
Balanced Resource Allocations Across
Multiple Dynamic MapReduce Clusters

Bogdan Ghiţ§, Nezih Yigitbasi†, Alexandru Iosup§, Dick Epema§$

§Delft University of Technology, the Netherlands
$Eindhoven University of Technology, the Netherlands

†Intel Labs, USA
b.i.ghit@tudelft.nl, nezih.yigitbasi@intel.com

{a.iosup,d.h.j.epema}@tudelft.nl

ABSTRACT

Running multiple instances of the MapReduce framework
concurrently in a multicluster system or datacenter enables
data, failure, and version isolation, which is attractive for
many organizations. It may also provide some form of per-
formance isolation, but in order to achieve this in the face
of time-varying workloads submitted to the MapReduce in-
stances, a mechanism for dynamic resource (re-)allocations
to those instances is required. In this paper, we present such
a mechanism called Fawkes that attempts to balance the al-
locations to MapReduce instances so that they experience
similar service levels. Fawkes proposes a new abstraction
for deploying MapReduce instances on physical resources,
the MR-cluster, which represents a set of resources that can
grow and shrink, and that has a core on which MapRe-
duce is installed with the usual data locality assumptions
but that relaxes those assumptions for nodes outside the
core. Fawkes dynamically grows and shrinks the active
MR-clusters based on a family of weighting policies with
weights derived from monitoring their operation.

We empirically evaluate Fawkes on a multicluster system
and show that it can deliver good performance and balanced
resource allocations, even when the workloads of the MR-
clusters are very uneven and bursty, with workloads com-
posed from both synthetic and real-world benchmarks.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed Applications;
D.2.8 [Metrics]: Performance measures

General Terms

Experimentation, Measurement, Performance

Keywords

MapReduce clusters; Scheduling; Dynamic provisioning; Per-
formance; Fairness; Datacenters; Multicluster systems.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMETRICS’14, June 16–20, 2014, Austin, Texas, USA.

Copyright 2014 ACM 978-1-4503-2789-3/14/06 ...$15.00.

http://dx.doi.org/10.1145/2591971.2591998.

1. INTRODUCTION
MapReduce and similar computing frameworks are now

widely used by institutes and commercial companies (e.g.,
Google [9], Facebook [33], Yahoo! [7]) because of their abil-
ity to efficiently use large sets of computing resources and
to analyze large data volumes. MapReduce workloads may
be very heterogeneous in terms of their data size and their
resource requirements [18], and mixing them within a sin-
gle instance of a computing framework may lead to con-
flicting optimization goals. Therefore, isolating MapReduce
workloads and their data while dynamically balancing the
resources across them is very attractive for many organiza-
tions. In this paper, we present the design and analysis of
Fawkes

1, a scheduling system for dynamic resource provi-
sioning of multiple MapReduce instances in single large-scale
infrastructures.

Running multiple MapReduce frameworks concurrently
within the same physical infrastructure enables four types
of isolation. First, different (groups of) users each work-
ing with their own data set may prefer to have their own
MapReduce framework to avoid interference, or for privacy
and security reasons, thus requiring data isolation. A second
type of isolation is failure isolation, which hides the failures
of one MapReduce framework from the applications running
in other concurrent MapReduce frameworks. Third, with
the multiple MapReduce frameworks approach, version iso-
lation, with different versions of the MapReduce framework
running simultaneously, may be achieved as well. Finally,
it can enable performance isolation between streams of jobs
with different characteristics, for instance, by having sepa-
rate MapReduce frameworks for large and small jobs, or for
production and experimental jobs.

Whereas the first three forms of isolation are easily en-
forced by a resource manager that can deploy multiple in-
stances of the MapReduce framework along with their corre-
sponding filesystems on disjoint sets of nodes, performance
isolation is more difficult to achieve (and define)—as the
workloads of the instances may vary considerably over their
lifetimes, deploying them on static partitions of the system
may lead to an imbalance in the levels of service they receive.
To dynamically provision multiple framework instances at
runtime, Fawkes defines a new abstraction of the MapRe-
duce framework called the MR-cluster. An MR-cluster is
initially deployed (along with its filesystem) on a system

1
Fawkes is a phoenix bird which in Greek mythology is

reborn from its own ashes just like our MapReduce clusters
grow and shrink.

Figure 1: An overview of the queuing system of Fawkes. The system handles requests for deploying MapReduce frameworks
(MR-clusters) with a global queue, and each active MR-cluster manages an internal queue of MapReduce jobs (MR-jobs).
The Hadoop logo is taken from [2].

partition of a certain minimum size consisting of core nodes
when its first job is submitted, and it will remain active
as long as it receives additional jobs. The allocation of an
MR-cluster can grow (and later shrink) by adding (remov-
ing) transient or transient-core nodes that don’t store any
data or only output data, respectively, thus breaking the
standard MapReduce data locality assumption but allow-
ing fast reconfiguration. Fawkes implements three types of
policies for setting and periodically adjusting the weights of
the active MR-clusters that indicate the shares of the re-
sources they are entitled to, and to resize their allocations
accordingly. These policies try to assess the load conditions
of the MR-clusters by considering their queue lengths, their
resource utilizations, or their performance (in terms of, e.g.,
job slowdown) when setting the weights. The most impor-
tant performance metric we use to assess the actual perfor-
mance of the MR-clusters is the average job slowdown.

Another possible solution for provisioning multiple MapRe-
duce instances is to share the distributed file system across
all frameworks and to employ two-level scheduling by dele-
gating the scheduling control to the frameworks, as is done
in Mesos [19]. There, a high-level resource manager initi-
ates resource offers to the frameworks, which need specific
policies to decide whether to accept or reject these offers.
Mesos achieves near-optimal data locality when resources
are frequently released by the frameworks. Instead, our so-
lution targets performance isolation for time-varying work-
loads, but breaks the data locality assumptions to enable
fast framework reconfigurations. Whereas Mesos has an
offer-based scheduling system, Fawkes employs a feedback
mechanism and balances the allocations of multiple frame-
works by monitoring their operation.

The contributions of this paper are as follows:

1. We define the abstraction of the MR-cluster which is
a set of resources that can grow and shrink, that has
MapReduce installed on its core in the usual way, but
that relaxes the MapReduce data locality assumptions
for nodes outside its core (Section 3).

2. We provide a comprehensive taxonomy of policies for
provisioning multiple MR-clusters that take into ac-
count their dynamic load conditions as perceived from
their queue lengths, the utilizations of the resources
allocated to them, or the performance they deliver
(Section 4).

3. With a set of micro-experiments in a real multicluster
system, we analyze, among other aspects of Fawkes,
the benefit of trading data locality for dynamicity (Sec-
tion 6). We find that the performance penalty induced
by a relaxed data locality model in MapReduce is not
prohibitive.

4. With a set of macro-experiments in the multicluster
system, we evaluate the weighting policies of Fawkes

for balancing the allocations of multiple MR-clusters.
We show that our system delivers good results even for
unfavorable workloads (Section 7).

2. BACKGROUND
MapReduce [9] is a programming model that exploits the

parallelism in applications processing large, regular data
sets. With the open-source implementation of MapReduce
Hadoop [2], a new software stack emerged for big data pro-
cessing on inexpensive hardware. Hadoop provides a dis-
tributed file system (HDFS), which accommodates very large
files, divided into chunks or data blocks of 64 or 128 MB in
size. Data blocks are replicated at different compute nodes
(DataNodes) and their locations are provided by a master
node (NameNode).

The flow of a MapReduce computation can be split into
three phases. First, each data block of the input data set is
assigned to a map task, which generates key-value pairs as
specified by a user-defined map function. Secondly, during
the shuffle phase, the key-value pairs are sorted by key and
divided among a number of reduce tasks. Finally, the reduce
tasks, after receiving all key-value pairs with the same key,
execute a user-defined reduce function.

