivious greedy algorithm when both
are combined with work stealing.

O-5: Work stealing decreases the median slowdown of tasks
over 100× at the cost of 49% decrease in cache hit rate for
p99 tasks.

We derive our observations from Figure 3, which depicts p50 and
p99 task slowdowns. The slowdowns are depicted before and after
an increase in cluster size due to an increase in workload intensity.
The new cluster size can vary based on resource usage, which we
analyze in Section 5. In most cases, the cluster size at least doubles.
The horizontal axis represents the task placement algorithm. The
vertical axis represents the median or 99th percentile slowdown.
For each placement algorithm, the distribution on the left depicts
the slowdowns of the 29 traces before the cluster scales up. The
distribution on the right depicts the distribution after the cluster
scales up. Figures 3a and 3b depict the slowdown when not using
work stealing along with the task placement algorithm. Figures 3c
and 3d depict the slowdown when using workstealing.

A Performance Evaluation of Hash-based Task Placement Algorithms for Serverless Computing CF ’23, May 9–11, 2023, Bologna, Italy

greedy random ring rendezvous maglev anchor dx multiprobe
Task placement algorithm

0

5

10

15

20

M
ed

ia
n

(p
50

)s
lo

w
do

w
n

Data oblivious

Scaling situation
Before doubling

After doubling

(a) Distribution of median slowdown across all traces.

greedy random ring rendezvous maglev anchor dx multiprobe
Task placement algorithm

100

102

104

p9
9

sl
ow

do
w

n

Scaling situation
Before doubling

After doubling

(b) Distribution of 99th percentile slowdown across all traces.

greedy random ring rendezvous maglev anchor dx multiprobe
Task placement algorithm (workstealing)

0

1

2

3

4

M
ed

ia
n

(p
50

)s
lo

w
do

w
n

Scaling situation
Before doubling

After doubling

(c) Distribution of median slowdown with work stealing.

greedy random ring rendezvous maglev anchor dx multiprobe
Task placement algorithm (workstealing)

100

102

104

p9
9

sl
ow

do
w

n

(d) Distribution of 99th percentile slowdown with work stealing.

Figure 3: p50 and p99 slowdown across 29 traces, with and without work stealing. Lower slowdown is better.
We compare the slowdown experienced by tasks when using

hash-based placement algorithms to data oblivious placement algo-
rithms. We observe, in Figure 3a, only a 15% increase in p50 slow-
down for hash-based algorithms compared to the data-oblivious
load-aware greedy policy. But, we notice an overwhelming 43×
increase in the median of p99 slowdowns (O-1). The median com-
parison even excludes the massive outliers which the greedy policy
does not have. We find that the performance of hash-based algo-
rithms is in-line with the performance of the random task placement
algorithm.

Among hash-based placement algorithms, we do not find any
significant performance difference as measured by the slowdown
metric (O-2). This lack of significant difference might explain the
popularity of simple ring based consistent hashing in production
software systems [12, 39]. Newer algorithms such as Maglev [11]
provide more efficient hash computations and slightly better load
balancing properties. We notice this in the slightly better p50 slow-
down distribution for Maglev compared to the simple ring hash. We
conjecture that users find that the minor increase in performance
is not worth the increased complexity. This might explain the low
popularity of an algorithm like Maglev (O-2).

We observe in Figure 3a that the median of p50 slowdowns
increases from 2.4 to 4 (40%) (O-3). This increase after scaling
does not occur with data oblivious task placement algorithms. We
investigate further and find that the large increase is caused by an
increase in cluster imbalance due to hash-based placement and the
consequent long wait times. Operators of autoscaling clusters with
hash-based task placement algorithms should be aware that scaling
up their cluster can lead to a significant increase in slowdown and
task response times in some cases.

We observe in Figure 3b that the median of p99 slowdowns
increases significantly from 173.9 to 912.2 (420%) (O-3). This is
much higher than the p50 case where the change was only 40%. We
also observe a similar increase in the case of halving cluster size.

Existing work only demonstrates that a decrease in cluster size
causes a slight imbalance in object allocation [7, 10, 11, 25, 28,
35]. But, existing work does not study the impact of this object
allocation imbalance on on the slowdown of tasks using the objects.
We demonstrate that for most traces we studied, the p50 slowdown
increases slightly and the p99 slowdown increases significantly with
changing cluster size. But, the max slowdown increases greatly for
some traces.

Key takeaway: The task slowdown, due to load imbalance, can
be more than 10× the object imbalance for some traces. For these
traces, both the p50 and p99 slowdown increase greatly (420%) af-
ter scaling. This increase is much more than what can be linearly
extrapolated from an object imbalance of 6.6% to 42% for O(100k)
objects in recent work [25]. We posit that the hash-based place-
ment policies not being load-aware exacerbates the imbalance. An
imbalance of a popular object increases the task imbalance dispro-
portionately compared to the object imbalance.
Attributing Slowdown to Imbalance or Storage Delay

The slowdown metric is the ratio of actual task execution time
to ideal execution time. Two sources of delay lead to a longer task
execution time. One is the time a task waits to be scheduled, and
the other is the time a task spends waiting for the remote storage
to respond. The time a task spends waiting in a not fully saturated
system, like ours, is due to the load imbalance between nodes in the
system. We compare the wait time to the storage delay to attribute
task slowdown to either imbalance or remote storage.

