
PorygonCraft: Improving and
Measuring the Scalability of

Modifiable Virtual Environments
using Dynamic Consistency Units

Bachelor Thesis Computer Science

Author:
J.J.C.J. Cuijpers

Supervisor:
J.J.R. Donkervliet, MSc

Co-reader:
Prof. dr. ir. A. Iosup

August 21, 2020

Abstract

The video game industry is a growing industry with revenues of over 150 billion
a year as of 2019. Not only are video games used for entertainment purposes, but
also for a variety of other uses such as, but not limited to, education. Modifiable
virtual environments (MVE) are real-time, online, multi-user environments which
allows its users to interact with every aspect of the world through programs by
building, connecting. Minecraft-like games are Modifiable Virtual Environments
and these are highly popular. However, these MVEs are poorly scalable, which
raises the question: how can we improve the scalability of Minecraft-like games?
We design, present, implement, and evaluate a system that utilizes dynamic con-
sistency units to support larger numbers of players. Introducing bounded inconsis-
tency in a Minecraft-like world will allow us to control the maximum inconsistency
in a Minecraft-like game. Through the use of real-world experiments, we show a
promising improvement in both the number of outgoing packets and the amount
of outgoing bytes, as well as the utilized CPU cores.

1

Contents

1 Introduction 3
1.1 Problem statement . 3
1.2 Research questions . 4
1.3 Methodology . 4
1.4 Structure of the thesis . 5

2 Background 5
2.1 Workload partitioning . 5
2.2 Interest Management . 6
2.3 Minecraft-specific solutions . 7
2.4 Consistency in Distributed Systems . 8
2.5 Yardstick . 9
2.6 A Minecraft-like game: Glowstone . 9
2.7 Dynamic Consistency Unit . 9
2.8 Dyconits in PorygonCraft . 10

3 PorygonCraft: A Dyconit-based System for Minecraft-like Games 11
3.1 Requirements . 11
3.2 High-level design of the PorygonCraft system 11
3.3 Message preprocessor . 12
3.4 Dyconit control unit . 13
3.5 Dyconit collection . 13
3.6 Policy manager . 13
3.7 Message sender . 14

4 Consistency policies 14
4.1 Donnybrook Uniform policy . 14
4.2 Vector-Field Consistency policy . 15

5 Experimental setup and results 16
5.1 Environment . 16
5.2 Data collection and metrics . 16
5.3 Workload . 16
5.4 Experimental results . 17

6 Discussion 20

7 Conclusion 20

8 Future work 20

2

1 Introduction

The video game industry is thriving, with more than 214 million video game players
across the United States, video games have become an important tool to connect with
others. 64% percent of U.S. adults regularly plays games, 65% of those adults play with
others, and the large majority claims that video games provide them mental stimula-
tion and relaxation [1]. The video game industry has generated almost $120 billion in
revenue in 2018 [2] and reached 152 billion in revenue in 2019 [3, 4, 5], making video
games the leading form of entertainment [1].

As video games are also used increasingly for educational and social purposes, in
which they can increase empathy, co-operation, and the development of skills like math
or problem-solving [6], we identify that video games are becoming increasingly impor-
tant as they become more socially interactive. In contrast to board games, where players
usually only play with family and close friends, it is now a lot easier to interact with
strangers, blurring any form of cultural boundaries or socio-economic differences [7]. Ad-
ditionally, more and more video games are made for educational purposes to increase the
motivation and engagement of students and to be able to give them a hands-on approach.

A modifiable virtual environment is a real-time, online, multi-user environment that
allows its users to modify the virtual world’s objects and parts, create new content by
connecting components, and interact with the world through programs [8]. We also refer
to modifiable virtual environments as Minecraft-like games.

A prime example of a Minecraft-like game is Minecraft itself. Minecraft was created
by Mojang in 2011 and purchased by Microsoft in 2014 for $2.5 billion. As of May 2020,
it has sold over 200 million copies, and currently has around 126 million active players
across all platforms each month [9].

The player emerges himself in a world consisting of blocks where everything is mod-
ifiable, allowing them to create and discover their world and having the possibility to
share this world with others. Not only is Minecraft used as a game for entertainment,
but it is also used for educational purposes, such as building computers [10]. This is
made possible with the release of Minecraft Education Edition, a platform teachers can
use to teach courses to their students [11].

Minecraft-like games do not scale as is also observed in Yardstick [12]. Despite
the large number of active players, instances are limited to 200-300 players. Because
Minecraft-like games are becoming more popular we identify this scalability problem as
a problem that needs to be solved.

1.1 Problem statement

Scalability is one of the grand challenges in computer science. The Internet is a
global-scale computer system that compromises over 100 million nodes, computer per-
formance and price-performance have improved by 100% every year since 1985 [13].
However, there are still many of challenges when it comes to improving the performance
and scalability of these systems. Improving the scalability of Minecraft-like games is es-
pecially challenging, because, they are real-time interactive distributed systems, which
require low-latency, consistency, and real-time execution.

3

1.2 Research questions

In this thesis, we evaluate the scalability improvement on the communication aspect
of Minecraft-like games by using dyconit consistency in modifiable virtual environments,
which will be explained in-depth in Chapter 3. By introducing dynamic consistency
units (dyconits), we aim to improve the scalability by reducing the number of outgoing
messages. We do this by allowing increased inconsistency between players for data in
which they are not interested, as proposed by Donkervliet et al. [8]. To address this
scalability improvement, we address the following research questions.

• RQ1: How to design a dynamic consistency unit system for Minecraft-like games?

Designing a dyconit system is challenging because:

– They have stringent consistency and Quality of Service (QoS) requirements
and;

– They operate differently from databases, in which consistency models have
been studied in much more depth, and for which conits were originally de-
signed.

Designing a system based on dyconits is important because it helps us to under-
stand how we can utilize dyconits in solving this scalability problem and to deliver
a general framework others can continue working on.

• RQ2: How to enable game operators to make trade-offs between consistency and
scalability?

There is no one-system-fits-all solution, therefore, we question how we can enable
game operators to make trade-offs between consistency and scalability, as every
application has, for example, its own requirements on how consistent it should be.

