
OpenDC 2.0: Convenient Modeling and Simulation
of Emerging Technologies in Cloud Datacenters

Fabian Mastenbroek1,2, Georgios Andreadis3,1,2, Soufiane Jounaid2, Wenchen Lai2, Jacob Burley2,
Jaro Bosch2, Erwin van Eyk2, Laurens Versluis2, Vincent van Beek3,2, and Alexandru Iosup2,1

1TU Delft, 2VU Amsterdam, 3Solvinity, the Netherlands – Contact: F.Mastenbroek@atlarge-research.com

Abstract—Cloud datacenters are important for the digital
society, serving stakeholders across industry, government, and
academia. Simulation is a critical part of exploring datacenter
technologies, enabling scalable experimentation with millions of
jobs and hundreds of thousands of machines, and what-if analysis
in a matter of minutes to hours. Although the community has
already developed powerful simulators, emerging technologies
and applications in modern datacenters require new approaches.
Addressing this requirement, in this work we propose OpenDC,
a new platform for datacenter simulation. OpenDC includes
novel models for emerging cloud-datacenter technologies and
applications, such as serverless computing with FaaS deploy-
ment and TensorFlow-based machine learning. Our design also
focuses on convenience, with a web-based interface for interactive
experimentation, support for experiment automation, a library of
prefabs for constructing and sharing datacenter designs, and sup-
port for diverse input formats and output metrics. We implement,
validate, and open-source OpenDC 2.0, a significant redesign and
release after a multi-year research and development process. We
demonstrate the benefits of OpenDC for the field through a set of
representative use-cases: serverless, machine learning, procure-
ment of HPC-as-a-Service infrastructure, educational practices,
and reproducibility studies. Overall, OpenDC helps understand
how datacenters work, design datacenter infrastructure, and
train the next generation of experts.

Index Terms—OpenDC, datacenter, simulation, modeling, use-
cases, experimentation, performance analysis.

I. INTRODUCTION

Cloud infrastructure has become a cornerstone of today’s
digital society [1]. Stakeholders across industry, government,
and academia employ diverse cloud services hosted by data-
centers, and expect services to be reliable, high speed, and low
cost. Faced with growing demand, datacenter architects must
address complex challenges in distributed systems [2], [3],
software engineering [4], and performance engineering [5].
The consequences of bad decisions can be financial penalties
or even loss of customers, so conservative datacenter operators
demand new technologies be well-tested [6]. Simulation is
essential in enabling large-scale and fine-grained exploration,
analysis, and comparison of datacenter technologies. Although
the community has already built many high-quality simula-
tors [7]–[9], the many technologies and applications emerging
in cloud datacenters, and the need to educate an increasing
number of professionals about them, raise new challenges—
in creating new simulation models and in engineering new
simulation platforms. Addressing these challenges, we propose
in this work OpenDC, an open-source datacenter simulation
platform, and present five representative use-cases to demon-
strate the value of OpenDC for the field.

As in other fields of science and technology, simulation is
critical for the development and adoption of new techniques in
datacenter operations. Simulators such as Grid/CloudSim [7],
SimGrid [8], and iCanCloud [9] have demonstrated the ability
of simulators to represent and understand the operation of very
complex operations, at cluster- and datacenter-level. In con-
trast, the main alternatives to simulation, such as mathematical
analysis [10], [11] and real-world experimentation [12], do not
yet seem viable at the scale, dynamicity, and diversity required
by cloud datacenters. In particular, conducting experiments
on physical infrastructure at datacenter-scale is prohibitively
expensive, time consuming, and difficult to reproduce [13],
notwithstanding environmental concerns (see Section II-C).

Current simulators, albeit much used in our community,
still pose a variety of challenges. First, they need to support
frequent and substantial innovation in cloud datacenters, and
specifically to provide new models that capture emerging tech-
nologies and applications, such as serverless computing [14]
and machine learning workloads running in datacenters [15];
Section II-B describes a general model. Second, we observe
the difficulty of using simulators as platforms for research
communities: we need to improve the tools for interaction and
visualization, the support offered for diverse input formats and
output metrics, the process of designing and sharing (parts of)
complex datacenters, etc. Third, simulators can help different
stakeholders—from experts doing analysis and design, to
managers taking essential decisions, to students learning the
basics of the field—, raising the challenge of engineering such
software for more general users.