CF ’23, May 9–11, 2023, Bologna, Italy Talluri et al.

0

1

10

102

103

-1

N
or

m
al

iz
ed

de
la

y
[s

]

ring

Delay type
Storage Wait

rendezvous maglev

p50 p99

0

1

10

102

103

-1

anchor

p50 p99

dx

p50 p99

Task slowdown region

multiprobe

Figure 4: Normalized delay distributions for the p50 and p99
regions of the slowdown distribution.

Figure 4 depicts the normalized delay experienced by tasks in
different regions of the slowdown distribution. The p50 region
comprises of tasks that experienced slowdowns between the 45th
percentile and the 55th percentile. The p99 region comprises tasks
that experienced more slowdown than the 99th percentile task.
We add the delays of all tasks in the region and divide them by
the number of tasks to arrive at the cumulative delay. We then
normalize the cumulative delay by dividing it by the number of
tasks in the region. The normalization is necessary as the sizes of
the two regions are different and each region has a different number
of tasks. We refer to normalized wait time as the wait time and
normalized storage delay as the storage delay for brevity.

We observe that the wait time is much higher than the storage
delay. The median wait time is 10x higher than the median storage
delay for p50 tasks. The median wait time is 100x higher than the
storage delay for p99 tasks. The results indicate that imbalance
is the major cause of slowdown. The low storage delay indicates
that miss rate is not a major cause of slowdown. Therefore, it is
beneficial to trade off some of that hit rate to reduce the imbalance.
Work stealing is a technique that enables us to make this trade-off.
Impact of Workstealing

Workstealing is a popular technique to reduce resource waste in
the cluster. The key idea behind workstealing is that free nodes steal
tasks from heavily utilized nodes, thereby reducing the imbalance.
Workstealing also reduces p99 slowdown caused by imbalance as
tasks that are waiting in the queues of busy nodes are picked up
by free nodes. Workstealing has been use serverless data analytics
clusters [39], and has been demonstrated to be the best way to
increase performance in multi-core clusters [24]. In this section, we
analyze the performance of hash-based task placement algorithms
when combined with workstealing.

noworksteal
p50 tasks

worksteal noworksteal
p99 tasks

worksteal

Task categories

0.0

0.2

0.4

0.6

0.8

1.0

H
it

ra
te

Figure 5: The impact of work stealing on hit rate for p50 and
p99 tasks. Work stealing trades-off hit rate for a reduction
in imbalance.

We observe in Figure 3c that the median of p50 slowdowns in-
creases after increasing the cluster size from 2.1 to 2.4. The 14%
increase lower than the 40% increase in the case without work steal-
ing (O-3). Further analyzing the data, we found that the increased
slowdown is due to increased cache misses after scaling. This is
consistent with the results in existing literature for hash-based
task placement algorithms. Once the slowdown due to imbalance is
greatly reduced by work stealing, the only slowdown that remains
is due to cache misses.

We observe in Figure 3d that the median of p99 slowdowns in-
creases from 14.7 to 17.9 (22%)after scaling(O-3). This is much lower
than the 420% in the scenario without work stealing. We observe
similar behavior for the case of halving cluster size, which is not
depicted here. Our observation is consistent with existing litera-
ture that moving objects due to a change in cluster size increases
slowdown. The increased slowdown is due to the increased cache
missed after scaling, similar to the p50 case. We also observe several
outliers, visible as almost vertical lines in the graph, that occur for
all hash-based placement algorithms. We do not yet have a reason
as to why these outliers occur.

Work stealing improves cluster load balance by scheduling tasks
from busy nodes onto free nodes. The rescheduling leads to a de-
crease in cache hit rate. We quantify the improvement in slowdown,
and the subsequent decrease in cache hit rate. The reduction in hit
rate for both p50 and p99 tasks in Figure 5. p50 tasks are tasks with
a slowdown between the p45 slowdown and the p55 slowdown. p99
tasks are those slowdown above the p99 slowdown.

Work stealing decreases themedian p50 slowdown from 3.9 to 2.4,
a 60% improvement. Work stealing decreases the median hit rate for
p50 tasks from 0.92 to 0.70, a 24% penalty. Work stealing decreases
the median p99 slowdown over 100×. Work stealing decreases the
hit rate of p99 tasks from 0.94 to 0.55, a 41% penalty (O-5). This
much decreased hit rate could be a significant cause of the increased
slowdown of p99 tasks while work stealing. Without work stealing,
imbalance is the solely responsible for p99 task slowdowns.

Key takeaway: Hash-based task placement algorithms when
combined with work stealing perform better than data oblivious
greedy scheduling (O-4). This is a contrast to the clear success of

A Performance Evaluation of Hash-based Task Placement Algorithms for Serverless Computing CF ’23, May 9–11, 2023, Bologna, Italy

greedy random ring rendezvous maglev anchor dx multiprobe

Task placement algorithm

-5

0

5

10

15

20

A
dd

it
io

na
l

re
so

ur
ce

us
ag

e
A

s
a

fr
ac

ti
on

of
ex

p
ec

te
d

us
ag

e

Data oblivious

(a) Additional resource use after doubling the cluster size.

greedy random ring rendezvous maglev anchor dx multiprobe

Task placement algorithm (workstealing)

-5

0

5

10

15

20

A
dd

it
io

na
l

re
so

ur
ce

us
ag

e
A

s
a

fr
ac

ti
on

of
ex

p
ec

te
d

us
ag

e

Data oblivious

(b) Additional resource use after doubling, with work stealing.