• RQ3: How to evaluate the performance benefits of such a system.

We need to question how we evaluate such a system. An important part of an-
swering the scalability problem is to use the right metrics so that we can quantify
how well a solution is doing and to make it possible to compare solutions.

1.3 Methodology

We approach the first research question by identifying important system require-
ments. Then, we observe and understand the technical internals of the Minecraft-like
game to further identify how our design should interact with the Minecraft-like game.
For each requirement, we explore and deliver the component that will solve that partic-
ular requirement. Finally, these components form one coherent system.

We approach the second research question by making use of policies. These policies
can be created and configured by the game developer to manage the dyconits. As a re-
sult, the game developers are able to make trade-offs between consistency and scalability.

We approach the third research question by designing and conducting real-world
experiments. Based on the real-world experiments, we identify a set of metrics that we
can use to determine the performance of our system.

4

Area 1 Area 2 Area 3

Servers

Clients

Figure 1: Workload partitioning, each server maintains a part of the world.

1.4 Structure of the thesis

The first Chapter provides a brief introduction to Minecraft and addresses the main
challenges and research questions of this thesis. In Chapter 2, we introduce back-
ground information including scalability on games, and discuss background information
on consistency models, the conit data structure, and Yardstick, a benchmarking tool for
Minecraft-like games. Chapter 3 discusses the design of PorygonCraft, and Chapter 4
goes in-depth on the policies it uses. Chapter 5 will address the setup and results of the
experiments. Finally, the discussion, conclusion, and future work of this thesis will be
discussed in Chapter 6, Chapter 7, and Chapter 8 respectively.

2 Background

Current state-of-the-art large-scale multiplayer games like World of Warcraft, Guild
Wars 2, or RuneScape are using client/server architectures. The servers are hosted by
the game company, and each player can run a game client on their computer. Supporting
large number of players is challenging, usually resulting in the need for more powerful
hardware to deal with the amount of computation that needs to be done at the server-
side. To reach a playable state in terms of quality of experience, these game companies
use world partitioning.

2.1 Workload partitioning

A game server can only support a certain number of players. To build large-scale
games, we need to divide the work over multiple machines. World partitioning is an
intuitive and effective approach.

By partitioning the virtual world in geographical regions, as visualized in Figure 1, we
fragment the workload over multiple machines. To understand why world partitioning
does not solve the scalability challenge of large-scale online games, we have to introduce
the concept of consistency. We consider a Minecraft-like game to be consistent if the

5

state of the world is in the same state as the world that a player sees. When two players
see a different world or when the state of the world in the server is different from the
state of the world that the player sees, we translate that as inconsistency.

Splitting up the world across multiple servers yields inconsistency between players.
Although we divide the player base over multiple servers, we do not want to give up the
possibility for players to interact with each other. Therefore, all servers —or at least the
relevant ones— have to share data between them. If the inconsistency between players
becomes too large, the player notices, leading to reduced gameplay experience due to
out-of-order operations or reduced latency.

2.2 Interest Management

Much of the research done on the scalability of games focuses on peer-to-peer sys-
tems, which are decentralized systems with a network of interconnected nodes (in this
case clients) that exchange data (in this case player updates). Three of such systems
are Colyseus [14], Donnybrook [15], and Vector-Field Consistency [16]. These systems
make heavy use of interest management. Interest management is determining what
information is relevant to a certain player.

Donnybrook

Donnybrook’s approach to reducing bandwidth—or reducing the amount of data that
can be transferred from one end to another—is to make players only receive updates
from other players in their interest set, the interest set which is the set of entities the
player is paying attention to.

The interest set in Donnybrook is kept small by making use of the limitations of
the human attention. Unlike area of interest, which grows with the density of players.
The players outside of the interest set are shown as doppelgängers. A Doppelgänger is
a computer-controlled player running on the client. Doppelgängers try to imitate the
behavior of players outside the area of interest. Unlike characters in the interest set, the
players do not get continuous updates on the doppelgängers.

Donnybrook’s approach is boolean. Players are either in the interest set, or not,
resulting in coarse-grained control over the inconsistency of the game state. In this
thesis, we show that PorygonCraft can achieve fine-grained control of the inconsistency
between players by using conits and by dynamically adjusting the consistency bounds
and even quantify the inconsistency that is present.

Colyseus

Different from Donnybrook is Colyseus, which focuses on data replication rather than
inconsistency through interest management. Colyseus takes advantage of two properties
of games, namely that games tolerate inconsistency in the game state and that games
have predictable read/writes of the shared states. Each participating player is consid-
ered a node and every node contains primaries and replicas of game objects. Every
game object is assigned a primary node that has authoritative copies of it. The primary
nodes are responsible for (re-)ordering the updates that are applied to those game ob-
jects and if any game object is updated at a different node than the primary node, then
the primary node is free to reorder the update.

6

Colyseus does not guarantee consistency, but eventual consistency, among nodes or
any form of bounded inconsistency but uses an optimistic approach to propagate the up-
dates to peers after each game tick. The approach of Colyseus is not sufficient, because
we want to limit the inconsistency in the system. PorygonCraft, however, optimistically
bounds inconsistency between the player and other entities (which could also be another
player).

Vector-Field Consistency

Santos, Veiga, and Ferreira proposed Vector-Field Consistency [16]. A new consis-
tency model that takes time, sequence, and value criteria to limit inconsistency between
data replicas with techniques based on locality-awareness.

Vector-Field Consistency considers the virtual world to be a 2-dimensional space, as
an abstraction from an N-dimensional virtual world. Positioned in this virtual world are
objects, and their consistency depends on the distance to a pivot, field-generated con-
sistency zone (a region around the pivot), and consistency vectors (a vector consisting
of values that indicate the bounds). A pivot could be anything, for example, a player.
The consistency vectors associated with the objects within the consistency zone contain
a numeric scalar for time, sequence and value that bounds the inconsistency between
the pivot and the object.