Addressing these challenges, we propose in this work
OpenDC 2.0, an open-source platform for modeling, simu-
lation, and experimentation with cloud datacenters. OpenDC
is not meant to replace all other simulators currently in use
by the community. Instead, it aims to complement the current
state-of-the-art, in particular through its focus on use-cases that
have not been systematically supported before, on convenience
as a platform for the research community, and on software
engineering. Overall, our contribution is three-fold:

1) We design OpenDC 2.0, an advanced platform for dat-
acenter simulation (Section III). OpenDC is the first
simulator to integrate serverless and machine learning
execution, both emerging services already offered by all
major cloud providers. OpenDC also models all the ma-
jor operational layers of typical clouds, from datacenter
infrastructure and virtualization, to resource management
and scheduling. OpenDC provides convenience in the de-

mailto:F.Mastenbroek@atlarge-research.com

sign, understanding, and exploration of cloud datacenters
through discrete-event simulation.

2) We present �ve representative use-cases for datacenter
simulation using OpenDC (Section IV). These use-cases
explore a variety of important and emerging topics in the
community: serverless, machine learning, procurement of
HPC-as-a-Service infrastructure, reproducibility, and edu-
cational practices. Using OpenDC, we gain new insights,
e.g., whether the new cost policies of AWS Lambda ben-
e�t the average user, or whether datacenters adding the
HPC workloads of small and medium enterprises should
procure vertically or horizontally scaled infrastructure.

3) We open-source OpenDC 2.0. Our work on the OpenDC
simulator started in 2016 [16]. About 4 years after
version 1.0, we release an innovative new version. Our
development follows modern engineering practices, from
using co-routines for ef�cient simulation, to extensive
testing and documentation. The complete material is
online: https://github.com/atlarge-research/opendc

II. A PRIMER ON DATACENTER SIMULATION

OpenDC employs simulation for datacenter exploration. In
this section, we explain what simulation is, model datacenter
operation, and compare simulation to other approaches.

A. What is Simulation?

Simulation is the “imitation of a real-world process or
system over time, enabling the study of, and experimentation
with the internal interactions of complex systems” [17]. It
is widely applied to complex systems in many domains of
science and industry, including computer systems [7]–[9].

In this work, we consider only a particular method of
simulation,discrete-event simulation[17], where the operation
of a system is represented as a sequence of events over time,
with the assumption that no changes occur in-between events.
This allows direct progression between events, in contrast to
continuous models. Almost all efforts to model cloud and
datacenter operations employ discrete-event simulation, due to
the sheer scale and complexity of datacenters and long-running
nature of experiments; OpenDC does the same.

B. A General Model for Datacenter Simulation

We assume in this work the general model of datacenters
and their operation based on [18] and depicted by Figure 1.

Workload: The workload consists of applications running
on physical machines, virtual machines (VMs), or containers.

We consider alsoapp managers, such as the big data
framework Apache Spark, the machine learning framework
TensorFlow, and the serverless framework OpenFaaS, which
orchestrate virtualized work�ows and data�ows for their users.

Our model also considers scienti�c workloads deployed
on virtualized environments. These workloads are primarily
comprised of conveniently (embarrassingly) parallel tasks—
e.g., Monte Carlo simulations—formingbatch bags-of-tasks.

Datacenter Resources: Workloads run on physical data-
center infrastructure. We model datacenter infrastructure as a

Figure 1: Generic model for datacenter operation.

set of physical clusters of possiblyheterogeneous hosts, each
host a node in a datacenter rack. A host can execute multiple
VM- or container-workloads, managed by ahypervisor.

We model in this work resource consumption of applications
(e.g., CPU usage) per discretized time slices. Workloads
report at each time slice their resource consumption to the
hypervisor, which consolidates the requests and distributes the
resources based on some scheduling policy: CPU resources
are allocated between the workloads that request it, through
time-sharing(if on the same cores) orspace-sharing(if on
different cores). We assume a generic memory model, with
memory allocation constant over the runtime of a machine. As
is currently common in industry, we allow overcommission of
CPU resources [19], but not of memory resources [20].

Operational Phenomena: Cloud datacenters are com-
plex hardware and software ecosystems, in which complex
phenomena emerge [21]. Given the absence of a general
model, we consider two very common operational phenomena:
(i) performance variabilitycaused by performance interfer-
ence between collocated VMs [22], [23], modeled using
a CPU-contention predictor for demanding business-critical
workloads [22], and (ii)correlated cluster failures, based on
a common model for space-correlated failures [24], where a
failure may trigger more failures within a short time span,
which together form a group. Currently, we model onlyful-
l-stop failures: machines crash fully, with subsequent recovery
after some duration.