To execute a MapReduce computation, a master node
(JobTracker) assigns tasks based on the location of their
input data blocks to different compute nodes (TaskTrack-
ers). Despite the simplicity of the MapReduce programming
model, today it is also common to create MapReduce pro-
grams from SQL-like higher-level programming languages
(Pig Latin [25]). Although MapReduce can be employed
for large jobs processing terabytes of data, most of the jobs
in production clusters are short (minutes) SQL-like queries,
with small input sizes (GBs) [7], [28].

3. SYSTEM MODEL
In this section, we propose a scheduling and provision-

ing structure for deploying multiple concurrent MapReduce
frameworks, which can be resized dynamically at runtime.

3.1 Scheduling and Provisioning Structure
The system architecture assumed by MapReduce has re-

sources where processors and storage are co-located. We
assume these resources to be organized in multiple physi-
cal clusters that operate as a single distributed computing
system managed by the resource manager Fawkes, which
decides how resources are to be balanced across multiple
MapReduce frameworks.

In Figure 1 we show the queuing system managed by
Fawkes. Fawkes receives two types of requests, one for
activating new MR-clusters, and one for executing MapRe-
duce jobs (MR-jobs) that identify the MR-cluster in which
they have to be executed. These requests are serviced in
multiple queues, all using the FIFO scheduling discipline.
The system queues requests for new MR-clusters in a global
queue managed by Fawkes. The time required to activate
a new MR-cluster consists of the time the MR-cluster has
to wait to be deployed on physical resources (wC) and the
time required to load the input data set from an external
persistent storage (lD). Each active MR-cluster maintains
an internal queue of MR-job requests targeted at it. The re-
sponse time of an MR-job is equal to the sum of its waiting
time in the MR-cluster’s queue (wJ) and its execution time
(sJ). If the weight of an MR-cluster in the Fawkes mecha-
nism is equal to 0 indicating no task execution for at least
a certain duration T (see Section 4.2), Fawkes marks it as
inactive, deallocates its resources, and removes it from the
system. Prior to the removal of an MR-cluster, its (output)
data is saved on the persistent storage in the time interval
of length bD.

3.2 Dynamic MR-Clusters
In order to balance resources across the active MR-clusters,

Fawkes has to be able to resize them by growing and shrink-
ing the number of resources allocated to them at runtime. In
the traditional static deployment of the MapReduce frame-
works, the data of the HDFS are replicated and distributed
uniformly across the nodes. Then, techniques like delay
scheduling [33] can maximize the number of tasks that achieve
data locality. Fawkes has the ability of changing the allo-
cations, and has a relaxed data locality model, through a
new abstraction of the MapReduce framework that we call
dynamic MR-cluster, which comprises three types of nodes.

The most important requirement for Fawkes is to provide
reliable data management so that when nodes are removed
from an MR-cluster and the number of replicas is small, no
data are lost. However, creating numerous replicas is not de-
sired because of the increased usage of storage space. Thus,
when removing nodes from an active MR-cluster, Fawkes

needs to replicate the data they store. As data-intensive
applications are processing large volumes of data, its repli-
cation makes the resizing of the MR-cluster slow. To enable
fast reconfigurations, the removed nodes of the MR-cluster
should store relatively small amounts of data.

Similar to the static deployment of MapReduce, Fawkes

permanently allocates to an MR-cluster an initial set of core
nodes used for both executing jobs and storing (input and
output) data. During the time an MR-cluster is active,

Fawkes may temporarily increase its capacity by provision-
ing transient or transient-core nodes, which break the tradi-
tional model for data locality. The former are instantiated
without local storage such that the jobs they execute read
and write input/output data from/to core nodes. The latter
are different from the core nodes only by the lack of input
data, thus the jobs they execute also need to transfer input
data from core nodes, but they can use the local storage
to write output data. As a consequence, Fawkes can grow
the size of an MR-cluster fast as no data movement will be
involved at all. Shrinking the size of an MR-cluster by re-
moving transient-core nodes does require saving the output
data stored on them, the amounts of which is usually very
small in comparison to the input data set distributed on the
core nodes. Nevertheless, large fractions of these nodes may
saturate the network (both) or increase the contention on
the physical disks of the core nodes (especially the transient
nodes). When to resize an MR-cluster, and whether then
to use transient or transient-core nodes, is explained in Sec-
tion 4. Different from our dynamic MR-cluster approach,
Amazon Elastic MapReduce [1] does not support data re-
distribution when shrinking the size of the cluster.

4. BALANCED SERVICE LEVELS
In this section, we derive a fairness metric to determine the

imbalance between concurrent MR-clusters (Section 4.1).
Our scheduling system, Fawkes, targets weighted fair allo-
cations, such that different MR-clusters converge to fractions
of the system resources proportional to their weights (Sec-
tion 4.2). Fawkes dynamically updates the weights based
on different metrics exposed by the MR-clusters at runtime.
We design three classes of weighting policies which consider
the input to the MR-clusters (demand), the operation of
the MR-clusters (usage), and the output of the MR-clusters
(runtime performance) (Section 4.3).

4.1 Fairness
Fairness is a major issue in resource provisioning and job

scheduling, and is an optimization target that may conflict
with performance metrics such as response time [21], [33].
Although there exists a large volume of literature that ana-
lyzes the notion of fairness in communication systems [16],
there is no generally agreed upon measure of the fairness
between jobs. The fairness of a queuing system has been
defined either as a measure of the time spent waiting [5], pos-
sibly with respect to job size [31]. A fairness metric which
accounts for both job arrival times and sizes is proposed
in [26]. We adapt the latter for evaluating the fairness of a
provisioning policy.

The key element is the assumption that, at any moment
of time t, the MR-clusters may be entitled to shares of the
total data center capacity C, proportionally to their given
weights. For an MR-cluster i, the difference between the
fraction ci(t) of resources it currently has and the share of re-
sources it should have based on its weight wi(t)
(see Section 4.2.2) at moment t is defined as its temporal
discrimination

di(t) = ci(t)− wi(t). (1)

We define the discrimination of MR-cluster i during a
time interval [t1, t2] by

Di(t1, t2) =

∫ t2

t1

(ci(t)− wi(t))dt. (2)

Setting t1 = di and t2 = ri with di and ri the moments of
the request for the deployment and the removal of the MR-
cluster, respectively, we obtain the overall discrimination of
the MR-cluster.

When all the resources of the datacenter are occupied all
the time, every positive discrimination is balanced with neg-
ative discrimination, and so

∑
iDi(t1, t2) = 0 for any time

interval [t1, t2], which makes the expected mean value of the
discrimination E[D] = 0. The fairness (or balance) of the
system is given by the variance of the discrimination, which
we call the global discrimination factor:

V ar(D) = E[D2]− E[D]2 = E[D2] (3)

We consider the allocations of the MR-clusters to be im-
balanced or unfair, when the global discrimination factor is
larger than a predefined parameter τ .

4.2 The Fawkes Mechanism
We want to provision resources to multiple MR-clusters

in a single datacenter or multicluster system to give MR-
clusters similar levels of service. To achieve this, we want to
assign each MR-cluster a dynamically changing weight that
indicates the share of the resources it is entitled to.

4.2.1 Admission Policy

For each MR-cluster i Fawkes assumes that there is a
minimum number of core nodes mi (and a corresponding
minimum share), which may be set by a system administra-
tor or computed based on the amount of data the cluster has
to process. The system guarantees the minimum share of an
MR-cluster as long as it has running jobs, even if according
to its current weight it is only entitled to a smaller share.

If on the arrival of a new MR-cluster, the sum of its min-
imum share and of the minimum shares of the active MR-
clusters exceeds 1, the new MR-cluster is queued (in FIFO
order). Otherwise, the system gives it its minimum share of
the resources within a time interval T from its arrival, by
shrinking the active MR-clusters which are above their mini-
mum shares proportionally to their current weights (but not
going below their minimum shares). When later an active
MR-cluster finishes its workload and releases the resources
it holds, Fawkes checks to see if the MR-cluster at the head
of the queue fits. After a new MR-cluster receives its min-
imum share, the system monitors its state along with the
states of the other active MR-clusters. The weights of the
active MR-clusters are periodically updated after every in-
terval of length T .