The two main properties underlying the Vector-Field consistency model represents
the general idea of PorygonCraft. The first property is that it has some rule regarding
the importance of an entity. We make policies based on comparable rules and implement
these as a policy that runs on PorygonCraft. The second property is that is has a way
of keeping track of the inconsistency between entities in the game. We use dyconits to
bound the inconsistency in the Minecraft-like game.

2.3 Minecraft-specific solutions

To improve the scalability of Minecraft, Diaconu and Keller introduced Kiwano [17],
Kiwano is a distributed system that separates the virtual world into components. Those
components are geographically allocated zones in the real world to reduce latency be-
tween players and the server. For example, every country has its own. One of the
drawbacks of a peer-to-peer architecture is that the workload distribution across the
servers is uneven. Kiwano solves this problem by forming zones into irregular shapes,
these shapes are determined by the dynamic objects in the zone and undergo continuous
reshaping to maintain an even distribution of the workload across the shapes. Conse-
quently, it is fairly easy to allocate resources as the workload is balanced. A significant
difference between a normal client/server architecture and Kiwano is that in the case of
Kiwano the server sends the updates to Kiwano instead of directly to the clients. Ki-
wano then determines which clients need to be updated. A drawback of Kiwano is that
it does not support world updates, which are an important element of Minecraft-like
games because Kiwano only propagates movement updates. World partitioning intro-
duces a decline in quality of experience when the players are in a densely populated
area like a city, where the zones become so small that although players might be able
to see each other, they are not sharing the same game state. Using Kiwano, Diaconu,
Keller, and Valero have implemented for a system for Minecraft called Manycraft [18].
Manycraft allows an unlimited number of players to interact in a read-only environment
by having a Manycraft node that communicates with Kiwano. Although Manycraft
supports an unlimited amount of players in the same world, it is still not possible to

7

modify the world and play Minecraft to its full potential because, as indicated the world
is read-only (i.e., it is not possible to modify the world).

Moll et al. proposed a concept for a Minecraft implementation with a distributed
architecture based on Named Data Networking (NDN) [19]—a future internet architec-
ture that lies outside of the scope of this thesis—replacing the current networking layer
of games with one that is better suited to modern games like Minecraft. In state of the
art MMOGs such as Minecraft, the virtual world is split into zones, each managed by
its own server, to improve the scalability of those games. Instead of the server pushing
information in the form of encoded chunk data to the clients, as is done in current im-
plementations, Moll et al. propose a concept to make use of the advantages of NDN,
such as inherent multicast functionality and security implemented at the packet level.
While this concept focuses on managing the distributed game state in a multi-server ar-
chitecture by using a different architecture for the network layer, the proposed concept
in this thesis will be focused on the application layer and improving the scalability of a
single server by better managing its workload.

2.4 Consistency in Distributed Systems

Unfortunately, both workload partitioning and interest management introduce in-
consistency. Given a distributed system, it is impossible to simultaneously guarantee
consistency, availability, and partition tolerance; this is known as the CAP theorem [?].
Generally, we can make a distinction between two types of systems that represent
both extremes on a spectrum: BASE (Basically Available, Soft-state, Eventual con-
sistency) [20], and ACID (Atomicity, Consistency, Isolation, and Durability) [21]. A
BASE system focuses on keeping a system highly available, while an ACID system
focuses on keeping a system highly consistent. An example of an ACID system is a
traditional database. In this thesis, we introduce inconsistency with dyconits. Dyconits
allow us to control the maximum inconsistency that we allow in our system. Therefore,
taking a place on the consistency spectrum between the two extremes.

Because each client has its copy of the virtual world—or other shared data—whenever
the server updates one of the clients, its data can differ from the data of the other clients.
This is called inconsistency. The consistency model can influence how replicas, which
is essentially copies of the same data, differ internally. However, not every consistency
model specifies the difference of replicas. Therefore, a consistency model is a contract
between processes and the data store [22]. Consistency models that tolerate inconsis-
tency are for example sequential consistency and causal consistency.

To quantify inconsistency, Yu and Vahdat [23] introduced the consistency unit (conit).
A conit specifies the data over which consistency is to be measured [22], using the fol-
lowing consistency dimensions:

1. Numerical error: the numerical difference between the local view and the global
state, calculated as the sum of the weights, of the unseen writes.

2. Order error: the out-of-order writes that affect a conit, or in other words the
level of guarantee in the ordering of updates.

3. Staleness: the maximum amount of time in which local data has not seen a write.

Any of these bounds can take any non-negative numerical value. Furthermore, a
system can specify an arbitrary number of conits, enabling specified consistency archi-
tectures. When applied in virtual environments, we do not know what the consistency

8

requirements are, because entities are constantly moving. Therefore, we need conits
that can change their bounds based on the current context of the data, a dynamic conit
system.

2.5 Yardstick

To understand the performance and scalability of Minecraft-like games, Van der Sar,
et al., introduced the benchmarking tool Yardstick [12], allowing the possibility of us-
ing relevant and realistic workloads and metrics in their benchmarks of Minecraft-like
games in the benchmarking process. With Yardstick, the user can deploy workloads on
a a Minecraft-like server that are determined by the virtual world and a set of emulated
players, it is worth noting that users have the ability to modify the workload program-
matically and by tuning predefined parameters. After the workload is deployed to the
Minecraft-like server, Yardstick monitors the machine running the server, extracting sys-
tem, application and derived performance metrics (i.e., network usage, or the number
of messages per second).

2.6 A Minecraft-like game: Glowstone

Glowstone is an open-source Minecraft server written in Java. At the time of writing
it has 119 contributors in their Github [24]. Glowstone has an active community on
Discord, which is a free online instant messaging application, comprising almost 500
people. Glowstone supports Bukkit-, Spigot- and Paper-API plugins natively.

Just like Minecraft, the world in Glowstone consists of biomes, these biomes are by
default compromised of 32x32 chunks, and every chunk is comprimised of 16x16 blocks.
A biome is a region that represents an environment. This could be, for example, a forest
or a desert. A chunk is a collection of blocks, and blocks get spawned per chunk. Blocks
are the smallest unit of the world, the player can interact with.

