
Vrije Universiteit Amsterdam

Bachelor Thesis

A performance analysis of TC for high
speed, scalable data center networks

Author: Yigit Abaci 2759981

1st supervisor: Daniele Bonetta

daily supervisor: Krijn Doekemeijer

2nd reader: Tiziano De Matteis

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 7, 2025

ii

Abstract

Network performance has become the major concern for data centers, while

keeping up with the increasing network needs. Performance Quality of Service

(QoS) becomes critical as traffic and infrastructure expand, seeking the need

to use tools more efficiently in multi-tenant scenarios. TC, the Traffic Con-

trol utility in Linux, provides a way to control network flows, with the use of

different qdiscs, performing tasks such as scheduling and providing QoS. How-

ever, TC stands with an outdated design and a lack of understanding of its

capabilities, with potential limitations. The thesis evaluates the capabilities of

TC for performance, scalability and QoS in modern data centers, with a setup

consisting of a multi-tenant environment using an interface capable of han-

dling 100Gbps, and performance analysis tools – netperf and iperf3. We firstly

conduct a survey and establish our QoS properties as prioritization, fairness

and work-conservation. We evaluate the overhead of qdiscs in both increasing

packet lengths and increasing clients, finding non-negligible overhead for HTB.

Then we find that HTB, in our setup efficiently ensures prioritization by keep-

ing prioritized flows with lower latency. Lastly, we highlight a consistent yield

in fairness across all qdiscs in our setup. By investigating TC and the qdiscs,

the thesis supports the development of optimized and more efficient data center

infrastructures and systems, providing a better understanding of TC and QoS

for modern day adaptation. The benchmarking framework used in this thesis

is publicly available via GitHub.

(https://github.com/yyyeeettt3/TC-Benchmark)

iv

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Questions . 3

1.3 Research Methodology . 4

1.4 Thesis Contributions . 4

1.4.1 Conceptual . 4

1.4.2 Artifact . 5

1.4.3 Experimental . 5

1.5 Plagiarism Declaration . 5

1.6 Thesis Structure . 5

2 Background 7

2.1 Networking in Data Centers . 7

2.2 TC in the Linux Networking Stack . 7

2.3 The qdiscs in TC . 10

3 Survey on Network QoS and TC Usage 13

3.1 Method for the Survey . 13

3.2 Defining Network Performance QoS . 14

3.3 Understanding the Use of TC . 19

3.4 Summary . 22

4 Experimental Setup 23

4.1 Hardware . 23

4.2 System Configuration . 24

4.3 Software . 24

4.4 Performance Metrics . 25

4.5 Qdiscs . 25

i

CONTENTS

5 Measuring TC Performance Overhead 27

5.1 Method to Evaluate Performance Overhead 27

5.2 Bandwidth and CPU Overhead . 28

5.3 Latency Overhead . 31

5.4 Summary and Key Findings . 33

6 Measuring QoS Properties 35

6.1 Method for Measuring QoS Properties . 35

6.2 Tenant Prioritization . 36

6.3 Fairness . 37

6.4 Summary and Key Findings . 39

7 Reporting Negative Results and Limitations 41

7.1 Negative Results . 41

7.2 Limitations . 41

8 Related Work 43

9 Conclusion 45

9.1 Answering Research Questions . 45

9.2 Future Work . 48

References 49

A Reproducibility 57

A.1 Abstract . 57

A.2 Artifact check-list (meta-information) . 57

A.3 Description . 57

A.3.1 How to access . 57

A.3.2 Hardware dependencies . 58

A.3.3 Software dependencies . 58

A.4 Experiment workflow and Customization . 58

A.5 Evaluation and expected results . 58

ii

1

Introduction

Research in computer systems and networks is crucial to sustain the digital economy,

which acts as a foundation of the modern day society. For instance, the digital economy ac-

counts for a 60% of the GDP in the Netherlands (1), while enabling over 3.3 million jobs.

As the society and the economy becomes increasingly dependent on the digital founda-

tion, infrastructures must address challenges which concern manageability, responsibility,

sustainability and usability (1). In the context, performance plays a crucial role for user

experience, concerning a wide range of applications such as real-time communication (2, 3),

entertainment (4), cloud computing and applications running in data centers. The deploy-

ment of large-scale data centers have been increasing significantly over the past decade

(5), being used by service providers in the industry such as Amazon (6), IBM (7) and

Google (8). Infrastructures need to keep up with the increasing number of users and data

transmitted over the network, which are expected to handle zettabytes of data in the near

future (9).