Figure 6: Additional resources consumed apart from the expected doubling in cluster size when doubling the workload. The
additional resource are required to maintain the cluster utilization before and after the workload doubled. Lower additional
resource consumption is better.
data-oblivious greedy algorithm in the no work stealing scenario.
Work stealing significantly decreases p99 slowdowns (100×), but
with a significant cache hit rate penalty (41%).

5 INCREASED RESOURCE USE AFTER
SCALING

A scaling event occurs when the workload being served by the clus-
ter changes. If the workload doubles in intensity, then the number
of resources in the cluster are be doubled to handle the workload. If
the workload halves, then the number of resources are also halved.
For the cache-enabled clusters we study, there is an additional re-
source cost due to the scaling cache misses that takes place when
cluster size changes. The additional resource consumption is a com-
bination of the miss rate and the latency distribution of the remote
storage the objects are fetched from. We analyze this additional
resource consumption with the following main observations:

O-6: The resource consumption increases by up to 21% for
many traces after scaling. For a few traces, the resource
consumption decreases by up to 5%. The median increase is
2.5%.

O-7: Work stealing brings down the maximum additional re-
sources required from 21% to 10%.

We compute the additional resources, CPU-time in our case, con-
sumed by the workload by first computing the expected resources
consumed by the workload after it changes in magnitude. We then
subtract the expected consumption from the actual consumption.
For example, consider a workload which runs on 11 servers at 80%
utilization. When the workload intensity doubles, we expect it to
use 22 servers at 80% utilization. But, if it runs at 85% utilization, we
add 2 more server make the configuration 24 servers at 80% utiliza-
tion. The 2 additional servers required to equalize the utilization
before and after scaling are additional resources.

We depict in Figure 6 the additional resources consumed by dif-
ferent traces, after doubling the workload intensity, as a function of
the task placement algorithm used. Figure 6a depicts the additional
resources used when not using work stealing. Figure 6b depicts the
additional resources used when using work stealing. The violins
and boxplots of the additional resource consumed per trace are

depicted in the figures. Each point in the figure corresponds to a
separate trace.

We observe in Figure 6a that a median of 2.5% additional re-
sources are consumed at the median when using hash-based task
placement policies. This is slightly lower than the 3% of the greedy
policy. But, at the 75th percentile, 9% additional resource is con-
sumed by hash-based policies. The additional resource consumption
reaches 21% at the maximum end (O-6). We also observe that some
traces experience lower resource consumption after scaling. The
lower resource consumption is represented by all the values before
0%. We observe similar results for the case of halving the workload
intensity, and consequently the worker size.

We observe in Figure 6b that a median of 2.4% additional re-
sources are consumed when using hash-based task placement poli-
cies with work stealing. The additional resource use by the greedy
policy remains the same 3% when using or not using work stealing.
The 75th percentile additional resource consumption drops from 8%
to 5.5% due to work stealing. The maximum resource consumption
also drops from 21% to 10% due to work stealing (O-7). We observe
similar results for the case of halving the workload intensity, and
consequently the worker size.

Key takeaway: Cache-enabled serverless cluster can consume
more resource after scaling (up to 21% more) due to cache misses
caused by data movement. Autoscalers should take this additional
resource use into account when deciding how much to scale.

6 IMMEDIATE IMPACT OF SCALING
The number of nodes in a cluster changes during a scaling event.
Due to this membership change, tasks can now be mapped to differ-
ent nodes than they were mapped to before the scaling event. The
mapping change causes additional cache misses and increased slow-
down due as newly mapped tasks read data from remote storage.
The cluster state stabilizes after all the data is moved to the newly
mapped locations. In this section, we investigate if performance
characteristics immediately after a scaling event, during the buffer
period, are different compared to stable period.

We define the 1 minute period immediately after a scaling event
as buffer period. We define the rest of the period from the end of the
buffer period to the last time a task is submitted as the after period.

CF ’23, May 9–11, 2023, Bologna, Italy Talluri et al.

buffer
no workstealing

after buffer
workstealing

after

Scaling stage

0

2

4

6

8

10

12

14

p5
0

sl
ow

do
w

n

(a) buffer
no workstealing

after buffer
workstealing

after

Scaling stage

101

102

103

104

p9
9

sl
ow

do
w

n
(b) buffer

no workstealing
after buffer

workstealing
after

Scaling stage

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
it

ra
te

(c) buffer
no workstealing

after buffer
workstealing

after

Scaling stage

1.0

1.5

2.0

2.5

3.0

3.5

Im
ba

la
nc

e
(m

ax
lo

ad
/m

ea
n

lo
ad

)

(d)

Figure 7: Comparing the 1 minute buffer period immediately after scaling, with the steady state period after the buffer period
lasting till the end of the trace. Exemplary results for the ring task placement policy.

We depict the p50 slowdown, p99 slowdown, hit rate, and imbal-
ance between the buffer period and the period after buffer period,
for both configurations with and without work stealing in Figure 7.
We only present results when using the ring task placement policy
when increasing the cluster size. The performance results for other
hash-based task placement policies and decreasing the cluster size
follow a similar trend.