We implement PorygonCraft—which will be specified in Chapter 3—on Glowstone.
Although Glowstone has poorly implemented several complex features such as Redstone
compared to the official Minecraft server, this is not a problem because Yardstick will
only deploy bots that are walking around, and do not make use of these features.

2.7 Dynamic Consistency Unit

The dyconit is a consistency unit with bounds that can change over time. Dyconits
are a data structure with a staleness bound, numerical error bound and an order error
bound. In this thesis we will not focus on the order error bound because the game
server imposes already a global order of all messages. The staleness bound indicates
the maximum amount of time that the data associated with the dynamic conit does not
need to be synchronized with the client, while the numerical error bound indicates the
maximum difference in data between the actual state and the current perceived state
of the client. The numerical error is quantified by giving each update a certain weight,
based on its importance. The importance of an update, is determined by the current
active policy.

Bounding by staleness

We define staleness as the age of a message. A message that has become stale is not
seen by others for a certain number of time. When bounding by staleness Bstaleness

1,
we make sure that the server pushes the messages to the clients at least every Bstaleness.

1Bstaleness in milliseconds.

9

Bounding by numerical error

When bounding by numerical error Bnum error, we make sure that the server pushes
messages to the client when the client lags behind on a certain number of messages with
a total weight of Bnum error. We define the weight of messages as the total number of
messages. In case that we assign a value, indicating the importance of a message, the
total weight becomes the sum of these values. For example, the weight of an update
that changes the location of an entity outside of your rendering distance (the distance
the game client can render for the user to see) can be 10, while a location update of an
entity in front of you might have a weight of 50, because it is more important.

It is worth noting that the weights on their own do not hold any value. The value of
the weights is solely determined relatively to the numerical error bound. For example,
if the numerical error bound is set to 100, then an update that is assigned a value 100
is considered very important, because it will trigger the server to immediately push the
update to the client. However, if the numerical error bound is set to 1000, the update
is seen as less important, because the server will not immediately push it to the client.

For both the staleness- and numerical error bound, we cannot determine the bound
during initialization. It is impossible to determine a fixed value during initialization,
because different amount of incoming updates per time frame can significantly impact
the number of updates the client can be behind without the player noticing.

2.8 Dyconits in PorygonCraft

Dyconit

Subscription 2

.

.

Subscription N

Message
Queue

Client
Staleness

Bound
Numerical

Error Bound

Subscription 1

Message 1 Message 2 . Message N

Metadata 1 Metadata 2 . Metadata N

Figure 2: Dyconit design.

Dyconits in PorygonCraft are used to limit the outflow of messages and inconsistency
in the game. It does so by buffering the messages in the dyconit and having consistency
bounds. We define buffering as temporarily storing messages. However, dyconits in
PorygonCraft have messages of multiple clients stored and the dyconit might need to
have different consistency bounds for each client. We solve this by introducing multiple
queues in the dyconit with each their own consistency bounds. A queue with consistency
bounds is called a subscription. Figure 2 shows that each subscription has information
about the client, the bounds, and the message queue. The message queue holds all
the messages that needs to be send to the respective client. Each message is appended
with metadata, that contains information needed to successfully send it. The process of
appending metadata is further elaborate in Chapter 3.

10

3 PorygonCraft: A Dyconit-based System for Minecraft-
like Games

In this Section, we discuss the main components of the dynamic consistency system
PorygonCraft. PorygonCraft is a system that reduces the game’s bandwidth usage while
limiting inconsistency. PorygonCraft captures outgoing messages before it determines,
with the help of dyconits, if and when it should send the message to the player. To
design the dynamic consistency unit system, we set up requirements.

3.1 Requirements

• R1: Efficiently maintaining the state of a large number of dyconits.

We need to be able to efficiently maintain the state of a large number of dyconits.
Two of the important follow-up operations are the possibility of creating and re-
moving dyconits from our system, and modifying the consistency bounds of the
dyconits at runtime. However, the computational time it takes to maintain the
dyconits should not be small, because it will affect the Quality of Service for the
player.

• R2: Create and remove dynamic conits at runtime.

For the system to reduce the time needed for the game to process outgoing mes-
sages, its overhead needs to be small. PorygonCraft has to iterate across all
dyconits every time it gets the signal to assess the consistency bounds. Therefore,
we should never have dyconits in the system that are not in use.

• R3: The ability to modify the consistency bounds of the dyconits at runtime.

What separates a dyconit from a conit (consistency unit), is that the consistency
bounds of the dyconit are subject to change depending on the context of the game
and the active policy—which will be discussed in the next chapter. Because the
state of a virtual world is constantly changing (i.e., day/night cycles, in-game
events, etc.), we need to change these bounds while the game is running, or in
other words, we need to be able to modify these bounds at runtime.

• R4: Keep track of the consistency bounds of the dyconits and prevent exceeding
bounds.

Our last requirement is a result of the three other requirements. Now that we
have full control and transparency over our dyconits we can use them to bound
inconsistency and monitor their inconsistency.

3.2 High-level design of the PorygonCraft system

As a result of the requirements set up in the previous section, we present Pory-
gonCraft and discuss each component. PorygonCraft is a system that enables Minecraft-
like games to use dyconits, because of the ability to control what we do with the mes-
sages. We define a message as an event that happens in the Minecraft-like game that
needs to be propagated to the client.

When PorygonCraft captures a message it attaches metadata to it. The metadata
ensures that we keep information that we need to send the message to the client. The

11

message, together with the metadata, is buffered to a dyconit after. A message gets
buffered to a dyconit based on the location of the entity (i.e., another player or a com-
puter controlled character) the message is coming from. Every time the Minecraft-like
game sends a signal to PorygonCraft to asses the bounds, message queues are forwarded
to the client, if and only if the consistency bounds of the dyconit are exceeded.

A policy enforcer will continuously assess the consistency bounds of the dyconit and
adjusts them if necessary. The active policy is determined during the instantiation of
the game by the policy manager.

