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Abstract

Storage is indispensable in today’s society. It can be found everywhere, from

personal devices to large data centers, and continues to grow rapidly, projected

to reach 175 zettabytes in 2025. Meanwhile, the increasing number of storage

use cases highlights why there is no one-fits-all solution for storage, as different

storage devices drive specific goals, such as performance or energy consumption.

One emerging storage class is Persistent Memory (PMEM), which offers byte-

level data access at very low latencies in the nanosecond range. Unlike HDDs

and SSDs that rely on dedicated controllers, PMEM is deeply integrated into

the CPU core microarchitecture, residing on the CPU’s memory bus alongside

the main memory.

In recent years, significant efforts have been made to incorporate PMEM sup-

port into the software stack. However, the deep integration of PMEM into the

computer architecture at the micro-architectural level poses new challenges in

designing performant file systems. We find that the question of how efficiently

a file system uses the microarchitectural level is not explored. Therefore, in this

work, we propose a microbenchmarking framework called PMicroProfile. The

unique approach of this framework involves capturing file system-dependent

access traces and replaying those traces in a file system-independent manner to

analyze the interaction between the CPU and the PMEM device. Our results

demonstrate that PMicroProfile can capture accurate traces, although with

a significant runtime penalty. Additionally, it proves effective in identifying

performance bottlenecks. All source code, including instructions for repro-

ducing experiments, is available at https://github.com/stonet-research/

PMicroProfile.

https://github.com/stonet-research/PMicroProfile
https://github.com/stonet-research/PMicroProfile
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1

Introduction

A world without storage is unimaginable in the current human society. Storage can be

found anywhere. At the level of an individual, when we preserve our most valuable life

experiences through photos and videos or at a much larger scale, such as in social networks

or cloud storage. Therefore, the need for more data storage is a sustained activity for the

foreseeable future, expected to increase to 175 zettabytes in 2025 (1). The importance

of storage systems is also reflected in the prediction that Dutch data centers and related

ICT infrastructure will support at least 35% of professionals in the Netherlands alone by

2025 (2). This clearly highlights why there is a need to design performant, scalable, secure,

and sustainable storage systems.

During the past decades, the foundation of modern storage was laid with storage devices

such as the Hard Disk Drive (HDD) and the Solid State Drive (SSD) (3). The origins of

the HDD can be traced back to the 1950s when IBM introduced it as an alternative to

punch cards, offering superior performance in terms of data throughput : the amount of

data read or written within a fixed time interval.

On the other hand, SSDs, a form of flash storage, store information using semiconductors

instead of spinning physical disk platters as found in an HDD. Eliminating physical move-

ment significantly helped reduce data access latency from milliseconds to microseconds.

Moreover, SSDs are more power efficient compared to HDDs (3, 4). However, HDDs still

maintain a cost advantage, since the price per gigabyte of SSDs is approximately twice

that of HDDs.

These tradeoffs between cost, throughput, latency, capacity, and other factors are why

there is no monopoly on a single form of storage today. Instead, this diversification of

storage demands resulted in the emergence of heterogeneous storage systems in which

different forms of storage, each having its own strong properties, complement each other to
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1. INTRODUCTION

drive differentiated goals (2). By 2026, 95% of the business worldwide is expected to adapt

or use heterogeneous storage solutions in some form (5). One of the emerging devices in

the space of heterogeneous systems is Persistent Memory, which is the research area of

this work.

1.1 Positioning Persistent Memory in the Storage Hierarchy

Persistent Memory (PMEM) is a type of non-volatile memory (NVM) that offers nanosecond-

level device access latencies (6, 7). In the context of storage, the device access latency refers

to the time it takes to write or read an arbitrary amount of data from or to a storage de-

vice to reach the CPU (8), as depicted in Figure 1.1. As PMEM offers nanosecond-level

access latencies, it has substantially lower latencies than SSDs and approaches the latency

of Dynamic Random-Access Memory (DRAM) (9).

Another similarity to DRAM is the way PMEM is positioned in the computer architec-

ture. Unlike HDDs and SSDs, which rely on dedicated interfaces like SATA or NVMe for

data access, PMEM resides on the CPU’s memory bus, as shown in Figure 1.1. This allows

byte-granularity data access similar to DRAM (10). The main difference between DRAM

and PMEM lies in their persistence characteristics. Where DRAM is volatile, meaning

data is lost at shutdown, PMEM is non-volatile, ensuring that data remains intact even

after power is turned off.

CPU

HDD SSD

Memory Bus

DRAM Persistent
Memory

20 - 50 ns 50 - 250 ns
~20 μs for NVMe
> 70 μs for SATA

> 1 ms

Chipset I/O Controller

AHCI / SATA / NVMe
Controller

Caches < 5 ns
PCIe
Lanes

Volatile

Non-volatile

Figure 1.1: Overview of storage devices in computer architecture, including an approximation
of access latencies provided by relevant papers (10, 11, 12)

This approach of integrating storage directly on the computer memory bus contradicts

the view on storage over the past decades: the two-level storage hierarchy. This hierarchy

2



1.2 Persistent Memory File Systems

assumes a low-latency "primary" memory like DRAM and a secondary high-latency stor-

age medium such as an HDD. On the contrary, PMEM establishes a one-level storage

hierarchy in which memory and storage are closely integrated into the CPU architecture.

Over the past 10 years, multiple Persistent Memory devices have been released or are

in active development (11, 13). A prominent example of real persistent memory is Intel’s

Optane DC product line, of which the first device was released in 2019 (7, 10). Although

Intel discontinued this product line in July 2022 (14), many in academia and industry still

consider Optane DC to be the state of the art, as indicated by the majority of studies

using Optane DC to validate their claims and findings (11).

However, even with the discontinuation of Intel’s Optane product line, multiple stud-

ies (13, 15, 16) anticipate that the knowledge gained from Optane-related research can be

applied to a new technology released in 2019: the Compute Express Link (CXL) standard.

The key feature of CXL is its ability to enable communication between CPUs, accelerators,

and memories, such as GPUs and PMEM, through shared memory (17). This concept is

closely aligned with the one-level storage hierarchy that PMEM establishes, highlighting

that the challenges related to PMEM are worth solving, as they can be applied outside the

scope of Intel’s Optane DC Persistent Memory.

1.2 Persistent Memory File Systems

Over the past decades, storage devices have been considered the main performance bottle-

neck of file systems as the device access time could not keep up with the ever-increasing

growth in CPU performance. Consequently, optimizing a file system to extract a marginal

gain in performance was not considered logical; buying the latest top-of-the-line storage

device makes the most sense if one would require a more performant storage solution.

Eventually, this view changed around 2006 with the end of Dennard’s scaling (18): a

prediction that the power draw of transistors remains proportional to their size. However,

due to excessive heat build-up, this law broke down. As a result, single-core performance

does not scale as fast as it did 30 years ago. In the meantime, storage is becoming faster and

faster, approaching the latencies of fast non-volatile memories such as DRAM. Due to these

factors, the performance gap between storage, CPU, and main memory shrinks (11, 19,

20, 21). This led us to reconsider the conventional approach in file system design. In

this new view, the performance bottleneck shifts from the device (Persistent Memory) to

the software stack that runs on the CPU, resulting in new opportunities for more efficient

Persistent Memory file system designs.

3



1. INTRODUCTION

In the background section (chapter 2), we show that these new PMEM file system designs

can be categorized into three trends over time. These trends are summarized below and

visualized in Figure 1.2, which illustrates the areas in the software stack to which each

trend relates.

Application

U
se

r S
pa

ce

PMEM-aware FS

Page Cache

Persistent Memory

H
ar

dw
ar

e
Ke

rn
el

 S
pa

ce

1

2

PMEM Driver

3

Figure 1.2: Trends Persistent Memory file systems within software storage stack

1. Adaption of Existing File Systems. Our literature study on PMEM file sys-

tems (11) showed that the first proof of concept PMEM-aware file system, BPFS (22),

released in 2009 adapted state-of-the-art HDD and SSD optimized file systems, such as

ext4, to support PMEM. However, with the announcement of the first real PMEM device,

Intel Optane DCPMM, around 2017, it became apparent that these file systems could not

keep up with Optane’s low access latency due to kernel overhead, particularly from the

Operating System (OS) page cache (23, 24). The page cache is a specialized DRAM-backed

cache that stores frequently accessed data from storage media, such as an HDD (22). The

deployment of a page cache is justified when data access latency exceeds the time spent

inside the OS software stack (25). However, the low latencies of PMEM make this page

cache redundant. Consequently, the entire design of file systems had to be reconsidered.

2. Offloading File System to User Space. To further reduce the overhead of the

software stack, especially in the kernel and its file systems, a new trend emerged: hybrid
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1.2 Persistent Memory File Systems

file systems. The distinct property of these file systems is that certain operations, such as

reading a file, can be offloaded to user space (19, 21, 24, 26). This means that applica-

tions can directly access data without the involvement of the kernel, resulting in improved

latencies and throughput.

3. Hardware-Accelerated File Systems. The third trend, known as hardware-

accelerated PMEM file systems, emerged in 2022. These file systems push to reduce

software overhead even further by offloading parts of the file system to the CPU microar-

chitecture. For example, the UFS (27), ctFS (23), and DaxVM (28) file systems offload

part of the file system to the file system CPU’s Memory Management Unit (MMU). For

instance, the authors of ctFS observed that a file system’s inode tree, which stores meta-

data about all files or directories stored in the file system, is constructed similarly as a page

table, a tree-like structure the MMU uses to manage memory. An illustration of a simple

inode tree is shown in Figure 1.3. This tree consists of inodes, which are metadata objects

that store information such as file permission and file location on disk. These inodes are

linked together to form a tree that the file system can traverse to retrieve information

about a specific file or directory. Normally, this traversal process is performed in software.

However, ctFS introduces a methodology to relocate the inode tree structure inside the

MMU page table. As a result, the traversal is done transparently in hardware, reducing

software overhead.

1

2

3

4

5

Name inode

foo

bar

baz

Directory: /

Data Blocks for '/' directory

1

2

3

4

5

Directory: /foo

Figure 1.3: Inode tree structure

These three trends illustrate a gradual shift from performance engineering primarily

at the file system level to optimizations very close to the hardware, known as micro-

architectural optimizations. Due to this shift, we hypothesize that more performance
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1. INTRODUCTION

gains can be achieved by focusing on how the micro-architectural access patterns of

PMEM file systems affect performance attributes such as latency and throughput.

1.3 Micro-Optimizations for Persistent Memory File Systems:
an Opportunity

In traditional PMEM file systems, the primary focus for improving performance has mainly

been at the software level, specifically at the file system and the kernel. These areas have

shown the greatest potential to improve performance in the past (20, 21, 25, 29). However,

with the emergence of memory hardware acceleration in PMEM file systems (23, 27, 28),

we hypothesize that micro-architectural events become relevant factors to consider in the

search for performance optimizations.

Applying micro-optimizations to enhance performance has already found its use in other

storage-related systems. For example, significant research has been done on the microar-

chitectural behavior of in-memory database systems, exploring how these systems can

leverage micro-architectural features such as instruction and data caches to achieve better

performance (30, 31, 32). Another example is the use of Data Processing Units (DPUs),

such as the Nvidia Bluefield (33), to offload file system operations to hardware (34, 35).

However, we find that the question of how to evaluate the performance of Persistent Mem-

ory file systems at a micro-architectural level has not been thoroughly explored. Therefore,

in this study, we propose a framework called PMicroProfile. PMicroProfile aims to facili-

tate the identification of microarchitectural degrading performance events by capturing the

PMEM access patterns of PMEM file systems and examining their interactions with the

CPU microarchitecture. The following section will outline the relevant research questions

and the research methodology.

1.4 Research Questions and Methodology

Using this problem statement, we can define the following research question: How can

one design a framework to evaluate the microarchitecture behavior of Persistent

Memory file systems to improve performance?

To clarify, when we refer to performance, we are specifically measuring the latency and

throughput of file input/output (I/O) achieved by an application in the user space. By

answering this research question, we help the systems research community and future

6



1.4 Research Questions and Methodology

PMEM file system designers better evaluate the performance of their designs to extract

the most performance from the hardware.

We answer this research question by answering multiple sub-questions. For each sub-

question, we employ one or more of the following methodologies:

• (Methodology M1) Quantitative research (statistical modeling, simulations, com-

prehensive surveys) (36, 37);

• (M2) Design, abstraction, prototyping (38, 39, 40);

• (M3) Experimental research, designing appropriate micro- and workload-level bench-

marks, quantifying a running system prototype (41, 42, 43);

• (M4) Open science, open source software, community building, peer-reviewed scien-

tific publications, reproducible experiments (44, 45, 46, 47).

Sub-questions.

RQ1. What are the performance-related idiosyncrasies of Persistent Memory

at the CPU micro-architectural level?

To answer this question, we must consider how Persistent Memory is integrated into

the CPU microarchitecture. We will conduct a literature study to obtain these results

(M1). For our research, we have chosen to focus on Intel Optane DC Persistent Mem-

ory (DCPMM) due to its widespread adaption rate in industry and academia (48).

This decision is strengthened by our literature survey on Persistent Memory File

Systems (11), revealing that most of the existing literature focuses on Intel Optane

DCPMM. These two factors ensure that the survey search space is set up as broadly

as possible.

Using the findings of this literature study, we establish a list of Intel Optane DCPMM

performance-related idiosyncrasies, which serve two purposes. First, it enables us

to define a set of guidelines/requirements that are deemed essential for achieving

maximum PMEM performance. Second, it helps to define the scope of our work in

designing the PMicroProfile benchmarking framework.

RQ2. How to design a tool that can trace the access patterns of the PMEM

file system at a microarchitectural level?

Before evaluating the micro-architecture performance of a file system based on the

device idiosyncrasies found in sub-question RQ1, we need to understand how a file

7



1. INTRODUCTION

system interacts with Persistent Memory at the CPU’s micro-architectural level.

Therefore, we propose the tracing tool pmemtrace.

One key aspect to consider when designing such a tool is isolation, that is, ensuring

that only PMEM-relevant events are traced while excluding any additional non-

architectural sources of overhead introduced by the kernel and file system. Therefore,

in addition to the actual implementation of a tracing tool, answering this question

will also involve determining which events should be logged.

This is an experimental research question, and the deliverable is a functional proto-

type (M2, M4).

RQ3. How to design a tool that quantifies the performance of PMEM file

systems using its access patterns?

Building upon the results of the previous two sub-questions (RQ1, RQ2), we de-

sign another tool, pmemanalyze, which allows one to replay captured access traces

to provide insight into the performance bottlenecks of PMEM file systems at the

micro-architectural level. This is done by defining appropriate performance metrics,

according to the findings of sub-question RQ1.

Again, this is an experimental research question, and a running prototype is the

deliverable (M2, M4).

RQ4. Can the PMicroProfile framework pinpoint microarchitectural perfor-

mance degrading events to define new file system micro-optimizations?

In an experimental evaluation (M3), we evaluate the effectiveness of the PMicro-

Profile framework in identifying performance bottlenecks of two PMEM file systems:

Ext4-DAX and SplitFS. Additionally, we verify the validity of our work. These in-

sights form the basis of new micro-optimizations.

1.5 Thesis Contributions

Contributions in this thesis can be classified as (1) conceptual, (2) experimental, and

artifacts (3). Specific contributions are as follows:

• (Conceptual) We conduct a literature study to determine the performance idiosyn-

crasies of Intel Optane DC Persistent Memory at the micro-architectural level;

8
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• (Artifact) Design and implementation of pmemtrace: a tool that can be used to

extract PMEM access traces at machine instruction-level granularity;

• (Artifact) Design and implementation of pmemanalyze tool, which evaluates PMEM

file system performance using relevant micro-architectural performance metrics by

replaying previously pmemtrace’ captured traces.

• (Experimental) We perform a thorough performance analysis of workloads exe-

cuted on the ext4-DAX (49) and SplitFS (19) file systems using the pmemtrace and

pmemanalyze tools. The objective is to pinpoint variations in access patterns and

performance trends and propose optimizations;

1.6 Societal Relevance

In this study, we propose PMicroProfile, a framework for conducting microarchitecture-

aware performance analysis of Persistent Memory file systems. By addressing the research

questions posed in this thesis, we aim to contribute to the field of High-Performance Com-

puting (HPC) (50). We believe that our work will be particularly beneficial for HPC

applications that require close proximity between data and computation, such as climate

simulations where data, like the temperature at different heights across the globe, is stored

on a three-dimensional grid. Previous studies (51, 52, 53) have demonstrated that data-

intensive applications like these can greatly benefit from utilizing Persistent Memory. Ul-

timately, our work aims to help applications leverage the underlying hardware more effi-

ciently, bringing performance benefits and potentially reduced energy consump-

tion. This objective aligns with one of the primary challenges of storage systems outlined

in the Dutch CompSys Manifesto (38), which is the integration of storage within the uni-

fied storage-memory-compute and computation-in-memory model, enabling improved cost,

data, and performance efficiency for both current and future applications.

1.7 Thesis Outline

This thesis is organized as follows (refer to Figure 1.4). First, in the Background (Chap-

ter 2), we provide an overview of how Persistent Memory is integrated into the hardware

architecture and discuss how file systems achieve crash consistency. We also explore the

current trends in the research field, together with related work. Readers already familiar

with the principles of how Persistent Memory is integrated into the hardware architecture

9
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Chapter 1:
Introduction

Chapter 2:
Background &
Related Work

Chapter 3:
pmemtrace

Chapter 4:
pmemanalyze

Literature Study:
PMEM idiosyncrasies

Design of
pmemanalyze

Chapter 5:
Evaluation

Chapter 6:
Conclusion

Figure 1.4: Thesis Reading Structure

can skip this chapter. Subsequently, Chapter 3 presents the design of pmemtrace, a tool

developed to collect access traces at the granularity of machine instructions.

Chapter 4 is divided into two parts. First, we conduct a comprehensive literature study

on the microarchitectural performance-related peculiarities of Intel Optane DC Persistent

Memory. Second, the results of this study form the basis of the design of pmemanalyze,

our analysis tool.

Chapter 5 presents the experimental evaluation. Specially, we use pmemtrace and pme-

manalyze together to analyze the performance of two file systems, Ext4-DAX (49) and

SplitFS (19).

We conclude this thesis by answering the research questions formulated in the introduc-

tion (RQ1, RQ2, RQ3, RQ4). Artifacts for reproducing a working environment, including

the pmemtrace and pmemanalyze tools and the experimental setup, are provided in Chap-

ter 7.

Plagiarism Detection

I confirm that this thesis work is my own work, is not copied from any other source (person,

the Internet, or machine), and has not been submitted elsewhere for assessment.

Please note that the Background section (chapter 2) includes some small text sections and

figures that are taken from a survey I conducted on Persistent Memory file systems (11),

which is my original work.
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2

Background and Related Work

This section discusses the concepts necessary to understand the design choices made in

this thesis. In section 2.1, we discuss how the characteristics of PMEM changed the view

of how storage is integrated at the hardware level. Second, section 2.2 elaborates on how

the hardware properties of PMEM influenced the design of file systems, explicitly focusing

on current trends in the research field.

2.1 Positioning Persistent Memory in the Hardware Archi-
tecture

This section details the position of PMEM within the computer hardware architecture.

Specifically, we focus on the interaction between PMEM and other hardware components.

First, we explain how a CPU retrieves data from PMEM (subsection 2.1.1), using the

steps depicted in Figure 2.1 as a guideline. Next, we study the implications of caching in

a PMEM context (subsection 2.1.2). Finally, we discuss how a Persistent Domain ensures

data integrity after a power failure.

2.1.1 Accessing Persistent Memory

As mentioned in the Introduction (chapter 1), persistent memories are byte-addressable.

As a result, a CPU can issue read/write requests using load and store instructions similar

to accessing DRAM over the memory bus (see Figure 2.1). When the CPU issues a

read request, it requests memory at a particular virtual memory address. Depending on

the current state of the cache, the data could be contained in the cache (a cache hit,

see Step 1 in Figure 2.1) and, therefore, immediately transferred to the CPU, or the

data must be retrieved from the PMEM device (a cache miss). In this subsection, we

11
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Figure 2.1: Position of Persistent Memory within the computer hardware architecture. Four
steps illustrate the path taken to access data on Persistent Memory.

discuss what happens in the case of a cache miss. We discuss the case of a cache hit later

in subsection 2.1.2.

What happens in case of cache miss? To understand how a cache miss is handled

internally, we first need to consider how the Memory Management Unit (MMU) handles

virtual memory. Operating systems use virtual memory to provide isolation, security,

and efficient memory fragmentation between applications and the Operating System ker-

nel (25). Applications perform read and write operations by referencing an address in this

virtual memory region. In hardware, the CPU’s Memory Management Unit converts this

virtual memory address to a physical address, which corresponds to the actual physical

12
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location within main memory or a memory-mapped device, such as PMEM 1 (Step 2).

Note that this translation is performed according to a data structure that the operating

system has initialized beforehand: a page table.

29:2138:30 20:12
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Level 4
1
2
3

... 512

Level 3

...

1
2
3

... 512

...

47:39Bits

Level 2: 2 MB-
sized mappings

Level 4 Level 2Level 3

1
2
3

... 512

Level 1: 4 kB
page mappings

...

Level 1 Page Offset

11:0

Figure 2.2: Structure of a four-level page table

In the case of the x86-64 architecture, a page table is a hierarchical structure that maps

the 48 Most Significant Bits (MSB) of the virtual address to a physical address. Note that

12 Least Significant Bits (LSB) represent the position within a page, the smallest unit at

which virtual memory is mapped. Therefore, these 12 LSB are not part of the translation

process.

The structure of a page table is quite complex; therefore, we refer to the Linux kernel

documentation (54), which we briefly summarize. As shown in Figure 2.2, a page table is

essentially a tree structure that consists of four levels 2, where each level can accommodate

for 512 mappings. At level 1, each mapping covers one 4 kB page, so in total 2 MiB of

physical memory as 4kiB ∗ 512 = 2MiB, that is, 12 bits of a virtual address. Likewise,

at Level 2, each mapping covers one 2 MB huge page (56). A key observation is that

the associated mappings become coarse-grained when the level increases, mapping larger

memory regions.

As PMEM is set up as Memory-Mapped I/O (MMIO), in which the main memory and

1Also known as Memory-Mapped I/O (MMIO)
2Since the Intel Ice Lake microarchitecture (released in 2017), the CPU supports five-level page tables,

extending the size of a virtual address to 57 bits, resulting in 128-petabyte addressable space (55).
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I/O devices, share the same physical address space, I/O operations are performed by

writing/reading to the respective device regions within this address space.