Figure 7a depicts the p50 slowdown for different configurations.
Some outliers are present for the buffer period when not using
work stealing are omitted as they are higher on the vertical axis
maximum value of 15. We observe a median p50 slowdown of 3.5
for the buffer period compared to 4.2 for the after period, when
not using work stealing. The key feature however are the extreme
outliers in the buffer period. These findings imply that most traces
do not see a significant performance drop during the buffer period,
but some trace do experience a drop.When work stealing is enabled,
we do not observe any performance difference between the buffer
period and the after period.

We observe in Figure 7b that the p99 slowdown is higher during
the after period than the buffer period, for both cases with and
without work stealing. This is a contrast to the p50 slowdown case
where the buffer period had higher slowdowns.

We investigate the reasons for the high p50 slowdown during
the buffer period. We analyze the hit rate and the load imbalance
across nodes during that period. But, we do not find a convincing
explanation for the high p50 slowdown for some traces. We observe
in Figure 7c that the buffer period has a lower hit rate than the
after period, for both cases with and without work stealing. We
also observe that the hit rate for the work stealing configurations
is lower than their non-workstealing counterparts. The imbalance
during the buffer period is higher than that during the after period,
when not work stealing, as depicted in Figure 7d. Surprisingly, the
imbalance for the configurations using work stealing is worse than
configuration not using work stealing.

Key takeaway: Slowdown during the buffer period immediately
after scaling is not much worse than the slowdown after the buffer
period. We do however find some outlier traces which experience
extreme slowdown during the buffer period.

7 FUTUREWORK
Validating the simulator: We use real-world object traces and
real-world parameters for our task durations and remote storage
network latency. But, the results we obtain are only indicative of

real-world performance. Ideally, we would validate the simulator by
running the experiments in a real world setup and comparing the
results with the simulation results. Validation would allow readers
to use our quantitative results in their results instead of just as
indicators of performance trends. However, this paper required 990
simulations and validating them all would require 118,800 hours of
CPU time. We are looking into validating the simulator on a subset
of the experiments.

Other data-aware architectures:We specifically evaluate data-
aware hash-based algorithms for task placement. But, other archi-
tectures based on metadata servers [27, 36], and hybrid hashing
and metadata servers [29] exist. They also need to be comparatively
evaluated for a full picture of data-aware scheduling for serverless
computing.

Dynamic workload traces:We use a simple workload model
with only one change in workload intensity per run. Experiments
with dynamic traces which have many workload intensity vari-
ations per run can reveal more bout the behavior of placement
policies in a real-world setting.

Evaluate multiple trace characteristics: In this work, we only
evaluate the impact of scheduling policies on different traces. But,
we only consider one characteristic in the trace, the object identifier.
We need to further evaluate the impact of other trace properties
such as the object size, request size, and inter-arrival time.

8 RELATEDWORK
Hash-based object placement: The imbalance in the number of
objects allocated to different servers in a cluster has been empiri-
cally studied for all hash-based object placement policies we looked
at. It was either studied in the original work which proposed the
policy [7, 10, 11, 25, 28], or in subsequent work which uses the
policy [37]. A recent work [35] studies the load imbalance in the
number of objects per server after a cluster size change, common
in autoscaling serverless applications.

CH-RLU [15] and PASch [8] use consistent hashing to schedule
schedule stateless function invocations. Both studies identify that
using naive consistent hashing causes long queues due to load-
imbalance, and propose a load-aware consistent hash to mitigate
the problem.

We are the first to systematically quantify the slowdown of, and
additional resources used by, data-intensive serverless applications,
before and after autoscaling, caused by hash-based object placement

A Performance Evaluation of Hash-based Task Placement Algorithms for Serverless Computing CF ’23, May 9–11, 2023, Bologna, Italy

policies, and subsequent task scheduling based on those object
locations.

Serverless/Autoscaling storage workloads: Industrial data
processing software such as Snowflake [39], Databricks [4], Qubole [5],
Quickwit [3], and Milvus [40] use input data caching. Snowflake
uses consistent hashing with work stealing. Databricks uses greedy
scheduling with bounded delay. Quickwit uses rendezvous hashing.
Qubole uses consistent hashing.

Stateful serverless research prototypes Boki [16] and Jiffy [20]
both use hashing to allocate keys to nodes in their key-value store
implementations.

Caching has been used to mitigate the storage bottleneck for in-
termediate generated by serverless applications [21, 31]. Pixels [9]
uses intelligent data placement to overcome the latency penalty of
reading data from remote storage. Several works [26, 30, 34] pro-
pose mitigation strategies, complementary to caching, to overcome
throttling and latency penalty of reading input data.

Cache-enabled serverless clusters make design decisions other
than hash-based scheduling. We do not evaluate these designs
in this work. An evaluation of such decisions would be valuable
future work. Cloudburst [36] and OFC [27] use a central metadata
server to perform cache-aware scheduling.We do not compare hash-
based schedulers with schedulers using central metadata servers
in this work. Faa$T [33] prefetches the data required by individual
executions. We do not evaluate prefetching in this work.