Resource Management and Scheduling: We model a
workload and resource manager that performs management
and control of all clusters and hosts, and is responsible for the
lifecycle of submitted workloads, including their placement
onto the available resources [18]. The resource manager is
con�gurable and supports variouspolicies to distribute work-
loads over resources.

https://github.com/atlarge-research/opendc

C. On the Bene�ts and Drawbacks of Simulation

Simulation might not always be the most appropriate tool.
In this section, we compare it with other approaches.

Compared to Mathematical Analysis: Analytic models
provide a fast and high-level mathematical approach for pre-
dicting performance, but it is dif�cult to capture in these high-
level models the heterogeneity and complex interplay (e.g., the
operational phenomena in Section II-B) of the hardware and
software ecosystems present in datacenters. Accuracy is also
only as good as the calibration data, which remain scarce.

Simulation, in contrast to purely analytical models, al-
lows composing various models according to well-understood,
system-level rules.

Compared to Real-world Experimentation: Although
experiments on physical infrastructure deliver results closest
to real-world operating conditions, they are dif�cult to repro-
duce due to various phenomena (e.g., [25]) affecting system
performance and in turn measurements non-trivially.

Real-world experiments are time-consuming, expensive, and
have a signi�cant environmental impact: recently, we evalu-
ated1 over 6,000 scenarios running a month-long workload
trace, which to simulate took 112 CPU hours on a modern
machine, but would have taken 8.6 billion CPU hours to
replicate on physical infrastructure, incurring an energy bill
roughly equivalent to the annual energy consumption of the
Netherlands (120 billion kWh).

Simulation, in contrast to real-world experimentation, also
enables the possibility to investigate “what-if” scenarios. For
example, an organization could want to try out the potential
limitations of a large-scale architecture or protocol, and a dat-
acenter may want to explore topological alternatives, without
having to fully implement and deploy it.

III. T HE DESIGN OFOPENDC 2.0

In this section, we synthesize requirements and design
around them a datacenter simulator, OpenDC 2.0.

Novelty: OpenDC 2.0 is a radical re-design and re-
engineering effort over version 1 (2017). We contrast it to the
current state-of-the-art in datacenter simulators, in Section V.

A. Timeline of the OpenDC project

We describe in this section the evolution of the OpenDC
project since its inception, which we summarize in Figure 2.
The project started mid-2016 with the aim to support the ex-
ploration of various datacenter concepts and technologies, and
to enable new education practices and topics, by developing
new scienti�c methods. In 2017, we started the development
of OpenDC 1.0 and outlined our vision for the project [16].

The initial version of OpenDC, while suitable as prototype,
suffered from issues such as scalability, maintainability, and
extensibility, which made it dif�cult to deploy in practice.
Addressing these issues, we started a signi�cant redesign
of the simulator early 2018, which has since formed the
foundation of numerous projects within our research group.

1M.Sc. thesis by Georgios Andreadis, 2020. bit.ly/CapelinThesis

Figure 2: Timeline of the OpenDC project.

New, OpenDC 2.0 supports (1) the reference architecture
for datacenter schedulers [18], and TensorFlow and serverless
workloads, (2) systematic design-space exploration through
experiment automation, and (3) procuring cloud infrastructure.

B. Requirements Analysis

We now synthesize the requirements addressed by OpenDC:

(R1) Model cloud datacenter environments. The system
must enable the user to model cloud environments, within
the scope introduced in Section II-B, e.g., with support
for diverse resources, workloads, and policies.

(R2) Support visual and interactive exploration. Datacenter
technology must be accessible to diverse users. The sys-
tem must enable users to explore datacenter technologies
in visually and interactively.

(R3) Support the scale of modern cloud infrastructure.
Cloud infrastructure currently operates at an unprece-
dented scale. The system should operate ef�ciently to
support large-scale cloud environments and workloads.

(R4) Support relevant emerging scenariosin the commu-
nity. The system must model at least one class of the
workloads and operations in:
a) Serverless computing, which is becoming widely

adopted. In serverless computing, the cloud provider
orchestrates the infrastructure for applications instead
of the developer, and bills with �ne-granularity [14].

b) Machine learning (ML) , which has gained much at-
tention, enabling applications in various domains [26].
The training part of ML is particularly compute- and
data-intensive, and thus has high energy footprint.

(R5) Ensure interoperability with the existing ecosystem.
The community already employs various formats and
tools to conduct research. To foster adoption, the system
should be interoperable with existing tools.