When the MMU has converted the virtual address to the respective physical address,

the request reaches the Persistent Memory device, which places the request in an internal

buffer queue, the Write Pending Queue (WPQ), see Step 3 in Figure 2.1. When the

PMEM device is ready to process a new request, the request is forwarded to the PMEM

controller. This controller includes an Address Translation Table (AIT), which performs

yet another address translation; it maps physical addresses to device addresses (Step 4)

according to a wear leveling strategy. Wear leveling prolongs the lifetime of PMEM by

spreading the Program and Erase (P/E) cycles over the memory cells. This is important

because NVM cells can only endure a finite number of write cycles (7). The data is written

to the NVM cells in fixed-sized chunks (also known as an XPLine), in the case of Intel

Optane DC PMEM, 256 bytes. Consequently, writing less than 256 bytes will result in

write amplification: the difference between the actual amount written and the amount of

data intended to be written (57).

2.1.2 The Implications of Caching

Modern CPUs use a hierarchical caching architecture consisting of levels to reduce access

latency to main memory (58), as shown in Figure 2.1. For example, for the x86-64 ar-

chitecture, the first cache level (L1) offers lower latencies than a level 2 (L2) or level 3

(L3) cache. On the contrary, a level 3 cache offers greater capacity than an L2 cache. For

instance, Intel’s 13900K Raptor Lake CPU released in 2022 has 2.1 MB of L1 cache, 32 MB

of L2 cache, and 36 MB L3 cache (55). In contrast to the L1 and L2 caches, the L3 cache

is shared between the cores, as shown in Figure 2.1. Regarding latency, an L1 cache line

fetch takes approximately 5 CPU cycles, while an L3 cache fetch costs ∼ 41 cycles 1 (59).

In addition to latency and capacity, two additional properties are fundamental when

considering caches (25, 29, 60, 61): access granularity and cache coherency protocols.

First of all, in contrast to byte-addressable memories such as DRAM or PMEM, the

cache is not byte-addressable. In the case of the x86-64 architecture, the cache stores data

in fixed fragments of 64 bytes, also known as a cache line. As this is the smallest unit of

access, the data is fetched or written in 64 byte chunks.

Second, in shared memory systems, where memory is shared between multiple cores,

the caches must confirm to a cache coherence protocol. This protocol ensures that each
1In case of a cache hit. If a cache miss occurs, the access latency increases as data must be fetched

from main memory (58).
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core has access to the most up-to-date version of a memory location contained in the

cache (62). However, adhering to such a protocol comes at the price of performance,

requiring additional CPU cycles to perform the necessary consistency checks. To amortize

this impact, the CPUs may reorder writes, thereby diverting from the order the Operating

System or application has issued operations (63). Although this reordering might benefit

DRAM performance, it has significant implications for PMEM.

Consider a scenario in which a file system performs multiple writes to PMEM: writes X,

Y , and Z. Note that, due to the cache coherency protocol, the write may be reordered.

For this scenario, suppose that the issue order of the writes to PMEM is: Y → Z → X.

Now, suppose that after completing write Z, the system crashes. Write X is still contained

in the cache and is irreversibly lost due to the system crash. This situation presents two

implications. First, the file system may incorrectly assume that the writes X, Y , and Z

were successfully written to PMEM when, in reality, only the writes Y and Z reached

PMEM. Second, the order in which the writes X and Y are committed is reversed, causing

an inconsistency between the file system transaction log and the actual data on the PMEM

device.

In summary, write reordering may be beneficial to DRAM performance; however, it poses

a threat to PMEM transactions (23, 25, 26, 64). First, the order of data being written to

PMEM may differ from the user’s intentions. Second, in case of a system crash, in-flight

data could still reside in the cache, resulting in unrecoverable data loss (60).

Fortunately, both issues are addressed in software and hardware through cache flush-

ing/memory fencing and a Persistance Domain, respectively. These concepts are intro-

duced in the following subsection.

2.1.3 Addressing the Issues of Caching

The issues arising from caching are addressed in both hardware and software. We start by

considering the hardware mechanism that guarantees write-back of uncommitted in-flight

data, the Persistance Domain (PD). Afterward, we discuss how fencing solves the issue of

write reordering.

Persistance Domain. A Persistence Domain (PD) is a hardware region within a com-

puter system in which it is guaranteed that the data persist in the event of unexpected

failure, such as a power outage (65). Thus, if PMEM data is within the boundaries of this

region, the data will always be written back to the device. In the context of PMEM, there

are two types of persistence domains: Asynchronous DRAM Refresh (ADR), which must
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be present, and the enhanced version called Asynchronous DRAM Refresh (eADR), which

is optional. The boundaries of both ADR and eADR are depicted in Figure 2.1. ADR

guarantees data persistence within the PMEM device, while eADR extends this guarantee

to CPU caches (66).

The hardware implementation of a PD is very similar to an Uninterruptible Power Supply

(UPS), but then on a much smaller scale. During regular operation, the CPU and the

PMEM must always ensure that enough energy is available to write back changes to the

flash cells, established by charging dedicated capacitors within the CPU and PMEM device.

In the event of a power failure, the remaining energy stored in this capacitor is used to

commit changes to PMEM (67).

Selective Cache-Line Flushing. As discussed in subsection 2.1.2, cache coherency

protocols could void the order in which data is written to PMEM, potentially leading to

data inconsistencies. Therefore, we need techniques to enforce this ordering at the cache

level.

Figure 2.3: Cache bypass techniques to enforce strict write ordering

According to our literature study on PMEM file systems (11), there are two methodolo-

gies to perform write ordering:

1. The first option is to enforce ordering using memory fences. We use a memory fence

instruction, for example mfence, to ensure that all load and store instructions issued

before mfence are serialized in the order they were issued, as shown in Figure 2.3. A

side effect is that the performance of other applications may degrade as its working

set is (partly) evicted from the cache (55, 60).
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2. Alternatively, we can perform a fine-grained cache flush. We keep track of the

cache lines used and only flush those that contain PMEM data in flight so that DRAM

reads and writes are not affected (see Figure 2.3). Intel supports this selective flushing

with the clflushopt and clwb instructions with the release of the Persistent Memory

Instruction Set in 2014 (68).

We use clflushopt and clwb in our work when applicable, as this bypass technique is

widely considered state of the art in recent PMEM file systems (11).

2.2 Impact Persistent Memory Idiosyncrasies on File System
Design

We already mentioned that the idiosyncrasies of PMEM, low-latency byte-addressable

storage, resulted in multiple implications at both the hardware and software levels. At

the hardware level, we discussed the impact of caching and the need for a Persistence

Domain. In this section, we elaborate on how PMEM caused a change in the way file

systems should be designed. First, we discuss the implications of current state-of-the-art

file systems implemented in the Linux kernel. Afterward, we consider how file systems

have changed, which we distill into three research trends.

2.2.1 The Overhead of Existing Linux File Systems

Applications request file system services using system calls. Inside the Linux kernel, these

system calls are routed to the Virtual File System (VFS). The VFS defines a generic

interface that is independent of the actual file system in use, for example, ext4 or the swap

space (see Figure 2.4) (69). By using this abstraction, applications are made agnostic of

the file system in use, improving portability.

When the VFS receives a file I/O request, it must first determine to which file system

the request should be forwarded. This is done through a path traversal, which recursively

traverses the file path string, e.g., "/for/bar.txt" to look up the corresponding file meta-

data, performs the necessary sanity checks (e.g., checking for sufficient permissions) and

finally performs the request action.

When using a block storage device, such as an HDD, the access latency may be orders

of magnitude higher than the imposed file system latency. Therefore, the Linux kernel

Virtual File System implements a page cache to decrease the performance impact of slow
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Figure 2.4: Software Architecture Persistent Memory

device latencies. As a result, file data may reside (partly) on the storage device or in the

page cache:

(1) The file is (partially) located in the page cache. In this case, the requested data can

be returned immediately without fetching from the device.

(2) The requested file blocks are not in the cache. A request is sent to the corresponding

device driver, which sends the actual command to the storage device.

The use of a page cache in the case of PMEM is controversial, as the latency of the VFS

and its page cache is higher than the access latency of PMEM (22, 23, 24, 25), as seen

in Figure 2.4. This gives rise to alternative file system designs, which we discuss in the

following subsection.

2.2.2 The Current Trends in the Research Field

In order to illustrate current research developments on file system design, we briefly discuss

the positioning of existing PMEM file systems using Figure 2.5 as a guideline 1. An in-
1about PMEM file systems
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depth discussion of the implementation and design choices of these file systems can be

found in our literature study (11).
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Figure 2.5: Persistent Memory file systems positioning: metadata management and file
block access. The triangle (△) and circle (◦) symbols depict whether the file system is using
a split/hybrid architecture, in which the file system is partitioned over the kernel and user
space, or uses a monolitic design in which it is integrated into the Virtual File System.

Note that Figure 2.5 displays two scales. The first scale, metadata management, shows

whether the file system manages metadata in the kernel or user space. The second scale,

file block access, shows the method of data access: Direct Access (DAX) or the Virtual File

System (VFS). Please note that we will discuss the principles behind DAX in more detail

shortly.

The first PMEM file systems started to emerge around 2009. These file systems adapt

the VFS and its file systems to support PMEM, as shown in Figure 2.6. As a result, most of

these file systems are POSIX compliant, meaning that existing applications have access to

PMEM through system calls such as read() or write(). An example is ext4-DAX, which

avoids expensive data copying to/from the page cache by performing zero-copy reads and

writes directly to the storage device within existing ext4 file systems (70). Although these

file systems offer good backward compatibility, they still suffer performance overhead due
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to the VFS infrastructure (and its data structures) and the cost of constantly trapping

into the kernel each time an application wants to perform a file operation (19, 26).

User Space

Application

Kernel Space

Virtual File System

Persistent Memory Driver

1 Application request file system
services through system calls

2
The VFS performs metadata
lookup, and informs the PMEM
driver for an incoming request

Memory Bus

DRAM Persistent Memory

3 4 Data transmission/retrieval
from/to PMEM

Figure 2.6: Pre-2013 integration of Persistent Memory file systems in the Linux storage stack

To address these limitations, both academia and industry have re-evaluated the design

of high-performance file systems. This has resulted in three distinct trends in file system

design. In the following sections, we will discuss these trends in more detail.

Trend 1: Integration in Virtual Memory using Direct Access (DAX). Direct

Access (DAX) allows for a direct mapping of PMEM Memory-Mapped I/O (MMIO) pages

within the user space, as shown in Figure 2.4 (70). These pages together form a so-

called Virtual Memory Area (VMA). Using DAX has potential performance benefits as

the number of kernel traps is reduced. Additionally, as we will discuss shortly, it allows for

the implementation of non-POSIX file system interfaces, as file systems are not bound by

the set of available kernel system calls.

To illustrate how DAX operations work, we elaborate on the three steps illustrated

in Figure 2.7. (1) When an application requests file access, it notifies the PMEM file

system, which subsequently performs a DAX request by notifying the kernel. (2) Following

this, the kernel performs the necessary sanity checks and returns a pointer to a particular
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region of virtual memory (a VMA) that has been mapped within the application’s address

space. (3) At this stage, an application can directly access the corresponding PMEM stored

data without the involvement of the kernel or file system.

User Space

PMEM FS  Application mmap'ed file

Kernel Space

Virtual File System

Persistent Memory Driver

Memory Bus

DRAM Persistent Memory

1File system sends
DAX request

2
Kernel returns pointer

to mmap'ed file

3

Application directly
access PMEM without

kernel interference

Figure 2.7: Persistent Memory file systems using Direct Access (DAX)

Trend 2: Offloading File System to User Space. A trend that extends the idea of

DAX is a user-space offloaded file system, also known as a hybrid file system (19). The

distinct feature of a hybrid file system is that the data path, operations that involve only

the movement of file data, are offloaded to user space. On the other hand, operations

related to file metadata, known as the control path, require synchronization in the case of

multi-tenancy. Therefore, these operations are handled separately by an in-kernel library.

Such a design can also be seen in other areas of computer science, for instance, offloading

network packet processing to user space using DPDK.

Using this hybrid design, the number of kernel traps can be significantly reduced (19, 24).

For example, when an application tries to write repetitively to the same location within

a file, it only has to ask permission from the kernel library once. Other read-and-write

operations that address this file can be handled entirely in the user space.
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Trend 3: Hardware-Accelerated File Systems. Traditional file systems use separate

data structures, known as file metadata, to map file blocks to the actual location on the

storage device. As Trends 1 and 2 discussed, this conversion is performed either in the

Operating System kernel or user space.

However, the authors of the ctFS (23), UFS (27), and DaxVM (28) file systems identified

another novel approach. Instead of performing the translation in software, they offload

the translation hardware, the CPU’s Memory Management Unit (MMU). Now, the MMU

translates a file block offset to a corresponding physical location within PMEM. The novelty

of this approach lies within the idea that we can now leverage both hardware and software

optimizations to accelerate file system performance.

As mentioned earlier in the Introduction (chapter 1), this thesis can be placed under

the trend of hardware-accelerated file systems, as it aims to improve the latency and

throughput of such file systems.

2.3 Intel Hardware Performance Counters

In this work, we will use Intel’s hardware performance counters to perform performance

evaluation. In the case of Intel processors, performance events can be categorized as

architectural or non-architectural (55). Architectural events are micro-architecture specific,

meaning they apply only to a particular CPU architecture, in this case, Cascade Lake.

These events are measured per core, which means that each core implements the same

performance parameters, such as the number of retired instructions.

On the other hand, non-architectural events exceed the limits of the CPU-specific mi-

croarchitecture and, therefore, can be used in a wider range of architectures. These events,

also known as uncore events, occur at the level of the CPU package (71). Examples of

uncore events include the Last Level Cache (LLC) shared between cores and the integrated

memory controllers (iMCs), responsible for transferring data from and to memories, for

example, DRAM or Intel Optane DC Persistent Memory. A limitation of uncore events is

that they occur at the socket level; therefore, it is impossible to relate events directly to

one CPU core. To address this, Intel introduced offcore events, which are events that are

specific to individual cores and have not yet reached the uncore level. Figure 2.8 illustrates

this distinction between on-core and uncore events.
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Figure 2.8: Locating Intel performance events: core and uncore

2.4 Related Work

We position this thesis at the intersection of the operating system and the hardware, and

therefore, we discuss existing research that analyzes the microarchitectural characteristics

of Persistent Memory.

Intel DCPMM performance idiosyncrasies. As discussed in the Introduction (chap-

ter 1), this work aims to establish a methodology that evaluates whether the access pat-

terns exhibited by the file system at the microarchitectural level affect performance. To our

knowledge, no methodology or tool evaluates the microarchitectural behavior of PMEM

file systems. This top-down perspective separates this work from others.

To the best of our knowledge, there are three studies (6, 9, 10) that also consider the per-

formance of Intel DCPMM persistent memory at the microarchitectural level. Compared

to our work, they tend to perform a bottom-up performance evaluation, which means that

they explain performance behavior by crafting specialized workloads to reverse engineer

PMEM internals. Each paper provides recommendations that system designers should

consider when designing PMEM (file) systems. For example, van Renen et al. (6) were

the first to show that system designers should strive for 256 byte accesses to minimize

read and write amplification. Second, they found that using explicit cache line write back

(clwb) instructions after PMEM reads/writes yields a positive effect on performance, as

neighboring 64 byte cache lines can be merged into 256 byte requests, decreasing read and
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write amplification. A similar study by Yang et al. (10) formalizes these and other findings

in a set of best practices.

Another study by Xiang et al. (9) involved the use of specially crafted microbenchmarks

to examine the impact of Intel Optane internal buffering and the performance impact of

cache line flushing. The main takeaway of this paper is that Intel Optane’s read-and-write

performance exhibits very different performance characteristics. Therefore, they should be

considered separately in the performance analysis.

Persistent Memory micro-benchmarking tools. Two other papers (72, 73) propose

micro-benchmarking tools (PMIdioBench and PerMA-bench, respectively) that are agnos-

tic to the actual device used, resulting in a broader set of system design recommendations

independent of the underlying PMEM device. The authors of PerMA-bench make an

observation that is also applicable to the motivation of this research: no standardized

benchmarking framework can perform low-level performance analysis over a wide variety

of workloads (the top-down analysis perspective). The PerMA-bench tool allows system

designers and programmers to define workloads within user space using a YAML configura-

tion file, for example, to specify the flushing methodology, number of threads, type of write

operation (mov, AVX-256, AVX-512), etc. PMIdioBench proposes a similar benchmarking

tool, although less configurable than PerMA-bench.

There is definitely common ground between PerMA-bench, PMIdioBench, and our work.

All examine PMEM’s microarchitectural behavior by running commodity workloads in-

stead of synthetic, device-tailored workloads. However, both tools do not offer a method-

ology to evaluate the impact of PMEM file system access patterns at the microarchitectural

level, as we aim to establish in this work.

Although not an academic contribution, we consider Intel’s VTune profiling utility (74)

and the perf tool (75) to be related work, as both are capable of collecting DCPMM perfor-

mance counters. Both tools offer extensive profiling capabilities; still, they are application-

and file-system agnostic, meaning the end user should decide how to interpret these per-

formance counters, which is very difficult without prior in-depth knowledge.

2.5 Summary

In this chapter, we learned how the unique properties of persistent memory, byte-addressable

low-latency nonvolatile storage, result in two implications when integrated into today’s

commodity server hardware. First, caching may result in irreversible data loss in the event
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of an unexpected power failure. The Persistance Domain (PD) addresses this issue by defin-

ing a region in the hardware where data is guaranteed to persist during a power failure.

Second, selective cache-line flushing enforces a total write order, avoiding an inconsistent

state between storage and the file system.

Moreover, we discussed how the emergence of Persistent Memory led to significant

changes in traditional file system design, which can be categorized into three trends: the

integration of persistent memory into virtual memory, hybrid file systems, and finally, CPU

microarchitecture-aware file systems. The latter trend is the area of research in which this

work is positioned.
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pmemtrace: A Tool to Collect Access
Traces at Instruction Granularity

To assess the performance of PMEM file systems at the micro-architectural level, it is

necessary to have access to representative workloads. Other studies (6, 9, 10, 72, 76,

77) that evaluate the low-level performance of PMEM use synthetic workloads, meaning

that a workload is carefully crafted to trigger certain micro-architectural behaviour. For

example, one could design a workload that generates access patterns that may exhibit

many mispredictions to evaluate the effectiveness of CPU prefetching, a technique to load

instructions or data into the CPU cache proactively.

However, we decided against this common approach of using synthetic workloads in this

study. Instead, we focus on understanding how certain access patterns of the file system

can affect performance at the lower levels of the storage hierarchy, i.e., the interaction

between the CPU and PMEM. Our main interest lies in how these access patterns influence

performance; therefore, our goal is to minimize potential disturbances. For example, we

want to exclude any overhead imposed by the kernel and file system, as it could mask

interesting events that occur at the bottom of the storage stack. For this reason, this

work presents a unique approach to collect representative workloads. Instead

of generating synthetic workloads, we develop a tracing tool, pmemtrace, that can capture

PMEM-relevant at the architectural level (i.e., reads, writes, and cache hints) that are

imposed by the file system layer on top.

For instance, when an application initiates a write operating with a 256-byte chunk of

data, a PMEM-aware file system receives this request, looks up the file metadata, and de-

termines the appropriate MMIO location where the data should be written. After writing

27



3. PMEMTRACE : A TOOL TO COLLECT ACCESS TRACES AT
INSTRUCTION GRANULARITY

the data, the file system performs several cache line flushes to ensure the data is per-

manently stored. Meanwhile, pmemtrace records the relevant machine instructions, such

as movnti and clflush, in a trace file. All machine instructions contained in the trace

file can then be replayed in our performance analysis framework, pmemanalyze, whose

implementation and design are discussed later in chapter 4.

First, in section 3.1, we formulate the set of design requirements. Subsequently, sec-

tion 3.2 discusses the tracing methodologies explored and which methodology was ulti-

mately selected. Then, section 3.3 elaborates on the fundamental design/implementation

considerations of pmemtrace. We conclude this chapter with an in-depth discussion of the

strengths and limitations of pmemtrace.

3.1 Design Requirements

In this subsection, we define the set of requirements for the PMEM trace collector pmem-

trace. Doing so allows us to reason why specific research directions were explored, allowing

an informed decision on which tracing methodology is most suitable for device-level access

tracing.

Table 3.1 displays the set of design requirements. In the following two paragraphs, we

will discuss the motivation behind these requirements and how they relate to solving part

of the research problem statement stated in section 1.3.

ID Requirement Priority

RQ1

PMEM read and write operations should be collected at the smallest byte-
granularity possible, for example, movnti m32, r32) in case of a 4 bytes
write.

High

RQ2
The tracing tool must be able to capture events in program execution order High

RQ3

The tracing tool must not taint the application functional behaviour, cause
an application crash, or a kernel panic

Medium

RQ4

The tracing tool should be able to capture cache flushing events, e.g., clwb
or clflushopt

Medium

RQ5

The tracing tool should be able to collect events in a multicore/Symmetric
Multi-Processing (SMP) environment

Medium

RQ6

The tracing tool should implement a sampling-based data collection strat-
egy if, at the user’s discretion, runtimes become infeasible.

Low

Table 3.1: Set of requirements pmemtrace tracing tool, ordered by priority level
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Tracing Accuracy and Validity. Tracing accuracy is an essential quality attribute to

consider when designing a tracing tool (78). We define tracing accuracy as the degree to

which a tracer can capture PMEM access patterns generated by both applications and the

file system. In this context, we have identified three important classes of CPU instructions:

device reads, writes, and associated cache flush operations.

PMEM reads and writes are self-explanatory, as these operations are taken into account

when examining the interaction between file systems and PMEM devices. Ideally, the

tracking of read/write operations should closely align with the CPU microarchitecture,

that is, at the granularity of x86 load and store operations (RQ1). This tracking should

occur during program execution (RQ2), without causing crashes or fatal kernel panics

(RQ3). Additionally, cache flushing operations ensure the durability of data in the event

of failures (as discussed in section 2.1). Therefore, pmemtrace should also be able to

capture relevant machine instructions, that is: clflush, clflushopt, and clwb (RQ4).

Finally, pmemtrace should be able to log (PMEM-relevant) retired CPU instructions on

multiple cores simultaneously. We hypothesize that this capability could reveal interesting

access patterns, such as read/write amplification at the device (RQ5).

Tracing Overhead. We hypothesize that a close-to-hardware tracing approach may lead

to severe performance degradation throughout the system. However, the validity of this

work remains unaffected, as we prefer trace accuracy over execution run time. Therefore,

we assign the related requirement, RQ6, a low priority.