4.2.2 Changing Shares

To ensure that MR-clusters with different workloads expe-
rience similar service levels (e.g, job slowdown), we propose
three complementary mechanisms, employed by Fawkes,
which target either a subset or the entire set of the active
MR-clusters, and operate at different timescales.

The MR-clusters collect periodically samples of different
aspects of system operation, such as demand d(t), resource
utilization r(t), or actual performance p(t). Fawkes mon-
itors a specific metric related to these aspects and sets the

weight (weighting mechanism) wi(t) of MR-cluster i at time
t to the average value of the samples yi collected during the
last time interval T :

wi(t) =
yi(t)∑n

k=1 yk(t)
, (4)

where n is the number of active clusters at time t.
After updating the weights, the temporal discriminations

of the MR-cluster are determined as well. When the MR-
clusters are imbalanced that is, the global discrimination
factor exceeds the predefined threshold τ , Fawkes changes
their shares proportionally to their dynamic weights. To
resize an MR-cluster, Fawkes employs the grow and shrink
mechanisms based on provisioning temporary nodes, which
can be either transient or transient-core (see Section 3).

The shrinking mechanism guarantees that theMR-clusters
with positive discrimination reach their fair shares by releas-
ing the surplus of resources they hold. Based on the type of
nodes which are removed, we distinguish two possible ways
of shrinking an active MR-cluster, instant preemption (IP) or
delayed preemption (DP). The former is suitable for transient
nodes and simply kills the currently running tasks, which are
later re-scheduled by the MR-cluster. The latter applies to
transient-core nodes, which besides removing their running
tasks also require the replication of their local data. Fawkes

removes transient-cores nodes in non-decreasing order of the
amount of data they locally store.

The growing mechanism ensures that MR-clusters with
negative discrimination achieve their fair shares by extend-
ing their current shares. To do so, the MR-cluster is grown
either with transient (TR) or with transient-core (TC) nodes.
The former have good performance only for compute inten-
sive workloads, which generate small amounts of data. The
local storage of the latter type of nodes significantly im-
proves the performance of highly disk intensive workloads
(Section 6). The type of growing employed by Fawkes is a
predefined system parameter.

4.3 Weighting Policies
To balance the allocations of multiple MR-clusters, we in-

vestigate a comprehensive design space, which covers the
input to the system, the state of the system, and the out-
put (runtime performance) of the system. We focus, respec-
tively, on the demand of the workloads submitted to MR-
clusters, on the usage of resources allocated to them, and
on the runtime performance. For each of these, we propose
three exemplary policies.

For all policies we investigate in this work, the weights
of the MR-clusters and the global discrimination are re-
computed after every interval of length T . Only when the
global discrimination exceeds a threshold τ are the alloca-
tions of the MR-clusters actually changed according to the
new weights.

4.3.1 Demand-based Weighting

Demand-based weighting policies take into account the
input to the system (the demand). They establish the fair
shares of the MR-clusters as proportional to the sizes of the
workloads submitted to their queues. As we do not assume
any prior knowledge about the workloads, we identify three
ways of defining the size of a workload at time t, viz. with
respect to the number of waiting jobs, the size of the input
data of the jobs, and the number of waiting tasks:

1. Job Demand (JD). The JD policy sets the demand
of the MR-cluster to the total number of jobs waiting
in the queue.

2. Data Demand (DD). The DD policy sets the weight
of the MR-cluster to the total input data volume of the
jobs waiting in the queue.

3. Task Demand (TD). The TD policy gives an esti-
mate of the MR-cluster demand at finer granularity
than JD, by taking into account the total number of
tasks waiting in the queue.

Although each of these policies is inherently inaccurate,
for example JD because the duration of jobs ranges from
minutes to hours, we expect demand-based weighting poli-
cies to lead to better system performance than no policy.

4.3.2 Usage-based Weighting

Usage-based policies monitor the state of the system; here,
we propose policies that monitor the utilization of the phys-
ical resources currently allocated to MR-clusters. We iden-
tify two main resources to monitor, processor usage and disk
usage, and derive three policies:

1. Processor Usage (PU). The PU policy sets the us-
age at time t to the fraction of utilized processing units
(cores or slots) from the total configured capacity of
the MR-cluster.

2. Disk Usage (DU). The DU policy sets the usage
at time t to the ratio between the total output data
generated by the MR-cluster and its current storage
capacity.

3. Resource Usage (RU). The MU policy combines the
previous two policies by accounting for both compute
and storage resources, processor and disk, as follows:

ui(t) = ψ · uP
i + (1− ψ) · uD

i , (5)

where uP
i and uD

i are the (normalized) resource usages
as computed by the PU and DU policies, respectively,
and the parameter ψ ∈ (0, 1) reflects the relative im-
portance of the two resources.

4.3.3 Performance-based Weighting

The performance-based policies assign the fair shares of
the MR-clusters based on the performance of the system at
runtime, so that MR-clusters with poor performance receive
larger fractions of resources and, thus, improve their per-
formance. We use in this work two performance metrics,
slowdown (low values are ideal) and throughput (high val-
ues are ideal) to calculate the weights of the MR-clusters as
follows:

1. Job Slowdown (JS). The JS policy calculates the
slowdown of each running job at time t as the ratio
between the elapsed time since the job started and the
job execution time on a reference static MR-cluster
(only for this policy, assumed known at the start of
the job in the MR-cluster). We consider the weights
of the MR-clusters to be all equal and positive at time
t = 0. The weight of the MR-cluster i at time t > 0
is set to the average job slowdown of all jobs si which
are waiting in the queue.

2. Job Throughput (JT). The JT policy considers the
performance of MR-cluster i at time t to be the ratio
qi between the number of jobs completed and the total
number of jobs waiting in the queue. The weight is,
then:

pi(t) = a−qi(t) (6)

where a > 1 is a constant (we set a = 2). The share
of an MR-cluster i is entitled to increases inversely
proportional with the measured throughput from C/a
(qi → 1) to C (qi → 0).

3. Task Throughput (TT). The TT policy is similar
to the JT policy. The TT policy uses a throughput
computed as the ratio between the number of tasks
completed and the total number of tasks waiting in
the queue. Eq. (6) still holds, with the ratio qi now
referring to tasks instead of jobs.

We compare our policies with two baselines, No policy
(None) and Equal Shares (EQ). The former makes the
MR-clusters run permanently on their minimum shares. For
the latter, the available resources are always equally divided
between the active MR-clusters.

5. EXPERIMENTAL SETUP
In this section, we present the experimental setup for as-

sessing the performance of several aspects of system opera-
tion (Section 6) and of the full Fawkes mechanism for bal-
ancing resources across MR-clusters (Section 7). The main
differences between our and previous experimental setup are
the use of a comprehensive set of representative MapReduce
applications (including a real, complex workflow), the de-
sign of five workloads (including several unfavorable cases),
and the use of a multicluster testbed (only in one experi-
ment). The total time used for experimentation exceeded 3
real months and over 60,000 hours system time.

5.1 Clusters
We run experiments on the Dutch six-cluster wide-area

computer system DAS-4 [3]. The system has in total roughly
200 dual-quad-core compute nodes with 24 GB memory per
node and 150 TB total storage, connected within the clus-
ters through 1 Gigabit Ethernet (GbE) and 20 Gbps QDR
InfiniBand (IB) networks. The compute nodes from dif-
ferent clusters communicate over dedicated 10 Gbps light
paths provided by SURFnet. The largest cluster in terms of
the number of nodes, situated at the VU Amsterdam, has
roughly 70 nodes divided into 4 racks. The GbE intercon-
nect is based on two 48-ports 1 GbE switches (symmetric,
backplane cabled). The IB network is enabled by six 36-
ports InfiniBand switches, organized in a fat tree, with 4
access switches, 2 at root. This architecture, which is useful
for both data processing and high-performance computing,
currently services about 300 scientists.