(R6) Enable re-use and sharing of designs. The design of
datacenters is a complex activity and demands technical
expertise. To simplify the design process and decrease
barriers to entry, the system should facilitate the re-use
and sharing of designs, either by parts or entirely.

(R7) Support educational purposes. There is a lack of skilled
human resources in the �eld [27]. The system should
support various kinds of learning for diverse students.

(R8) Adhere to modern software development standards.
The system should not only be useful for this work, but
should evolve and adapt to future work. To this end,
the system should be engineered to professional, modern
software development standards.

Figure 3: An overview of the architecture of OpenDC 2.0.

C. Overview of the OpenDC Architecture

We discuss in this section the high-level architecture of
OpenDC, which we have depicted in Figure 3. At the highest
level, the OpenDC architecture is composed of three main
components: (i) a web and textual frontend, (ii) a model-driven
discrete-event simulator, and (iii) a set of tools to assist
with simulation. In turn, the datacenter model is a layered
architecture representing the various abstraction levels offered
by clouds, e.g., Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), building upon a small simulator core. We
now discuss, in turn, each layer and sub-layer:

Frontend (addresses requirements R2, R7): In Figure 3,
the Web Interface(A) serves as the user-portal, through
which stakeholders can interactively construct, share, and re-
use datacenter designs (see Section III-D). With these designs,
users can con�gure and conduct experiments. At any time,
users can explore the automated plots and visual summaries
generated by OpenDC, from single setups to comparative
experiments. TheAPI Server(B) responds to web requests,
acting as intermediary and business-logic between the web
frontend on the one side, and database and simulator on
the other side. TheDatabase(C) manages the state of the
simulation platform, including topology models, historical
data, simulation con�gurations, and simulation results.

Users may also deploy the simulator as a standalone pack-
age and utilize itsCommand Line Interface(D). Although
this does not provide the same usability and accessibility as
the web interface, it is useful for conducting experiments in
headless environments and simpli�es reproducibility efforts.

Simulator (R1, R3): The foundation of OpenDC is the
simulator. TheSimulator Core(N) provides a small set of
primitives to enable simulated components using discrete-
event simulation. TheResource Models(M) model generic
resource-sharing semantics, which are used to represent the
behavior of datacenter resources and their scheduling policies.
The Event Tracer(L) traces events in the system, enabling
in-depth monitoring of components. The simulator coordinates

with cloud-level operational models, IaaS and PaaS, which we
describe in the following, in turn.

Infrastructure (R1): The Resource Manager(J) compo-
nent models a typical IaaS such as AWS EC2, from where
users can lease compute resources on-demand. Internally, the
Resource Topology(K) represents the resources available in
the simulated datacenter, ranging from physical cluster nodes
to VMs to containers (see Section II-B). TheMonitoring Ser-
vice(I) is responsible for monitoring the datacenter resources.

Platform (R4): This level supports the execution of many
platform-level operations, programmatically. This enables a
variety of application types, as described in Section II-B. For
example, theServerless(O) component models aFunction-
as-a-Service(FaaS) platform such as AWS Lambda (see
also Section III-E). TheMachine Learning(P) component
models the TensorFlow machine learning framework in the
cloud (see also Section III-F). TheWork�ows (Q) component
implements a generic work�ow engine.

Convenience Tools (R5, R6):Supporting the simulation
process is a collection of tools. TheExperiment Runner(E)
automates the orchestration of experiments using OpenDC,
enabling users to write declarative experiment speci�cations,
and perform automated experiment design and optimization
(e.g., evolutionary optimization). TheWorkload Processor(F)
enables reading, writing, and processing of workload traces in
many of the formats used by the community. Currently, our
tooling supports parsing, processing, and converting workload
traces from the Grid Workload Archive [28], Work�ow Trace
Archive [29], and Parallel Workloads Archive [30], and several
internal and ad-hoc formats. TheEnvironment Processor(G)
is responsible for processing the datacenter designs of users
and adds mechanisms to assemble, provision, and con�gure
the simulated infrastructure. TheLibrary of Metrics (H)
consists of re-usable collectors for a vast and diverse set of
metrics utilized by the community, ranging from resource-
level metrics (such as CPU usage or energy consumption) to
application-level metrics (such as work�ow makespan).

Figure 4: An abstract overview of prefabs.

D. Prefabs

The design of datacenters is a highly complex process.
Faced with a shortage of datacenter designers, it is important to
make datacenter design accessible to a wider range of people.
Currently, to create simulations, users of simulators in the �eld
need to specify each individual component used to build out
the entire datacenter. This approach is time-consuming, error-
prone, and requires a high level of technical expertise.