Dynamic consistency unit system

Dyconit Control Unit

Message
demultiplexer

Message sender

Policy Manager

Policy
Policy

Policy
Policy

7

Configuration file

CLIENT

Dyconit Collection

Dyconit
Dyconit

Dyconit
Dyconit

Subscription

Consistency assessor

Legend Message Path Configuration Signal

Component Sub-component Property Helper module

Active Policy

Policy enforcer

Location
update

Message
preprocessor

Minecraft-
like game

1
2 3

5
6

4

8

Figure 3: PorygonCraft system design. The orange boxes indicate the main compo-
nents, the yellow boxes indicate subcomponents, the red boxes are properties of the
(sub)component it is attached to.

3.3 Message preprocessor

The message preprocessor (component 2) is shown in Figure 3. The messages need
to be appended with metadata to determine information such as type, content, and
recipient of the message. We will need this information later to forward the message to
the correct client. PorygonCraft does this by preprocessing the messages with metadata
as soon as it captures the message. It also enables PorygonCraft to be used in a large
collection of Minecraft-like games, instead of being specifically tailored to Glowstone.
In the PorygonCraft implementation on Glowstone, the message preprocessor does the
following:

1. Compute the location of the sender of the message.

2. Store the client recipient and its session, enabling us to send the message at a later
point in time.

3. Pass the message with metadata to the Dyconit Control Unit.

12

3.4 Dyconit control unit

The dyconit control unit (DCU) is where we create, adjust, and remove dyconits at
runtime. It enables PorygonCraft to satisfy requirements R1 and R2. Additionally, the
DCU is the place where PorygonCraft monitors the consistency bounds on the dyconits,
and adjusts them when needed, satisfying requirement R4. This is done with the two
subcomponents located in the DCU: the message demultiplexer (component 3), and the
policy enforcer (component 8). Starting with the message demultiplexer, which takes the
message that was tagged with metadata by the message preprocessor, and determines
to which dyconit the message belongs. In the occurrence that the dyconit does not ex-
ist yet, the DCU will create a new dyconit. Each message is assigned to a single dyconit.

The second subcomponent in the DCU is the policy enforcer. The policy enforcer
is responsible for adjusting the consistency bounds of a dyconit. In the event that a
dyconit has subscriptions, then every subscription has its own set of bounds. Every time
a player receives a message, all their subscriptions will be assessed and the correspond-
ing consistency bounds are adjusted based on the current policy. The policies will be
discussed in more detail in Section 4.

3.5 Dyconit collection

The dyconit collection (component 4), is closely connected to the DCU. Its only
function is to hold all the dyconits and its subscriptions currently present in the system,
and to track which dyconit is associated with each chunk.

In the PorygonCraft implementation on Glowstone, we associate every chunk with a
dyconit. However, multiple clients can be interested in a single chunk. In order to solve
this problem every dyconit has multiple subscriptions (each subscription is associated
with a single client) and every subscription has its own bounds.

3.6 Policy manager

The policy manager (component 7), holds a set of different policies that can be as-
signed to the policy enforcer. The server moderator can decide which policy he wants
to initialize the game with. If no specific policy is chosen, it will use a null policy, which
causes, every message to be send immediately to its recipient. The null policy acts like a
Minecraft-like game without PorygonCraft. The policy manager enables the possibility
to change the active policy at runtime. This is not evaluated in this thesis, but lends
itself for future research.

The policy manager can have any number of policies that are implemented through
an interface, and its only task is to tell the DCU which policy is the current active policy.
Initially, the policy is chosen by a configuration, however, the current design makes it
possible to expand on it by adding a feature that would allow for changing policies at
runtime, which again, would be done by a set of rules (a policy).

Policies change the staleness bounds and numerical error bounds of the dyconits.
Therefore, it is possible to implement any policy that would affect these bounds, but
one could be constrained by the variety of information that could be extracted from the
Minecraft-like game. For example, if you want to implement a policy based on the area
that the player can see, but the Minecraft-like game does not offer a way to extract this
information, then it would not be possible to make a policy based on this information,

13

however, if the Minecraft-like game does offer this information, then it is possible to im-
plement this policy. Another concern about implementing policies is that they need to
be time-efficient. If enforcing a policy on a dyconit takes too long, due to computations,
then we might have more inconsistency in our system than we allow. The system does
not guarantee that the bounds are met, but it optimistically bounds the inconsistency.

PorygonCraft assumes that it can extract information about the game to enforce
the policies. However, this is not a part of the design. For PorygonCraft to be able to
enforce the active policy, it needs to be able to access the same information that is used
in the active policy.

3.7 Message sender

Depending on the architecture of the Minecraft-like game, The message sender (com-
ponent 5), can be called from outside of PorygonCraft. As soon as the message sender is
invoked, it will fetch the dyconit collection, iterate over every dyconit and/or subscrip-
tion, and determine if it should send the messages that are collected to the recipient.
Upon exceeding the consistency bounds the message queue will be emptied, and the
dyconit will be reset (the staleness and the numerical error of the dyconit will be set to
zero).

4 Consistency policies

To change a consistency unit into a dynamic consistency unit we need a guideline
on how to change the consistency bounds. Policies are introduced as a main component
in PorygonCraft. In this thesis, we introduce two different policies, each showing a
different set of rules, and the ability to mimic existing solutions, such as Donnybrook
and Vector-Field Consistency.

4.1 Donnybrook Uniform policy

Legend Player Chunk

Figure 4: A visual representation of the
Donnybrook policy. The dark squares
correspond with a lower amount of in-
consistency and the light blue squares
correspond with higher amounts of in-
consistency.

The first policy evaluates the behavior
of Donnybrook, reducing the frequency of
sending less important messages, thus lower-
ing the amount of bandwidth needed. The
notion of doppelgängers is not treated, be-
cause doppelgängers are a client-side opti-
mization and are not part of the dyconit pol-
icy.

Bounding the inconsistency is a bi-
nary event when the Donnybrook pol-
icy is applied to PorygonCraft. Having
bounded inconsistency is realized by mak-
ing sure that a player gets updated at
least every 100 milliseconds when they are
in an arbitrarily large region around the
player.