Systematic exploration of scheduling policies: Hermod [18]
systematically explores the policy space of load balancing and con-
solidation strategies for stateless serverless functions. There has
been recent work on systematic evaluation of load balancing poli-
cies for tasks in a single-server multi-core setup [24]. It demon-
strates the success of work-stealing as a load balancing policy in a
multi-core setup. There is also a reference architecture for datacen-
ter scheduling [6]. All three aforementioned works do not consider
object location or any storage during task placement. We are the
first to systematically the study the object of hash-based object
placement on task placement, load balance, and slowdown.

9 CONCLUSION
Data-driven interactive computation is an important workload
widely used for business analytics, search-based decision making,
and log mining. These applications’ short duration and bursty na-
ture are a natural fit for serverless computing. These applications
are composed of many tasks that run for 100s of milliseconds. Ap-
plication tasks which read data from remote storage such as AWS
S3 experience a storage bottleneck in the form of an additional 13
ms latency, with a 99th-percentile latency of over 1,200ms [9]. The
99th-percentile latency is over ten times the duration of the average
task.

Serverless data processing platforms such as Snowflake [39],
Databricks [1] and others [3, 5, 40], remedy this bottleneck by
using a local cache on each node. While remedying the storage
bottleneck, the cache-enabled nodes raise a scheduling challenge.
Objects, which tasks access, are assigned to nodes, and tasks which
access an object need to be mapped to the same node repeatedly
for caching to be effective. Hash-based task placement policies
are commonly used by cluster to direct tasks to nodes with the

appropriate data. The mapping from tasks to nodes changes as the
scales, a common occurrence in serverless clusters. This change
has a performance impact. We are the first to quantify the impact
of scaling on task performance in cache-enabled data processing
clusters.

We analyze task slowdown, hit rate, and imbalance before and
after scaling. We analyze the additional resources used after scaling,
above the expected change to serve the workload. We perform this
evaluation using trace based simulation by running hundreds of sce-
narios using IBM COS [14] traces using a cache-enabled serverless
cluster simulator implement in OpenDC [23].

The data, simulator, and auxiliary scripts are open-source and
available on Zenodo at https://zenodo.org/record/7812238.

From our analysis, we extract 7 main observations, and the fol-
lowing 4 key findings:

(1) The task slowdown due to load imbalance can be more than
10× the object imbalance for some trace.

(2) Hash-based task placement algorithms only outperform data-
oblivious greedy scheduling when combined with worksteal-
ing.

(3) Cache-enabled serverless cluster can consumemore resources
after scaling (up to 21% more) due to cache misses.

(4) Slowdown during the buffer period immediately after scaling
is not much worse than the slowdown after the buffer period.

ACKNOWLEDGMENTS
This project is co-funded by the projects NWO Top2 OffSense, EU
H2020 GraphMassivizer, and EU MCSA-RISE CLOUDSTARS.

REFERENCES
[1] 2022. Optimize performance with caching on Databricks. https://docs.databricks.

com/optimizations/disk-cache.html. Accessed: 10-10-2022.
[2] 2022. Serverless: What it is. https://glossary.cncf.io/serverless/. Accessed:

10-10-2022.
[3] 2023. Architecture of Quickwit Full-text Search. https://quickwit.io/docs/

concepts/architecture/. Accessed: 01-02-2023.
[4] 2023. Databricks Serverless Compute. https://docs.databricks.com/serverless-

compute/index.html. Accessed: 01-02-2023.
[5] 2023. Quble Rubix. https://github.com/qubole/rubix. Accessed: 01-02-2023.
[6] Georgios Andreadis, Laurens Versluis, Fabian Mastenbroek, and Alexandru Iosup.

2018. A reference architecture for datacenter scheduling: design, validation, and
experiments. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX, USA, November
11-16, 2018. IEEE / ACM, 37:1–37:15. http://dl.acm.org/citation.cfm?id=3291706

[7] Ben Appleton and Michael O’Reilly. 2015. Multi-probe consistent hashing. CoRR
abs/1505.00062 (2015). arXiv:1505.00062 http://arxiv.org/abs/1505.00062

[8] Gabriel Aumala, Edwin F. Boza, Luis Ortiz-Avilés, Gustavo Totoy, and Cristina L.
Abad. 2019. Beyond Load Balancing: Package-Aware Scheduling for Serverless
Platforms. In 19th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGRID 2019, Larnaca, Cyprus, May 14-17, 2019. IEEE, 282–291.
https://doi.org/10.1109/CCGRID.2019.00042

[9] Haoqiong Bian and Anastasia Ailamaki. 2022. Pixels: An Efficient Column Store
for Cloud Data Lakes. In 38th IEEE International Conference on Data Engineering,
ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE, 3078–3090. https:
//doi.org/10.1109/ICDE53745.2022.00276

[10] Chaos Dong and Fang Wang. 2021. DxHash: A Scalable Consistent Hash Based
on the Pseudo-Random Sequence. CoRR abs/2107.07930 (2021). arXiv:2107.07930
https://arxiv.org/abs/2107.07930