Addressing R6, we envision that prefabricated compo-
nents (prefabs), that is, complete collections of components,
could be “dragged and dropped” into a datacenter design.
OpenDC implements prefabs, which accelerates prototyping.
Our approach also allows for exporting of existing designs into
prefabs, which allows users to quickly clone existing compo-
nents to scale up their designs by resource-replication, repli-
cate and re-use entire designs, and share datacenter designs
for new or underrepresented workloads with the community.

Figure 4 depicts how components can be grouped together
into prefabs, which are treated as any other objects that can
be used in designing datacenters. Without prefabs, groupings
at cluster-level would require hundreds of manual steps to
replicate, and much more to construct a hyperscale datacenter.

E. Simulation of Serverless Workloads

Serverless computing encompasses cloud services that ab-
stract operational concerns, such as resource provisioning and
load-balancing, away from the user. They provide an event-
driven interface, and charge users at a much �ner granularity
than the traditional cloud computing services.

Motivated by the promise held by serverless computing, the
SPEC Research Group has investigated the properties of tens
of real-world serverless platforms, and proposed the SPEC RG
Reference Architecture for Function-as-a-Service (FaaS) [14].
This reference architecture is one of the �rst to provide
a systematic approach to designing serverless platforms for
which serverless computing is charged as a cloud service.
OpenDC takes this high-level descriptive model, and adds to
it a detailed, �ne-grained, operational model. We validate and
use this new capability in Section IV-A.

Figure 5 depicts the OpenDC detailed design for FaaS
operations. At the core of this design are new components for
function computation, function routing, and usage monitoring,
which we discuss in the remainder of this section, in turn.

The Computationcomponent provides all the logic sur-
rounding theFunction Instance(C), our model of a FaaS

Figure 5: Architecture of the serverless model in OpenDC.

execution container. TheFunction Deployer(B) decideshow
the function instance is deployed on the available resources,
on invocation. A special component, theDelay Model(A),
simulates delays that typically occur during deployment, such
as cold starts or lookup delays; we envision this will evolve as
the community develops more advanced serverless platforms.

The Routing component is responsible for routing
invocation-requests to available instances of their respective
function. TheFunction Router(E) is the brain of this com-
ponent. It uses a customizableRequest Queue(D) to enqueue
invocation requests, and a con�gurableRouting Policy(F)
to select an available function instance to route a request to.
OpenDC provides many classic policies, such as selecting
a random available instance or the instance with the least
cumulative idle time, which the community can complement.

The Resource Scheduling(H) component manages the
datacenter resources on which the function-instances run.
Users can con�gure it through two scheduling policies: the
Resource Management Policy(I), which governs the lifetimes
of function instances, and theAllocation Policy (G), which
decides on the appropriate VM for each containerized instance.

To monitor individual functions, theUsage Monitor(K)
operates on a map ofFunction Pro�les (L). Each pro�le
contains a selection of metrics, data structures, and other
characteristic elements. The usage monitor employs aCost
Model (J) to determine the cost of computations using a
variety of customizable cost functions.

F. Simulation of TensorFlow

Machine learning (ML) and deep learning have gained much
recent attention due to their great potential in numerous ar-
eas [26], including speech recognition, medical image analysis,
and product recommendation. Current ML applications can
have large data and computational requirements, which makes
cloud datacenters natural environments to execute them.

Among the many approaches developed to enable ML-use
in complex applications, TensorFlow [15] is one of the most
prominent and representative ML frameworks. Yet, this raises
new challenges, such as data management. To explore and
improve the operation of TensorFlow in datacenters, we extend
OpenDC with a model for the TensorFlow ecosystem. Our
detailed, �ne-grained model captures TensorFlow workload

Figure 6: Architecture of the TensorFlow model in OpenDC.

execution and communication. We validate the model else-
where2; Section IV-B showcases experiments using this model.

Figure 6 depicts the architecture of the TensorFlow model in
OpenDC. TheResource Manger(F) allocates and deallocates
resources using various policies. We use simple models for
networking and storage: TheNetwork Controller (E) is a
simple network model for datacenters to control the data-
�ow between machines, considering bandwidth but not more
complex network features. TheStorage Controller(G) models
persistent storage used during execution. We also provide an
extension point,Devices(H), for heterogeneous resources.