In the event that a user of the pmemtrace tool finds the increased execution run time to

be impracticable, we should be able to switch to a sampling-based data collection strategy,

as formulated in requirement RQ6.

In summary, pmemtrace should precisely collect relevant events (reads, writes, and cache

flushes) at the precision of CPU instructions, i.e. assembly code. Additionally, we prefer

trace precision over execution run-time, which means that switching to sampling-based data

collection is done at the user’s discretion. In the next section, we discuss three promising

tracing methodologies that can be used to collect device access traces and evaluate them

according to the requirements in Table 3.1.

3.2 Tracing Methodologies

In this section, we discuss three tracing methodologies that we consider viable for the

collection of CPU instruction-level access traces. The resulting insights determine the final
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design and implementation of pmemtrace.

QEMU x86-64 Virtual Machine

Application

Persistent Memory
File System

Persistent Memory
Driver

  DRAM Memory-Mapped
File

KVM Hypervisor

Host Machine

vCPU's

1

2

CPU's

Peripherals MMU
3

Tracing by logging mem-
mapped file updates

Tracing at Persistent
Memory/NVDIMM driver

Tracing using Memory
Management Unit

Figure 3.1: Overview of considered tracing methodologies

For rapid prototyping, we use a QEMU Virtual Machine (version 7.2.0, 8 cores, 8 GB

RAM, Intel 13900K CPU) with 28 GiB emulated Persistent Memory, running Ubuntu

20.04, Linux kernel version 5.4.232, together with KVM (Kernel Virtual Machine): an

open-source kernel module that allows the host kernel to act as a hypervisor. An artifact

on how to reproduce this setup is provided in section 7.1.

In addition to faster prototyping, the use of a virtual machine has another potential

advantage. As Persistent Memory is emulated inside QEMU by means of a memory-

mapped file (see Figure 3.1, methodology 1), we hypothesize that by adapting QEMU, the

hypervisor or the PMEM driver might allow capturing the PMEM read/write/flush events,

emitted by a file system inside the VM, within the host operating system. This insight

drives the first methodology we evaluate: tracing by logging memory-mapped file updates.

Methodology 1: Tracing QEMU Memory-Mapped File Updates. Before consid-

ering the design of this tracing methodology, we first elaborate on how QEMU emulates

PMEM within its software stack. QEMU emulates a PMEM device by mapping a portion

of the host’s main memory (DRAM) inside the Virtual Machine as a Memory-Mapped I/O
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(MMIO) device, as illustrated in Figure 3.1. Requesting this DRAM region (also known as

an anonymous memory region) is done by means of a mmap system call. For completeness,

the corresponding C code that performs this action is located within the mmap_activate

function (QEMU source file: util/mmap-alloc.c). To ensure that the VM can actually

detect the emulated PMEM, QEMU inserts a new entry in NVDIMM Firmware Interface

Table (NFIT). This entry contains multiple data fields that are defined according to the

Advanced Configuration and Power Interface (ACPI) standard: an interface that the OS

uses to detect hardware components (79). An NFIT entry contains multiple metadata fields

that are used by the OS to extract the necessary configuration information, for example,

the region offset and region length fields specify where the PMEM device is mapped within

physical memory. The respective source code for configuring the NFIT entry inside QEMU

can be found in the file hw/acpi/nvdimm.c, function nvdimm_build_device_structure.

Recall that QEMU emulates a PMEM device by inserting a DRAM-backed memory

region inside the physical address space of the VM: an anonymous memory region. Al-

ternatively, instead of persisting write updates to DRAM, QEMU can also be set up so

that it mirrors all changes made to this anonymous memory region to a file, also known

as a memory-mapped file 1. We hypothesize that an accurate PMEM access trace can be

obtained by logging accesses to this memory-backed file. To test whether this methodology

is viable, we performed the following experiment.

1. A QEMU VM instance is configured using the QEMU configuration found in List-

ing 8.1. Most important to note is that both the share and pmem settings are set to

"on", as this allows file write-through (80);

2. We modify the QEMU source code so that it prints the file descriptor of the host

memory-backed file to the console by adding a print statement in the mmap_activate

function:

1 activated_ptr = mmap(ptr , size , prot , flags | map_sync_flags ,
fd , map_offset);

2 printf("%d\n", fd); // Add this print statement

Listing 3.1: Changes util/mmap-alloc.c Source File

3. Then, the extracted file descriptor (FD), together with the Process ID (PID) of the

QEMU process, are included as arguments when invoking strace: strace -p PID -e

1QEMU PMEM file write-though can be enabled by setting the share flag to ’on’ (80)
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trace=file -e read=FD -e write=FD. Strace prints all reads and writes to this file to

the console.

4. Within the VM, we mount a new ext4-DAX file system and run a simple workload

that repeatedly appends 128 bytes to a file while logging the output of strace in the

host OS;

Although the capture of read and write operations worked reliably, closer examination

revealed three limitations that void the high-priority requirements formulated in Table 3.1.

First, we are only able to trace read/write at the block size of the host file system, in our

case 4096 bytes in the case of the ext4 architecture. Consequently, smaller (adjacent) reads

and writes within a single block remain undetected (RQ1). This issue gives rise to another

limitation: the ability to capture events in real time. As PMEM traffic is intercepted at

block size granularity, the property of capturing reads/writes in program order (RQ2) is

void. Lastly, to the best of our knowledge, QEMU and strace are unaware of cache line

flushing inside the Virtual Machine; hence, those events cannot be easily captured, causing

the requirement RQ4 to be void. These limitations infer that this methodology is not viable

for collecting detailed access traces. Therefore, we consider an alternative methodology.

Methodology 2: Tracing Linux PMEM/NVDIMM Kernel Driver Events. Com-

pared to Methodology 1, where PMEM events are collected outside the VM, this section

considers a completely different methodology in which PMEM events are collected inside

the VM. This methodology performs tracing at the device driver (refer to Figure 3.1). We

start by describing the relevant software components, in this case, the positioning of the

PMEM (or, in Linux terminology, NVDIMM) driver inside the Linux Kernel. Again, we

use the Linux kernel (version 5.4.232) for the experiment. Subsequently, we discuss how

to collect device events within the NVDIMM driver.

Application
Persistent

Memory File
System

Linux NVDIMM
Driver

Memory
Management Unit

(MMU)

User
Space

Kernel
Space

Persistent Memory

Kernel
Space

CPU micro-
architecture 

Direct Access (DAX)

Figure 3.2: Positioning Linux NVDIMM driver in software/hardware architecture

The Linux NVDIMM driver can be best seen as the ‘glue’ between the file system and

the actual device, as illustrated in Figure 3.2. It allows file systems (and the applications
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on top) to benefit from increased device compatibility at a relatively low cost. Note that

the figure is simplified; for example, the PMEM file system might be partially (or fully)

located inside kernel space, as previously described in Background section 2.2.

The NVDIMM kernel module can be initialized by invoking the pmem_attach_disk func-

tion inside the drivers/nvdimm/pmem.c file. The invocation of this function is done au-

tomatically when the module registers itself in the kernel. As the NVDIMM kernel mod-

ule is built on top of the existing Linux block device infrastructure (contained in the

/block folder), the PMEM is registered as a block device, which is done by invoking the

blk_alloc_queue_node function. Each PMEM device is assigned a unique identifier so

that other in-kernel software components can detect it as such a type of device. Addi-

tionally, the NVDIMM driver initializes multiple metadata structures, of which the most

important one is the mapping of PMEM MMIO physical pages 1 inside the kernel page

table by calling the devm_memremap_pages function.

When a file system issues a read/write/flush operation, its places a new request in the

block device request_queue. Internally, the request is forwarded to the pmem_make_request

function inside the drivers/nvdimm/pmem.c file. In turn, pmem_make_request performs

the requested action (read, write, or flush) by invoking one of the following functions:

pmem_read, pmem_write, or nvdimm_flush. Subsequently, the requested action is per-

formed by reading/writing or flushing the respective memory address(es) within virtual

memory. Finally, the MMU ensures that this virtual memory access is converted to the

actual location on the physical device so that the operation can be completed (see Fig-

ure 3.2).

To trace these events, we can capture the calls to pmem_read, pmem_write, and nvdimm_

flush functions. One way to achieve this is by using the eBPF framework, which enables

us to add kernel probes that log the function arguments whenever one of these functions

is invoked. In section 8, we have provided an example source code to do this.

Although this design is promising, it still has one major limitation, namely tracing Direct

Access (DAX) operations. Recall that DAX operations allow applications or file systems in

user space to bypass the kernel and its drivers (Background subsection 2.2.2), as shown by

the striped arrow in Figure 3.2. Consequently, a tracing tool solely based on the capture of

driver events would never be able to capture DAX operations, severely affecting the ability

to extract accurate traces (RQ1, RQ2). Therefore, in the next paragraph, we propose a

1The physical location of the device can be extracted using the ACPI NFIT table as discussed previ-
ously.
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novel methodology that, in addition to classical POSIX read()- and write()-like operations,

can also intercept DAX operations.

Methodology 3: Tracing using the CPU Memory Management Unit. The third

and final methodology uses the CPU MMU to capture PMEM access traces. We use

this design in our trace tool pmemtrace. For now, we only discuss the high-level design

considerations of pmemtrace, which means that we do not go into the actual implementation

details. This will be addressed in a separate section later.

As this methodology makes use of the MMU, we first need to consider what function-

ality the MMU brings to the table. In subsection 2.1.1, we have already discussed how

an MMU enables Operating Systems to provide isolation, security, and efficient memory

fragmentation. In short, the MMU converts a virtual address into a physical address by

looking up the corresponding Page Table Entry (PTE) inside a page table. The structure of

a PTE depends on the computer architecture and its instruction set. In the case of x86-64

architecture, it contains multiple bitfields, for example, the 48 Most Significant Bits (MSB)

of the physical address, permission flags, and a ‘present’ bit indicating whether the PTE

is valid or invalid.

Zooming in on the Linux NVDIMM driver, we can certainly conclude that it also uses

the MMU extensively. Recall that the driver constructs a direct mapping (also known as an

identity mapping) between the physical MMIO pages and the kernel’s virtual address space.

Furthermore, the DAX mechanism takes advantage of MMU capabilities, as it enables the

OS to establish an on-demand mapping between the user space and the device. This close

integration between virtual memory and an MMIO-driven device allows for another tracing

methodology, which we will introduce using the following example:

Application
Persistent

Memory File
System

Linux NVDIMM
Driver

Memory
Management Unit

(MMU)

Write 8 bytes in file
/foo/bar.txt Write 8 bytes to physical

address  0x12340000

DAX operation: Write 8 bytes to
virtual address 0x82340000

User
Space

Kernel
Space

Persistent Memory

Kernel
Space

CPU micro-
architecture 

1
3

42

File system resolves
metadata & file location

in virtual memory

Figure 3.3: Example of MMU translation in Persistent Memory file system

1. Consider Figure 3.3. Suppose that an application wants to write 8 bytes to a file. To

do this, it performs a POSIX write() write call, which is received by the file system.
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In this example, we assume the file system is located in user space.

2. The PMEM file system receives the request, looks up the corresponding file metadata

and determines that 8 bytes should be written to virtual address 0x82340000.

3. This file system uses DAX mappings, which means that it can perform the write

while completely bypassing the kernel, as indicated by the striped arrow.

4. The MMU now needs to translate the virtual address into a physical address. De-

pending on the current state of the MMU, we end up in one of the following three

states. (1) In case of a TLB hit, the corresponding PTE can be directly fetched from

the fast Translation Lookaside Buffer (TLB). (2) In case of a TLB miss, the MMU

looks up the corresponding PTE in the active page table. (3) In the event of a page

fault, the MMU informs the Operating System that the mapping is invalid. The task

of the Operating System is to insert the new mapping, after which the CPU can

Return From Interrupt (RTI), i.e., resume execution. Finally, the bytes are written

to PMEM.

Note that the translation from virtual to physical address is done transparently in hard-

ware except when a page fault is handled inside the OS. We can use this observation to

our advantage. In addition to handling the fault page, we can also log the fault address,

the issuing instruction, its operands, and the actual data. Together, these log entries then

form an access trace. This is the essence of pmemtrace.
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System

Linux NVDIMM
Driver
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(MMU)
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Persistent Memory
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pmemtrace
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Set PMEM pages back
to non-present

6

3

Figure 3.4: Tracing PMEM accesses through deliberate page faulting

The actual implementation is more subtle. For instance, one should only expect inter-

mittent page faults at one memory address. In other words, when a page fault has been

handled, that is, a new page has been inserted into the page table, it is unlikely to fault

again in the near future. This has implications for tracing, as all succeeding accesses are

not logged. To mitigate this issue, page present bit should be set to ‘clear’ to ensure that
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the following reads, writes, and flushes are captured after the file system has performed

the corresponding action, as depicted in Figure 3.4. The following section discusses this

and other edge cases in conjunction with further implementation details.

3.3 Implementation of pmemtrace

This section will discuss the details of the implementation of pmemtrace. We start by

elaborating on the implementation of both the pmemtrace-K and pmemtrace-U components.

As shown in Figure 3.5, the purpose of pmemtrace-K is to intercept PMEM accesses and

redirect these trace events through a pipe to the user space. In turn, pmemtrace-U provides

a convenient interface in user space that enables users to run arbitrary shell commands.

Subsequently, we discuss the issues arising when tracing user space PMEM accesses and

show how these complications are solved. Finally, we discuss the (potential) limitations of

the work.

User Space

Kernel Space

mmiotrace

pmemtrace-KNVDIMM Driver

ioctl calls

pmemtrace-U

Application / FS

debugfs

/sys/kernel/debug/tracing/trace_pipe

Figure 3.5: High-level design overview pmemtrace

3.3.1 Adaption of Existing Linux Kernel Tracing Infrastructure

The Linux kernel offers various low-level introspection tools. For example, uprobe and

kprobe allows developers to dynamically break the execution of the program in the user

and kernel space, respectively (81). These probes may be used for various reasons, such as

debugging code or performing a performance evaluation.

In addition to these general-purpose probes, the kernel also offers so-called kmmio probes:

a specialized probe that can be used to trace Memory-Mapped I/O (MMIO) device accesses.

Within the kernel, these kmmio probes are implemented within the mmiotrace framework.
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Originally developed for the nouveau graphics driver, mmiotrace can be used to reverse

engineer the low-level communication of any MMIO-capable device (82). As illustrated

in Figure 3.4, mmiotrace uses deliberate page faulting to capture MMIO events.

As mentioned earlier, PMEM is an MMIO device; therefore, we argue that using mmio-

trace to trace PMEM accesses would be a promising direction to pursue. However, we

found that, without extensive changes, mmiotrace cannot trace PMEM accesses due to the

following three issues:

• One significant limitation of mmiotrace is that it only captures accesses made within

MMIO mappings that are established through one of the kernel’s *__ioremap() func-

tions (see arch/x86/include/asm/io.h; Linux kernel source code). Unfortunately,

the PMEM driver does not use one of the ioremap functions; instead, it uses the

devm_memremap_pages function as mentioned earlier in section 3.2 (Methodology 3).

As a result, accesses within these MMIO regions are not recorded by mmiotrace.

Although the exact reason for not using an ioremap function in the PMEM driver

is not immediately clear, we speculate that the Linux kernel considers PMEM as a

special type of MMIO device, requiring more extensive configuration;

• Secondly, mmiotrace is only capable of capturing regular temporal mov instructions,

for example mov and movs. It cannot capture non-temporal PMEM moves (i.e.

movnti or cache line flushes (e.g., clflush, clwb). Consequently, instruction prop-

erties, e.g. its operands, cannot be traced;

• Third, mmiotrace can only trace MMIO accesses within the kernel, i.e. it cannot

trace accesses in user space;

In the remainder of this section, we discuss how we adapt the mmiotrace infrastructure

to resolve these issues. Specifically, we elaborate on the unique features of pmemtrace, and

how these features are implemented in the source code. This is done using the example

provided in Figure 3.6.

The left side of Figure 3.6 shows an execution with two machine instructions: a 64 byte

non-temporal move (movnti) followed by a cache line flush (clflushopt) to persist changes.

For simplicity, we assume a single core execution without Instruction-Level Parallelism

(ILP), which means that the instructions are executed in the order depicted. The following

enumeration explains how pmemtrace logs the instruction operand, the write address, and

the operand size. Note that pmemtrace also logs other values, such as the current value
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movnti 0x80001234 4

OP ADDR OP SIZE __do_page_fault

Code Execution kmmio_handler

Pre-fault handler

Post-fault handler

movnti 0x80001234 4

Page Fault

RFI, set CPU to
single-stepping

mode

Trap, set faulting
page to non-present

clflushopt 0x80004000 4
Resume Execution

PMEM Trace

1

2

3

4

Figure 3.6: Example of logging a pending write using pmemtrace

of the instruction pointer (RIP), the current system time, and the CPU affinity; however,

this has been omitted from the figure for simplicity.

1. At the end of the PMEM driver initialization function, pmem_attach_disk (source

file: drivers/nvdimm/pmem.c), we add the following call:

mmiotrace_ioremap(pmem ->phys_addr , pmem ->size , (unsigned long)
pmem ->virt_addr , NULL);

This call ensures that the entire virtual memory region, which is backed by PMEM

MMIO pages, is set to ‘not present’. From now on, any read or write access to this

range of pages will result in a page fault.

2. Now, suppose that a file system performs a 4 byte write at address 0x80001234

by issuing an movnti instruction (see Step 1 in Figure 3.6). As this virtual ad-

dress is contained within the address range [ pmem->virt_addr, pmem->virt_addr +

pmem->size ], a page fault occurs. The corresponding interrupt vector points to the

__do_page_fault() function. The first action that this function performs is to check

if the faulting address is within the aforementioned PMEM address range by call-

ing the kmmio_handler() function. If this expression evaluates to false, the fault is

handled like a ‘normal’ page fault. If the expression is evaluated as true (that is,

the faulting address is contained within the region), the kmmio_handler invokes the

pre-fault handler, see Figure 3.6.
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3. The pre() function (file: arch/x86/mm/mmio-mod.c) extracts the relevant data fields

to store within the trace: the type of operation, the instruction opcode, and its

operands (see Listing 3.2). We modify the functions get_ins_opcode, get_ins_mem_width,

and get_ins_reg_val in order to extract this information.

1 // ...
2 struct mmiotrace_rw *my_trace = &get_cpu_var(cpu_trace);
3 my_trace ->opcode_cpu = get_ins_opcode(instptr);
4
5 my_trace ->phys = addr - trace ->probe.addr + trace ->phys;
6 my_trace ->opcode_cpu = get_ins_opcode(instptr);
7
8 ip = (unsigned char *) instruction_pointer(regs);
9

10 // REG_READ , RED_WRITE and INS_CACHE_OP are the three events
being traced.

11 if (type == REG_READ) {
12 my_trace ->opcode = MMIO_READ;
13 my_trace ->width = get_ins_mem_width(instptr);
14 } else if (type == REG_WRITE) {
15 my_trace ->opcode = MMIO_WRITE;
16 my_trace ->width = get_ins_mem_width(instptr);
17 my_trace ->value = get_ins_reg_val(instptr , regs);
18 } else if (type == INS_CACHE_OP) {
19 my_trace ->opcode = MMIO_CLFLUSH;
20 } else {
21 pr_info("Unknown instruction: %x\n", my_trace ->opcode_cpu);
22 }
23 // ...

Listing 3.2: Capture of Relevant Trace Events

4. After executing the pre-fault handler, mmiotrace sets the fault paging to present, and

Returns From Interrupt (RFI) in CPU single-stepping mode (Step 2) by setting the

Trap Flag (TF) in the CPU EFLAGS register (55). Setting the CPU to single-stepping

modes causes the CPU to interrupt after every executed instruction. This feature

allows for a design in which the post-fault handler is always invoked after executing

the faulting instruction.

5. At Step 3, the movnti instruction has been executed, and the CPU traps back into the

kernel to execute the post-fault handler. This handler performs three actions. First,

in the case of a read operation, it extracts the read value by referencing the register
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file. Second, it logs the completed action by writing to a dedicated pipe: /sys/

kernel/debug/tracing/trace_pipe (see Figure 3.5). Third, the faulting page, e.g.

0x80001234, is set back to non-present in order to capture all future events.

6. At Step 4, the program can resume execution.

In summary, we have seen how an adapted version of mmiotrace, pmemtrace, can record

PMEM events with instruction-level granularity. Still, we have not yet addressed one

limitation: the ability to trace PMEM accesses in the user space.

3.3.2 Tracing User Space DAX Accesses

Recall that mmiotrace changes page table metadata bits to capture read, write, and flush

events. However, a limitation of the current version of mmiotrace is that it can only trace

these events by modifying the kernel page table allocated during system boot. It is unable

to trace events in user processes, as in Linux each process is assigned a new copy of this page

table. Consequently, DAX events issued in the user space cannot be traced. To overcome

this limitation, it is necessary to dynamically attach and detach tracing probes within the

user space. This process involves multiple steps, which are illustrated in Figure 3.7.

Linux Task Scheduler

Task 1 Task 2 Task 3 Task 4

Context Switch

Has task 2 probes?

yes

Has task 1
probes?

Pre context
switch

Iterate over probes 

yes

Disarm probe 

Post context
switch

no

Iterate over probes 

Arm probe

CPU Task List

1

2 3

4

Figure 3.7: Modifications Linux’s task scheduler

1. We add two new variables to the Linux abstract datatype that embodies all task-

related properties (struct task_struct): has_pmem_probes and is_pmem_sampling

(file: include/linux/sched.h). The first variable denotes whether this task has
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one or more active tracing probes. The purpose of the second variable will become

clear when we discuss sampling-based tracing methodology in subsection 3.3.4.

Inside the Linux main scheduler function, __schedule (file: kernel/sched/core.

c), we add two new function invocations: mmiotrace_detach_user_probes and

mmiotrace_attach_user_probes (both are defined in arch/x86/mm/mmio-mod.c).

2. The mmiotrace_detach_user_probes function is invoked before the scheduler per-

forms the task switch (see Figure 3.7). This function ensures that all probes currently

attached to the current running process, in case of Figure 3.7 Task 1, are disabled

so that other tasks cannot trigger spurious events after the scheduler performs the

context switch.

3. The mmiotrace_attach_user_probes function is invoked directly after the context

switch was made, and just before the CPU execution returns to the user space. This

function ensures that all trace probes assigned to Task 2 are enabled.

4. Finally, the CPU starts executing Task 2.

The final step is to register the actual probes in the event that an application requests a

DAX memory mapping using the mmap system call. The dax_associate_entry function is

responsible to establishing such a mapping between the applications’s address space and

PMEM. To track accesses in its region, we add a mmiotrace_ioremap function call, which

in turn creates a new probe. Likewise, if an application issues the unmap system call or

terminates, the mmiotrace_iounmap function call in dax_disassociate_entry ensures the

tracing probe is deactivated and removed.