In our experiments, we restrict ourselves to well-connected
datacenters and we use a standard setup of Hadoop-1.0.0
over InfiniBand. We configure the HDFS on a virtual disk
device (with RAID0 software) that runs over 2 physical de-
vices with 2 TB storage in total per node. The data are
stored in the HDFS in blocks of 128 MB with a default
replication factor of 3. With 8 cores per node enabled (no
hyperthreading), we configure the TaskTrackers with 6 map
slots and 2 reduce slots.

Job Type Data Input Output
WC compute Random 200 GB 5.5 MB
ST disk Random 200 GB 200 GB
PR compute Random 50 GB 1.5 MB
KM compute,disk Random 70 GB 72 GB
TT compute BitTorrent 100 GB 3.9 MB
AH disk,compute BitTorrent 100 GB 90 KB

Table 1: A summary of the MapReduce applications used
in our experiments.

Real-world experimentation was greatly facilitated by the
DAS-4 system. However, as the system is shared between
many users, we also encountered practical restrictions. We
have completed the set of micro-experiments presented in
Section 6 reserving 20 up to 30 nodes for a week. As we
explore a large design space experimentally, we summarize
for the large experiments in Section 7 only results from single
executions. It took more than 2 months to complete the
macro-experiments we have designed in this paper.

5.2 MapReduce Applications
The choice of MapReduce applications is crucial for a

meaningful experimental evaluation. We use both simple,
synthetic applications from a popular MapReduce bench-
mark, HiBench [20] and a complex, real MapReduce-based
logical workflow, BTWorld [17], [32]. Table 1 gives a high-
level summary of these MapReduce applications, which we
extend with a detailed description in this section.

5.2.1 The HiBench Benchmark

HiBench includes a suite of simple synthetic benchmarks
for data transformation, web search, and machine learning,
along with automatic tools for data generation:

1. Wordcount (WC) counts the number of occurrences
of each word in a given set of input files. The map tasks
simply emit key-value pairs with the partial counts of
each word, and the reduce tasks aggregate these counts
into the final sum. Wordcount is mostly compute in-
tensive and shuffles a small number of bytes from map
to reduce tasks.

2. Sort (ST) is a disk-intensive application in which the
identity function stands as both map and reduce func-
tions and the actual sorting is executed while the data
is shuffled from map to reduce tasks.

3. PageRank (PR) is a link analysis algorithm widely
used in web search engines to calculate the ranks of
the web pages based on the number of reference links.
The MapReduce implementation of the workload con-
sists of three compute-intensive jobs which iteratively
compute the ranking scores of all pages.

4. K-Means (KM) is a data mining clustering algo-
rithm for multi-dimensional numerical samples. The
workload employs twoMapReduce jobs which resemble
the characteristics of Wordcount and Sort. The former
is mostly compute-intensive and iteratively computes
the centroid of each cluster, thus swallowing a large
fraction of the input. The latter is disk-intensive and
reorders the data by assigning each sample to a cluster.

5.2.2 The BTWorld Workflow

BTWorld is a complex, real-world MapReduce-based log-
ical workflow for processing the data collected periodically
over many years from the global-scale peer-to-peer system
BitTorrent [32]. The data set contains per tracker statistics
(scrapes) stored in a multi-column layout which includes the
identifier for the BitTorrent content (hash), the URL of the
BitTorrent tracker (tracker), the time when the status infor-
mation was logged (timestamp), the number of users hav-
ing the full and part of the content (seeders and leechers),
and the number of downloads at the moment of sampling
(downloads).

A MapReduce-based workflow which currently consists of
14 high-level queries expressed in Pig Latin processes data
and leads to understand the evolution over time of the global
BitTorrent system. The queries expressed in this MapRe-
duce workflow cover a broad range of SQL-like operators
(e.g., join, aggregation, filtering, projection), break down
into more than 20 MapReduce jobs, and exhibit three lev-
els of data dependency: inter-query (when the input of the
query needs to be generated by another query), inter-job
(when a query is divided into several MapReduce jobs), and
intra-job (between map and reduce tasks). The workflow
combines both compute and disk intensive jobs with small
(10−6) and high (102) job selectivities, where job selectivity
is defined as the ratio between the output and input sizes.
Thus, this real workflow is very challenging for MapReduce-
based data processing.

In our experiments, we use not only the complete work-
flow, but also two single queries individually:

1. TrackerOverTime (TT) groups the input data set
by tracker, sorts it by timestamp field, and applies dif-
ferent aggregation functions (e.g., count, avg, sum) on
the remaining fields of the records. The query trans-
lates into a single, compute-intensive map-heavy job,
and its output is 5 orders of magnitude smaller than
the data set size.

2. ActiveHashes (AH) determines the number of ac-
tive hashes in the system at every moment of time.
The query is split in two MapReduce jobs, one disk-
intensive with high (1) selectivity, and the other
compute-intensive with very small (10−6) selectivity.
The first job emits all distinct hash and timestamp
pairs to a second job, which further counts the num-
ber of unique hashes at every moment of time.

5.3 MapReduce Workloads
We consider workloads that cover many aspects (e.g., job

types, data sizes, submission patterns) identified in synthetic
benchmarks, production clusters, and BTWorld [20], [7]. To
this end, we design 3 categories of workloads, based on
which we generate 19 different workloads which we use in
our micro- and macro-experiments:

1. Single job - Single size (SS). The SS workloads
contain a number of identical synthetic or real-world
jobs presented in Table 1. We use 6 such workloads
of size one (one job) with fixed input data sizes (see
Table 1) in Section 6. In Sections 7.1 and 7.2 we use SS
workloads with 50 and 100 jobs, respectively, in which
we employ the same submission pattern with all jobs
submitted at once (batch), which is also used in many
synthetic benchmarks.

 0

 250

 500

 750

WC ST

R
u
n
ti
m

e
 [
s
]

Application

1 GB
50 GB

100 GB

(a) HiBench jobs

 0

 0.5

 1

1s 10s 1m 10m 2h

B KB MB GB TB

C
D

F

Runtime
Input

(b) BTWorld jobs

Figure 2: The runtime performance of the jobs in HiBench
and BTWorld on a 10-node static MR-cluster used as refer-
ence for the job slowdowns.

2. Multiple jobs - Single size (MS). The MS work-
loads combine several types of jobs (e.g., WC and ST)
with the following input data sizes: 1 GB (small),
50 GB (medium), and 100 GB (large). We generate
3 workloads of this type based on WC and ST (Sec-
tion 7.3, where we also describe the job arrival process)
which have hundreds of small jobs.

3. Multiple jobs - Multiple sizes (MM). The MM
workloads combine several job types with different in-
put data sizes which are summarized in Figure 2. The
jobs in HiBench (e.g., WC and ST) have the same in-
put sizes as in the MS workloads. BTWorld employs
26 jobs with 13 distinct input sizes. We use 3 instances
of this type of workloads in which small jobs prevail
(Section 7.3, including the arrival process).

Given the high imbalance between the workloads we use,
the discrimination threshold does not have a significant im-
pact, thus we set τ to a small value (10 in our experiments).
In our workloads, most of the jobs take between 1 and 4
minutes to complete (Figure 2) and a couple of them arrive
every minute. Thus, we set the weight update interval T to
a value in the order of a few minutes (1 or 2 minutes in our
experiments).

We design the evaluation of Fawkes in two steps. First,
we design four micro-experiments using SS workloads to as-
sess different aspects of system operation (see Section 6).
Then we design five macro-experiments using instances of
all types of workloads to assess the performance of Fawkes.
Towards this end, we combine highly imbalanced workloads
to create extreme conditions of variable load across distinct
MR-clusters (Section 7).

6. MICRO-EXPERIMENTS
In this section, we present the results of four experiments

that each address a separate aspect of the performance of
single MR-clusters. We investigate the performance of sev-
eral MapReduce applications in single MR-clusters with dif-
ferent configurations with respect to the types of nodes (Sec-
tion 6.1) and whether a single or multiple physical clusters
are used (Section 6.2), and we assess the performance of
growing (Section 6.3) and shrinking (Section 6.4) single MR-
clusters at runtime. We measure the overhead of these con-
figurations relative to a static MR-cluster with only core
nodes. For all jobs in the micro-experiments we use the
input data set sizes defined in Table 1.