Our TensorFlow model considers application, execution,
and communication aspects. In OpenDC, to ensure generality
beyond TensorFlow, an ML application can be modeled as a
high-level Deep Learning Model(A) or a detailedData�ow
Graph (B). The Execution(D) components uses different
strategies to orchestrate jobs across machines for distributed
training (such as the parameter server strategy), and executes
two types of operations (for mathematical computation and
communication). TheCommunication(C) and Execution
components collaborate to support different communication
methods (e.g., asynchronous communication). TheApplication
Monitors (I) record application-level metrics for TensorFlow
users. Similarly,Resource Monitors(J) keep cluster-level
metrics for sysadmins.

G. Software Engineering Process of OpenDC

We employ industry-standard development practices to de-
velop OpenDC (R8). The main codebase is written in Kotlin,
a modern and fast-growing programming language that is
already adopted by large companies including Google [31].
Kotlin is designed to be fully interoperable with Java, and
consequently it bene�ts from integration with the vast Java
ecosystem. Kotlin greatly facilitatesco-routines, allowing the
simulator to ef�ciently and conveniently model datacenter
operations—they simplify event-driven asynchronous execu-
tion thus �tting the simulation model, enable interruptions
without thread-like context switching thus lowering the over-
head, and enable concurrency even on a single OS-level thread
(so, not parallelism) thus keeping complexity in check.

We enforce throughcontinuous integration(CI) adherence
to high development standards, running for each change an
automated test suite and static code analysis tools (e.g., linting)

2MSc thesis Wenchen Lai, atlarge-research.com/pdfs/lai2020thesis.pdf

Table I: Use-cases that we cover in this work.

Sec. Focus of use-case Workload Targets

IV-A Serverless [32] Cold start, Cost
IV-B Machine Learning [33], [34] Runtime, Energy Usage
IV-C Resource procurement [20] CPU Contention
IV-D Validation [35], [36] Work�ow Makespan
IV-E Education Diverse Students

to spot common mistakes. In addition, we employ a manual-
review policy in our version control system, which requires
an independent code review before changes to the simulator
or its extensions can be integrated into the main codebase.

Similarly to the Linux project, we encourage and oversee
the integration of OpenDC extensions into the main codebase.
Although this approach increases the overall burden of main-
tenance, it also ensures high quality and compatibility across
all components, as OpenDC evolves.

IV. U SE CASES FORDATACENTER SIMULATION

We present in this section �ve use-cases in which we cover
relevant and emerging topics, and show how OpenDC is useful
in such scenarios. Table I summarizes the use-cases.

A. Analyzing Serverless Workloads in Simulation

Despite efforts from the community to provide open-source
implementations and architectures of FaaS (such as Open-
Lambda [37]), exploring, testing, and evaluating different
con�gurations of FaaS platforms remains challenging. For
instance, the existing FaaS implementations are all speci�c to
an architectural level, and are usually not trivial to con�gure
for researchers that are not actively involved in the serverless
�eld. Moreover, regardless of the technology used, cloud
research often suffers from performance variability (e.g., due
to heterogeneity of infrastructure) and from high cost to
run experiments on physical infrastructure (as we argue in
Section II-C). Lowering the threshold of entry to serverless re-
search, OpenDC supports FaaS simulation (see Section III-E).

Experiment Setup: We focus in this experiment on repro-
ducing the operation of the real-world FaaS platform provided
by Microsoft Azure, as presented in their recent Hybrid
Histogram experiments [32] on characterizing and optimizing
real FaaS workloads. Beyond reproducibility, we aim to show
OpenDC can help explore new scenarios with ease, so we
add an experiment inspired by a recent change in how cloud
operators charge FaaS users.

We model the environment to closely match the original
execution environment, which includes 18 VMs of 2 cores and
4 GB of memory each. The container allocation and request
routing policies are set to the default random policy, since
they are not speci�ed in [32]. We consider the two classes
of resource management polices described in [32]: the Hybrid
Histogram policy and the Fixed-Keep-Alive policies with 10
minute keep-alive intervals. We sample 68 applications from
the �rst week of the Azure Functions trace, each with 1,500
to 2,500 function-invocations. During execution, OpenDC
records the percentage of cold starts, per application; we have
validated the results elsewhere, through a student thesis.

Table II: Cost comparison of running the Azure trace with the
old 100 ms and the new 1 ms billing granularity.

Billing granularity Every 100 ms Every 1 ms Difference

Price [$] 1.0168 1.0006 0.0162

Figure 7: Cold start distribution of �xed keep-alive and hybrid
policies in OpenDC Serverless. Fewer cold-starts are better.