3.3.3 Tracing CPU Fence Instructions

In Background subsection 2.1.3, we discussed why explicit cache line flushing and memory

fences are essential for data consistency. In summary, the first ensures that data always

persist in the event of a failure, while the second ensures that PMEM read/write operations

are always executed in order. Listing 3.3 shows a typical compiled-generated machine code

implementation of a durable PMEM write. CPU fencing instructions (mfence, sfence and

lfence) enforce ordering, while the clflushopt instruction ensures data at register r0 is

directly written to PMEM. This is a typical access pattern when one wants to bypass the

cache; a flushing operation must always be encapsulated by a memory fence (83).
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In previous sections, we discussed how non-temporal instructions, such as movnti and

clflushopt, are captured by pmemtrace. However, we have not yet considered how to

detect fencing instructions. To better illustrate this, consider Listing 3.3. When the CPU

executes the movnti instruction, it writes data to the virtual address contained in r1. This

causes a trap in the kernel, which is then recorded by pmemtrace. Since fencing instructions

such as mfence only perform serialization and do not operate on memory directly, they

cannot be captured by deliberate page faulting. As a result, we developed an alternative

methodology in the form of an LLVM (84) optimization pass, FenceInstrument, which

instruments fencing instructions by callbacks.

mfence
// Two operands: ’r0’ is the source address (e.g. a user space

buffer), ’r1’ is the destination address (e.g. PMEM -backed
virtual memory)

movnti r0, r1
clflushopt r0
mfence

Listing 3.3: Typical Compiler-generated Low-level Implementation of PMEM Write

The FenceInstrument pass starts by traversing the program’s Abstract Syntax Tree

(AST): a tree that resembles the program source code in a structured manner (85). In

LLVM, an AST is constructed from a wide variety of different objects. For example, a

function/basic block object (llvm::BasicBlock) contains multiple instruction objects of

type (llvm::Instruction). In turn, the object llvm::Instruction is polymorphic, giving

rise to an even larger set of subtypes, e.g. llvm::FenceInstr. Hence, to test whether an

instruction is a fencing instruction, we can walk the AST and check whether the instruction

is of type FenceInst, i.e.: isa<FenceInst>(inst). If this condition is true, the pass inserts

multiple assembly instructions before the fencing instruction, as shown in Listing 3.4.

Specifically, it inserts kernel callback in the form of a new system call: sys_trace_fence

(number: 350). According to the x86_64 Linux system call convention (86), the system

call number of the corresponding system call must be stored in the rax register. The

first argument is stored in the edi register, in this case, it denotes the type of CPU fence

(see Listing 3.4). The original values of both registers are pushed to the stack and restored

after performing the syscall such that their original values are not tainted. In kernel

space, the sys_trace_fence function writes a new entry to the trace log (see arch/x86/mm/

mmio-mod.c file for code implementation, and Returns From Interrupt (RTI). For reference,
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the source code of the pass can be found in the llvm_patch/FenceInstrument.cpp file

within the Git repository

Finally, fences within the kernel are traced slightly differently. Instead of automatically

inserting sys_trace_fence callbacks, fences in the kernel should manually be annotated by

inserting a sys_trace_fence function call just above the fencing instruction. Recompiling

the entire kernel within the LLVM compiler pass included should log all kernel fences

without manual configuration, however, this is considered future work.

1 // Save register state.
2 push %rax
3 push %rdx
4 // Invoke kernel callback in form of syscall nr. 350
5 movl $350 , %eax
6 movl $0, %edi // 0 = mfence , 1 = sfence , 2 = lfence.
7 syscall
8 // Restore register state.
9 pop %rdx

10 pop %rax
11
12 mfence

Listing 3.4: LLVM Optimizer Pass: Instrumentation of Fencing Instructions

In the next section, we quantify the performance impact of pmemtrace and show how a

sampling-based tracing strategy can reduce overhead at the cost of tracing accuracy.

3.3.4 Quantifying Tracing Overhead

In this subsection, we first assess the performance of pmemtrace. Specifically, we show

that tracing at an instruction level granularity results in a significant amplification of the

application run time. Then, we show that this incurred overhead can be partially mitigated

by switching to a sampling-based tracing strategy.

To evaluate the impact of tracing, we perform an experiment in which different-sized

sets of randomly generated data is appended to the back of a file. Then, the impact of

tracing can be quantified by comparing the run times with and without tracing. An artifact

to reproduce the results is provided in section 7.2. Table 3.2 displays the results of the

experiment.

Clearly, the amplification of the run time when tracing is enabled is extreme (up to

296×). However, it is important to note that achieving the highest trace accuracy is of

primary interest here (RQ1). We strive for performance when we replay these traces inside
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Size Written Avg. runtime w/o tracing Avg. runtime with tracing Amplification
4 MiB 0.009 s (σ = 0.000) 2.590 s (σ = 0.027) 287×
8 MiB 0.019 s (σ = 0.003) 5.155 s (σ = 0.030) 271×
16 MiB 0.036 s (σ = 0.004) 10.301 s (σ = 0.026) 286×
32 MiB 0.070 s (σ = 0.002) 20.781 s (σ = 0.103) 296×

Table 3.2: Run time amplification tracing file append with random data in QEMU VM, 10
runs per working set size

the pmemanalyze framework. Still, we believe that these run times are infeasible, and hence

we deem it necessary to switch to a sampling-based strategy in which PMEM-related read,

write, flush, and fencing machine instructions are traced during program execution.

The implementation of a sampling-based strategy is carried out as follows:

1. Recall that we decided to divide pmemtrace into two user and kernel space compo-

nents: pmemtrace-U and pmemtrace-K (see Figure 3.5). To achieve data sampling,

pmemtrace-K spins up a separate kernel thread: pmemtrace_sampler (source file:

arch/x86/mm/mmio-mod.c). This thread repeatedly arms and disarms the tracing

probes based on two settings passed by pmemtrace-U; the sample rate (range: 0−240

hertz) and the duty cycle. The duty cycle, expressed as a percentage between 0%

and 100%, determines the proportion of time the tracing probes for kmmio are armed

for the selected frequency. An example of how to use pmemtrace’s CLI interface is

provided in the following example:

# Usage: pmemtrace [args] [trace name] [command]
sudo pmemtrace --sample -rate 30 --duty -cycle 0.5

simple -file -append sudo bash -c \
"head -c 8M </dev/urandom >/mnt/pmem_emul/some_file.txt"

Listing 3.5: Example of using pmemtrace to trace an 8 MiB random file append operation

Another sampling strategy is based on the number of page faults handled. In other

words, when pmemtrace has captured a user-specified number of page faults, data

collection is temporally disabled until the number of page faults has reached a pre-

defined threshold.

sudo pmemtrace --sample -rate -pfaults 10 simple -file -append
sudo bash -c \
"head -c 8M </dev/urandom >/mnt/pmem_emul/some_file.txt"

Listing 3.6: Example of page fault based sampling strategy
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2. In user space, pmemtrace-U buffers all events retrieved through the trace pipe, as

illustrated in Figure 3.5. After the provided shell command finishes execution, the

output is compressed using Apache Parquet (87) and stored inside the current work-

ing directory. This trace file is now ready to be replayed in the performance analysis

framework pmemanalyze.

We evaluate the performance impact of sampling by measuring two metrics, run time

and accuracy. Accuracy is an important metric as due to sampling, a substantial number

of events might be lost, affecting the trace’s accuracy. We quantity the tracing accuracy

as the ratio between the number of bytes to be read/written and the number of bytes

actually captured by the pmemtrace tool. Figure 3.8 and Table 3.3 display the results of

the experiment. Figure 3.8 shows the impact of the tunable sampling parameters, duty

cycle and frequency, on the tracing accuracy. Each subfigure corresponds to a selected duty

cycle, with the horizontal axis depicting the frequency and the vertical axis displaying the

amount of write (in MB) per second. This allows us to compare tracing overhead and

accuracy across different sampling settings.
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Figure 3.8: Impact frequency (hertz) and duty cycle (%) on amount of writes captured (MB
per second, higher is better), 16 MiB random write.
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As shown in Figure 3.8, the duty cycle has the greatest impact on accuracy. For example,

a duty cycle of 95% with a sampling frequency of 120 hertz results in the capture of

approximately 1.75 MB per second. Table 3.3 shows the amplification in run-time, using

the same random append workload as in the experiment without sampling. We used a

sampling frequency of 120 hertz and a duty cycle of 95%, since in the case of this experiment

these parameters showed relatively high accuracy at a low run-time cost (see Figure 3.8).

Size Written µ runtime w/o sampling µ runtime sampling Trace accuracy (%) Amplification
4 MiB 2.590 s (σ = 0.027) 0.594 s (σ = 0.081) 15.8% 77×
8 MiB 5.155 s (σ = 0.030) 1.499 s (σ = 0.100) 15.62% 82×
16 MiB 10.301 s (σ = 0.026) 2.684 s (σ = 0.142) 15.10% 80×
32 MiB 20.781 s (σ = 0.103) 5.553 s (σ = 0.314) 18.1% 83×

Table 3.3: Impact sampling on execution time and trace accuracy. Sampling Settings: 120

hertz, 95% duty cycle, 10 runs

The results shown in Table 3.3 show a clear relationship between tracing accuracy and

run-time; if the size of the work set increases exponentially, the average run time also scales

exponentially. When run times become infeasible for a given workload, a lower duty cycle

(e.g., 50%) effectively decreases run times at the cost of accuracy.

In summary, we show that a sampling-based data collection approach helped reduce the

overhead of instruction-level tracing. In the next section, we discuss the limitations of

pmemtrace and how these limitations relate to the design requirements established earlier

in section 3.1.

3.4 Limitations and Discussion

This section discusses the two limitations of pmemtrace: the amplification of runtime and

multicore instability.

Run-time Amplification. Even though sampling helped to decrease run times, pmem-

trace still introduces a lot of overhead to the application (or file system) being traced. We

believe that the majority of this overhead is attributable to CPU single-stepping. Recall

that pmemtrace uses CPU single-stepping to regain control of the execution so that it can

reset the faulting page back to not present after completing the read/write (see Figure 3.6).

This is essential for logging subsequent events at the same virtual address. Vogl et al. (88)

show that the use of Instruction Level Monitoring (ILM) techniques based on CPU single-

stepping execution, such as pmemtrace, results in massive application slowdowns; up to
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a factor of 545. Manual analysis using perf revealed that in the case of pmemtrace on

average 61% of the total run time can be attributed to the CPU single-stepping execution.

Figure 3.9 displays this and other forms of overhead for multiple working sets 1.
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Figure 3.9: pmemtrace runtime overhead in kernel, 10 runs for each working set.

Van Bulck et al. (89) suggests an alternative to single-stepping. They proposed a tracing

technique that mimics CPU single-stepping using APIC hardware timers. Due to time

constraints, we have not been able to implement this variant, which can be considered

promising future work.

Multicore Tracing Implications. Recall that pmemtrace sets all PMEM-backed pages

to not present. If an application accesses one of these pages, a CPU exception is generated,

which is then handled by the kernel page fault handler. Although this methodology has

proven itself in a uniprocessor execution environment (82), we will show it has two impli-

cations in a multicore environment: lost I/O events and race conditions. We demonstrate

both issues through an example.

Suppose an application, scheduled on core 0, wants to read PMEM at address 0x1000.

This will result in a CPU exception, as the corresponding page was set to ‘not present.’ To

handle the exception, the CPU jumps to the kernel page fault handler, whose address can
1An artifact to reproduce this and other experiments is provided in section 7.2
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be found by looking up the corresponding exception handler in the Interrupt Vector Table

(IVT). Now, pmemtrace uses the existing mmiotrace kernel infrastructure to mark the

page as present and resume execution in single-stepping mode. While this CPU is single-

stepping execution to replay the faulting instruction, other cores can access the address

0x1000, leading to a complication. As the corresponding page is marked present, the MMU

can resolve the corresponding physical address without the involvement of the kernel page

fault handler. Consequently, these events are irreversibly lost. In the worst case, this may

also lead to data race conditions, as two cores may access the same page simultaneously,

resulting in deadlocks.

We found that these two issues are particular to this form of tracing and are not well

addressed in the related literature. There is one related (conceptual) contribution by Kim

et al. (90) that proposes a solution to these issues through the use of a shadow page table.

When a processor encounters a page fault, it copies the existing page table and inserts

a page at the faulting address. Meanwhile, all other processors continue to reference the

original page table. Therefore, only the processor that handled the page fault has access.

Although we are confident that this contribution may mitigate event loss and data races,

we do not believe that it solves the problem efficiently. Since cores must coordinate all page

table changes, all reads and writes affecting the same virtual address are effectively seri-

alized, degrading performance as when switching to uniprocessor execution. Additionally,

we envision that the required extensive kernel code changes and (potential) implications

are substantial. As a result, we switch the kernel to uniprocessor mode while tracing; see

the enter_uniprocessor function defined in arch/x86/mm/mmio-mod.c. For experimental

purposes, multicore event capture can still be enabled by setting the --enable-multicore

flags, as illustrated in Artifact 1 (section 7.1).

Evalation by Requirements. We conclude this chapter by evaluating pmemtrace ac-

cording to the functional requirements set earlier. Table 3.4 summarizes these require-

ments, including an assessment of whether a requirement is passed (green), partially passed

(orange), or failed (red).

We implemented a tracing methodology that can trace PMEM read, write, and flushing

operations at byte-granularity in real time without tainting the application’s functional

behavior or causing a crash. Sampling support was included as runtimes turned out to be-

come infeasible in high data velocity workloads. Thus, we consider the requirements RQ1,

RQ2, RQ3, RQ4, RQ6 as passed. We were unable to implement stable multicore/SMP

support due to data racing (RQ5).

48



3.5 Conclusion and Future Work

ID Requirement Passed
RQ1 Capture Instructions at Byte-Granularity ✓

RQ2 Capture in Real-Time ✓

RQ3 No Crash/Kernel Panics ✓

RQ4 Capture Flushing Events ✓

RQ5 SMP Support ✗

RQ6 Sampling-based Tracing ✓

Table 3.4: Evaluation of requirements pmemtrace tracing tool

3.5 Conclusion and Future Work

We designed and implemented pmemtrace, a tool that can capture PMEM traffic at

instruction-level granularity by leveraging the CPU’s Memory Management Unit (MMU)

paging infrastructure. Our evaluation showed that pmemtrace can accurately collect all

read, write, and flushing events, however, at a high runtime cost. A sampling-based data

collection approach helped to reduce this overhead; see Table 3.3.

We believe memory tracing through deliberate page faulting enables a comprehensive

analysis of PMEM access patterns. Still, its limitations are evident: speed and multicore

scalability. In our view, future work should focus on mitigating these limitations. A

promising research direction would be investigating whether the LLVM FenceInstrument

optimization pass can be extended to trace accesses. In concrete terms, this implies that

every memory load and store instruction should be encapsulated similarly, e.g., surrounding

an mov instruction by a kernel trap. The main challenge here is distinguishing between

instructions that will read/write PMEM and those that will only affect DRAM.
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pmemanalyze: A Tool to Analyze
Micro-Architectural Overhead

This chapter discusses the design, implementation, and evaluation of pmemanalyze: a

tool that replays pmemtrace-captured file system access traces in order to evaluate the mi-

croarchitectural performance impact of a file system. We start by explaining the motivation

and design considerations behind pmemanalyze, specifically addressing the need to include

microarchitecture-related events in performance analysis (section 4.1). We then present a

literature study on the microarchitectural performance characteristics of Intel Optane DC

Persistent Memory (section 4.2), which helps us to define the relevant performance metrics

to be integrated into the pmemanalyze tool (section 4.3).

4.1 Motivation and Design Considerations

In order to emphasize the need for a tool that can evaluate the microarchitectural perfor-

mance of PMEM file systems, it is essential to quantify the portion of overhead that can be

attributed to the (near) hardware interaction. Essentially, this determines to which extent

micro-optimizations can improve quality attributes such as latency and throughput.

Quantifying the Impact of Hardware on File System Performance. In order to

identify the specific areas where file system overhead occurs, we performed an experiment

in which hardware and software overhead is categorized into different groups. This per-

formance breakdown was performed for four file systems (ext4-DAX (49), SplitFS (19),

NOVA (20) and UFS (27)) and its results are depicted in Figure 4.1. For each file system,
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we run the Flexible I/O Tester (FIO) benchmark (91). This benchmark can be configured

to perform a pre-selected set of file operations automatically. In our case, we generate

20.000 files and perform 256 byte sequential and random reads and writes on these files.

We specifically chose a granularity of 256 bytes to stress PMEM’s byte-addressable prop-

erties. Detailed instructions on how to reproduce these results can be found in the Artifact

provided in section 7.2.
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Figure 4.1: Performance breakdown four PMEM file systems, FIO settings: 20000 files (file
size: 0.1 MiB), 256 byte append, 50%/50% read/write ratio.

Figure 4.1 displays the results. In terms of run time, UFS achieves performs the best

while ext4-DAX performs the worst. It is also evident that the software overhead within

the software storage stack accounts for 24% to 68% of the total run time, depending on the

file system used. The remaining overhead is attributed to actual I/O operations involv-

ing Persistent Memory and page fault handling. I/O operations are particularly important

when considering performance at the microarchitectural level since they represent the CPU

time spent communicating with the PMEM device at the level of CPU load/store instruc-

tions (55). Additionally, we suspect that page faults might be relevant, as they occur at

the microarchitectural level within the CPU’s Memory Management Unit (MMU).

Towards a Design of pmemanalyze. In order to answer the question of how to design a

tool that can be used to assess the microarchitectural performance of PMEM file systems
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(sub-question RQ3), it is important to consider how Persistent Memory integrates into

the computer hierarchy. We already touched on this topic in the background chapter

(chapter 2); however, we have not discussed how relevant components (e.g., the CPU and

its caches, the PMEM internals, and the MMU) of the hardware architecture can impact

performance in the storage software stack.

We conduct a literature study to determine these performance-related idiosyncrasies

(sub-question RQ1). The findings of this study help us to define the appropriate perfor-

mance metrics that are included in the analysis tool pmemanalyze. The following section

discusses the methodology of the literature study and presents its findings.

4.2 Literature Study: The Identification of Prevalent Micro-
Architecture Performance Issues and Metrics

In this section, we present the results of a short but complete literature study that aims to

answer sub-question RQ1: What are the micro-architectural performance-related idiosyn-

crasies of Intel Optane DCPMM?

Literature Study Design. To ensure that the findings of a literature study are pre-

cise and complete, researchers should use appropriate literature selection methodologies.

Well-known selection techniques are a Systematic Literature Review (SLR) (92) and snow-

balling (93). A Systematic Literature Review allows for a very comprehensive and struc-

tured study; however, we believe that these methodologies are more applicable in studies

with a large search space. On the other hand, snowballing allows a systematic search in a

constrained search space in which this search space is expanded by exploring the references

of relevant papers (backward snowballing) and papers that refer to these relevant papers

(forward snowballing). In this study, we use the snowballing methodology, as we have al-

ready systemically explored the research field of Persistent Memory in our literature study

on file systems (11). This allows for a search space whose boundaries are already clearly

defined through concise inclusion and exclusion criteria.

Title Year

Persistent Memory I/O Primitives (6) 2019
An Empirical Guide to the Behavior and Use of Scalable Persistent Mem-
ory (10)

2020

Table 4.1: Seed papers literature study
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The search space is defined by specifying the seed papers (see Table 4.1), the search

keywords (see Table 4.2), and the paper inclusion/exclusion criteria, as denoted in the

enumeration below:

• I.1: The work targets a real Persistent Memory device (no emulation): Intel Optane

DCPMM;

• I.2: The work discusses the micro-architectural performance properties of an Intel

Optane DCPMM;

• I.3: The work generalizes its findings, meaning that they are applicable to more than

one application or file system;

• I.4: Optional. The work addresses the micro-architectural performance impact of

accessing remote/NUMA Intel Optane DCPMM;

• E.1: The work was published before 2017; the year the first Intel Optane DCPMM

devices emerged;

Keyword Accepted Rejected

Seed Paper Forward Snowballing 6 > 50 1

Intel Optane DCPMM Micro-architectural Performance 3 > 25

Persistent Memory Low-level Performance 0 9

Persistent Memory Cache Interference 2 7

Table 4.2: Exploratory keywords and paper accepted/rejected Count

The choice of Intel Optane DCPMM as the primary target device is supported by two

key factors. First, it has the highest adoption rate in industry (48). Second, our earlier lit-

erature survey on Persistent Memory File Systems (11) revealed that most of the literature

focuses on assessing and improving the performance of Intel Optane DCPMM, expanding

the amount of (potentially) relevant literature to the fullest extent possible.

The following conferences were included in the literature search: ACM (SIGARCH,

SIGOPS, SPAA), ASPLOS, EuroSys, IEEE, ISCA, ODSI, MDPI, SC, SOSP, USENIX

(FAST), and VLDB. Furthermore, we use the ACM, Arxiv, and Google Scholar search

engines to find additional work.
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Overview of Findings. We noticed a significant overlap in the findings of all papers

included in this literature study. Therefore, we grouped and summarized the contributions

of these papers in a concise way, as shown in Table 4.3.

In the following subsections, we will elaborate on these findings individually, together

with fitting performance metrics that are incorporated into the pmemanalyze tool. We will

begin by discussing the findings that specifically relate to a very specific part of the micro-

architecture, e.g., Optane staging queues, and then gradually proceed to the higher-level

findings, i.e., NUMA interconnects between CPU packages. Throughout the discussion,

we frequently refer to Figure 4.2, which visually illustrates the placement of each finding

within the microarchitecture, identified by its unique ID as listed in Table 4.3.

Category Findings Literature

The Effects of Access
Patterns on Latency
and Throughput

ID Finding

1 Mismatch in Access Granularity Degrades Write
Bandwidth

2 CPU Prefetching Mispredictions causes Cache Pol-
lution.

3 Poor CPU Prefetching Performance

(6, 9, 10, 72, 73, 77,
94, 95)

Optane’s Internal
Buffering

ID Finding

4 Read Amplification due to Optane’s Read Buffer
5 Contention at Optane’s RMW Buffer

(9, 10, 73)

Implications of
NUMA Accesses

ID Finding

6 Slow Cross-Socket Interconnect Degrades Through-
put

(9, 72, 76, 95, 96,
97)

Table 4.3: Overview of findings literature study

4.2.1 The Effects of Access Patterns on Latency and Throughput

All studies that examine the impact of Intel Optane DCPMM access patterns (6, 9, 10, 72,

73, 94, 95) agree with the observation that random access patterns, both reads and writes,

1All citations listed in the seed papers bibliography that were not accepted can be considered rejected,
hence the high count.
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Figure 4.2: Graphical overview micro-architecture, depicting findings literature study Ta-
ble 4.3

have a detrimental effect on bandwidth compared to a more sequential access pattern.