[11] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and
Jinnah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network
Load Balancer. In 13th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2016, Santa Clara, CA, USA, March 16-18, 2016, Katerina J.
Argyraki and Rebecca Isaacs (Eds.). USENIX Association, 523–535. https:
//www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud

https://zenodo.org/record/7812238
https://docs.databricks.com/optimizations/disk-cache.html
https://docs.databricks.com/optimizations/disk-cache.html
https://glossary.cncf.io/serverless/
https://quickwit.io/docs/concepts/architecture/
https://quickwit.io/docs/concepts/architecture/
https://docs.databricks.com/serverless-compute/index.html
https://docs.databricks.com/serverless-compute/index.html
https://github.com/qubole/rubix
http://dl.acm.org/citation.cfm?id=3291706
https://arxiv.org/abs/1505.00062
http://arxiv.org/abs/1505.00062
https://doi.org/10.1109/CCGRID.2019.00042
https://doi.org/10.1109/ICDE53745.2022.00276
https://doi.org/10.1109/ICDE53745.2022.00276
https://arxiv.org/abs/2107.07930
https://arxiv.org/abs/2107.07930
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud

CF ’23, May 9–11, 2023, Bologna, Italy Talluri et al.

[12] Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph Idziorek, Richard Krog,
Colin Lazier, Erben Mo, Akhilesh Mritunjai, Somasundaram Perianayagam, Tim
Rath, Swami Sivasubramanian, James Christopher Sorenson III, Sroaj Sosothikul,
Doug Terry, and Akshat Vig. 2022. Amazon DynamoDB: A Scalable, Predictably
Performant, and Fully Managed NoSQL Database Service. In 2022 USENIX Annual
Technical Conference, USENIX ATC 2022, Carlsbad, CA, USA, July 11-13, 2022, Jiri
Schindler and Noa Zilberman (Eds.). USENIX Association, 1037–1048. https:
//www.usenix.org/conference/atc22/presentation/elhemali

[13] Erwin Van Eyk, Lucian Toader, Sacheendra Talluri, Laurens Versluis, Alexandru
Uta, and Alexandru Iosup. 2018. Serverless is More: From PaaS to Present Cloud
Computing. IEEE Internet Comput. 22, 5 (2018), 8–17. https://doi.org/10.1109/
MIC.2018.053681358

[14] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen I. Kat. 2020. It’s
Time to Revisit LRU vs. FIFO. In 12th USENIX Workshop on Hot Topics in Storage
and File Systems, HotStorage 2020, July 13-14, 2020, Anirudh Badam and Vijay
Chidambaram (Eds.). USENIX Association. https://www.usenix.org/conference/
hotstorage20/presentation/eytan

[15] Alexander Fuerst and Prateek Sharma. 2022. Locality-aware Load-Balancing
For Serverless Clusters. In HPDC ’22: The 31st International Symposium on High-
Performance Parallel and Distributed Computing, Minneapolis, MN, USA, 27 June
2022 - 1 July 2022, Jon B. Weissman, Abhishek Chandra, Ada Gavrilovska, and
Devesh Tiwari (Eds.). ACM, 227–239. https://doi.org/10.1145/3502181.3531459

[16] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless Computing with
Shared Logs. In SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems
Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021, Robbert van
Renesse and Nickolai Zeldovich (Eds.). ACM, 691–707. https://doi.org/10.1145/
3477132.3483541

[17] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khan-
delwal, Qifan Pu, Vaishaal Shankar, João Carreira, Karl Krauth, Neeraja Jayant Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.
2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.
CoRR abs/1902.03383 (2019). arXiv:1902.03383 http://arxiv.org/abs/1902.03383

[18] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2022. Hermod:
principled and practical scheduling for serverless functions. In Proceedings of
the 13th Symposium on Cloud Computing, SoCC 2022, San Francisco, California,
November 7-11, 2022, Ada Gavrilovska, Deniz Altinbüken, and Carsten Binnig
(Eds.). ACM, 289–305. https://doi.org/10.1145/3542929.3563468

[19] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy,
Matthew S. Levine, and Daniel Lewin. 1997. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide
Web. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, Frank Thomson Leighton and
Peter W. Shor (Eds.). ACM, 654–663. https://doi.org/10.1145/258533.258660

[20] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and Ion Stoica.
2022. Jiffy: elastic far-memory for stateful serverless analytics. In EuroSys ’22:
Seventeenth European Conference on Computer Systems, Rennes, France, April 5 - 8,
2022, Yérom-David Bromberg, Anne-Marie Kermarrec, and Christos Kozyrakis
(Eds.). ACM, 697–713. https://doi.org/10.1145/3492321.3527539

[21] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Server-
less Analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, Andrea C.
Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX Association, 427–444. https:
//www.usenix.org/conference/osdi18/presentation/klimovic

[22] Zhenxiao Luo, Lu Niu, Venki Korukanti, Yutian Sun, Masha Basmanova, Yi He,
Beinan Wang, Devesh Agrawal, Hao Luo, Chunxu Tang, Ashish Singh, Yao Li,
Peng Du, Girish Baliga, and Maosong Fu. 2022. From Batch Processing to Real
Time Analytics: Running Presto® at Scale. In 38th IEEE International Conference
on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE,
1598–1609. https://doi.org/10.1109/ICDE53745.2022.00165