0

5

10

15

20

25

WC ST PR KM TT AH BT

O
v
e
rh

e
a
d
 [
%

]

Application

42 Core+TR
Core+TC

(a) Node Types

0

5

10

15

20

25

WC ST PR KM TT AH BT

O
v
e
rh

e
a
d
 [
%

]

Application

Core

(b) Multicluster Deployment

Figure 3: The overhead of running a single MR-job on 20-
node MR-clusters with equal fractions of core and transient,
and of core and transient-core nodes (a), and with resources
evenly co-allocated from two physical clusters (b).

6.1 Node Types
We assess the impact on the runtimes of jobs of using

the three types of MR-cluster nodes presented in our sys-
tem model in Section 3. In our previous work [12], we have
found that the execution time of disk-intensive jobs increases
with the ratio between transient and core nodes, while the
performance of compute-intensive jobs is independent of the
types of nodes.

Using transient-core nodes instead of transient
nodes reduces the overhead for disk-intensive jobs
considerably (Figure 3a). We set up static 20-node MR-
clusters with only core nodes and with equal numbers of core
and transient/transient-core nodes. In the former configura-
tion, the input data set is distributed across all nodes of the
MR-cluster, while in the latter two configurations, the in-
put data set is distributed on 50% of the MR-cluster nodes.
Figure 3a shows that with transient-core nodes instead of
transient nodes, the overhead for disk-intensive jobs relative
to the job execution on only core nodes is much smaller. In
particular, Sort shows a significant improvement, decreasing
the overhead from 40% with transient nodes to 23% with
transient-core nodes, as do KMeans and ActiveHashes.

In our model, dynamically provisioning MR-clusters by
means of a grow-shrink mechanism at runtime comes at the
expense of poor data locality, as the tasks executed on tran-
sient or transient-core nodes need to transfer their input
across the network. Nevertheless, we have shown here, at
least in a cluster with a high-bandwidth network, that the
impact of running non-local tasks can be limited by using
transient-core nodes.

6.2 Multicluster Deployment
We assess the impact on job execution time of deploying

single MR-clusters by co-allocating resources from different
physical clusters in our multicluster system with high-speed
wide-area connections. Previous work [10] has shown that
co-allocation of parallel applications in multicluster systems
is beneficial because of reduced job wait times if the overhead
due to the slower wide-area communication is less than 25%.

 1

 1.25

 1.5

100 110 120 130 140 150

S
p

e
e

d
u

p

Nodes, including added [%]

TC
TR

(a) Wordcount

 1

 1.25

 1.5

100 110 120 130 140 150

S
p

e
e

d
u

p

Nodes, including added [%]

TC
TR

(b) Sort

 1

 1.25

 1.5

100 110 120 130 140 150

S
p

e
e

d
u

p

Nodes, including added [%]

TC
TR

(c) TrackerOverTime

 1

 1.25

 1.5

100 110 120 130 140 150

S
p

e
e

d
u

p

Nodes, including added [%]

TC
TR

(d) PageRank

 1

 1.25

 1.5

100 110 120 130 140 150

S
p

e
e

d
u

p

Nodes, including added [%]

TC
TR

(e) KMeans

 1

 1.25

 1.5

100 110 120 130 140 150

S
p

e
e

d
u

p

Nodes, including added [%]

TC
TR

(f) ActiveHashes

Figure 4: The job speedup relative to the execution time measured on a static 20-node MR-cluster, when growing the
MR-cluster with different fractions of transient (TR) or transient-core (TC) nodes.

 50

 100

0 20 40 60 80

T
im

e
 [

s
]

Fraction of nodes removed [%]

N=20
N=30
N=40

(a) Data replication

 0

 1

 2

 3

0 10 20 30 40 50

S
lo

w
d

o
w

n

Fraction of nodes removed [%]

WC
ST
TT

(b) Single jobs

 0

 1

 2

 3

0 10 20 30 40 50

S
lo

w
d

o
w

n

Fraction of nodes removed [%]

PR
AH
KM

(c) Multiple jobs

Figure 5: The average per-node shrinking time of MR-clusters with N nodes in total (a). The job slowdown relative to the
execution time measured on a static 20-node MR-cluster, when shrinking a 20-node MR-cluster (b),(c).

MapReduce jobs can run with low to moderate
overhead in co-allocated MR-clusters over a high-
speed interconnect (Figure 3b). We set up 20-node
static MR-clusters, with nodes co-allocated evenly from two
physical clusters located at two universities in Amsterdam.
Figure 3b shows that most of the applications exhibit low
overhead when they run on co-allocated MR-clusters. For
the complete BTWorld workflow and Sort, which are mostly
composed by disk-intensive jobs, a co-allocated MR-cluster
increases their execution times by less than 20% relative to
the single physical cluster deployment.

Although we have shown here that MR-clusters may be
provisioned with co-allocated resources, we design the re-
maining experiments within a single physical cluster.

6.3 Growing MR-clusters
We measure the speedup of single jobs when the MR-

cluster grows with different fractions of transient-core or
transient nodes before the job starts. The conveniently par-
allel layout of MapReduce applications [9] with only a single
predetermined synchronization point between the map and
reduce phases, in principle makes them malleable applica-
tions [11] that can benefit from dynamic resource provision-
ing at runtime [8].

The execution time of MapReduce jobs can be im-
proved with a growing mechanism at runtime by re-
laxing the data locality constraints. We set up dynamic
MR-clusters with 20 core nodes which we extend at runtime
with different fractions of transient or transient-core nodes.

Despite the lack of data locality, transient (TR) nodes
show good performance with one exception. For Sort, which
is a highly disk intensive job, large fractions of TR nodes in-
crease the contention on the physical disks of the core nodes
(Figure 4b), thus limiting the speedup. With the relaxed
data locality model of the transient-core (TC) nodes, jobs
may write the data they generate on their local storage. This
explains the linear increase of the applications speedups with
the number of transient-core nodes (Figure 4). The supra-
linear speedup of PageRank is an anomaly due to the non-
deterministic convergence of the iterative MapReduce jobs.

We can improve the performance of a broad range of
MapReduce applications by relaxing the data locality model.
Moreover, even in more extreme cases of no locality, tran-
sient nodes show good performance for applications which
generate small amounts of data.

6.4 Shrinking MR-clusters
In this section, we investigate the overhead of reorganiz-

ing the data within HDFS (Figure 5a) and the job slow-
down when different fractions of transient-core nodes are
removed from the MR-cluster at the moment the job starts
running (Figure 5b, 5c). Although in practice the transient-
core nodes store less data than the core nodes, we assume in
this micro-experiment a worst-case scenario in which both
types of nodes store the same amounts of data.

When resizing an MR-cluster to 50% of its size,
the time overhead of reorganizing the data in HDFS
increases linearly with the number of nodes removed.
We set up MR-clusters with different numbers of core and

Job Types Job Arrivals
Sec. Workload Nodes Weight Apps. c-1 c-2 c-3 c-1 c-2 c-3
7.1 wkld-a TR JD WC 50 x small batch

7.2
wkld-b all TD WC 90 x small 5 x medium 5 x large batch
wkld-c all TD ST 90 x small 5 x medium 5 x large batch

7.3
wkld-d TC all WC,ST 165 x small 188 x all 555 x small average bursty average
wkld-e TC TD WC,ST,BT 359 x all 26 x all 559 x small average sequential average

Table 2: The design space coverage of the macro-experiments presented in Section 7. For each experiment, the table summa-
rizes the provisioning policy (node type and weighting policy) employed by the resource manager, and the workload instances
(application type and job types, sizes, and arrival pattern) submitted to three concurrent MR-clusters.

transient-core nodes. The former represent 20% of the clus-
ter size and each node of the cluster stores 10 GB of data.
There are no running jobs while the MR-clusters are resized.