In the following paragraphs, we will provide a comprehensive explanation of why this is

the case, presenting relevant concepts. Additionally, we will establish performance metrics

that accurately quantify the impact of these concepts. These metrics will be integrated

into the pmemanalyze tool.

Concept 1: Mismatch in Access Granularity Degrades Write Bandwidth. Sev-

eral studies (9, 10, 72) show that there is a discrepancy in access granularity between the

CPU and Intel Optane DCPMM. In modern systems, CPUs handle data at cache line

granularity, typically 64 bytes. However, as shown in Figure 4.2, Intel Optane DCPMM

handles data at a larger granularity of 256 bytes, called an XPLine. This difference in

granularity raises a performance issue. When a CPU sends a 64 byte (cache line-sized)

write request to PMEM, it can lead to 4× the requested amount of bytes being written,

also known as write amplification. Optane DCPMM employs a prefetcher called the XP

Prefetcher to account for this performance loss. This prefetcher can coalesce four adjacent
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64 byte requests into a single XPLine access, which can then be written to flash. However,

in the case of random address patterns where the accesses are not linear, the XP Prefetcher

cannot effectively merge requests. This results in the aforementioned write amplification.

Concept 2: CPU Prefetching Mispredictions cause Cache Pollution. The second

finding relates to prefetching at the CPU. In this context, prefetching is the process of

proactively loading data from a slow memory (e.g., PMEM) into a faster memory (e.g.,

the Low-Level Cache) before it is actually needed (98). In the case of random workloads,

where PMEM accesses lack a clear linear (also known as strided) access pattern and the

prefetcher’s accuracy decreases, the number of CPU prefetching mispredictions increases.

This, in turn, leads to unnecessary Optane operations, which pollute the caches, thus

wasting valuable device resources.

In terms of access latency, Xiang et al. (9) show that, depending on the level of ran-

domness of an access pattern, up to 50% more CPU cycles are spent per Optane DCPMM

read access compared to a fully sequential read pattern due to this issue of cache pollution.

In the next finding, we will show that random writes are less affected if they bypass the

cache, as this effectively disables the prefetching mechanism.

Concept 3: Cache Bypass Improves Write Bandwidth. Two studies (9, 10) con-

cluded that explicitly flushing the cache after a PMEM store improves the write bandwidth.

This finding may initially seem contradictory, considering that caching is commonly known

to decrease access latency, in particular when accessing DRAM (98). However, the behav-

ior can be explained as follows. When caching is enabled, the data is eventually evicted

from the cache and written back to the device. As cache eviction is not guaranteed to be

FIFO, an initially sequential PMEM access pattern might effectively be transformed into

a random one. Such a random access pattern is again susceptible to the aforementioned

prefetching issue (Concept 2).

In conclusion, it is evident that random reads suffer from poor CPU prefetching perfor-

mance, while random writes experience write amplification due to a mismatch in access

granularity between the CPU and Optane. Now, we will define the appropriate perfor-

mance metrics to detect and quantify the impact of these factors accurately.

Performance Metrics. We define multiple performance metrics to quantify whether a

trace captured by pmemtrace has poor prefetching performance and/or suffers from read

or write amplification. The metrics are derived from performance counters available in
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Intel’s Performance Monitoring Unit (PMU), including its Precise Event-Based Sampling

(PEBS) extension (99). The relevant metrics, along with their units of measurement (e.g.

GB/s), goals, and definitions, are presented in Table 4.4.

Table 4.5 presents the performance metrics used to investigate the impact of caching.

Metric 7 quantifies the number of retired instructions that bypass the third level of the

CPU Low-Level Cache (LLC), facilitating the examination of whether an application is

bypassing the cache. Metric 8 and Metric 9 are included on the basis of an observation

made by Yi et al. (100). They note that in scenarios where DRAM and PMEM compete

for resources, for example, simultaneously reading and writing to the shared memory bus

at 100% utilization, the PMEM throughput degrades up to 64%. To assess the interaction

between DRAM and PMEM, we track the number of retired load instructions served by

DRAM (Metric 8) and the Cycles Per Instruction (CPI, Metric 9) for each load/store

machine instruction, which provides an estimate of the access latency for DRAM accesses.

The implementation of these metrics will be discussed later in section 4.3.
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Metric Definition

Metric 1: iMC elapsed clock ticks
Unit: CPU ticks Source: uncore event
Goal: Used to precise bandwidth measurements
(Concepts 1 and 2).

UNC_M_CLOCKTICKS

Metric 2: PMEM read amplification
Unit: bytes Source: uncore event
Goal: Investigate potential mismatch in device access
granularity (Concept 4).

64× UNC_M_PMM_RPQ_INSERTS
OS bytes read

Metric 3: PMEM write amplification
Unit: bytes Source: uncore event
Goal: Investigate potential mismatch in device access
granularity (Concept 4).

64× UNC_M_PMM_WPQ_INSERTS
OS bytes written

Metric 4: PMEM write bandwidth
Unit: GB/s Source: uncore event
Goal: Quantify write performance, high value is
desirable (Concept 3).

(64× UNC_M_PMM_WPQ_INSERTS/(1× 109))

sample duration

Metric 5: Device read latency
Unit: us Source: uncore event
Goal: Differentiate access latencies for different kinds of
memory accesses. A low value is desirable. Related to
all concepts.

(1× 109)× UNC_M_PMM_RPQ_INSERTS
UNC_M_RPQ_OCCUPANCY

UNC_M_CLOCKTICKS

Metric 6: Device write latency
Unit: us Source: uncore event
Goal: Differentiate access latencies for different kinds of
memory accesses. A low value is desirable. Related to
all concepts.

(1× 109)× UNC_M_PMM_WPQ_INSERTS
UNC_M_WPQ_OCCUPANCY

UNC_M_CLOCKTICKS

Table 4.4: Performance metrics related to iMC and PMEM
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Metric Definition

Metric 7: Retired PMEM and DRAM
instructions that bypass L3 cache.
Unit: count Source: core event
Goal: Confirm that non-temporal load and store
instruction fully bypass the CPU cache
(Concepts 2 and 3).

MEM_LOAD_RETIRED.LOCAL_PMM
MEM_LOAD_RETIRED.L3_MISS

Metric 8: Number of memory load instructions
that were served by DRAM, thus bypassed the
cache
Unit: count Source: offcore event
Goal: Investigate whether there is
correlation/interference between PMEM and
DRAM (Concepts 2 and 3).

L3_MISS_LOCAL_DRAM.ANY_SNOOP

Metric 9: Cycles Per Instruction (CPI).
Unit: CPU cycles Source: TSC unit
Goal: Latency estimate of PMEM and DRAM
accesses. Also used to verify if Metric 5 is
reliable.

High Precision Event Timer (HPET)
measurement using C++’s
std::chrono::steady_clock abstraction

Table 4.5: Performance metrics related to caching

4.2.2 Optane’s Internal Buffering

In the previous section, we introduced the notion of an XPLine, the granularity at which

Intel Optane DCPMM handles data internally. Expanding upon this, we elaborate on how

Optane processes reads and writes internally and why data placement plays an important

role in increasing performance.

Multiple studies (9, 10, 73) confirmed the presence of two distinct 16 kB buffers in

Optane DCPMM: a dedicated read buffer and a Read-Modify-Write (RMW) buffer. The

following two sections will detail each buffer’s functionality and idiosyncratic performance

behavior.

Concept 4: Read Amplification due to Optane’s Internal Read Buffer. Optane’s

internal read buffer contains data that is exclusive (not present) in one of the CPU’s caches.

When the CPU initiates a 64-byte (cache line-sized) read operation of which its data is

not contained in the CPU Last Level Cache (LLC), in the case of Intel the L3 cache, the

request is sent to the Optane media, which then fetches an entire 256-byte XPLine into

the 16 kB read buffer (see Figure 4.2). This means that the initial request experiences read
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amplification (RA) of 4 1. Afterward, a maximum of three adjacent requests to this cache

line can be processed directly as they are contained within the same XPLine, reducing the

RA for these requests to 1. Once the entire XPLine has been loaded into the CPU cache,

it is removed from the 16 kB read buffer. Therefore, the first subsequent read that hits

this XPLine will again have an RA of 4, as the entire XPLine needs to be recovered from

Optane flash cells. Unfortunately, there seems to be no established methodology to prevent

this RA from occurring. Xiang et al. (9) highlighted in their study that the read buffer is

exclusive to CPU caches, which means that we cannot directly control data placement to

improve locality. As a result, the options to prevent this RA from occurring are limited.

Concept 5: Contention at Optane’s RMW buffer. When a CPU performs a write

operation, the corresponding data is initially stored in the Read-Modify-Write (RMW)

buffer, see Figure 4.2. Similarly to the read buffer, the RMW buffer stores data at the

granularity of a 256-byte XPLine. It operates on the following basis: after receiving a

64 byte write request, Optane’s internal controller loads the corresponding (merged) 256-

byte XPLine into the RMW buffer, provided that it is not already present. Subsequently,

the data contained in the write request and the existing data in the XPLine are merged.

Finally, the write-back of data from the buffer to actual flash memory is done proactively

and periodically, depending on the state of the XPLine. Specifically, once the entire XPLine

has been filled with new data, it is selected for write-back. Partially modified XPLines are

retained in the buffer until they are randomly evicted from the RMW buffer.

In contrast to the read buffer, where we cannot control the placement of data, we have

control over data placement in the RMW buffer, since writes bypass the cache and thus are

not reordered (Concept 3). As a result, Xiang et al. (9) remark that preferably the writes

should be merged together to form XPLine-sized writes. This, in turn, reduces contention

at the RMW buffer, as these writes can be written to flash memory directly and do not

occupy the RMW buffer space for a prolonged period of time.

Performance Metrics. To investigate whether individual (arbitrary-sized) writes are

grouped into 256-byte XPLine-sized writes and whether these writes exhibit good locality,

we introduce a new metric called the Inner-Sample Address Distance (ISAD). The ISAD

metric (defined in Table 4.6) quantifies the locality of PMEM operations, penalizing those

with poor locality. As we will see later when discussing the implementation of the pmem-

analyze tool, a captured trace is divided into smaller segments called samples. Each sample
1Maximum RA: 256 bytes XPLine/64 bytes cache line = 4
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is assigned an ISAD value to compare the locality between samples. An ISAD value close

to 1.0 indicates that a sample yields poor locality, while a value close to 0.0 suggests good

locality.

Metric Definition

Metric 10: Inner-Sample Address Dis-
tance
Unit: fraction within [0.0, 1.0]

Goal: A penalty is awarded to memory op-
eration are not aligned sequentially. Out-
put is the fraction of instructions that void
sequential ordering, i.e. a value close to 1.0

indicates a random access heavy workload,
whereas a value close to 0.0 indicates a se-
quential access pattern (Concepts 1, 4
and 5).

P =

s∑
n=1

1, if |addrcur − (addrprev + opsize)| > 0

0, otherwise

D =
P

s

where s is the total number of reads, writes, and flushes
within a sample, addrcur the address read/written at n,
opsize the size of the previous operation, and addrcur the
address at n− 1.

Table 4.6: Performance metric to assess data locality

4.2.3 Implications of NUMA Accesses

Although our work is focused on improving performance transparency at the microar-

chitectural level, we found that the implications of remote (non-local) PMEM access are

too significant to be excluded from the study. This is because these implications have a

profound effect on performance in a NUMA setting.

Concept 6: Slow Cross-Socket Interconnect Degrades Throughput. Gugnani et

al. (72) show that, in particular, high concurrency and large IO workloads suffer from per-

formance degradation when accessing cross-socket PMEM. This degradation is the result

of the limited bandwidth of cross-socket interconnects, especially in the case of Intel’s Ultra

Path Interconnect (UPI). UPI serves as a point-to-point interconnect in systems with a

shared address space, such as the NUMA architecture (101). The UPI offers multiple data

lanes and, on top of this, Intel utilizes a cache snooping protocol to distribute data across

processors and ensure that data copies remain consistent. This cache-snooping protocol

has two implications. First, Caheny et al. (62) show that cache coherency traffic within a

NUMA system can consume 25% of the total bandwidth of the lane. Second, an issue that

is very specific to PMEM is related to the phenomenon we already described in the discus-

sion of the implications of caching (subsection 4.2.1): the bus snooping protocol essentially

62



4.3 Implementation of pmemanalyze

transforms a sequential access pattern into a random one, further decreasing throughput

and increasing latencies.

Performance Metrics. Defining appropriate performance metrics to assess remote PMEM

is not within the scope of this study and, therefore, is considered future work. However,

in our view, the findings presented by Kalia et al. (96) provide a valuable starting point,

as they present concise methodologies (particularly in Section 4.3) on how to evaluate the

performance of remote PMEM.

4.2.4 Conclusion

In this literature survey, existing literature has been reviewed to answer the following

sub-question: What are the micro-architectural performance-related idiosyncrasies of Intel

Optane DCPMM? We will now formulate the answer to this question:

Compared to a CPU, which accesses data at cache line (64 bytes) granularity, Intel

Optane DCPMM stores data at 256-byte granularity, also known as an XPLine. This

discrepancy makes data reads and writes originating from the CPU suspectable to read and

write amplification, especially workloads that exhibit a lot of random accesses (Concept

1). Another performance idiosyncrasy is the overhead of CPU prefetching (Concept 2).

In random workloads, where Optane accesses lack a strided/sequential access pattern,

mispredictions increase. Consequently, the PMEM device spends valuable device resources

on fetching data that will be disregarded anyhow. In the case of writes, this issue can be

circumvented by bypassing the CPU cache (Concept 3).

The importance of data placement is demonstrated by Concept 4 and 5. We found

that Optane DCPMM employs two 16 kB buffers to cache data in flash and to perform

the aforementioned request merging. Ideally, reads and writes should be handled by these

buffers. Therefore, the working set should be kept small to reduce contention at these

buffers.

4.3 Implementation of pmemanalyze

Having gained a clear understanding of the micro-architecture performance idiosyncrasies

of Intel Optane DCPMM, and defined suitable performance metrics to whether file systems

conform to these peculiarities, we now discuss the implementation of pmemanalyze. To

allow a comprehensive and structured discussion, we begin by describing its simplified

control flow, which consists of four components, as shown in Figure 4.3.
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In the following sections, we will elaborate on each component’s implementation and

design choices. As most of the code is written in C++, we divided the implementation into

several classes (see Table 4.7), which we refer back to during the discussion. The source

code is available through the PMicroProfile Git repository, as described in section 7.2.

Prepare benchmark
environment

Input: trace file Replay trace-captured
CPU instructions

Sample Intel
PMU/PEBS events

Sample Rate

Data
Aggregation

Output: plots &
raw metrics

Figure 4.3: Simplified view of pmemanalyze control flow

Class Purpose

Trace Abstract Data Type (ADT) for an ingested trace file

PMC Abstraction for the perf_event kernel API

IO Wrapper for all assembly instructions, e.g. movnti

BenchSuite Implements actual trace playback

BenchExport Statistics gathering and Data Aggregation

Table 4.7: pmemanalyze C++ classes

4.3.1 Preparing a Benchmark Environment

In order to study the micro-architectural performance properties of a pmemtrace trace file,

it is necessary to replay CPU instructions directly on Intel Optane DCPMM in such a way

that other non-microarchitectural factors in the storage stack are excluded from the perfor-

mance analysis. To achieve this, pmemanalyze defines a benchmarking environment where

the trace file serves as the input (see Figure 4.3), and the output is an environment where

captured instructions are replayed directly from the user space to the Optane DCPMM

device without kernel involvement. The rest of this subsection outlines the setup process

for this environment.

Ingesting a Trace File. The first step is to ingest the trace file. pmemanalyze accom-

plishes this by calling the Trace::parse_trace method, which decompresses its contents

using the Apache Parquet library. Each row of the trace file is then read and converted into
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a TraceEntry struct. These object instances are then stored together within a C++ vector

(std::vector). As shown in Table 4.8, the TraceEntry struct contains multiple data fields,

such as the instruction opcode, instruction name, instruction operation size, CPU affinity,

the absolute virtual memory address at which the operation took place, and (if applicable)

the payload.

Opcode (hex) Name Op. Size CPU ID Absolute Address Write Data

0xC3 0F movntq 8 bytes 0 0xDEADBEEF 0x40000000

0xE7 0F movntdq 16 bytes 0 0xFEEDC0DE 0x00001245

0x66 0F AE clflushopt 64 bytes ∗ 0xDEADBEEF -

0x89 mov 8 bytes 0 0xFEEDC0DE -

Table 4.8: Ingesting a trace: data fields

Establishing a Device DAX (devdax) Mapping. In order to replay traces without

kernel interference, a Device DAX mapping (devdax ) needs to be established. This mapping

ensures that CPU instructions can be replayed directly without interference or software

overhead from the kernel (80). Requesting a devdax mapping is done through the mmap

system call. Listing 4.1 demonstrates how this is done in code. First, a file descriptor is

opened using the path of the device (e.g. /dev/pmem0). Then, the mmap system call is

invoked with this file descriptor as an argument, signaling the kernel to insert a Virtual

Memory Area (VMA) inside the process address space that points directly to Optane’s

MMIO region. Additionally, the madvise and mlock system calls are invoked. Together,

these provide a hint to the kernel that memory should not be swapped out. This is

important as we envision that the occurrence of page faults could introduce noise in the

benchmarking results.

1 int fd;
2 void *dax_area;
3
4 fd = open(this ->pmem_device_loc.c_str(), O_RDWR); // Example:

/dev/pmem0
5 dax_area = mmap(NULL , this ->mem_size , PROT_READ | PROT_WRITE ,

MAP_SHARED , fd, 0);
6 madvise(dax_area , this ->mem_size , MADV_WILLNEED);
7 mlock(dax_area , this ->mem_size);
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Listing 4.1: Allocating a devdax region using mmap, error handling omitted. The mem_size
variable is set the size of the mapping, by default 28 GiB, which is the same amount of emulated
PMEM within the pmemtrace VM (function: BenchSuite::allocate_pmem_area()).

The final step in setting up the benchmarking environment is to transform all absolute

addresses contained in TraceEntry objects (see Table 4.8) so that they point to their cor-

responding locations within the allocated devdax region, i.e. relative addresses. These

relative addresses are obtained in two steps, as illustrated in Listing 4.2.

First, we calculate the offset within the devdax region by subtracting the absolute address

of the trace entry (entry.abs_addr) from the dev_addr value. In the context of Listing 4.2,

the dev_addr value represents the start of the MMIO region where the emulated PMEM

device was mapped during tracing. Then, to obtain the corresponding relative address,

we add this offset to the starting address of the devdax-mapped memory region (i.e.,

dax_area).

1 for (TraceEntry &entry : this ->trace_file) {
2 entry.addr_offset = entry.abs_addr - static_cast <char*>

dev_addr;
3 entry.dax_addr = static_cast <char*>(dax_area) +

entry.addr_offset;
4 }

Listing 4.2: Transformation of device absolute addresses into ‘daxdax’ relative addresses
(function: BenchSuite::run()).

4.3.2 Replaying Captured CPU Instructions

Having ingested and transformed the trace into a suitable format for performance analysis,

our focus now shifts to how pmemanalyze implements trace replay.

The process of replaying a trace involves three steps, which are described below.

1. First, we initialize a set of pthreads, which size is equal to the number of CPU cores

in the system. Each thread’s execution is pinned to a CPU core, ensuring that the

PMU and PEBS events are applicable only to the workload that was assigned to

that particular CPU. Subsequently, each thread is assigned trace entries for which

condition threadid == entrycpuid is satisfied. It is important to note that although

pmemtrace currently only supports single-core tracing, we have decided to include

multicore support for replaying traces in order to facilitate future work;
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2. Once all threads are initialized, each thread starts executing its workload by invoking

the BenchSuite::replay_trace(...) function (refer to Listing 4.3). This function

iterates over the assigned TraceEntry instances and executes the corresponding CPU

instructions. This is accomplished by calling the relevant C function from the Intel

Intrinsics C library (102), such as _mm_stream_si64 for storing a 64-bit integer with

a non-temporal hint;

3. Furthermore, as illustrated in Figure 4.3, we employ our PMC library to capture

Intel PMU and PEBS event counters at a user-preselected sampling interval. The

implementation details of this library will be covered in the next section.

1 for (const TraceEntry& entry : trace_file) {
2 switch (entry.op) {
3 case TraceOperation ::READ: // omitted ...
4 case TraceOperation ::WRITE:
5 switch (entry.opcode) {
6 case 0xA4: // single byte.
7 write_mov_8(entry , is_sampling , (* cur_sample));
8 case 0xC30F: // MOVNTI - 4/8 bytes
9 write_movntq_64(entry , is_sampling , (* cur_sample));

10 break;
11 case 0xE70F: // MOVNTDQ - 16 bytes
12 write_movntq_128(entry , is_sampling ,

(* cur_sample));
13 break;
14 }
15 break;
16 // More switch cases , i.e. CLFLUSH , MFENCE , SFENCE , LFENCE.
17 }
18 }

Listing 4.3: Simplified view of instruction replaying (function:
BenchSuite::replay_trace(...))

4.3.3 Capturing Intel PMU and PEBS Hardware-Performance Events

As mentioned earlier in the background section on hardware performance counters (sec-

tion 2.3), Intel-based systems feature a Performance Monitoring Unit (PMU). In this sec-

tion, we discuss how we employ Linux’s perf_event kernel API to implement all the

performance metrics we designed based on the concepts discussed in the literature study.
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Raw access to performance events using perf kernel API. The Linux ecosystem

provides application developers with tools to profile applications, which the CLI tools

perf (75) and eBPF (103) being the most well-known examples. However, the use of these

tools has drawbacks. A drawback of the perf CLI tool is that it measures the execution

time of an entire program, making it challenging to obtain precise micro-architectural

performance measurements for specific sections of the source code. On the other hand, the

eBPF profiling framework can annotate particular sections of code for accurate measures,

but it lacks direct access to raw performance counters. This is because it still relies on the

perf CLI tool as an intermediary layer 1.

To overcome this limitation, we developed a small performance profiling library (in user

space) called PMC. This library utilizes the perf_event kernel API (104) to directly read

raw Intel PMU core, uncore, and off-core performance counters/events as listed in sec-

tion 4.3.3. Note that these performance events are essential to implement the performance

metrics defined in our literature study.