Similar to Donnybrook, the area of inter-
est is where bounded inconsistency is enforced.
In Glowstone we take the area of interest as

14

the chunk the player is standing on, and the
chunks around the player, as seen in Figure 4. When the player moves, the area of
interest changes according to our movement, as seen in Figure 5, and PorygonCraft will
change the consistency bounds of the dyconits accordingly.

Policy enforced

Figure 5: Changing the consistency level of the chunks based on movement under the
Donnybrook policy.

4.2 Vector-Field Consistency policy

The second policy is more fine-grained than the previous policy. Instead of having
a binary event, we introduce a gradient of consistency based on distance. This policy is
the implementation of the Vector-Field Consistency model.

Legend Player Chunk

Figure 6: A visual representation of the epi-
center policy.

The level of inconsistency of the
world is determined by the distance
of an entity and the player, where a
shorter distance results in a lower in-
consistency, due to the bounds being
lower. We define a ring of chunks,
of a player, as the chunks around the
player of which the associated dyconits
have the same consistency bounds. This
means that there is less inconsistency
closer to the player, as opposed to a
ring of chunks that is farther away
from the player, as seen in Figure
6.

In the Vector-Field Consistency policy
the amount of inconsistency increases ex-
ponentially as the distance to the player
becomes larger. For example, the chunk
the player is standing on has, for example, a staleness bound value of 10 milliseconds, the
ring of chunks around the center chunk has a staleness bound of 100 milliseconds, and
so on untill we reach the ring of chunks that is at the specified distance away from the
player. If we only rely on the staleness bound, we risk collecting a number of messages in
a dyconit, that will create a spike in bandwidth usage when sent to the player. To limit
the amount of messages, the policy specifies an numerical error bound that triggers the
dyconit to send the messages to the player when it reaches a certain number of messages
in its message queue. Just as with the Donnybrook policy, PorygonCraft updates the
consistency bounds of the dyconits based on the location of the player, which means

15

that if you move one chunk in an arbitrary direction, the consistency bounds for the
chunks around the player are recomputed.

5 Experimental setup and results

In this Section, we discuss the setup for the experiments we use to evaluate the
effects of PorygonCraft on a Minecraft-like game. In Section 5.1 we will discuss the
environment that we used to conduct real-world experiments in. In Section 5.2 we will
discuss the data collection and the metrics that we use. Finally, in Section 5.3 we will
present the results.

This thesis evaluates PorygonCraft. To evaluate the performance of PorygonCraft
we will run several experiments that measure the network and CPU usage. Those
experiments are performed with different sized workloads operated by Yardstick. Every
experiment will be repeated twenty times, and each experiment will measure the network
and CPU usage for one minute.

5.1 Environment

The performance of a Minecraft-like game server is tested by performing experiments
in a real-world setting. We use the DAS-5 because it is the most representative hardware
we have access to, because we expect games to run on similar systems.

The DAS-5 is a system designed by the Advanced School for Computing and Imag-
ing and funded by the NWO/NCF. The DAS-5 offers compute nodes to students and
researchers to conduct controlled experiments in fields such as, but not limited to, par-
allel and distributed computing. Each of these compute nodes are equipped with a dual
8-core CPU and is connected to both an Ethernet and InfiniBand network. Additionally,
some of the nodes are equipped with special hardware such as HPC accelerators [25].

5.2 Data collection and metrics

The data is collected by tracking the system metrics of the DAS-5 by making use
of the system monitoring library psutil. Psutil allows retrieving information on running
processes and system utilization such as CPU statistics and network counters.

The number of CPU cores utilized is a metric to quantify the CPU usage. The
numerical value that we measure represents the number of cores that are currently in
use. The number of packets sent over the network and the number of bytes sent over
the network are metrics used to quantify the throughput of the server. Throughput is a
valuable way to measure the bandwidth usage and we will measure the number of packets
sent per second, as well the number of bytes that are sent per second to determine the
performance improvement of Glowstone when PorygonCraft is implemented. Lastly, we
look at the average size of a packet in bytes, because we expect them to be larger. We
expect them to be larger, because we send messages less frequently compared to not
using PorygonCraft.

5.3 Workload

The workload used in the experiments are created by Yardstick. For each size work-
load Yardstick deploys bots in the same area, all with identical behavior. The behavior
of the bots consists of walking around the world. Yardstick is not capable of deploying

16

Figure 7: Average outgoing packets per second with a fixed players workload.

all the bots at once, therefore, the bots have had some time to randomly walk around
before the experiment starts. At the end of the experiment, the bots that form the
workload are disconnected from the server at once.

5.4 Experimental results

This Section presents the results of the network throughput, bandwidth measure-
ments and CPU utilization. We first present the number of packets and amount of
bytes that are sent over the network per second and then look at the CPU utilization
and how the different policies affect this. In all the experiments, we observe that the
implementation of PorygonCraft has a significantly positive impact on the bandwidth
usage and CPU usage.

Each bar in the following figures is determined by repeating the corresponding ex-
periment twenty times. One iteration of an experiment consists of deploying a fixed
amount of players in Glowstone with the help of Yardstick. We sample the system met-
rics for 60 seconds with a one-second interval. Finally, we average the data, by taking
the arithmetic mean, to obtain the average amount of the measured metric per second.

Network throughput and bandwidth

We present both the results of the experiments that measure the packet forwarding
rate and the experiments that measure the bandwidth.

Figure 7 and Figure 8 consists of the measurements of the average packets per second
and average data transfer in bytes per second for two policies and a Minecraft-like game
without PorygonCraft respectively. The vertical axis shows the average packets/bytes
per second exponentially in powers of ten. The horizontal axis shows the number of play-
ers, starting from 50 players to 300 players in steps of 50. Every bar is associated with
Base (implementation without PorygonCraft), Donnybrook (implementation with Pory-
gonCraft and Donnybrook policy), or Vector-Field (implementation with PorygonCraft
and Vector-Field Consistency policy). The error bars indicate that there is little vari-
ability between the executed experiments.

17

Figure 8: Average outgoing bytes per second with a fixed players workload.