Results:Figure 7 depicts the results of the simulations using
both resource management policies. The cold start percentage
trends closely follow those of [32, Fig.20]. The 4-hour Hybrid
variant Hybrid Histogram policy allows for a consistent 10
to 20% reduction in cold starts at the 75th+ percentile. This
supports [32]'s claim that the Hybrid Histogram policy is par-
ticularly effective for applications with infrequent invocation
patterns, which usually reside in the last quarter.

Short-notice experiment on billing granularity: In De-
cember 2020—merely two weeks before the deadline of
CCGRID—AWS Lambda changed the granularity of their
function-billing, from 100 ms down to 1ms; other operators
should follow soon. What would be the impact of this change
on real users? Using OpenDC's customizable cost model
interface (described in Section III-E), we ran a simulation on
a sample of the �rst 7 days of the Azure trace (� 100,000
invocations). Table II compares the results for the 100 ms and
1 ms granularities. The cost difference between both models
for this speci�c workload is� 1.6%. The difference factor is
low in this case, because most functions in the trace have
execution times in multiples of a 100. The savings factor
could be higher depending on the workload: data-streaming
functions which typically execute for short duration could
bene�t from this change.

Conclusion: OpenDC is the �rst to capture the reference
architecture for FaaS proposed by SPEC [14] in a simulation
model. The results in this section show evidence the OpenDC
serverless model is accurate enough to enable reproducing
real-world results. We also conclude OpenDC can conve-
niently help compare the costs of running real workloads under
different pricing models.

B. Simulation for TensorFlow-based Machine Learning

We experiment in this section with TensorFlow ML opera-
tions (see also Section III-F). We focus on understanding its
performance in HPC environments, and in particular: (i) the
in�uence of the distribution strategy on the dynamic operation
of the system, (ii) the scalability of HPC environments in the
presence of ML workloads, and (iii) the resource utilization
in the system over time.

Table III: Total energy consumption (kWh). Workload: [34].

Strategy Batch size
Number of Workers

1 2 4 8

Default - 4.24

Parameter Server

16 240.9 241.0 241.1 241.5
32 120.5 120.5 120.7 119.4
64 60.2 60.3 59.7 58.3
128 150.6 148.5 144.5 136.4

Mirrored

16 240.9 241.0 241.1 241.5
32 120.5 120.5 120.7 119.4
64 60.2 60.3 59.7 58.3
128 150.6 148.5 144.5 136.4

Figure 8: Strategy comparison on the Fanthom workload [33].

Experiment Setup: We reproduce experiments from the
peer-reviewed papers [33] and [34]. For the A1 workload [34],
we consider a single TensorFlow mini-application, which com-
putes the AlexNet model and uses the Caltech 101 dataset; we
execute this for its normal 142 iterations, varying the batch size
between 16, 32, 64 and 128. For the Fathom workloads [38],
we consider only AlexNet and VGG-19 using the ImageNet
dataset, which we run for 200 iterations each. The arrival pat-
tern of these two applications has no relation with the results,
so we test them one by one. We recreate the HPC environment
at KTH and the IBM “Minsky” platform, con�guring the
computing devices and network matrix from [34, Table 1] and
[33, Figure 1], respectively. In our experiments, we test three
distribution strategies: (i)Default executes computations on
a single device, (ii)Parameter Serverperforms computation
on multiple stateless worker devices, while a parameter server
keeps track of and communicates the model parameters, and
(iii) Mirrored enables synchronous distributed training on
multiple GPUs, using a ring-AllReduce algorithm [15] to
transfer model updates across devices. We report normalized
execution time [33] and energy consumption, modeled linearly
based on machine load [39], with an idle baseline of 90 W and
a maximum power draw of 334 W.

Results: Figure 8 depicts the strategy comparison on the
Fathom workloads in the IBM “Minsky” environment. For the
AlexNet application, the normalized execution time (NET) of
the application using the mirrored strategy is lower than that
using parameter strategy. The VGG-19 application performs
similar to parameter server strategy and mirrored strategy. A
possible reason for this is that the VGG-19 application is
computationally intensive, so its computation time accounts
for a higher percent of the execution time.

Table III lists the simulation results of running A1 at KTH;
we show here only the total energy consumption. We observe

Figure 9: Overcommitted CPU cycles for a portfolio ofsam-
pled HPCworkloads on a series of candidate topologies.
Legend: horizontal () = more machines with fewer cores
each,vertical () = fewer machines with more cores each,
volume() = more machines/cores, andvelocity() = higher
clock speed of the cores.

that consumption varies signi�cantly across setups. Compared
to the default strategy with one worker, other settings have
higher power-consumption. Moreover, the application con-
sumes the least for a batch size of 64, compared to other
batch sizes. We attribute this to AlexNet being optimized for
its default batch size of 64.