Performance Event Source

UNC_M_CLOCKTICKS iMC (uncore event)

UNC_M_PMM_RPQ_INSERTS iMC (uncore event)

UNC_M_PMM_WPQ_INSERTS iMC (uncore event)

UNC_M_PMM_RPQ_OCCUPANCY iMC (uncore event)

UNC_M_PMM_WPQ_OCCUPANCY iMC (uncore event)

L3_MISS_LOCAL_DRAM.ANY_SNOOP iMC (offcore event)

PMM_HIT_LOCAL_PMM.ANY_SNOOP iMC (offcore event)

MEM_LOAD_RETIRED.LOCAL_PMM on-core

MEM_LOAD_RETIRED.L3_MISS uncore

MEM_LOAD_RETIRED.ALL_STORES on-core

System Hardware Timer HPET

Table 4.9: Performance events pmemanalyze: on-core, uncore, and off-core

We have included several helper functions in the performance library that facilitate

creating, attaching, and removing performance probes during program execution. A com-

prehensive list of all available functions can be found in Appendix C; see chapter 8.

In PMC, we again make the distinction between on-core, off-core, and uncore events:

1Linux Mailing List Discussion: initialising/reading raw (hardware) performance counters
BPF_PERF_ARRAY, by Andrew Nisbet (04/06/2023), https://lore.kernel.org/bpf/ZC7ICD%
2FvAKdtvopd@krava/T/
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4.3 Implementation of pmemanalyze

• On-core and offcore events: On-core and off-core CPU performance events are

created using the perf_event_open system call 1. This system call requires the

initialization of a perf_event_attr structure, which should be configured accord-

ing to the respective event selector and umask constants listed in the Intel Archi-

tecture Manual (55). An example of creating a performance event, in this case

MEM_LOAD_RETIRED.L3_MISS, is provided in Listing 4.4. Note that for off-core events,

the MSR_OFFCORE_RSP constant should also be set according to the value listed in the

aforementioned Intel Architecture Manual.

Method definition: bool add_offcore_probe(const unsigned int event_id, const

int pid, const unsigned long msr = 0x0)

1 struct perf_event_attr pe;
2 int fd;
3 memset (&pe, 0, sizeof(struct perf_event_attr));
4
5 pe.type = PERF_TYPE_RAW; // Request raw performance counter.
6 pe.size = sizeof(struct perf_event_attr);
7 pe.config = 0xD120; // MEM_LOAD_RETIRED.L3_MISS ->

EventSel=D1H UMask =20H
8 pe.sample_type = PERF_SAMPLE_IDENTIFIER;
9 pe.disabled = 1; // Disable for now , enable when we actually

profile some code.
10
11 fd = perf_event_open (&pe, pid , 0, -1, 0); // Perform syscall.

Listing 4.4: Creation of MEM_LOAD_RETIRED.L3_MISS performance event using
perf_event_open.

• Uncore events: the implementation for uncore events differs slightly from the on-

core and off-core events. Recall that uncore events occur at the CPU package level

and are not specific to individual cores. Consequently, allocating a single perf event

per software thread is inadequate. Instead, for uncore events happening on Inte-

grated Memory Controllers (iMCs) (see section 4.3.3), we need to create multiple

perf events, one for each iMC within the CPU package. This is especially important

when using Intel Optane DCPMM, as memory requests are handled by not just one

iMC, but multiple. The mechanism to acquire a handle for each iMC is provided

through the Linux /sys/bus/event_source/devices/uncore_imc_* interface and

implemented in the PMC::init() method. To create an iMC performance probe, one
1Documentation: https://man7.org/linux/man-pages/man2/perf_event_open.2.html
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can use the add_imc_probe(const unsigned int event_id) method, which initializes

the specified event on each iMC. To obtain the output of an iMC probe, the PMC

library reads the raw performance value of each iMC and aggregates those values to

obtain the system-wide representative output.

Method definition: bool add_imc_probe(const unsigned int event_id)

The final step is to aggregate all the gathered data in a suitable format for export and

analysis. This is achieved by the BenchExport::export_io_stat function, which exports

the data to a comma-separated CSV file. One CSV file contains more than 30 columns,

each representing a raw captured counter or another derived metric or heuristic.

4.4 Conclusion

Through a comprehensive literature study on the performance characteristics of Intel Op-

tane Persistent Memory, we formulated performance metrics that served as the foundation

for the design of pmemanalyze tool. This tool replays pmemtrace-captured traces to per-

form performance analysis. The identified performance metrics are constructed by com-

bining relevant hardware performance counters exposed by Intel’s Performance Monitoring

Unit (PMU).
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Experimental Evaluation

In this section, we will evaluate the effectiveness of the PMicroProfile framework in identi-

fying performance bottlenecks. We answer this research question by comparing the perfor-

mance of two file systems: ext4-DAX (49), and SplitFS (19). Specifically, we collect access

traces for the Filebench (105, 106) benchmark for both file systems. We will then replay

these traces and perform a performance analysis. The results of this evaluation form the

answer to sub-question RQ4 posed in the Introduction.

5.1 Experiment Design

In this section, we will discuss the setup of the experiments. First, we detail the hardware

setup. Second, we explain the workflow followed during the experiments.

For tracing, we utilize the same hardware setup described in the tracing-related artifact

(section 7.1). Specifically, we use a QEMU virtual machine running Ubuntu 20.24 with

Linux kernel version 5-4.232. QEMU is configured so that it emulates 28 GiB Persistent

Memory. For replaying the trace, we used an Intel Xeon Silver 4215 CPU (turbo disabled

to avoid indeterminism (107)) with 72 GiB of RAM, and four Intel Optane DCPMM 100

series DIMMs (model NMA1XBD512GQS, capacity 512 GB). The technical specifications

can be found on Intel’s product page1, and are summarized in Table 5.1. Each PMEM

DIMM is configured as non-interleaved, meaning they are treated as four independent

storage devices within the operating system. This is to ensure that all accesses hit a single

DIMM. The performance evaluation of interleaved Optane DCPMM is considered future

work. Finally, we use the GCC compiler version 9.4.0 to compile pmemanalyze.

1Technical Specifications: https://ark.intel.com/content/www/us/en/ark/products/190348/
intel-optane-persistent-memory-100-series-128gb-module.html
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Sequential Bandwidth (for all R/W ratios) 1 GB/s

Random Bandwidth (for all R/W ratios) 1 GB/s

Sequential Latency - Read (up to) 1 ns

Random Latency - Read (up to) 1 ns

Table 5.1: Technical specifications of Intel Optane DCPMM 100 series provided by Intel.
Bandwidth is measured at the host. It is unspecified how latency is expressed. We assume it
is the best-case latency and measured at the device, excluding the overhead of the Integrated
Memory Controller and caches.

The experimental workflow, depicted in Figure 5.1, consists of three components: a

benchmarking environment, data gathering, and data processing.

Filebench

pmemtrace: Capture
Access Patterns

Benchmarking
Environment

Data Gathering

pmemreplay: Replay
Trace

Data Processing
postprocess.py

10x

Ext4-DAX || SplitFS

Metrics &
Plots

120 Hz, 95%
duty cycle

250 Hz, 50%
duty cycle

Figure 5.1: Experimental workflow

In the benchmarking environment, we use pre-selected Filebench workloads (specifically,

an adapted version of varmail that performs small-grained read and writes, relevant artifact

in section 7.2) along with the Ext4-DAX and SplitFS file systems.

To collect access traces, we use a sampling-based data collection strategy with a sampling

interval of 120 hertz and a duty cycle of 95%. After collecting the traces, they are replayed

and performance data is collected at a 250 hertz frequency (50% duty cycle). We have

selected this frequency to minimize the overhead associated with performance sampling,

while still obtaining a significant amount of data.
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It is important to note that we use the same sampling settings for both file systems to

ensure unbiased comparisons. Additionally, each trace is replayed at least 10 times. This

is done for two reasons. First, the sizes of traces (after decompression) quickly exceed

multiple gigabytes and, by design, must be preloaded into the main memory, which is

sparse. Second, replaying traces multiple times enables us to verify whether performance

behavior remains constant or varies over time, which in turn helps to improve the accuracy

and validity of our research.

Finally, the collected (raw) performance data is processed using a postprocessing script

(postprocess.py). This script calculates the predefined metrics discussed earlier and

generates plot images.

5.2 Findings

In the following sections, we will present the results of the experiments. We will categorize

findings into three areas: "Workload Characterization", "Data Bandwidth and Access

Latencies", and "Cache Interaction".

5.2.1 Workload Characterization

Before discussing specific performance details, we first compared the access patterns of both

file systems using an adapted version of the varmail benchmark. Specifically, to stress

Optane’s byte-addressable capabilities, we modified the Filebench varmail configuration

file to use the smallest I/O size supported by Filebench, 1 kB.

Figure 5.2 displays the access patterns for both file systems obtained by pmemanalyze.

The first graph displays the number of executed (retired) CPU instructions over time, the

second graph the number of memory fences, and the third graph the ISAD locality metric

(Metric 10). As the execution time of a single trace file replay is very short (approximately

0.5 seconds), we replay each captured trace at least ten times to gather more run-time

statistics. Based on this figure, we can make two observations:

1. Usage of non-temporal (NT) write instructions: Ext4-DAX and SplitFS use

non-temporal move instructions to bypass the cache. This is evident from the fraction

of writes classified as non-temporal, 80.43% for Ext4-DAX and 99.86% for SplitFS

(as shown in the top right of the figure). However, there is a difference between

SplitFS and Ext4-DAX in terms of memory fence usage. In the case of Ext4-DAX,

there are no memory fences during the entire execution, indicating that the ordering
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of instructions based on the issue time is not enforced. Although the lack of fence

instructions may offer performance benefits, it can cause inconsistencies in the data

if the system crashes (see Background subsection 2.1.2).

2. Poor data locality SplitFS: Based on the Inner-Sample Address Distance (ISAD)

metric (defined in Metric 10), we can derive that, for this specific workload, SplitFS

(average ISAD: 0.1028) exhibits a lower data locality compared to Ext4-DAX (av-

erage ISAD: 0.0004). Although we do not have enough evidence to prove this, we

hypothesize that this difference may be attributed to how Ext4-DAX groups data

into 4 KiB blocks. This grouping results in a more sequential access pattern at the

PMEM device at the cost of additional read and write amplification at the file system

level (not at the microarchitectural level). Another observation is related to mixed

read-write access patterns. In these cases, the data locality degrades, as spikes in

ISAD values indicate.

In summary, both file systems use non-temporal machine instructions to bypass the

cache. However, as indicated by the absence of memory fences, Ext4-DAX does not enforce

the ordering of instructions. Furthermore, SplitFS exhibits a lower data locality than Ext4-

DAX for this workload.
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Figure 5.2: Ext4-DAX (a) and SplitFS (b) Varmail access patterns. The figure reports
the number of executed/retired CPU instructions over time, the number of memory fences
(mfence, sfence, and lfence), and the ISAD metric for quantifying data locality over time
(value close to 1 implies poor locality).
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5.2.2 Data Bandwidth and Access Latencies

In this section, we discuss the microarchitectural performance of both file systems. We do

this using four metrics, read and write amplification (Metric 2 and Metric 3), bandwidth

(Metric 4), and instruction latency (Metric 5). The results are presented in Figure 5.4.

Please note that for the SplitFS file system, we increased the number of replay iterations

to 50 to increase run time and thus collect more data. Additionally, note that the axes of

the subfigures scale differently.

Once again, we present our findings in an enumeration:

1. Bandwidth SplitFS approaches Optane’s peak bandwidth: SplitFS achieves

a combined read/write bandwidth of 0.959 GB/s, while Ext4-DAX achieves 0.945

GB/s. To validate how close these values are to Optane’s peak bandwidth, we mea-

sure the raw peak bandwidth on a live system. Initially, we attempted to use the

Memory Latency Checker (MLC) tool (108) provided by Intel, which is designed

for measuring the latency and bandwidth of DIMM devices like Optane Persistent

Memory. Unfortunately, the MLC tool proved unreliable, reporting an impossible

bandwidth of 1.2 TB/sec. Interestingly, this bug is also reported in an article pub-

lished by Intel on testing Optane’s peak bandwidth 1. Consequently, to evaluate

Optane’s bandwidth, we developed a small benchmarking program 2. This program

measures the peak read and write bandwidth by performing a simple 8 GB memcpy

operation to/from a DAX-mapped region. Using this benchmark, we achieve a read

bandwidth of 1.03 GB/s and a write bandwidth of 0.94 GB/s, matching the adver-

tised speed of 1 GB/s specified for Optane (Table 5.1). Therefore, we can conclude

that both SplitFS and Ext4-DAX are very close to the advertised peak bandwidth

of Optane.

2. Device access latencies: To collect access latency data, we use the hardware

High-Precision Event Timer (HPET) to sample latencies every 1, 000 read and write

operations. Based on the results presented in Figure 5.4, we draw two main findings.

First, Ext4-DAX exhibits a relatively high average write latency of 26.21 nanosec-

onds, whereas SplitFS achieves a lower write latency of 21.41 nanoseconds. Both file

systems display similar read latencies.
1How to Test the Performance of Intel® Optane™ Persistent Memory: https:

//www.intel.com/content/www/us/en/support/articles/000055898/memory-and-storage/
intel-optane-persistent-memory.html

2Available in Git repository: /peak_bw
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Second, SplitFS shows outliers in instruction read latency, reaching up to 500 nanosec-

onds. This behavior aligns with a phenomenon described by Yang et al. (10) in their

study. They suspect that this effect is due to wear leveling on the device. However,

in their case, the latency jump is more significant, that is, at the microsecond level.

Additionally, if this theory were accurate, both SplitFS and Ext4-DAX should expe-

rience a similar increase in latency, which is not the case. To increase the validity of

our research, we conducted longer (two-minute) runs, of which the results are shown

in Appendix D. Once again, we observe latency patterns where only SplitFS exhibits

distinct latency peaks. Consequently, this latency peculiarity is SplitFS-specific.

Given the lack of correlation between latency spikes and other performance metrics,

it is challenging to provide a definitive explanation for this behavior. It is worth

considering that this issue may be unrelated to Optane or specific to our system

configuration. Further work is necessary to eliminate these factors and narrow down

the underlying cause.

3. Read and write amplification: Both file systems experience modest read ampli-

fication (Ext4-DAX: ≈ 1.47, SplitFS: ≈ 1.72) and minor write amplification (Ext4-

DAX: ≈ 1.00, ≈ 1.15). According to our analysis, random reads contribute to in-

creased read amplification, whereas the write amplification in SplitFS results from

one machine instruction that it executes, movntps. Now, we zoom in on both cases.

Where both file systems perform mostly sequential writes, their reads are more ran-

dom, especially in the case of SplitFS. This observation is based on the increase

in Inner-Sampling Address Distance (ISAD) (see Figure 5.2) in read-heavy sections.

This random access pattern makes it susceptible to the problem described in Concept

4 of the literature study, in which the CPU suffers from read amplification due to

poor internal buffering performance at the Optane device.

The issue of write amplification in SplitFS can be attributed to the type of machine

instructions it executes. Recall that PMEM file systems use non-temporal machine

instructions to write through the cache. To accommodate for different-sized writes,

the instruction set supports multiple variants. For example, movntps can be used

to store a 128-bit, 256-bit, or 512-bit number, while the movnti instruction is used

to store a 32 or 64-bit integer. In the case of SplitFS, it primarily uses the 512-bit

movntps instruction 1, whereas Ext4-DAX uses the movntq instruction. Comparing
1movntps definition: https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.

html#text=movntps&ig_expand=6648,6650,6649
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the write amplification of these instructions (see Figure 5.3), we observe that the

movntps instruction results in approximately twice the write amplification compared

to the movntq instruction used by Ext4-DAX.
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Figure 5.3: Write Amplification (lower is better) movntq and movntps Machine Instructions

In summary, SplitFS outperforms Ext4-DAX in terms of the bandwidth observed be-

tween the CPU and Optane DCPMM. However, SplitFS also exhibits high read and write

amplification levels compared to Ext4-DAX, although this does not directly affect the

achieved bandwidth. Another unique characteristic of SplitFS is sporadic jumps in access

latencies. Unfortunately, we were unable to find the exact causes of these spikes. This

could be part of future work.
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5.2.3 Cache Interaction

The last finding relates to the interaction between the CPU caches, DRAM, and Intel

Optane DCPMM. Figure 5.5 displays three performance metrics: the number of direct loads

(i.e. loads that bypass the cache) and Last-Level Cache (LLC) misses for both DRAM and

Optane. It is evident that the number of direct PMEM loads correlates with the number

of PMEM LLC misses. This is expected behavior, as the caches cannot accommodate

all PMEM reads, initiating 64 cache line-sized load operations. Additionally, the DRAM

LLC misses follow a similar trend. Since the entire trace file is preloaded into DRAM and

cannot fit fully in the CPU caches, it leads to DRAM fetches.

(a) (b)

Figure 5.5: Ext4-DAX (a) and SplitFS (b) Varmail: DRAM and Intel Optane DCPMM
interaction
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5.3 Limitations and Discussion

This section discusses the limitations of pmemanalyze and the experimental evaluation

associated with it. We will specifically discuss two limitations: the challenges in finding

micro-optimizations and the accuracy of the experimental analysis.

Finding Micro-Optimizations. While our experimental evaluation allowed us to iden-

tify bottlenecks, we have not yet developed concrete, implemented micro-optimizations for

PMEM file systems. There are three reasons for this. First, there is no consensus about the

‘best case’ performance for Intel Optane DCPMM with respect to measurable factors such

as latency and throughput. The measures provided are often overly optimistic or specific to

a particular hardware configuration. Consequently, it is challenging to determine whether

there is still room for performance improvement. For example, in the case of SplitFS, it

achieves (close to) the advertised bandwidth of Intel Optane DCPMM.

Second, although there are quite some performance counters for Intel Optane DCPMM

(approximately 60 counters 1), many of them are redundant and undocumented. For

example, the number of direct PMEM loads is inversely proportional to the number of

cache misses. We had to extract these findings ourselves through a lot of experimentation.

Better documentation would have been beneficial and had speeded up the implementation

phase.

Lastly, we prioritized enhancing the precision of both the pmemtrace and pmemanalyze

tools. For example, if the access traces captured by pmemtrace were inaccurate, it would

compromise the validity of the accompanying performance analysis.

Accuracy of Experimental Analysis. The second limitation concerns the generaliz-

ability of the experimental evaluation. Ideally, we would have liked to replay longer traces.

However, the approach of replaying captured access trace for performance analysis required

storing each machine’s instruction for replay. This level of precision demands a significant

amount of storage. To illustrate, a 500 MiB trace file translates to approximately 1 GiB

in PMEM read/write traffic. Considering that the peak bandwidth of Optane is around

1 GB/s, a 120-second run would require a 60 GiB-sized trace file. Therefore, we believe

that future efforts should focus on reducing storage space requirements, e.g. by merging

memory adjacent instructions for compression.

1https://perfmon-events.intel.com/cascadelake_server.html (search term: ‘PMM’)
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5.4 Conclusion and Future Work

In this chapter, we highlighted the importance of considering CPU microarchitectural

overhead in performance analysis, as a significant portion of overall performance (38%

to 78%) can be attributed to I/O operations occurring at the microarchitectural level

(Figure 4.1). To address this, we designed and implemented pmemanalyze. This tool

replays file system access traces and quantifies the microarchitectural performance overhead

using predefined based on a literature study (section 4.2) of Intel Optane DC Persistent

Memory microarchitecture idiosyncrasies.

An experimental evaluation of pmemanalyze demonstrated its effectiveness in identifying

performance bottlenecks in two file systems: Ext4-DAX and SplitFS. In this evaluation, we

extracted multiple findings, such that SplitFS achieves a higher bandwidth than Ext4-DAX,

although it suffers from sporadic jumps in write access latencies. However, translating these

findings into in-code micro-optimizations remains future work.

Other future research directions include investigating the impact of cross-socket Optane

traffic and exploring performance effects in multicore environments. Associated research

questions include: "What is the impact of cross-socket (NUMA) Optane traffic in PMEM

file systems?" or "Can the PMicroProfile framework pinpoint microarchitectural degrading

events in multi-core environments?".
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Conclusion

In this work, we designed and implemented a framework, PMicroProfile, to conduct micro-

architectural performance analysis of Persistent Memory file systems. Our work addresses

an open question of how to evaluate the performance of Persistent Memory file systems

close to the hardware. We designed and implemented two tools to achieve this: pmemtrace

and pmemanalyze. The pmemtrace tool captures file system access patterns at the bottom

of the software stack, while pmemanalyze replays these traces to quantify the performance

of file systems. We will now answer each of the research questions.

RQ1: What are the performance-related idiosyncrasies of Intel Optane DCPMM

at the CPU micro-architectural level? A literature study revealed that a significant

idiosyncrasy is a difference in data access granularity between the CPU (64 bytes) and Intel

Optane DC Persistent Memory (256 bytes). Due to this difference, read and write requests

initiated by the CPU are susceptible to up to 4× read or write amplification (idiosyncrasy

1 ). To mitigate this overhead, it is crucial to group data requests into 256-byte accesses

when possible (idiosyncrasy 2 ).

Another idiosyncrasy found in the literature is related to poor CPU prefetching perfor-

mance. CPUs proactively load data into on-die caches. However, when the Optane device

accesses lack a sequential access pattern, resulting in increased mispredictions, the Optane

device spends valuable device resources on fetching data that will be disregarded anyhow.

This issue can be mitigated for write operations by bypassing the CPU cache (idiosyncrasy

3 ).

Lastly, data placement and locality place an important role. Ideally, the working set

should be kept small to minimize contention at Optane’s internal buffers (idiosyncrasy 4 ).

83



6. CONCLUSION

RQ2: How to design a tool that can trace the access patterns of the PMEM

file system at a microarchitectural level? To capture the PMEM-related accesses

patterns at the level of the CPU microarchitecture, we designed and implemented a tracing

methodology that logs PMEM-affiliated machine instructions executed in user and kernel

space. Specifically, we extended the existing Linux in-kernel tracing infrastructure to

generate a Memory Management Unit ‘page fault’ for every PMEM access, signaling the

kernel of all incoming PMEM requests. This tracing methodology successfully captures

all PMEM traffic, which is crucial for our analysis. However, it comes at the cost of

significant overhead. In the worst-case scenario, run times can increase by approximately

300× (see Table 3.2). To limit this overhead, we have included support for sampling-based

data collection. Further work should focus on decreasing this overhead.