We find the average per-node removing time is constant
when the MR-cluster is shrunk with up to 50% of its to-
tal size, and increases exponentially for larger fractions of
transient-core nodes removed, as more data are replicated
on fewer nodes (Figure 5a).

When shrinking an MR-cluster at runtime, the job
runtime is determined by the total size of the repli-
cated data. We set up 20-node MR-clusters with 10 core
nodes which we shrink at runtime by different fractions of
transient-core nodes. Figures 5b and 5c show that shrink-
ing MapReduce applications at runtime increases the job
slowdown linearly with the number of transient-core nodes
removed. However, we observe that less compute-intensive
jobs (e.g., ST and WC), which run on 200 GB, have higher
slowdown than more computational intensive jobs (e.g., TT,
PR), which run on less than 100 GB.

As MapReduce is usually employed for data-intensive ap-
plications, it is important to reduce the overhead of data
replication by limiting the frequency of MR-cluster reconfig-
urations and by removing nodes with smaller data volumes.

7. MACRO-EXPERIMENTS
In this section, we evaluate Fawkes’s resource provision-

ing and balancing mechanisms. Towards this end, we design
a comprehensive set of scenarios, summarized in Table 2
w.r.t. to both system operation (e.g., nodes and weights)
and experiment instrumentation (e.g., applications and work-
loads). We show how Fawkes effectively provisions newly
arriving MR-clusters (Section 7.1) and achieves good bal-
ancing when the workloads are imbalanced (Section 7.2).
Moreover, even under extreme imbalance and unfavorable
conditions, we show evidence of up to 25% improvement of
average job slowdown (Section 7.3).

7.1 Arriving MR-clusters
In this section, we show how Fawkes balances idle re-

sources across the active MR-clusters and gracefully shrinks
them to make space for new MR-cluster deployments.

Fawkes effectively uses its grow and shrink mech-
anisms to dynamically provision multiple arriving
MR-clusters. Given 60 resources, Fawkes receives re-
quests for 3 MR-clusters, at intervals of 100 s. All MR-
clusters store 50 GB of data on their minimum shares of 10
core nodes. Fawkes uses transient (TR) nodes and employs
the JD weighting policy (see Section 4.2). The weights are
updated every T = 60 s. We combine 3 instances of the SS
workload (see Section 5.3) into wkld-a (see Table 2).

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

A B C D E

S
h
a
re

 [
%

]

Time [s]

c-1
c-2
c-3

Figure 6: The distribution of the resources across three MR-
clusters (c-1, c-2, c-3) arriving at different moments in time.
(Points A-E explained in Section 7.1.)

In Figure 6, Fawkes initially provisions 10 core nodes
to c-1. While c-1 loads its data, c-2 arrives and receives
10 core nodes from remaining 50 idle resources (A). MR-
cluster c-1 starts running jobs when c-2 is still loading the
data. Thus, all 40 remaining resources are allocated to c-
1 (B). Later MR-cluster c-1 is successively shrunk to make
space for c-3 (C) and to allow the share of c-2 to grow (D).
When both c-1 and c-2 finish their workloads, c-3 grows to
the full capacity of the system (E).

With a static partitioning approach, when the system is
fully utilized, requests for new MR-clusters need to wait
for active MR-clusters to complete their workloads and re-
lease the resources. Dynamic provisioning allows new MR-
clusters to be deployed even when the active MR-clusters
use the entire system capacity.

7.2 Growing and Shrinking MR-clusters
In this section, we show the impact of the type of nodes

(transient or transient-core) and the type of workload on
Fawkes’s balancing mechanism.

Fawkes is able to balance the allocations for disk
intensive workloads with TC growing and DP shrink-
ing, but fails to do so when using TR growing and
IP shrinking (all defined in Section 4.2). We consider
60 resources in total, which Fawkes uses to deploy simul-
taneously 3 concurrent MR-clusters with 10 core nodes to
which we submit workloads wkld-b and wkld-c which dif-
fer by the growing (TC or TR) and the application (WC
or ST) type (see Table 2). The weights are updated every
T = 60 s. In Figure 7, we show the queue sizes of the three
MR-clusters over time for None, EQ and TD policies (all
defined in Section 4.3).

Apparently, neither the queue size nor the makespan of
MR-cluster c-1 with small jobs is affected by growing or
shrinking. Whereas Fawkes balances the medium and large

 1

 10

 100

 0 500 1000 1500 2000

Q
u
e
u
e
 s

iz
e

Time [s]

c-1
c-2
c-3

(a) wkld-b None.

 1

 10

 100

 0 1000 2000 3000 4000

Q
u
e
u
e
 s

iz
e

Time [s]

c-1
c-2
c-3

(b) wkld-c None.

 1

 10

 100

 0 500 1000 1500 2000

Q
u
e
u
e
 s

iz
e

Time [s]

c-1
c-2
c-3

(c) wkld-b TR-EQ.

 1

 10

 100

 0 1000 2000 3000 4000
Q

u
e
u
e
 s

iz
e

Time [s]

c-1
c-2
c-3

(d) wkld-c TC-EQ.

 1

 10

 100

 0 500 1000 1500 2000

Q
u
e
u
e
 s

iz
e

Time [s]

c-1
c-2
c-3

(e) wkld-b TR-TD.

 1

 10

 100

 0 1000 2000 3000 4000

Q
u
e
u
e
 s

iz
e

Time [s]

c-1
c-2
c-3

(f) wkld-c TR-TD.

 1

 10

 100

 0 500 1000 1500 2000

Q
u
e
u
e
 s

iz
e

Time [s]

c-1
c-2
c-3

(g) wkld-b TC-TD.

 1

 10

 100

 0 1000 2000 3000 4000

Q
u
e
u
e
 s

iz
e

Time [s]

c-1
c-2
c-3

(h) wkld-c TC-TD.

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000

C
lu

s
te

r
s
iz

e

Time [s]

c-1
c-2
c-3

(i) wkld-b TC-TD.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000

C
lu

s
te

r
s
iz

e

Time [s]

c-1
c-2
c-3

(j) wkld-c TC-TD.
Figure 7: The queue and cluster sizes of three MR-clusters
running workloads wkld-b and wkld-c (Table 2) for dif-
ferent growing and weighting types.

WC workloads with both TR and TC nodes (MR-clusters c-2
and c-3 in Figures 7e and 7g), the mechanism is not effective
for ST-based workloads with TR nodes (MR-cluster c-3 in
Figure 7f). For the latter scenario, the data volumes shuffled
by the large ST jobs (MR-cluster c-3) increase the execution
overhead as we have shown in Section 6. With TC growing,
Fawkes balances the allocations even for highly disk inten-
sive workloads (MR-clusters c-2 and c-3 in Figure 7h).

Without the dynamic growing and shrinking, the resources
released once an MR-cluster executes its workload remain
idle. Instead, Fawkes allocates the unused capacity to pro-
vision the active MR-clusters according to their weights,
thus reducing the imbalance and the makespan.

7.3 Weighting MR-clusters
In this section, we assess the balancing properties of Fawkes

in two scenarios with three MR-clusters running extremely
imbalanced workloads.

Fawkes balances the allocations to workloads even
in very unfavorable situations. In both scenarios, we
reserve 48 resources to deploy simultaneously three MR-
clusters with 10 core nodes and 200 GB of data each. Fawkes

 0

 2

 4

 6

 8

 10

 12

 0 900 1800 2700 3600

J
o
b
s
 s

u
b
m

it
te

d

Time [s]

c-1 c-2 c-3

(a) wkld-d.