Conclusion: OpenDC enables us to explore how different
distribution strategies in�uence the performance and energy-
consumption of TensorFlow applications.

C. Resource procurement for HPC-as-a-Service with Capelin

Long-term capacity planning (procurement) of cloud in-
frastructure is a critical yet non-trivial optimization problem
that could lead to signi�cant service improvements, cost
savings, and environmental sustainability [40]. Although many
approaches to this problem exist [41], [42], companies still
rely on rule-of-thumb reasoning for decisions. To minimize
operational risks, many such industry approaches lead to
signi�cant overprovisioning [43], or miscalculate the balance
between under- and over-provisioning [44].

Experiment Setup: We explore in this experiment the
question “what if a large part of the workload would be based
on HPC jobs submitted by small and medium enterprises?”—
a typical question for a national-level, public cloud provider.
HPC jobs with this source are generally not very large, but
can be CPU-sensitive; thus, we want to investigate CPU
contention between VMs. We experiment with a one-month
long trace of a business-critical workload from Solvinity, a
Dutch cloud operator, of which an anonymized version has
been published [20]. The trace consists of a subset of HPC
VMs and other, conventional VMs. As thebaselinescenario,
we model the execution environment that ran the original
workload. We then up-sample and down-sample the load
incurred by the HPC part of the workload, from 0% (No HPC)
to 100%. We conduct experiments with differentdatacenter
topologies, the baseline and also new topologies that the cloud
operator could procure.

Figure 10: Empirical cumulative distribution function of work-
�ow makespan for real-world and simulated execution of the
Chronos [36] (left) and Galaxy [35] (right) workloads.

Results: We observe various metrics (OpenDC provides
over 15), including the amount of overcommitted CPU cycles,
which is a proxy for performance (higher is worse). Figure 9
depicts this metric. Changing the mix of HPC and non-
HPC components in the workload has signi�cant impact on
the performance of the system, even when the total load is
kept constant. We observe an increase of overcommitted CPU
cycles relatively to the baseline by a factor of 5.58x in the
worst case. Amongst the candidate topologies, the vertical
volume scaling () performs best in scenarios with more
HPC jobs, whereas horizontal scaling () performs best in
scenarios without HPC jobs.

Conclusion: These results highlight the impact of capacity
planning on the performance of a system and show how
OpenDC can be applied in such capacity planning scenarios.

D. Reproducibility with and validation of OpenDC

Reproducibility is a major challenge in datacenter experi-
ments [13], [25]. We show how OpenDC can help.

Experiment Setup: We investigate in this experiment the
operation of the work�ow engine integrated in OpenDC,
focusing on its ability to reproduce the execution of real-
world workloads. We use two workloads: (i) Chronos [36],
an industrial workload of work�ows from a private cloud
that processes monitoring data of industrial equipment, and
(ii) Galaxy, a scienti�c workload of work�ows executed
for nearly two months on Galaxy Project's public Europe
server [35], published in December 2020 by the Work�ow
Trace Archive [29]. We model the environment to closely
match the original execution environments, using the peer-
reviewed publications as main source of information [35], [36].

Results:Figure 10 depicts the empirical cumulative density
functions (ECDFs) of the work�ow makespan for the real-
world and simulated execution of the Chronos (left) and
Galaxy (right) workloads.

We focus �rst on the Chronos workload and observe that,
although the simulated execution closely follows the structure
of the real-world workload, there is a slight offset upward in
the simulated makespan, resulting in an average relative error
of 1.012%. We believe this issue is caused by small timing
differences between the original execution environment of
Chronos and OpenDC, for instance, because OpenDC models
machine start-up and termination as instantaneous events.

	Introduction
	A Primer on Datacenter Simulation
	What is Simulation?
	A General Model for Datacenter Simulation
	On the Benefits and Drawbacks of Simulation

	The Design of OpenDC 2.0
	Timeline of the OpenDC project
	Requirements Analysis
	Overview of the OpenDC Architecture
	Prefabs
	Simulation of Serverless Workloads
	Simulation of TensorFlow
	Software Engineering Process of OpenDC

	Use Cases for Datacenter Simulation
	Analyzing Serverless Workloads in Simulation
	Simulation for TensorFlow-based Machine Learning
	Resource procurement for HPC-as-a-Service with Capelin
	Reproducibility with and validation of OpenDC
	Educating Diverse Students on Computer Systems

	Related Work
	Conclusion and Future Work
	References