RQ3: How to design a tool that quantifies the performance of PMEM file

systems using its access patterns? We implemented a separate tool called pmem-

analyze. This tool replays the captured machine instructions in a pmemtrace-captured

trace file directly from user space. Meanwhile, we implemented a library called PMC that

leverages the perf event kernel API to gain access to the Intel PMU and PEBS raw hard-

ware performance counters. By combining these raw counter values, we derived metrics

that assess whether file systems comply with the recommendations formulated in research

question RQ1.

RQ4: Can the PMicroProfile framework pinpoint microarchitectural perfor-

mance degrading events to define new file system micro-optimizations? We

used pmemanalyze to evaluate the access traces of two file systems, namely Ext4-DAX and

SplitFS. This analysis showed that SplitFS is more susceptible to write amplification. An-

other significant finding is that Ext4-DAX sacrifices stronger crash-consistency guarantees

in exchange for more performance. Such findings demonstrate the ability of PMicroProfile

to identify microarchitectural events. However, it is important that due to our primary

focus on enhancing the accuracy and capabilities of the pmemtrace and pmemanalyze, im-

plementing new micro-optimizations based on these findings has not been performed yet,

thus is part of future work.

84



References

[1] David Reinsel, John Gantz, and John Rydning. The Digitization of the

World from Edge to Core. 2018. 1

[2] Alexandru Iosup, Fernando Kuipers, Ana Lucia Varbanescu, Paola

Grosso, Animesh Trivedi, Jan Rellermeyer, Lin Wang, Alexandru Uta,

and Francesco Regazzoni. Future Computer Systems and Networking

Research in the Netherlands: A Manifesto, May 2022. arXiv:2206.03259 [cs].

1, 2

[3] Yuhui Deng. What is the future of disk drives, death or rebirth? ACM

Computing Surveys, 43(3):23:1–23:27, April 2011. 1

[4] Chris Mellor. SSDs will crush hard drives in the enterprise, bearing

down the full weight of Wright’s Law, January 2021. 1

[5] IDC FutureScape: Top 10 Predictions for the Future of Digital Infras-

tructure, December 2022. 2

[6] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and

Alfons Kemper. Persistent Memory I/O Primitives. In Proceedings of the

15th International Workshop on Data Management on New Hardware, DaMoN’19,

pages 1–7, New York, NY, USA, July 2019. Association for Computing Machinery.

2, 23, 27, 53, 55

[7] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R.

Dulloor, Jishen Zhao, and Steven Swanson. Basic Performance Mea-

surements of the Intel Optane DC Persistent Memory Module, August

2019. arXiv:1903.05714 [cs]. 2, 3, 14

85

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://arxiv.org/abs/2206.03259
http://arxiv.org/abs/2206.03259
https://dl.acm.org/doi/10.1145/1922649.1922660
https://blocksandfiles.com/2021/01/25/wikibon-ssds-vs-hard-drives-wrights-law/
https://blocksandfiles.com/2021/01/25/wikibon-ssds-vs-hard-drives-wrights-law/
https://www.idc.com/getdoc.jsp?containerId=prUS49960022
https://www.idc.com/getdoc.jsp?containerId=prUS49960022
http://doi.org/10.1145/3329785.3329930
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714


REFERENCES

[8] Jianyong Zhang, Anand Sivasubramaniam, Qian Wang, Alma Riska, and

Erik Riedel. Storage performance virtualization via throughput and la-

tency control. ACM Transactions on Storage, 2(3):283–308, August 2006. 2

[9] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang.

Characterizing the performance of intel optane persistent memory: a close

look at its on-DIMM buffering. In Proceedings of the Seventeenth European

Conference on Computer Systems, EuroSys ’22, pages 488–505, New York, NY, USA,

2022. Association for Computing Machinery. 2, 23, 24, 27, 55, 56, 57, 60, 61

[10] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and

Steve Swanson. An Empirical Guide to the Behavior and Use of Scalable

Persistent Memory. pages 169–182, 2020. 2, 3, 23, 24, 27, 53, 55, 56, 57, 60, 77

[11] Wiebe van Breukelen. Persistent Memory File Systems: A Survey, Jan-

uary 2023. 2, 3, 4, 7, 10, 16, 17, 19, 53, 54

[12] Takahiro Hirofuchi and Ryousei Takano. A Prompt Report on the

Performance of Intel Optane DC Persistent Memory Module. IE-

ICE Transactions on Information and Systems, E103.D(5):1168–1172, May 2020.

arXiv:2002.06018 [cs]. 2

[13] Xinyang, Song and Sihang Liu. Persistent Memory – A New Hope, Septem-

ber 2022. 3

[14] Tobias Mann. Why Intel killed its Optane memory business. 3

[15] Lawrence Benson, Marcel Weisgut, and Tilmann Rabl. What We Can

Learn from Persistent Memory for CXL. Technical report, Gesellschaft für

Informatik e.V., Bonn, 2023. 3

[16] Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin

Kim, Jaemin Jung, Oliver Rebholz, Vincent Pham, Krishna Malladi,

and Yang Seok Ki. Enabling CXL Memory Expansion for In-Memory

Database Management Systems. In Data Management on New Hardware, pages

1–5, Philadelphia PA USA, June 2022. ACM. 3

[17] David Boles, Daniel Waddington, and David A. Roberts. CXL-Enabled

Enhanced Memory Functions. IEEE Micro, 43(2):58–65, March 2023. Confer-

ence Name: IEEE Micro. 3

86

https://dl.acm.org/doi/10.1145/1168910.1168913
https://dl.acm.org/doi/10.1145/1168910.1168913
http://doi.org/10.1145/3492321.3519556
http://doi.org/10.1145/3492321.3519556
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://drive.google.com/file/d/1EF-tTEDwYYoFOzywlC-STLqHYlGmyGDx/view?usp=share_link
http://arxiv.org/abs/2002.06018
http://arxiv.org/abs/2002.06018
https://www.sigarch.org/persistent-memory-a-new-hope/
https://www.theregister.com/2022/07/29/intel_optane_memory_dead/
https://hpi.de/fileadmin/user_upload/fachgebiete/rabl/publications/2023/perma_cxl_nodmc23.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/rabl/publications/2023/perma_cxl_nodmc23.pdf
https://dl.acm.org/doi/10.1145/3533737.3535090
https://dl.acm.org/doi/10.1145/3533737.3535090


REFERENCES

[18] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous,

and A.R. LeBlanc. Design of ion-implanted MOSFET’s with very small

physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, October

1974. Conference Name: IEEE Journal of Solid-State Circuits. 3

[19] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,

Aasheesh Kolli, and Vijay Chidambaram. SplitFS: reducing software

overhead in file systems for persistent memory. In Proceedings of the 27th

ACM Symposium on Operating Systems Principles, pages 494–508, Huntsville On-

tario Canada, October 2019. ACM. 3, 5, 9, 10, 20, 21, 51, 71

[20] Jian Xu and Steven Swanson. NOVA: A Log-structured File System for

Hybrid {Volatile/Non-volatile} Main Memories. FAST ’16, pages 323–338,

2016. 3, 6, 51

[21] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett

Witchel, and Thomas Anderson. Strata: A Cross Media File System. In

Proceedings of the 26th Symposium on Operating Systems Principles, pages 460–477,

Shanghai China, October 2017. ACM. 3, 5, 6

[22] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,

Benjamin Lee, Doug Burger, and Derrick Coetzee. Better I/O through

byte-addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles - SOSP ’09, page 133, Big Sky, Montana,

USA, 2009. ACM Press. 4, 18

[23] Ruibin Li. ctFS: Replacing File Indexing with Hardware Memory Trans-

lation through Contiguous File Allocation for Persistent Memory. 20th

USENIX Conference on File and Storage Technologies (FAST 22), 2022. 4, 5, 6, 15,

18, 22

[24] Youmin Chen. Kuco: Scalable Persistent Memory File System with

Kernel-Userspace Collaboration. Proceedings of the 19th USENIX Conference

on File and Storage Technologies., February 2021. 4, 5, 18, 21

[25] Xiaojian Wu, Sheng Qiu, and A. L. Narasimha Reddy. SCMFS: A File

System for Storage Class Memory and its Extensions. ACM Transactions on

Storage, 9(3):7:1–7:23, August 2013. 4, 6, 12, 14, 15, 18

87

https://dl.acm.org/doi/10.1145/3341301.3359631
https://dl.acm.org/doi/10.1145/3341301.3359631
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://dl.acm.org/doi/10.1145/3132747.3132770
http://portal.acm.org/citation.cfm?doid=1629575.1629589
http://portal.acm.org/citation.cfm?doid=1629575.1629589
https://www.usenix.org/conference/fast22/presentation/li
https://www.usenix.org/conference/fast22/presentation/li
https://www.usenix.org/system/files/fast21-chen-youmin.pdf
https://www.usenix.org/system/files/fast21-chen-youmin.pdf
http://doi.org/10.1145/2501620.2501621
http://doi.org/10.1145/2501620.2501621


REFERENCES

[26] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,

Venkatanathan Varadarajan, Prashant Saxena, and Michael M.

Swift. Aerie: flexible file-system interfaces to storage-class memory. In

Proceedings of the Ninth European Conference on Computer Systems, EuroSys ’14,

pages 1–14, New York, NY, USA, April 2014. Association for Computing Machinery.

5, 15, 20

[27] Finn de Ridder, Animesh Trivedi, and Razavi, Kaveh. UFS: Perserving

Isolation when Unifying File Systems With Virtual Memory. Unpublished.

5, 6, 22, 51

[28] Chloe Alverti, Vasileios Karakostas, Nikhita Kunati, Georgios

Goumas, and Michael Swift. DaxVM: Stressing the Limits of Memory as

a File Interface. In 2022 55th IEEE/ACM International Symposium on Microar-

chitecture (MICRO), pages 369–387, October 2022. 5, 6, 22

[29] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip

Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. PMFS:

System software for persistent memory. In Proceedings of the Ninth European

Conference on Computer Systems, EuroSys ’14, pages 1–15, New York, NY, USA,

April 2014. Association for Computing Machinery. 6, 14

[30] Utku Sirin, Pınar Tözün, Danica Porobic, Ahmad Yasin, and Anastasia

Ailamaki. Micro-architectural analysis of in-memory OLTP: Revisited.

The VLDB Journal, 30(4):641–665, July 2021. 6

[31] Viktor Leis, Alfons Kemper, and Thomas Neumann. Exploiting hard-

ware transactional memory in main-memory databases. In 2014 IEEE 30th

International Conference on Data Engineering, pages 580–591, March 2014. ISSN:

2375-026X. 6

[32] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui

Zhang. In-Memory Big Data Management and Processing: A Survey.

IEEE Transactions on Knowledge and Data Engineering, 27(7):1920–1948, July

2015. Conference Name: IEEE Transactions on Knowledge and Data Engineering. 6

[33] NVIDIA BlueField Data Processing Units (DPUs). 6

88

http://doi.org/10.1145/2592798.2592810
http://doi.org/10.1145/2592798.2592814
http://doi.org/10.1145/2592798.2592814
https://doi.org/10.1007/s00778-021-00663-8
https://www.nvidia.com/en-us/networking/products/data-processing-unit/


REFERENCES

[34] Animesh Trivedi and Marco Spaziani Brunella. CPU-free Computing:

A Vision with a Blueprint. In Proceedings of the 19th Workshop on Hot Topics

in Operating Systems, HOTOS ’23, pages 1–14, New York, NY, USA, June 2023.

Association for Computing Machinery. 6

[35] Peter-Jan Gootzen, Jonas Pfefferle, Radu Stoica, and Animesh

Trivedi. DPFS: DPU-Powered File System Virtualization. In Proceedings

of the 16th ACM International Conference on Systems and Storage, SYSTOR ’23,

pages 1–7, New York, NY, USA, June 2023. Association for Computing Machinery.

6

[36] Naim A. Kheir. Systems Modeling and Computer Simulation. Marcel Dekker, Inc.,

New York, USA, 2nd edition. 7

[37] Yair Levy and Timothy J. Ellis. A Systems Approach to Conduct an

Effective Literature Review in Support of Information Systems Research.

Informing Sci J, 9:181–212, 2006. 7

[38] Alexandru Iosup, Laurens Versluis, Animesh Trivedi, Erwin Van Eyk,

Lucian Toader, Vincent van Beek, Giulia Frascaria, Ahmed Musaafir,

and Sacheendra Talluri. The AtLarge Vision on the Design of Dis-

tributed Systems and Ecosystems. In 2019 IEEE 39th International Conference

on Distributed Computing Systems (ICDCS), pages 1765–1776. IEEE, 2019. 7, 9

[39] Richard Hamming. The Art of Doing Science and Engineering: Learning to Learn.

CRC Press, 1997. 7

[40] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir

Chatterjee. A Design Science Research Methodology for Information

Systems Research. Journal of Management Information Systems, 24(3):45–77,

2008. Publisher: Taylor & Francis. 7

[41] R Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons

Inc., New York, USA, 1991. 7

[42] Gernot Heiser. Systems Benchmarking Crimes, 2019. 7

[43] John Ousterhout. Always measure one level deeper. Communications of the

ACM, 61(7):74–83, 2018. Publisher: ACM. 7

89

https://dl.acm.org/doi/10.1145/3593856.3595906
https://dl.acm.org/doi/10.1145/3593856.3595906
https://dl.acm.org/doi/10.1145/3579370.3594769
http://www.cse.unsw.edu.au/ Gernot/benchmarking-crimes.html


REFERENCES

[44] Sonja Bezjak, April Clyburne-Sherin, Philipp Conzett, Pedro Fernan-

des, Edit Görögh, Kerstin Helbig, Bianca Kramer, Ignasi Labastida,

Kyle Niemeyer, Fotis Psomopoulos, Tony Ross-Hellauer, René Schnei-

der, Jon Tennant, Ellen Verbakel, Helene Brinken, and Lambert

Heller. Open Science Training Handbook, 2018. 7

[45] Mark D. Wilkinson, Michel Dumontier, and Aalbersberg. The FAIR

Guiding Principles for scientific data management and stewardship. Nature

Scientific Data, 3, 2016. 7

[46] Emery D. Berger, Stephen M. Blackburn, Matthias Hauswirth, and

Michael W. Hicks. A Checklist Manifesto for Empirical Evaluation: A

Preemptive Strike Against a Replication Crisis in Computer Science. 2019.

7

[47] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez,

Jan Rellermeyer, Carlos Maltzahn, Robert Ricci, and Alexandru Io-

sup. Is Big Data Performance Reproducible in Modern Cloud Networks?

In NSDI, 2020. 7

[48] Carol Sliwa. Adoption of Intel Optane persistent memory picks up in

2020. TechTarget Storage, October 2020. 7, 54

[49] Linux Foundation. ext4 Data Structures and Algorithms — The Linux

Kernel documentation. 9, 10, 51, 71

[50] Jakob Luttgau, Michael Kuhn, Kira Duwe, Yevhen Alforov, Eugen

Betke, Julian Kunkel, and Thomas Ludwig. Survey of Storage Systems

for High-Performance Computing. Supercomputing Frontiers and Innovations:

an International Journal, 5(1):31–58, 2018. 9

[51] Simon D. Smart, Tiago Quintino, and Baudouin Raoult. A High-

Performance Distributed Object-Store for Exascale Numerical Weather

Prediction and Climate. In Proceedings of the Platform for Advanced Scientific

Computing Conference, PASC ’19, pages 1–11, New York, NY, USA, June 2019.

Association for Computing Machinery. 9

[52] Michèle Weiland and Bernhard Homölle. Usage Scenarios for Byte-

Addressable Persistent Memory in High-Performance and Data Intensive

90

https://blog.sigplan.org/2019/08/28/a-checklist-manifesto-for-empirical-evaluation-a-preemptive-strike-against-a-replication-crisis-in-computer-science/
https://blog.sigplan.org/2019/08/28/a-checklist-manifesto-for-empirical-evaluation-a-preemptive-strike-against-a-replication-crisis-in-computer-science/
https://www.techtarget.com/searchstorage/news/252491450/Adoption-of-Intel-Optane-persistent-memory-picks-up-in-2020
https://www.techtarget.com/searchstorage/news/252491450/Adoption-of-Intel-Optane-persistent-memory-picks-up-in-2020
https://www.kernel.org/doc/html/latest/filesystems/ext4/globals.html##super-block
https://www.kernel.org/doc/html/latest/filesystems/ext4/globals.html##super-block
https://doi.org/10.14529/jsfi180103
https://doi.org/10.14529/jsfi180103
https://dl.acm.org/doi/10.1145/3324989.3325726
https://dl.acm.org/doi/10.1145/3324989.3325726
https://dl.acm.org/doi/10.1145/3324989.3325726
https://doi.org/10.1007/s11390-020-0776-8
https://doi.org/10.1007/s11390-020-0776-8
https://doi.org/10.1007/s11390-020-0776-8
https://doi.org/10.1007/s11390-020-0776-8


REFERENCES

Computing. Journal of Computer Science and Technology, 36(1):110–122, January

2021. 9

[53] Yehonatan Fridman, Yaniv Snir, Matan Rusanovsky, Kfir Zvi, Harel

Levin, Danny Hendler, Hagit Attiya, and Gal Oren. Assessing the Use

Cases of Persistent Memory in High-Performance Scientific Computing.

pages 11–20. IEEE Computer Society, November 2021. 9

[54] Linux Foundation. Page Table Management. 13

[55] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual,

April 2022. 13, 14, 16, 22, 39, 52, 69

[56] IAIK. Paging on Intel x86-64 – IAIK. 13

[57] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. System evaluation

of the Intel optane byte-addressable NVM. In Proceedings of the International

Symposium on Memory Systems, MEMSYS ’19, pages 304–315, New York, NY, USA,

September 2019. Association for Computing Machinery. 14

[58] Chao Su and Qingkai Zeng. Survey of CPU Cache-Based Side-Channel

Attacks: Systematic Analysis, Security Models, and Countermeasures.

Security and Communication Networks, 2021:e5559552, June 2021. Publisher: Hin-

dawi. 14

[59] Saarland Informatics Campus. Cache Latencies. 14

[60] K. Bhandari, D.R. Chakrabarti, and H.-J Boehm. Implications of CPU

caching on byte-addressable non-volatile memory programming. January

2012. 14, 15, 16

[61] Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu. Loose-Ordering Con-

sistency for persistent memory. In 2014 IEEE 32nd International Conference

on Computer Design (ICCD), pages 216–223, October 2014. ISSN: 1063-6404. 14

[62] Paul Caheny, Lluc Alvarez, Said Derradji, Mateo Valero, Miquel

Moretó, and Marc Casas. Reducing Cache Coherence Traffic with a

NUMA-Aware Runtime Approach. IEEE Transactions on Parallel and Dis-

tributed Systems, 29(5):1174–1187, May 2018. Conference Name: IEEE Transactions

on Parallel and Distributed Systems. 15, 62

91

https://doi.org/10.1007/s11390-020-0776-8
https://doi.org/10.1007/s11390-020-0776-8
https://doi.org/10.1007/s11390-020-0776-8
https://www.computer.org/csdl/proceedings-article/ftxs/2021/205900a011/1zHI691r4hW
https://www.computer.org/csdl/proceedings-article/ftxs/2021/205900a011/1zHI691r4hW
https://www.kernel.org/doc/gorman/html/understand/understand006.html
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.iaik.tugraz.at/teaching/materials/os/tutorials/paging-on-intel-x86-64/
http://doi.org/10.1145/3357526.3357568
http://doi.org/10.1145/3357526.3357568
https://www.hindawi.com/journals/scn/2021/5559552/
https://www.hindawi.com/journals/scn/2021/5559552/
https://uops.info/cache.html


REFERENCES

[63] Paul McKenney. Memory Ordering in Modern Microprocessors, Part I |

Linux Journal. Linux Journal, June 2005. 15

[64] Yang Yang, Qiang Cao, Jie Yao, Yuanyuan Dong, and Weikang Kong.

SPMFS: A Scalable Persistent Memory File System on Optane Persistent

Memory. In 50th International Conference on Parallel Processing, ICPP 2021, pages

1–10, New York, NY, USA, October 2021. Association for Computing Machinery. 15

[65] NVM Programming Model (Version 1.2), June 2017. 15

[66] Intel. eADR: New Opportunities for Persistent Memory Applications. 16

[67] Intel. Persistent Memory Learn More Series Part 2 : Power-Fail Pro-

tected Domains, January 2021. 16

[68] Persistent Memory Extensions - x86 - WikiChip, May 2021. 17

[69] Miao Cai. FlatFS: Flatten Hierarchical File System Namespace on Non-

volatile Memories. Usenix, July 2022. 17

[70] Linux Foundation. Direct Access for files. 19, 20

[71] Vincent Weaver. System-wide Performance Counter Measurements: Off-

core, Uncore, and Northbridge Performance Events in Modern Processors.

Technical Report UMAINE-VMW-TR-UNCORE-OFFCORE-2015-10, University of

Maine, July 2017. 22

[72] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Understanding the

idiosyncrasies of real persistent memory. Proceedings of the VLDB Endowment,

14(4):626–639, February 2021. 24, 27, 55, 56, 62

[73] Lawrence Benson, Leon Papke, and Tilmann Rabl. PerMA-bench:

benchmarking persistent memory access. Proceedings of the VLDB Endow-

ment, 15(11):2463–2476, September 2022. 24, 55, 60

[74] Intel. Intel VTune Profiler. 24

[75] The Linux Foundation. perf. 24, 68

92

https://www.linuxjournal.com/article/8211
https://www.linuxjournal.com/article/8211
http://doi.org/10.1145/3472456.3472503
http://doi.org/10.1145/3472456.3472503
https://www.snia.org/sites/default/files/technical-work/npm/release/SNIA-NVM-Programming-Model-v1.2.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/training/pmem-learn-more-series-part-2.html##inpage-nav-undefined-3
https://www.intel.com/content/www/us/en/developer/articles/training/pmem-learn-more-series-part-2.html##inpage-nav-undefined-3
https://en.wikichip.org/wiki/x86/persistent_memory_extensions
https://www.usenix.org/system/files/atc22-cai.pdf
https://www.usenix.org/system/files/atc22-cai.pdf
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://web.eece.maine.edu/~vweaver/projects/perf_events/uncore/offcore_uncore.pdf
https://web.eece.maine.edu/~vweaver/projects/perf_events/uncore/offcore_uncore.pdf
http://doi.org/10.14778/3436905.3436921
http://doi.org/10.14778/3436905.3436921
http://doi.org/10.14778/3551793.3551807
http://doi.org/10.14778/3551793.3551807
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://perf.wiki.kernel.org/index.php/Main_Page


REFERENCES

[76] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven Swanson. Find-

ing and Fixing Performance Pathologies in Persistent Memory Software

Stacks. In Proceedings of the Twenty-Fourth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS ’19,

pages 427–439, New York, NY, USA, April 2019. Association for Computing Ma-

chinery. 27, 55

[77] Onkar Patil, Latchesar Ionkov, Jason Lee, Frank Mueller, and

Michael Lang. Performance characterization of a DRAM-NVM hybrid

memory architecture for HPC applications using intel optane DC persis-

tent memory modules. In Proceedings of the International Symposium on Memory

Systems, MEMSYS ’19, pages 288–303, New York, NY, USA, September 2019. As-

sociation for Computing Machinery. 27, 55

[78] Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory simula-

tion: a survey. ACM Computing Surveys, 29(2):128–170, June 1997. 29

[79] UEFI Forum, Inc. Advanced Configuration and Power Interface (ACPI)

Specification, January 2021. 31

[80] pmem.io community. Using QEMU Virtualization. 31, 65

[81] Srikar Dronamraju. Uprobe-tracer: Uprobe-based Event Tracing — The

Linux Kernel documentation. 36

[82] The Linux Kernel Contributors. In-kernel memory-mapped I/O tracing.