Figure 7 shows the number of outgoing packets of the Minecraft-like game Glowstone
per second for a fixed player workload. In Figure 7, we observe a difference between
the throughput with fixed workloads of Glowstone without PorygonCraft (Base) and
Glowstone with PorygonCraft (DonnyBrook and Vector-Field), especially for the larger
workloads where we can identify around an order of magnitude improvement in band-
width usage (lower is better). Additionally, we identify that PorygonCraft with the
Vector-Field policy performs better than PorygonCraft with the Donnybrook policy.
The Vector-Field policy performs better because dyconits associated with chunks far
away from players have generally higher bounds, than that would be the case in the
Donnybrook policy, because we send messages less often, we also send less packets or
data.

In Figure 8, we measure the average amount of outgoing bytes per second for a fixed
player workload. We notice that we encounter the same behavior as seen in Figure 7.
Again, when the workload increases, we identify that we are getting approximately an
order of magnitude improvement, where we deem fewer bytes sent per second as better.
This improvement is explained by the behavior of the bots, because the bots are ran-
domly moving, more bots will then automatically mean a larger spread of bots. When
there is a larger spread, then there is also a larger distance between certain bots and they
may not be interested in each other anymore, getting their messages very inconsistent
(although still bounded).

Both the results of the experiments that measure package forwarding rate and band-
width show that Glowstone with PorygonCraft delivers a considerable improvement over
Glowstone without PorygonCraft. Additionally, we can conclude that on average an im-
plementation with PorygonCraft results in less traffic over the network. However, the
average size of a packet is larger in comparison to a Minecraft-like game without Pory-
gonCraft, as seen in Figure 9.

Figure 9 shows the average size of a packet for the different implementations on the
vertical axes in steps of 25 bytes. It is expected that for Donnybrook and Vector-Field
the packets are larger than the packets for Base, because we send messages to the clients

18

Figure 9: Average bytes per packet per second for fixed player workloads

Figure 10: Average amount of CPU cores used per second.

less often, thus we send more messages at the same time. Again, we observe that Vector-
Field performs better than Donnybrook, which is explained by having lower bounds in
chunks around the player than that would be the case for Donnybrook. Although, the
packets that are associated with an implementation with PorygonCraft are larger. The
average amount of bytes send over the network is still lower, as we observed in Figure 8.

CPU utilization

In Figure 10, we present the average number of CPU cores used. The vertical axis
shows the number of CPU cores used in steps of 0.5 cores. Here we see that the Minecraft-
like game without PorygonCraft uses almost double the number of CPU cores in com-
parison with the Minecraft-like game with PorygonCraft, especially if we look at the
‘Vector-Field’ policy. The difference in CPU core is explained by the amount of I/O
operations we have to perform. We have seen that implementations with PorygonCraft

19

send less packets on average. Consequently, the CPU also performs less I/O operations
and has less interrupts. Because there are less interrupts the CPU is utilized more
efficiently.

6 Discussion

Our results are promising and give a positive outlook on the capabilities of Pory-
gonCraft. However, it is important that we discuss the limitations of our experiments
and discuss the potential threats they introduce. First, we are not measuring the in-
consistency in the game. Therefore, it is not possible to make a an assertion about
the playability of the game by any form of quantitative metric, we can only make an
assertion on our own experience when playing the game, while using PorygonCraft.

Secondly, Glowstone appears to become unstable if too many players are simultane-
ously on the server. To fully explore the performance improvements of PorygonCraft,
we would need to test it on larger workloads, but in the current situation, we are not
able to confidently perform experiments with workloads larger than 300 players.

Lastly, the bots that are provided by Yardstick do not act like real players. This
could potentially affect our experiments in such a way that we are performing real-
world experiments, but they may not be representative of real workloads. The current
workload creates favorable conditions for the game. In spite of this limitation, we find
that the current behavior represents a real-world workload good enough to show Pory-
gonCrafts efficacy.

7 Conclusion

Minecraft-like games are growing and need to become more scalable to support their
large numbers of players. Improving the scalability of Minecraft-like games is especially
challenging, because they are real-time interactive distributed systems, which require
low-latency, consistency, and real-time execution. We have designed PorygonCraft by
carefully identifying the requirements that PorygonCraft needs and implemented them
in Glowstone. Policies are implemented to enable game operators to make trade-offs
between consistency and scalability; these policies were based on related work. We
identified that a good first step is to have policies that are based on solutions of which
we already have seen positive results. Based on real-world experiments we identify that
PorygonCraft results in an order of magnitude improvement on network throughput
and bandwidth, for more than 100 players. However, we also identify that the average
size of a packet becomes larger when using PorygonCraft in comparison to not using
PorygonCraft. Lastly, PorygonCraft reduces the CPU usage between 40% and 50%. A
Minecraft-like game using PorygonCraft lowers the data send over the network and needs
fewer CPU resources in comparison to a Minecraft-like game without PorygonCraft for
growing player workloads.

8 Future work

Several items have not been touched upon in this thesis. One of them is the usage of
policies based on the numerical error bound instead of the staleness bound. Currently,
the policies affect the staleness bound of the dyconits, however, we would like to see the

20

effects on performance when we introduce policies that affect the numerical error bound
or both the staleness -and numerical bound. Additionally, we want to observe the effect
of more complex policies on the performance because the current policies are only based
on the distance between players and entities.

The second item that we want to address is associated with the experiments. The
current player workloads are bots that walk around in the Minecraft-like world. How-
ever, these bots do not portray real-world player behavior. Because Minecraft-like games
invoke so many other activities, we aim to perform experiments with near representative
workloads.

The third and last point addresses PorygonCraft because we would like to be able to
perform experiments with the following two metrics: We want to measure the overhead
it creates and the size of the overhead as PorygonCraft is utilized for very large player
workloads. Additionally, we want PorygonCraft to be able to measure the amount of
inconsistency that is currently in the Minecraft-like game. This could for example be
done by taking the sum of the numerical error and/or staleness of all the dyconits at
runtime.