 0

 2

 4

 6

 8

 10

 12

 0 900 1800 2700 3600

J
o
b
s
 s

u
b
m

it
te

d

Time [s]

c-1 c-2 c-3

(b) wkld-e.
Figure 8: Arrival processes (numbers of submissions per 2-
minute intervals) for the two highly imbalanced workloads
wkld-d and wkld-e (see Table 2).

updates the weights of the MR-clusters every T = 120 s and
provisions them with TC nodes. The two scenarios we ana-
lyze use workloads wkld-d and wkld-e (Table 2) with the
arrival processes depicted in Figures 8a and 8b. wkld-d

mixes WC and ST jobs in two MS instances submitted to
c-1 and c-3 and one MM instance submitted to c-2 and has
bursts with large jobs in cluster c-2. wkld-e submits the
complete BTWorld workflow to c-2 as an MM instance and
mixes WC and ST jobs submitted to c-1 and c-3 as MM
and MS instances, respectively, with c-3 permanently hav-
ing a much higher load than c-1 and c-2. Both workloads
are imbalanced, with the ratio between the average number
of tasks executed in the clusters with the highest and lowest
loads being 3 and 8, respectively.

 0

 2

 4

 6

 8

None EQ JD DD TD PU DU RU JS JT TT

A
v
g

.
S

lo
w

d
o

w
n

Policy

Figure 9: The minimum, the maximum, and the median of
the average job slowdowns of three MR-clusters with work-
load wkld-d for all weighting policies.

In Figure 9 we compare in the first scenario the weighting
policies w.r.t. the average job slowdown measured for each
MR-cluster running wkld-d. For the demand-based poli-
cies (JD, DD, TD), the finer the granularity of calculating
the queue sizes (number of tasks with TD) is, the more bal-
anced the workloads of the MR-clusters are (25% improve-
ment of job slowdown compared to None). Fawkes achieves
the best improvement of the average job slowdown of 25%
with the TD policy. Furthermore, we observe that Fawkes

reduces the average job slowdown in the most loaded cluster
(c-2) without significant impact on the performance of the
low demand clusters (c-1 and c-3). From the usage-based
policies (PU, DU, RU), only PU performs reasonably well.
RU (ψ = 0.5) and its derivative DU (ψ = 0) are not effective
because of some small jobs which generate large amounts of
data, yet are completed relatively fast (see ST in Figure 2a).
Counterintuitively, the performance-based policies (JS, JT,
TT) do not outperform the demand-based policies. The
reason is that in wkld-d, small WC and ST jobs, which
have the same runtimes (see Figure 2), prevail. Therefore,
the weights assigned with the performance-based policies are
similar and do not reflect the actual imbalance between the
workloads.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

Q
u

e
u

e
 s

iz
e

Time [s]

c-1
c-2
c-3

(a) wkld-d EQ weighting.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

Q
u

e
u

e
 s

iz
e

Time [s]

load
data

large
jobs

small
jobs

large
jobs

save
data

c-1
c-2
c-3

(b) wkld-d TD weighting.

 0

 10

 20

 30

 40

 0 1000 2000 3000 4000 5000

C
lu

s
te

r
s
iz

e

Time [s]

c-1 c-2 c-3

(c) wkld-d TD weighting.

Figure 10: The performance of TD weighting for wkld-d.

Figures 10 and 11 show the queue and cluster sizes with
the weighting policy that performs best in the first scenario,
TD, and the EQ baseline, for scenario 1 and 2, respectively.
Fawkes makes 16 and 5 reconfigurations (excluding MR-
cluster deployments and deallocations) in the two scenarios,
see Figure 10c and 11c. For wkld-d we notice that MR-
clusters are reconfigured when bursts of large jobs arrive at
c-2 or many small jobs are submitted to c-3. For wkld-

e, the most loaded MR-cluster (c-1) acquires most of the
system resources, thus reducing the overall makespan of the
experiment. In both cases, Fawkes is as effective as it can
be because it moves (almost) all resources that it can move
to the cluster with the highest load (c-2 in scenario 1 and
c-1 in scenario 2), almost always leaving the other clusters
at their minimum shares.

8. RELATED WORK
In this section, we summarize the related work from four

aspects: resource sharing mechanisms for multicluster envi-
ronments, malleability of parallel applications, cluster sizing
problems, and fair-sharing provisioning policies.

Resource Sharing. To simplify cluster programming,
a diverse array of specific frameworks for big data process-
ing has been developed. Having multiple such frameworks
within the same cluster or datacenter infrastructure requires
a high-level resource management layer. Closest to our work

10
-1

10
0

10
1

10
2

10
3

Empty 2000 4000 6000 8000 10000

Q
u

e
u

e
 s

iz
e

Time [s]

c-1
c-2
c-3

(a) wkld-e EQ weighting (logscale).

10
-1

10
0

10
1

10
2

10
3

Empty 2000 4000 6000 8000 10000

Q
u

e
u

e
 s

iz
e

Time [s]

20%

c-1
c-2
c-3

(b) wkld-e TD weighting (logscale).

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

C
lu

s
te

r
s
iz

e

Time [s]

c-1 c-2 c-3

(c) wkld-e TD weighting.

Figure 11: The performance of TD weighting for wkld-e.

are Yarn [29], Mesos [19], and Koala [23], all having the same
design goal of sharing resources between multiple cluster
computing frameworks. Yarn considers the resource requests
received from the applications, the resource availability, and
the internal scheduling policies to dynamically allocate re-
sources to different frameworks. Heavy users or large jobs
are prevented from monopolizing the cluster through system
partitioning which can be employed with the Capacity [4]
and Fair schedulers [33]. Mesos takes a different approach
to resource allocation by delegating the scheduling decisions
to the frameworks, rather than to individual applications.
To reduce the overhead of the distributed scheduling, Mesos
allows frameworks to specify through filters which are the re-
sources they will never accept. Koala is a resource manager
which co-allocates processors, possibly from multiple clus-
ters, to various HPC applications and to isolated MapRe-
duce [12] frameworks. When resources are available, each
framework may receive additional resources from Koala, but
it is their decision to accept or reject them.

Fawkes is fundamentally different from Yarn and Mesos.
While the latter target near-optimal data locality, Fawkes

achieves performance isolation and balanced resource al-
locations by relaxing the strict data locality assumptions
through a fast and reliable grow and shrink mechanism. Fur-
thermore, instead of the request and offer-based approaches,
Fawkes controls the scheduling by observing the jobs sub-

mitted within each framework. Although Fawkes mecha-
nism can be incorporated into Koala, we are currently main-
taining and using it as a standalone research prototype.

Malleable Applications. To improve resource utiliza-
tion, jobs which can be executed on a variable number of
processors have emerged. When the number of processors
assigned to a job can be increased or decreased by the sched-
uler at runtime, the job is called malleable [6], [11]. There
are two ways to enable job malleability in parallel applica-
tions, either by creating a large number of threads equal
to the cluster capacity, coupled with a multiplexing mech-
anism, or by inserting application specific code at synchro-
nization points to repartition the data when the allocation
changes. The poor performance of the former approach and
the additional coding effort of the latter have limited the
popularity of exploiting the job malleability for (tightly cou-
pled) parallel applications. However, certain parallel appli-
cations based on the master-slave programming model, in
which processors are required to execute relatively small and
independent units of computations from a central scheduler
(e.g., MapReduce [9]), can use malleability relatively easy.
Moreover, MapReduce applications can be accelerated by
using Amazon’s spot instances, despite their variable and
unknown lifetime [8].

Novel in this paper, instead of dynamically changing the
allocations of single jobs [6], we exploit malleability of sets of
MapReduce jobs, by growing and shrinking the framework
itself. To do so, we propose a data-oriented mechanism in or-
der to gracefully remove nodes from MapReduce frameworks
at runtime. Towards this goal, we relax the traditional data
locality constraints and we provision the MapReduce frame-
works with temporary nodes that retrieve their input data
for the tasks they run from core nodes.

Cluster Sizing. Cluster sizing problems are notoriously
difficult because of the large parameter space related to the
number of resources, the type of resources, and the job con-
figuration. GreenHadoop [15] is mainly powered by solar en-
ergy source and uses the electrical grid only as backup. The
scheduler minimizes the consumption of electrical energy by
allowing MapReduce jobs to use more resources when green
energy is available and less resources during peaks of electri-
cal energy costs. Elastizer [18] provides an offline automated
technique to solve cluster sizing problems using job pro-
files and simulations to search through the parameter space.
Datacenters may benefit from a dynamic right-sizing mecha-
nism that limits the number of active servers during periods
of low load. Towards this end, optimization-based models
and corresponding online algorithms for capacity provision-
ing in power proportional datacenters have been proposed
and analyzed [22], [30].