Data centers are the backbone behind cloud computing, thus their infrastructures need

to adapt to the modern day increasing workload needs. These bottlenecks arrive both

from the hardware that supports the infrastructures or the software-level mechanisms that

assist in controlling the network traffic – such as packet schedulers. In high-throughput

environments, controlling the flow becomes essential for network quality. The most dom-

inant choice for data centers when it comes to networking protocols is TCP (10). The

protocol uses acknowledgments, sequencing, error-checking and retransmissions, which en-

sure reliable and in-order transmission over the network. However, TCP is not designed

to address Quality of Service (QoS) across the network. To fill in this gap, many tools are

used to control the flow, which operate on multiple layers of the network stack, shaping

the way the packets are transmitted over the network.

1

1. INTRODUCTION

Being the dominant choice for data centers (11), Linux offers various utilities that can

be used to control data flow. TC is one of the most prominent utilities that is used

to manage packets at software level, providing control of the network flow, or emulating

realistic networks. The tool uses queuing disciplines which are used to achieve control over

the packets, including bandwidth limiting, prioritization, delaying and shaping, providing

a full control over the network flow. Being introduced 1 around the early 2000s (12),

TC’s design capabilities were designed for the available network needs of its era. As

data center infrastructures grow to support more and faster data transfer – utilizing NICs

capable of providing more than 100Gbps transfer, while also reaching to more tenants –,

understanding and evaluating TC plays a critical role in ensuring performance, scalability

and Quality of Service (QoS).

We start our research by conducting a survey on Quality of Service (QoS), from which

we introduce our definitions as a collection of techniques to ensure certain network level

expectations and optimizations. We discover that three dominant properties are used on

the current state-of-the-art use cases; prioritization, fairness and work-conservation. We

then, benchmark the capabilities of TC, in modern day applications with high throughput

demands (NICs with capabilities up to handling 100 Gbps (13)), via state-of-the-practice

tools such as iperf3 (14) and netperf (15), where QoS – as well as being defined – needs

to be ensured. Within our results we highlight the importance of packet lengths, number

of clients, and qdisc choices, and how they impact overhead and two of the previously

described QoS properties (prioritization and fairness). Further on, we find non-negligible

overhead in terms of CPU for HTB, we observe latency reduction on prioritized classes

when using HTB with a prioritization scheme, and lastly observe a consistent yield in

fairness for all of the qdiscs using our setup.

Lastly, by conducting in-depth benchmarking of TC, the thesis aims to contribute to the

constant development and improvement of understanding and using control flow mecha-

nisms in modern day, high-speed and scalable, Linux based data-centers. Understanding

and evaluating the concept paves way for further optimization of tools and resources to

support sustainable and cost-effective data-centers.

1.1 Problem Statement

The constant development and innovation in the industry has introduced many tools

and concepts, changing and shaping the understanding of many measurements, including
1with the iproute2 package

2

1.2 Research Questions

QoS, while leaving a gap on a modern-day QoS understanding. Thus we identify a lack

of knowledge on a concrete definition of QoS for networks and how it relates

to modern day, high-speed and scalable data center networks (P1).

While TC can provide reliable control over the network flow, it requires precise configu-

rations which are poorly documented in the documentations for modern day applications.

Thus we identify a lack of knowledge understanding TC configurations and how

they map to application demands in modern day, high-speed networks (P2).

The traffic management utility, TC, was introduced to the Linux kernel when the require-

ments were significantly lower than those required by today’s high-speed applications.

Thus we identify a lack of knowledge on the scalability and the overhead of TC

for modern use (P3).

The scalability of such a tool becomes unimportant to control data center networks if

it cannot provide the QoS expectations, which are critical for data centers. Thus we

identify a lack of knowledge on how and to what extent TC can achieve QoS

needs (P4).

1.2 Research Questions

Main RQ: How does TC control performance QoS in the network and to what extent

does it provide performance, scalability and QoS when applied to high speed and scalable

networks?

RQ1: How do we define and evaluate performance QoS in high-speed networks and how

does the state-of-the-art use TC to provide these performance QoS properties?

This question aims to establish an initial understanding and establish the metrics used

to help answer the upcoming research questions. Using RQ1, we are able to define per-

formance QoS in the context of data centers, understand how TC is currently used in the

industry and academic research. This way we address P1 and P2 directly.

3

1. INTRODUCTION

RQ2: What is the performance overhead in bandwidth, CPU and latency of using TC?

The first benchmarking question is aimed to establish whether TC can saturate modern

fabrics, in a representative environment of a modern high-speed and scalable datacenter,

where we aim to demonstrate scalability and cost tradeoffs of TC.

RQ3: How and to what extent does TC ensure the previously determined performance QoS

properties in multi-tenant setups?