[23] Fabian Mastenbroek, Georgios Andreadis, Soufiane Jounaid, Wenchen Lai, Jacob
Burley, Jaro Bosch, Erwin Van Eyk, Laurens Versluis, Vincent van Beek, and
Alexandru Iosup. 2021. OpenDC 2.0: Convenient Modeling and Simulation of
Emerging Technologies in Cloud Datacenters. In 21st IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing, CCGrid 2021, Melbourne,
Australia, May 10-13, 2021, Laurent Lefèvre, Stacy Patterson, Young Choon Lee,
Haiying Shen, Shashikant Ilager, Mohammad Goudarzi, Adel Nadjaran Toosi, and
Rajkumar Buyya (Eds.). IEEE, 455–464. https://doi.org/10.1109/CCGrid51090.
2021.00055

[24] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy. 2022.
Efficient Scheduling Policies for Microsecond-Scale Tasks. In 19th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2022, Renton, WA,
USA, April 4-6, 2022, Amar Phanishayee and Vyas Sekar (Eds.). USENIX Associa-
tion, 1–18. https://www.usenix.org/conference/nsdi22/presentation/mcclure

[25] Gal Mendelson, Shay Vargaftik, Katherine Barabash, Dean H. Lorenz, Isaac
Keslassy, and Ariel Orda. 2021. AnchorHash: A Scalable Consistent Hash.
IEEE/ACM Trans. Netw. 29, 2 (2021), 517–528. https://doi.org/10.1109/TNET.
2020.3039547

[26] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive
Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In Proceedings
of the 2020 International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel
Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q.
Ngo (Eds.). ACM, 115–130. https://doi.org/10.1145/3318464.3389758

[27] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane
Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel Hag-
imont, Noël De Palma, Bernabé Batchakui, and Alain Tchana. 2021. OFC: an
opportunistic caching system for FaaS platforms. In EuroSys ’21: Sixteenth Euro-
pean Conference on Computer Systems, Online Event, United Kingdom, April 26-28,
2021, Antonio Barbalace, Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar
(Eds.). ACM, 228–244. https://doi.org/10.1145/3447786.3456239

[28] Yuichi Nakatani. 2021. Structured Allocation-Based Consistent Hashing With
Improved Balancing for Cloud Infrastructure. IEEE Trans. Parallel Distributed
Syst. 32, 9 (2021), 2248–2261. https://doi.org/10.1109/TPDS.2021.3058963

[29] Vladimir Andrei Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu.
2018. Stateless Datacenter Load-balancing with Beamer. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2018, Renton,
WA, USA, April 9-11, 2018, Sujata Banerjee and Srinivasan Seshan (Eds.). USENIX
Association, 125–139. https://www.usenix.org/conference/nsdi18/presentation/
olteanu

[30] Matthew Perron, Raul Castro Fernandez, David J. DeWitt, and Samuel Madden.
2020. Starling: A Scalable Query Engine on Cloud Functions. In Proceedings of
the 2020 International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel
Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q.
Ngo (Eds.). ACM, 131–141. https://doi.org/10.1145/3318464.3380609

[31] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2019, Boston, MA, February
26-28, 2019, Jay R. Lorch and Minlan Yu (Eds.). USENIX Association, 193–206.
https://www.usenix.org/conference/nsdi19/presentation/pu

[32] An Qin, Yuan Yuan, Dai Tan, Pengyu Sun, Xiang Zhang, Hao Cao, Rubao Lee, and
Xiaodong Zhang. 2017. Feisu: Fast Query Execution over Heterogeneous Data
Sources on Large-Scale Clusters. In 33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017. IEEE Computer
Society, 1173–1182. https://doi.org/10.1109/ICDE.2017.162

[33] Francisco Romero, Gohar Irfan Chaudhry, Iñigo Goiri, Pragna Gopa, Paul Batum,
Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. 2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications.
In SoCC ’21: ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1 -
4, 2021, Carlo Curino, Georgia Koutrika, and Ravi Netravali (Eds.). ACM, 122–137.
https://doi.org/10.1145/3472883.3486974

[34] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2021. Characterizing and
Mitigating the I/O Scalability Challenges for Serverless Applications. In IEEE
International Symposium on Workload Characterization, IISWC 2021, Storrs, CT,
USA, November 7-9, 2021. IEEE, 74–86. https://doi.org/10.1109/IISWC53511.2021.
00018

[35] Alexander Slesarev, Mikhail Mikhailov, and George Chernishev. 2022. Bench-
marking Hashing Algorithms for Load Balancing in a Distributed Database Envi-
ronment. In Advances in Model and Data Engineering in the Digitalization Era,
Philippe Fournier-Viger, Ahmed Hassan, Ladjel Bellatreche, Ahmed Awad, Ab-
derrahim Ait Wakrime, Yassine Ouhammou, and Idir Ait Sadoune (Eds.). Springer
Nature Switzerland, Cham, 105–118.