37, 47

[83] Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu. Improving the Per-

formance and Endurance of Persistent Memory with Loose-Ordering Con-

sistency. IEEE Transactions on Parallel and Distributed Systems, pages 1–1, 2018.

arXiv:1705.03623 [cs]. 41

[84] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In Proceedings of the interna-

tional symposium on Code generation and optimization: feedback-directed and run-

time optimization, CGO ’04, page 75, USA, March 2004. IEEE Computer Society.

42

93

http://doi.org/10.1145/3297858.3304077
http://doi.org/10.1145/3297858.3304077
http://doi.org/10.1145/3297858.3304077
https://dl.acm.org/doi/10.1145/3357526.3357541
https://dl.acm.org/doi/10.1145/3357526.3357541
https://dl.acm.org/doi/10.1145/3357526.3357541
https://dl.acm.org/doi/10.1145/254180.254184
https://dl.acm.org/doi/10.1145/254180.254184
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf
https://docs.pmem.io/persistent-memory/getting-started-guide/creating-development-environments/virtualization/qemu
https://docs.kernel.org/trace/uprobetracer.html
https://docs.kernel.org/trace/uprobetracer.html
https://www.kernel.org/doc/Documentation/trace/mmiotrace.txt
http://arxiv.org/abs/1705.03623
http://arxiv.org/abs/1705.03623
http://arxiv.org/abs/1705.03623


REFERENCES

[85] Keith D. Cooper and Linda Torczon. Chapter 3 - Parsers. In Keith D.

Cooper and Linda Torczon, editors, Engineering a Compiler (Second Edition),

pages 83–159. Morgan Kaufmann, Boston, January 2012. 42

[86] osdev. x86-64 System Call Calling Conventions. 42

[87] Apache. Apache Parquet, April 2023. 45

[88] Vogl, Sebastian and Eckert, Claudia. Using Hardware Performance

Events for Instruction-Level Monitoring on the x86 Architecture. In Pro-

ceedings of EuroSec’12, 5th European Workshop on System Security. ACM Press,

April 2012. 46

[89] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A Practi-

cal Attack Framework for Precise Enclave Execution Control. In Proceedings

of the 2nd Workshop on System Software for Trusted Execution, SysTEX’17, pages

1–6, New York, NY, USA, October 2017. Association for Computing Machinery. 47

[90] Myoungjae Kim, Hyunmin Yoon, Minkwan Choi, Shakaiba Majeed, and

Minsoo Ryu. Multiprocessor MMIO Tracing via Memory Protection and

a Shadow Page Table. In Proceedings of the International Conference on Founda-

tions of Computer Science (FCS), page 16. The Steering Committee of The World

Congress in Computer Science, Computer . . . , 2015. 48

[91] Axboe, Jens. Flexible I/O Tester, 2022. GNU GPL v2.0. 52

[92] Kitchenham, Barbara Ann and Charters, Stuart. Guidelines for per-

forming Systematic Literature Reviews in Software Engineering. Technical

Report EBSE-2007-01, Software Engineering Group Keele University, July 2007. 53

[93] Claes Wohlin. Guidelines for snowballing in systematic literature studies

and a replication in software engineering. In Proceedings of the 18th Interna-

tional Conference on Evaluation and Assessment in Software Engineering, EASE ’14,

pages 1–10, New York, NY, USA, May 2014. Association for Computing Machinery.

53

[94] Kai Wu, Jie Ren, Ivy Peng, and Dong Li. {ArchTM}: {Architecture-

Aware}, High Performance Transaction for Persistent Memory. pages 141–

153, 2021. 55

94

https://www.sciencedirect.com/science/article/pii/B9780120884780000037
https://wiki.osdev.org/Calling_Conventions
https://parquet.apache.org/
https://www.sec.in.tum.de/i20/publications/using-hardware-performance-events-for-instruction-level-monitoring-on-the-x86-architecture
https://www.sec.in.tum.de/i20/publications/using-hardware-performance-events-for-instruction-level-monitoring-on-the-x86-architecture
https://dl.acm.org/doi/10.1145/3152701.3152706
https://dl.acm.org/doi/10.1145/3152701.3152706
https://worldcomp-proceedings.com/proc/p2015/FCS3264.pdf
https://worldcomp-proceedings.com/proc/p2015/FCS3264.pdf
https://github.com/axboe/fio
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://dl.acm.org/doi/10.1145/2601248.2601268
https://dl.acm.org/doi/10.1145/2601248.2601268
https://www.usenix.org/conference/fast21/presentation/wu-kai
https://www.usenix.org/conference/fast21/presentation/wu-kai


REFERENCES

[95] Guangyu Zhu, Jaehyun Han, Sangjin Lee, and Yongseok Son. An Empiri-

cal Evaluation of NVM-Aware File Systems on Intel Optane DC Persistent

Memory Modules. MDPI - Electronics, 10(16):1977, January 2021. Number: 16

Publisher: Multidisciplinary Digital Publishing Institute. 55

[96] Anuj Kalia, David Andersen, and Michael Kaminsky. Challenges and

solutions for fast remote persistent memory access. In Proceedings of the

11th ACM Symposium on Cloud Computing, SoCC ’20, pages 105–119, New York,

NY, USA, October 2020. Association for Computing Machinery. 55, 63

[97] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min,

and Sanidhya Kashyap. {ODINFS}: Scaling {PM} Performance with

Opportunistic Delegation. pages 179–193, Carlsbad, CA, 2022. USENIX Associ-

ation. 55

[98] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and

Onur Mutlu. Demystifying Complex Workload-DRAM Interactions: An

Experimental Study. Proceedings of the ACM on Measurement and Analysis of

Computing Systems, 3(3):60:1–60:50, December 2019. 57

[99] Soramichi Akiyama and Takahiro Hirofuchi. Quantitative Evaluation of

Intel PEBS Overhead for Online System-Noise Analysis. In Proceedings of the

7th International Workshop on Runtime and Operating Systems for Supercomputers

ROSS 2017, ROSS ’17, pages 1–8, New York, NY, USA, June 2017. Association for

Computing Machinery. 58

[100] Jifei Yi, Benchao Dong, Mingkai Dong, Ruizhe Tong, and Haibo Chen.

{MT^2}: Memory Bandwidth Regulation on Hybrid {NVM/DRAM}

Platforms. In 20th USENIX Conference on File and Storage Technologies (FAST

22), pages 199–216. USENIX Association, 2022. 58

[101] An Introduction to the Intel QuickPath Interconnect. Technical Report

320412-001US, Intel. 62

[102] Intel® Intrinsics Guide, May 2023. 67

[103] eBPF community. eBPF. 68

[104] Vincent Weaver. Linux perf event Features and Overhead. Technical Re-

port, University of Maine, 2013. 68

95

https://www.mdpi.com/2079-9292/10/16/1977
https://www.mdpi.com/2079-9292/10/16/1977
https://www.mdpi.com/2079-9292/10/16/1977
https://dl.acm.org/doi/10.1145/3419111.3421294
https://dl.acm.org/doi/10.1145/3419111.3421294
https://www.usenix.org/conference/osdi22/presentation/zhou-diyu
https://www.usenix.org/conference/osdi22/presentation/zhou-diyu
https://dl.acm.org/doi/10.1145/3366708
https://dl.acm.org/doi/10.1145/3366708
https://dl.acm.org/doi/10.1145/3095770.3095773
https://dl.acm.org/doi/10.1145/3095770.3095773
https://www.usenix.org/conference/fast22/presentation/yi-mt2
https://www.usenix.org/conference/fast22/presentation/yi-mt2
https://www.intel.ca/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://ebpf.io/
https://web.eece.maine.edu/~vweaver/projects/perf_events/overhead/weaver_perfevent_overhead.pdf


REFERENCES

[105] Tarasov Vasily, Erez Zadok, and Shepler Spencer. Filebench: A flexible

framework for file system benchmarking., 2016. 71

[106] Richard McDougall. FileBench, 2004. 71

[107] Gabriele Paoloni. How to Benchmark Code Execution Times on Intel

IA-32 and IA-64 Instruction Set Architectures. Technical Report 324264-001,

Intel, September 2010. 71

[108] Intel® Memory Latency Checker v3.9a, July 2021. 76

96

https://github.com/filebench/filebench
https://github.com/filebench/filebench
http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html


7

Artifacts

7.1 Artifact 1: Configuring VM environment pmemtrace

This artifact provides instructions for reproducing the QEMU VM environment, including

the pmemtrace trace collection tool discussed in chapter 3. Preferably, one should have

access to a machine with 64 GB of RAM or more. In this stage, having access to real

Persistent Memory hardware is optional since PMEM is emulated by QEMU. Finally, the

number of physical cores should be at least eight.

Most of the installation is automated by scripts, so the entire installation process should

take approximately 30 minutes.

Artifact Check-list (Meta-information)

• Compilation: GCC, CMake 3.22.1, make

• Hardware: x86_64 CPU with at least 8 cores, 64 GB of RAM (< 64 GB requires manual
configuration)

• How much disk space required?: 30 GB

• How much time is needed to prepare workflow (approximately)?: 30 minutes, mostly depends
on kernel build time

• Publicly available?: Yes: https://github.com/stonet-research/PMicroProfile

• Code licenses?: Multi-license, Linux kernel version 5-4.232 is GPL-2.0 licensed, SplitFS
uses the BSD license. Our work is MIT licensed.
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Description

How to access

All necessary code, experiments, and installation scripts are included in a Git repository.

This repository can be obtained by running the following command in a shell:

$ git clone https :// github.com/stonet -research/PMicroProfile

Hardware Dependencies

An Intel processor (Skylake architecture or newer) that supports the clflush, clflushopt,

or clwb cache bypass instructions. Other processor vendors, such as AMD, that implement

both the x86_64 instruction set and the aforementioned instructions may function as well;

however, this has not been verified.

Software Dependencies

A Linux-based operating system that supports KVM. Our installation scripts target Debian-

based systems, for example, Ubuntu 22.04.* LTS.

Our Hardware/Software configuration

We use the following system configuration:

• CPU: Intel Core i9 13900K processor;

• RAM: 4× Corsair Vengeance 16 GB 5600 MHz DDR5 memory (64 GB in total);

• SSD: 1× Samsung 980 Pro 1 TB;

• OS: Ubuntu 22.04.2 LTS running the Linux 5.19.0-41-generic kernel, QEMU

version 6.2.0.

Installation

The installation process consists of two steps: establishing a QEMU virtual machine in-

stance with a custom kernel and afterward installing the pmemtrace tracing tool. Most of

the steps involve running automated scripts that pre-configure all required dependencies

and infrastructure in such a way that it requires minimal effort.

First, set up a new QEMU VM instance:
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7.1 Artifact 1: Configuring VM environment pmemtrace

$ git clone https :// github.com/stonet -research/PMicroProfile
$ cd PMicroProfile

# Run the automated install script.
$ ./setup -vm.sh

A successful installation should result in the following output:

✓ Installed package dependencies.
✓ Built kernel.
✓ Configured kernel.
✓ Created QEMU disk image.
✓ Setup Finished! Execute the "vm/run_kvm_iso.sh" command to launch

Ubuntu Installer. Make sure that you select "QEMU HARDDISK" as
install drive!

You may now proceed to the Ubuntu installation wizard by executing the vm/run_kvm_

iso.sh script. After finishing the Ubuntu installation, perform the following steps:

1. Remove the installation medium by commenting/removing the line -cdrom "ubuntu.

iso" in vm/run_kvm_iso.sh;

2. Open a terminal inside the VM and execute the following command: $ cat /proc/

mounts | grep " / ";

3. Copy the mount path of the root file system, for example, /dev/sda5, and update

the kernel root boot parameter in the vm/run_kvm.sh file accordingly;

4. Optional: Modify the number of cores, the amount of RAM, and the size of the

emulated PMEM device by modifying the vm/run_kvm.sh file accordingly;

5. Now, boot the VM using the custom kernel by executing the script vm/run_kvm.sh;

6. Verify that you are running the custom kernel by running $ uname -r within the

VM. This command should print 5.4.232.

Within the VM, spawn a terminal and, again, clone the git repository. Subsequently,

run the pmemtrace installation script:
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$ git clone https :// github.com/stonet -research/PMicroProfile
$ cd PMicroProfile

# Run the automated pmemtrace install script.
$ ./install -vm.sh

The pmemtrace executable will be placed inside the /usr/local/bin/ folder so that it

is contained in the user $PATH. Verify this by running sudo pmemtrace --help.

Experiment Workflow

Mounting PMEM file system. To use a Persistent Memory device, it must first be

mounted inside the user space. There are two options available: devdax and fsdax. The

former enables applications to access storage without the involvement of a file system.

The latter attaches the device to a file system. To mount the device as devdax, one can

execute the following command with the repository working directory: ./mount-dexdax.sh.

Alternatively, the ./mount-ext4-dax.sh script can be used to mount a ext4 file system with

the PMEM device as the backend. Artifact 2 provides a discussion on how to mount other

file systems.

Using pmemtrace. To enable access tracing when executing a CLI command, use the

following syntax: sudo pmemtrace [OPTIONS] experiment_name [COMMAND]. When execut-

ing the command, pmemtrace configures the in-kernel infrastructure to log low-level PMEM

accesses and then executes the provided command. As described in Figure 3.5, a sampling-

based data collection strategy to decrease tracing overhead. Related command-line argu-

ments are: --sample-rate (between 0 and 240 hertz) and --duty-cycle ([0.0, 1.0]). To

capture all events, one can disable sampling by adding the --disable-sampling toggle.

Example usage:

# Mount PMEM device as fsdax
$ cd thesis -research
$ sudo ./mount -ext4.dax

# Example of tracing all accesses random file write (i.e. sampling
disabled)

# Optionally , one may enable experimental multi -core capturing
support by setting the --enable -multicore flag.

$ sudo pmemtrace randwrite -all -exp sudo bash -c "head -c 16M
</dev/urandom >/mnt/pmem_emul/rand_file.txt" --disable -sampling
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7.2 Artifact 2: Reproducible Experiments

# Example of tracing all accesses random file write with sampling
(60 hertz , 80% duty cycle):

$ sudo pmemtrace randwrite -sampling -exp sudo bash -c "head -c 16M
</dev/urandom >/mnt/pmem_emul/rand_file.txt" --sample -rate 60
--duty -cycle 0.8

The compressed trace file is saved as [experiment_name].parquet in the current work-

ing directory. This trace file is now ready to be replayed in pmemanalyze. A readable log

can also be found in the /tmp directory.

Evaluation and Expected Results

Provided in Artifact 2 (section 7.2).

7.2 Artifact 2: Reproducible Experiments

This artifact provides all the information to reproduce the experiment plots and tables

throughout this thesis. Together, the entire process should take around two hour.

Artifact Check-list (Meta-information)

• Compilation: GCC, CMake 3.22.1, make

• Data set: randomly generated data by urandom and other existing file system benchmarks,
e.g., FIO.

• Run-time environment: real machine (no VM), running Linux 5.* kernel.

• Hardware: Intel Xeon Silver 4215 Server CPU, with 72 GiB of RAM, 4× Intel Optane
DCPMM (NMA1XBD512GQS, 512 GiB);

• Metrics: runtime, throughput, latency, Intel PMC and PEBS events.

• Output: mostly plots, some raw csv files;

• Experiments: all experiments are contained in the experiments/ folder within the Git
repository. Each experiment is numbered (e.g., 01) and is contained in separate folders.
Each experiment contains a REPRODUCE.md file with instructions to reproduce the results.

• How much disk space required?: 10 GiB

• How much time is needed to prepare workflow (approximately)?: 1 hour

• How much time is needed to complete experiments (approximately)?: 1− 2 hours
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• Publicly available?: Yes: https://github.com/stonet-research/PMicroProfile

• Code licenses?: Multi-license, Linux kernel version 5-4.232 is GPL-2.0 licensed, SplitFS
uses the BSD license. Our work is MIT licensed.

Description

How to access

All necessary code, experiments, and installation scripts are included in a Git repository.

This repository can be obtained by running the following command in a shell:

$ git clone https :// github.com/stonet -research/PMicroProfile

Hardware Dependencies

The system must contain one or more Intel Optane DCPMM DIMM modules. Further-

more, an Intel Cascadelake-Server based CPU is mandatory. A virtual machine is not

supported since it does not implement (representative) Intel PMC and PEBS performance

counters required for performance evaluation.

Software Dependencies

A system running a 5.* Linux kernel. We used an Ubuntu 20.04.6 LTS installation, running

kernel version 5.7.1.

Installation

The installation process involves setting up the pmemanalyze tool. To install this tool, run

the following bash commands:

$ git clone https :// github.com/stonet -research/PMicroProfile
$ cd PMicroProfile

# Run the automated pmemanalyze install script.
$ ./install -real -machine.sh

# Change directory to experiments folder.
cd experiments
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7.2 Artifact 2: Reproducible Experiments

Experiment Workflow

All experiments are contained in the experiments folder. Each experiment includes a

REPRODUCE.md file with instructions for reproducing the results of that specific experiment.

The following overview can be used to find the respective experiment folder of a fig-

ure/table contained in this thesis.

Figure Folder
Table 3.2 01-runtime-rand-pmemtrace

Table 3.3 01-runtime-rand-pmemtrace

Figure 3.9 03-pmemtrace-overhead

Figure 3.8 03-pmemtrace-overhead

Figure 4.1 02-fs-overhead

Figure 5.2 05-ext4-splitfs-varmail

Figure 5.3 05-ext4-splitfs-varmail

Figure 5.4 05-ext4-splitfs-varmail

Figure 5.5 05-ext4-splitfs-varmail

Evaluation and Expected Results

Can be found inside the REPRODUCE.md file within the experiments folder.
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Appendix

Appendix A: Capturing PMEM driver events using eBPF and
BCC

1 from bcc import BPF
2 from bcc.utils import printb
3
4 b = BPF(text="""
5 #include <uapi/linux/ptrace.h>
6 #include <linux/blk -mq.h>
7 #include <uapi/linux/virtio_pmem.h>
8 #include <linux/libnvdimm.h>
9

10 void trace_write(struct pt_regs *ctx , void *pmem_addr) {
11 bpf_trace_printk ("W %p \\n", pmem_addr);
12 }
13
14 void trace_read(struct pt_regs *ctx , void *pmem_addr) {
15 bpf_trace_printk ("R %p \\n", pmem_addr);
16 }
17 """)
18
19 if BPF.get_kprobe_functions(b’write_pmem ’):
20 b.attach_kprobe(event="write_pmem", fn_name="trace_write")
21 print("Found write_pmem function!")
22
23 if BPF.get_kprobe_functions(b’read_pmem ’):
24 b.attach_kprobe(event="read_pmem", fn_name="trace_read")
25 print("Found read_pmem function!")
26
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8. APPENDIX

27 while 1:
28 try:
29 (task , pid , cpu , flags , ts, msg) = b.trace_fields ()
30 (op , pmem_addr) = msg.split()
31
32 if op == b’W’:
33 print("WRITE {}".format(hex(pmem_addr)))
34 elif op == b’R’:
35 print(f"READ {pmem_addr}")
36 else:
37 print(f"UNKNOWN OP {op}")
38 except KeyboardInterrupt:
39 exit()

Appendix B: QEMU device setup methodology 1

1 qemu -system -x86_64\
2 -cpu host \
3 -enable -kvm \
4 -smp cores=4 \
5 -drive file=ubuntu.img.qcow2 ,format=qcow2 \
6 -append "root=/dev/sda5 earlyprintk=serial net.ifnames =0

nokaslr" \
7 -kernel $1/arch/x86/boot/bzImage \
8 -machine pc ,nvdimm=on \
9 -m 4G,slots=2,maxmem =32G \

10 -object memory -backend -file ,id=mem1 ,mem -path =./ nvdimm0 ,
11 share=on ,pmem=on,size =28G,align=2M \
12 -device nvdimm ,memdev=mem1 ,id=nv1 ,label -size =256K \
13 -net user ,host =10.0.2.10 , hostfwd=tcp :127.0.0.1:2222 -:22 \
14 -net nic ,model=e1000 \
15 -vga virtio \
16 -pidfile vm.pid

Listing 8.1: QEMU device Setup

Appendix C: List of methods PMC library

These methods are declared in the pmemanalyze/include/pmc.hpp file and defined in

the pmemanalyze/src/pmc.cpp. Class methods defined as protected and private have
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been omitted.

1. Initialize Library: Find all the available integrated memory controllers by listing

all the file entries in /sys/bus/event_source/devices. The ID of each iMC is stored

in a std::array.

Definition: bool init()

2. Create iMC probe: Initialize an iMC probe using the event ID listed in Intel’s Cas-

cade Lake Event Overview: https://perfmon-events.intel.com/cascadelake_

server.html.

Definition: bool add_imc_probe(const unsigned int event_id, const bool is_single)

3. Create offcore probe: Initialize an iMC probe using the event ID listed in Intel’s

Cascade Lake Event Overview: https://perfmon-events.intel.com/cascadelake_

server.html. As offcore events can be attributed to a single CPU, the calling pro-

cess’s Process Identifier (PID) should be provided. Additionally, the msr variable

must be set accordingly.

Definition: bool add_offcore_probe(const unsigned int event_id, const int pid,

const unsigned long msr)

4. Enable all iMC probes: Enables all iMC probes, used to implement sampling.

Definition: void enable_imc_probes()const

5. Disable all iMC probes: Disables all iMC probes, used to implement sampling.

Definition: void disable_imc_probes()const

6. Reset iMC counters: Reset iMC counter values, used to implement sampling.

Definition: void reset_imc_probes()const

Appendix D: Long-Duration Latencies varmail Workload
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(a)

(b)

Figure 8.1: Ext4-DAX (a) and SplitFS (b) long-duration latencies
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