Characterization of a
Big DataStorage Workload
in the Cloud
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What is Big Data”?
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Medicine Search Finance Science

Volume
Velocity
Variety

Processed by multiple machines concurrently.

[1]1 Human HIV-1 protein interaction network, Wikimedia Commons [3] Samsung Insights
[2] Google Inc. [4] LIGO Scientific Collaboration



Traditional Big Data Processing System Model
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Motivation

Scarcity of publicly available information about Spark based Workloads

Type
Chen 2011 Enterprise
Carns 2011 HPC
Abad 2012 MapReduce + HDFS
Chen 2012 MapReduce + HDFS
Atikoglu 2012 Web Cache
Liu 2013 Consumer Cloud
Harter 2014 Messaging + HDFS
Gunasekaran 2015 HPC
Summers 2016 Video Delivery

This Work Spark + S3
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Motivation

Scarcity of publicly available information about Spark based Workloads

Research Question

What are the characteristics of Spark-based big data storage workloads in the
cloud?
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Motivation

Scarcity of publicly available information about Spark based Workloads

Research Question

What are the characteristics of Spark-based big data storage workloads in the
cloud?

mpac

Enables new system designs, better tuning, and operations decisions
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Generalizable

e Databricks is large

e (Customers from different sectors

e Applicable to spark-like stage based big data processing
systems which read data from cloud object stores
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Process

1.

Collected real traces from Databricks

[1] Christian Gralingen
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Process

1.
2.

Collected real traces from Databricks
User data was not touched
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Process

NOo Ok

Collected real traces from Databricks
User data was not touched

Anonymize and process large traces
Long-term trends via visualization
Bursts using Hurst exponent
Statistical characterization

File types

[1] Christian Gralingen
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Trace Subsets

e Whole Trace

o 6 months long

o ©600TB data
o W1

o 1 week long

o First week of the six month trace
o W2

o 1 week long

o Last week of the six month trace
e First and last week to show that properties don’t change over

time.
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Daily and Weekly Trend
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Daily and Weekly Trend
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Distribute demand evenly across days for lower EC2 spot instance prices
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Bursts Quantified by Hurst Parameter (H)
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Different kinds of bursts
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Bursts Quantified by Hurst Parameter
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< 0.5 means sporadic bursts
Close to 0.3 most of the time

0.5
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Bursts Quantified by Hurst Parameter
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Prefetch or other activity in-between bursts

0.5
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90% reads are small in size
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90% reads are small in size
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Likely metadata. Store metadata in a faster storage, separate from data.
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Reuse time

Reuse Time
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Reuse times are logarithmically distributed
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Each logarithmic interval has the same number of reads
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Most clusters (75%) read few files
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Most clusters (75%) read few files
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Optimize clusters for few reads and short lifetimes
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Most clusters (75%) read a median amount of data
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Most clusters (75%) read a median amount of data
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Optimize cluster to read “not really big” data
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Parquet files are most popular
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Parquet files are most popular

delta
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Filetype

Need more parquet libraries, and reliable ways to read and write parquet
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Snappy compression is the most popular
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Summary

Weekly and Daily trends

Sporadic bursts via Hurst parameter

Most (90%) reads are small

Reuse times logarithmically distributed

Most (75%) cluster read few files

Most (75%) clusters read median amount of data
Parquet is the most popular file format

Snappy is the most popular compression format

N R N =
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Questions?
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