Although we do not optimize for energy consumption,
we investigate a similar problem of dynamic right-sizing a
MapReduce cluster, but in a different setting. Fawkes at-
tempts to find the fair share of each MapReduce cluster
relative to the service levels of other concurrent clusters.

Fair Allocations. Fair-sharing algorithms have been
explored in networking and operating systems domains for
decades (see [33] and references therein). Datacenter sched-
ulers like Fair [33] and Quincy [21] provide fairness for a
single resource type by maximizing the minimum allocation
(max-min fairness) received by each user in the system.
To provide fairness in more general settings in which jobs
may have heterogeneous requirements and hard placement

constraints, the max-min fairness model has been extended
to support multiple resource types [13] and to satisfy users
constraints [14]. Pisces [27] is a datacenter scheduler that
isolates the performance of multiple users of a shared key-
value storage and provides max-min fairness. Pisces employs
weighted fair-sharing and combines complementary mecha-
nisms (partition placement, weight allocations, replica se-
lection, and weighted fair queuing) which operate on per-
application requests. A general framework that enables
weighted proportional allocations for user differentiation is
analyzed from a theoretical perspective in [24].

Unlike the former schedulers, Fawkes operates at the
framework level, maintains a global view of the system by
observing the jobs during their lifetime, and assigns to each
framework a dynamically changing weight. In this paper, we
propose three elements to differentiate MapReduce frame-
works at runtime, viz. based on demand, on usage, and on
performance.

9. CONCLUSION
Isolating the performance of multiple time-varyingMapRe-

duce workloads is an attractive yet challenging target for
many organizations with large-scale data processing infras-
tructures. Towards this end, we have presented Fawkes, a
mechanism for balancing the allocations of multiple MapRe-
duce instances such that they experience similar service lev-
els. Fawkes is based on the MR-cluster, a new abstraction
for deploying MapReduce instances on physical resources
which assumes the usual data locality constraints for a set
of core nodes, but relaxes these constraints for nodes out-
side the core. For the fair-sharing problem, Fawkes employs
weighted proportional allocations. The specific provisioning
policies assign dynamic weights to different MR-clusters that
take into account their dynamic load conditions.

In this paper, we take an experimental approach to pro-
visioning multiple MR-clusters in a datacenter or multiclus-
ter system. With our micro-experiments we find that a re-
laxed data locality model has a limited impact on the appli-
cation performance. Furthermore, our macro-experiments
show that Fawkes delivers good performance and balanced
resource allocations, even in unfavorable conditions of highly
imbalanced workloads.

10. ACKNOWLEDGMENT
We thank Kees Verstoep of VU Amsterdam for his help

with configuring and fixing software issues in the DAS-4 sys-
tem. This research was supported by the Dutch national
program COMMIT and STW/NWO Veni grant 11881.

11. REFERENCES

[1] Amazon Elastic MapReduce.
http://aws.amazon.com/elasticmapreduce.

[2] Apache Hadoop. http://hadoop.apache.org.

[3] The Distributed ASCI Supercomputer 4.
http://www.cs.vu.nl/das4.

[4] Hadoop Capacity Scheduler.
http://hadoop.apache.org/docs/r2.3.0/hadoop-
yarn/hadoop-yarn-site/CapacityScheduler.html.

[5] B. Avi-Itzhak and H. Levy. On Measuring Fairness in
Queues. Advances in Applied Probability, 36(3), 2004.

[6] J. Buisson, O. Sonmez, H. Mohamed, W. Lammers,
and D. Epema. Scheduling Malleable Applications in
Multicluster Systems. IEEE Cluster, 2007.

[7] Y. Chen, S. Alspaugh, and R. Katz. Interactive
Analytical Processing in Big Data Systems: A
Cross-Industry Study of MapReduce Workloads.
VLDB, 2012.

[8] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder,
A. Tantawi, and C. Krintz. See Spot Run: Using Spot
Instances for MapReduce Workflows. HotCloud, 2010.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified
Data Processing on Large Clusters. Comm. of the
ACM, 51(1), 2008.

[10] C. Ernemann, V. Hamscher, U. Schwiegelshohn,
R. Yahyapour, and A. Streit. On Advantages of Grid
Computing for Parallel Job Scheduling. CCGrid, 2002.

[11] D. Feitelson, L. Rudolph, U. Schwiegelshohn,
K. Sevcik, and P. Wong. Theory and Practice in
Parallel Job Scheduling. JSSPP, 1997.

[12] B. Ghit, N. Yigitbasi, and D. Epema. Resource
Management for Dynamic MapReduce Clusters in
Multicluster Systems. MTAGS, 2012.

[13] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant Resource
Fairness: Fair Allocation of Multiple Resource Types.
NSDI, 2011.

[14] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.
Choosy: Max-Min Fair Sharing for Datacenter Jobs
with Constraints. Eurosys, 2013.

[15] Í. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres,
and R. Bianchini. GreenHadoop: Leveraging Green
Energy in Data-Processing Frameworks. EuroSys,
2012.

[16] A. G. Greenberg and N. Madras. How Fair Is Fair
Queuing. JACM, 39(3), 1992.

[17] T. Hegeman, B. Ghit, M. Capota, J. Hidders,
D. Epema, and A. Iosup. The BTWorld Use Case for
Big Data Analytics: Description, MapReduce Logical
Workflow, and Empirical Evaluation. IEEE Big Data,
2013.

[18] H. Herodotou, F. Dong, and S. Babu. No One
(Cluster) Size Fits All: Automatic Cluster Sizing for
Data-Intensive Analytics. SOCC, 2011.

[19] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos:
A Platform for Fine-grained Resource Sharing in the
Data Center. NSDI, 2011.

[20] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.
The Hibench Benchmark Suite: Characterization of
the MapReduce-based Data Analysis. ICDEW, 2010.

[21] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair Scheduling
for Distributed Computing Clusters. SIGOPS, 2009.

[22] M. Lin, A. Wierman, L. Andrew, and E. Thereska.
Dynamic Right-Sizing for Power-Proportional Data
Centers. INFOCOM, 2011.

[23] H. Mohamed and D. Epema. Koala: A Co-allocating
Grid Scheduler. Concurrency and Computation:
Practice and Experience, 20(16), 2008.

[24] T. Nguyen and M. Vojnovic. Weighted Proportional
Allocation. SIGMETRICS, 2011.

[25] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-So-Foreign Language
for Data Processing. SIGMOD, 2008.

[26] D. Raz, H. Levy, and B. Avi-Itzhak. A
Resource-Allocation Queueing Fairness Measure.
SIGMETRICS/PERFORMANCE, 2004.

[27] D. Shue, M. J. Freedman, and A. Shaikh. Performance
Isolation and Fairness for Multi-Tenant Cloud
Storage. OSDI, 2012.

[28] J. Tan, X. Meng, and L. Zhang. Delay Tails in
MapReduce Scheduling. SIGMETRICS, 2012.

[29] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, et al. Apache Hadoop Yarn: Yet
Another Resource Negotiator. SOCC, 2013.

[30] K. Wang, M. Lin, F. Ciucu, A. Wierman, and C. Lin.
Characterizing the Impact of the Workload on the
Value of Dynamic Resizing in Data Centers.
SIGMETRICS, 2012.

[31] A. Wierman and M. Harchol-Balter. Classifying
Scheduling Policies with Respect to Unfairness in an
M/GI/1. SIGMETRICS, 2003.

[32] M. Wojciechowski, M. Capotă, J. Pouwelse, and
A. Iosup. BTWorld: Towards Observing the Global
BitTorrent File-Sharing Network. HPDC, 2010.

[33] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay Scheduling: A Simple
Technique for Achieving Locality and Fairness in
Cluster Scheduling. EuroSys, 2010.