[36] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. Proc. VLDB Endow. 13, 11 (2020), 2438–2452.
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf

[37] Ion Stoica, Robert Tappan Morris, David R. Karger, M. Frans Kaashoek, and Hari
Balakrishnan. 2001. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the ACM SIGCOMM 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, August
27-31, 2001, San Diego, CA, USA, Rene L. Cruz and George Varghese (Eds.). ACM,
149–160. https://doi.org/10.1145/383059.383071

[38] David Thaler and Chinya V. Ravishankar. 1998. Using name-based mappings to
increase hit rates. IEEE/ACM Trans. Netw. 6, 1 (1998), 1–14. https://doi.org/10.
1109/90.663936

[39] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Moti-
vala, and Thierry Cruanes. 2020. Building An Elastic Query Engine on Dis-
aggregated Storage. In 17th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020, Ranjita Bhagwan and George Porter (Eds.). USENIX Association, 449–462.
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

[40] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,
Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua

https://www.usenix.org/conference/atc22/presentation/elhemali
https://www.usenix.org/conference/atc22/presentation/elhemali
https://doi.org/10.1109/MIC.2018.053681358
https://doi.org/10.1109/MIC.2018.053681358
https://www.usenix.org/conference/hotstorage20/presentation/eytan
https://www.usenix.org/conference/hotstorage20/presentation/eytan
https://doi.org/10.1145/3502181.3531459
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3477132.3483541
https://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
https://doi.org/10.1145/3542929.3563468
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/3492321.3527539
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1109/ICDE53745.2022.00165
https://doi.org/10.1109/CCGrid51090.2021.00055
https://doi.org/10.1109/CCGrid51090.2021.00055
https://www.usenix.org/conference/nsdi22/presentation/mcclure
https://doi.org/10.1109/TNET.2020.3039547
https://doi.org/10.1109/TNET.2020.3039547
https://doi.org/10.1145/3318464.3389758
https://doi.org/10.1145/3447786.3456239
https://doi.org/10.1109/TPDS.2021.3058963
https://www.usenix.org/conference/nsdi18/presentation/olteanu
https://www.usenix.org/conference/nsdi18/presentation/olteanu
https://doi.org/10.1145/3318464.3380609
https://www.usenix.org/conference/nsdi19/presentation/pu
https://doi.org/10.1109/ICDE.2017.162
https://doi.org/10.1145/3472883.3486974
https://doi.org/10.1109/IISWC53511.2021.00018
https://doi.org/10.1109/IISWC53511.2021.00018
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
https://doi.org/10.1145/383059.383071
https://doi.org/10.1109/90.663936
https://doi.org/10.1109/90.663936
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

A Performance Evaluation of Hash-based Task Placement Algorithms for Serverless Computing CF ’23, May 9–11, 2023, Bologna, Italy

Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-
Built Vector Data Management System. In SIGMOD ’21: International Confer-
ence on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang
Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2614–2627.
https://doi.org/10.1145/3448016.3457550

A USING THE ARTIFACTS
The artifact is available on Zenodo at https://zenodo.org/record/
7812238.

The repository contains the data, the simulator, and the support
scripts necessary to reproduce the plots from our paper.

We use data from the IBM COS [14] dataset, but extract and
subset of it and convert it into a format suitable for simulation.
These simulable traces are in the input_traces1 folder.

We add our distributed cache simulator as a component to OpenDC [23]
datacenter simulation suite. The specific version of the source code
we use in this work can be found at https://github.com/sacheendra/
opendc/tree/cachearch. We include a pre-compiled jar file of the
simulator in this repository.

The three support scripts enumerated 1, 2, and 3 use the Ray
distributed programming framework to run multiple experiments
simultaneously. Each simulation requires a dedicated CPU core and
10GB of RAM. On a single server with 20 cores, all the simulations
complete in about half an hour. Running the simulations on a cluster
requires cluster-specific setup for Ray.

A.1 Requirements
(1) Linux-based OS
(2) JDK 17 (for the simulator)
(3) Python 3.11
(4) A LaTeX distribution (for the plots)

A.2 Building the Simulator
This repository comes with a pre-built version of the simulator. But,
this is the procedure if a user chooses to build their own.

(1) Clone the latest source code fromhttps://github.com/sacheendra/
opendc/tree/cachearch.

(2) Build the simulator using the command ./gradlew :opendc-
storage:opendc-distributed-cache:fatJar.

(3) The jar file should will be in the opendc-storage/opendc-
distributed-cache/build/libs folder.

(4) Copy the jar file opendc-distributed-cache-3.0-SNAPSHOT.jar
to this repository.

A.3 Running the Simulations
(1) Create a python virtual environment using a tool of your

choice. Conda and virtualenv both work.
(2) Use python 3.11.
(3) Install the required libraries using pip -r requirements.txt.
(4) Run the simulations using python ‘1. run_simulations.py’.
(5) Next, summarize the results using python ‘2. summarize_results.py’.
(6) The plots will be in the result_plots3 folder.

https://doi.org/10.1145/3448016.3457550
https://zenodo.org/record/7812238
https://zenodo.org/record/7812238
https://github.com/sacheendra/opendc/tree/cachearch
https://github.com/sacheendra/opendc/tree/cachearch
https://github.com/sacheendra/opendc/tree/cachearch
https://github.com/sacheendra/opendc/tree/cachearch

	Abstract
	1 Introduction
	2 Serverless Data Processing Cluster System Model
	2.1 System Model
	2.2 Terms and Metrics to Understand Serverless Data Processing Clusters

	3 Experimental Method to Determine the Impact of Scaling on Cache-enabled Serverless Clusters
	4 Slowdown due to hash-based task placement
	5 Increased Resource Use after Scaling
	6 Immediate Impact of Scaling
	7 Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Using the Artifacts
	A.1 Requirements
	A.2 Building the Simulator
	A.3 Running the Simulations