21

References

[1] ESA, “ESA Essential Facts 2020,” 2020. [Online]. Available: https://bit.ly/
32pg3PM

[2] Superdata, “Games and Interactive media earned a record 120.1B dollar in 2019,”
2019. [Online]. Available: https://bit.ly/2WkzbdM

[3] Newzoo, “Newzoo Global Games Market Report,” 2019. [Online]. Available:
https://bit.ly/GamesMarketReport2019

[4] K. Webb, “Microsoft, Sony, and Google are investing in subscriptions and
streaming to give gamers more choice, but the real challenge is changing the way
people play,” 2019. [Online]. Available: https://bit.ly/301PahS

[5] BusinessInsider, “The $120 billion gaming industry is going through more change
than it ever has before, and everyone is trying to cash in,” 2019. [Online].
Available: https://bit.ly/3j1DTqJ

[6] C. Bailey, E. Pearson, V. Gkatzidou, and S. Green, “Using video games to develop
social, collaborative and communication skills,” 2006.

[7] A. Lobel, I. Granic, and R. C. M. E. Engels, “Stressful gaming, interoceptive aware-
ness, and emotion regulation tendencies: A novel approach,” Cyberpsychology Be-
hav. Soc. Netw., vol. 17, no. 4, pp. 222–227, 2014.

[8] J. Donkervliet, A. Trivedi, and A. Iosup, “Towards supporting millions of users in
modifiable virtual environments by redesigning minecraft-like games as serverless
systems.” HotCloud, 2020.

[9] H. Chiang, “Minecraft: Connecting more players than ever before.” 2020. [Online].
Available: https://bit.ly/2F4cpkF

[10] Gamepedia, “Tutorial: Redstone Computers,” 2020. [Online]. Available:
https://bit.ly/2CBuCol

[11] Mojang, “Math subject kit,” 2020. [Online]. Available: https://bit.ly/2WhJmQw

[12] J. van der Sar, J. Donkervliet, and A. Iosup, “Yardstick: A benchmark for
minecraft-like services,” in ICPE, 2019, pp. 243–253.

[13] J. Gray, “What next?: A dozen information-technology research goals,” ACM,
vol. 50, no. 1, pp. 41–57, 2003.

[14] A. R. Bharambe, J. Pang, and S. Seshan, “Colyseus: A distributed architecture for
online multiplayer games,” in NSDI, 2006.

[15] A. R. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang, S. Seshan, and
X. Zhuang, “Donnybrook: enabling large-scale, high-speed, peer-to-peer games,” in
Proceedings of the 2008 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Seattle, WA, USA, August 17-22,
2008, 2008, pp. 389–400.

[16] N. Santos, L. Veiga, and P. Ferreira, “Vector-field consistency for ad-hoc gaming,” in
Middleware 2007, ACM/IFIP/USENIX 8th International Middleware Conference,
Newport Beach, CA, USA, November 26-30, 2007, Proceedings, vol. 4834, 2007, pp.
80–100.

22

https://bit.ly/32pg3PM
https://bit.ly/32pg3PM
https://bit.ly/2WkzbdM
https://bit.ly/GamesMarketReport2019
https://bit.ly/301PahS
https://bit.ly/3j1DTqJ
https://bit.ly/2F4cpkF
https://bit.ly/2CBuCol
https://bit.ly/2WhJmQw

[17] R. Diaconu and J. Keller, “Kiwano: Scaling virtual worlds,” in Winter Simulation
Conference, WSC 2016, Washington, DC, USA, December 11-14, 2016, 2016, pp.
1836–1847.

[18] M. Valero, R. Diaconu, and J. Keller, “Manycraft: Massively distributed
minecraft,” in Annual Workshop on Network and Systems Support for Games,
NetGames ’13, Denver, CO, USA, December 9-10, 2013, 2013, pp. 17:1–17:3.

[19] P. Moll, S. Theuermann, H. Hellwagner, and J. Burke, “Distributing the game state
of online games: Towards an NDN version of minecraft,” in 17th IEEE Interna-
tional Conference on Communications Workshops, ICC Workshops 2019, Shanghai,
China, May 20-24, 2019, 2019, pp. 1–6.

[20] D. Pritchett, “BASE: an acid alternative,” ACM Queue, vol. 6, no. 3, pp. 48–55,
2008.

[21] B. Medjahed, M. Ouzzani, and A. K. Elmagarmid, “Generalization of ACID prop-
erties,” in Encyclopedia of Database Systems, 2009, pp. 1221–1222.

[22] M. van Steen and A. S. Tanenbaum, Distributed Systems, third edition.

[23] H. Yu and A. Vahdat, “Design and evaluation of a conit-based continuous con-
sistency model for replicated services,” Trans. Comput. Syst., vol. 20, no. 3, pp.
239–282, 2002.

[24] Glowstone, “A fast, customizable and compatible open source Minecraft server.”
[Online]. Available: https://bit.ly/2B5d2sB

[25] H. E. Bal, D. H. J. Epema, C. de Laat, R. van Nieuwpoort, J. W. Romein, F. J.
Seinstra, C. Snoek, and H. A. G. Wijshoff, “A medium-scale distributed system
for computer science research: Infrastructure for the long term,” IEEE Computer,
vol. 49, no. 5, pp. 54–63, 2016.

23

https://bit.ly/2B5d2sB

	Introduction
	Problem statement
	Research questions
	Methodology
	Structure of the thesis

	Background
	Workload partitioning
	Interest Management
	Minecraft-specific solutions
	Consistency in Distributed Systems
	Yardstick
	A Minecraft-like game: Glowstone
	Dynamic Consistency Unit
	Dyconits in PorygonCraft

	PorygonCraft: A Dyconit-based System for Minecraft-like Games
	Requirements
	High-level design of the PorygonCraft system
	Message preprocessor
	Dyconit control unit
	Dyconit collection
	Policy manager
	Message sender

	Consistency policies
	Donnybrook Uniform policy
	Vector-Field Consistency policy

	Experimental setup and results
	Environment
	Data collection and metrics
	Workload
	Experimental results

	Discussion
	Conclusion
	Future work