The aim of this question is to apply the discoveries of TC knobs and our QoS definitions

from RQ1 to benchmark a network flow between multiple tenants. This way, we simulate

a standardized TCP connection in a datacenter-like environment, which helps us assess

the QoS properties.

1.3 Research Methodology

The benchmarking will be done using two virtual machines (VMs) operating with a

passthrough NIC. We will use the Mellanox MT27800 ConnectX-5 1 over SR-IOV 2

, providing an environment similar to a modern day high-speed data center. In order to

analyze performance of the network flow, we use iperf and netperf across all the bench-

marks. Lastly, we use commonly used techniques in previous research (to be defined under

RQ1) to measure work-conservation, prioritization and fair-sharing.

1.4 Thesis Contributions

Throughout the thesis, we aim to provide various contributions to the industry and the

constant development in networking.

1.4.1 Conceptual

The research provides, through a survey, a definition of QoS in modern day, high-speed

and scalable data center networks. We are also to understand the purpose of TC and
1Mellanox MT27800 ConnectX-5: a high performance network interface card (NIC), supporting up to

100 Gbps per port, designed for datacenter-like infrastructures. The interface supports virtualization
2SR-IOV: Single Root I/O Virtualization is a standardized method to split a NIC over multiple VMs,

while allowing optimized performance and minimized overhead

4

1.5 Plagiarism Declaration

its knobs within the same context. To continue, we are to benchmark the performance,

scalability and QoS of TC in a modern day data-center like environments, paving way for

future research and development within the field

1.4.2 Artifact

We are to contribute with an open-source benchmarking tool, which is to be used to

measure TC performance, scalability and QoS. The framework provides a standardized

way to evaluate qdisc performance, aiding future investigation on TC and qdiscs.

1.4.3 Experimental

We are to provide experimental results regarding the use of TC under varying situations

that replicate real world data center networks, providing conclusions and insights, and a

reproducible baseline for aiding future work.

1.5 Plagiarism Declaration

The content of the thesis is the work of the author. The thesis does not contain any

work that has been copied from another source (person, Internet, or LLM).

1.6 Thesis Structure

Firstly, we introduce the required background knowledge and tools regarding QoS and

TC. Then we find out how TC is currently being used, or how it can be used, including the

specific parameters/configurations/knobs. Further on, we identify network QoS properties,

and map them to the said TC specifications, answering RQ1, and setting a layout for the

benchmarking sections. Then we design and implement a collection of tools that can be

used to benchmark the chosen metrics and the related TC configurations. Lastly, the

implemented benchmarking tools are used to run the benchmarks to address RQ2 and

RQ3, where the results will be evaluated, along with recommendations regarding the

scalability and application of TC.

5

1. INTRODUCTION

6

2

Background

2.1 Networking in Data Centers

Networking in data centers plays a crucial role in modern-day data centers, linking

infrastructures, services, and consumers. With the increasing number of applications that

rely on data centers, networking has become the backbone of performance and quality,

providing opportunities for innovation and improvement.

Modern day data centers are designed with the goal of supporting high throughput

scenarios while not compromising low-latency network traffic between multiple tenants. To

ensure the expected networking needs of the service, many tools have been implemented

over the past years. The design of the infrastructures has shifted to programmable data

planes, allowing packet processing to be implemented directly in the network. For example,

Sailfish (16) addresses limitations of traditional implementations by using programmable

network switches. Compared to traditional gateways, the algorithm reduces latency by

95% and a significant increase throughput. Sailfish has been in use since its deployment

by Alibaba Cloud (17), handling modern-day traffic loads with ease. Similarly, vPIFO (18)

is introduced as an architecture for scheduling in modern-day networks. By allowing the

traditionally used physical PIFO (Push In First Out) queues to be virtualized, vPIFO

achieves a high-speed hierarchical, tree-like scheduling architecture.

2.2 TC in the Linux Networking Stack

In Linux, networking involves different layers managed by the networking subsystem in

the kernel. Starting from the lowest layer, the physical network devices use the network

drivers to communicate with the kernel. On the other hand, higher levels involve protocols

7

2. BACKGROUND

Figure 2.1: Linux networking layers. The figure only includes the relevant layers, the actual
networking stack contains additional layers

which provide data transmission, such as the Internet Protocol (IP) and the Transmission

Control Protocol (TCP). TC, within the layers, stands between the network drivers and

the networking layers, where it controls the outgoing or incoming traffic.

TC (Traffic Control) in Linux is a tool that has been introduced as part of iproute2 1 and

is used to control and shape packets on the network level. TC uses various mechanisms

shaped around queuing disciples (qdiscs), which are used to control and shape the flow.

Qdiscs are divided into two categories, classful and classless. Classless qdiscs do not

support the use classes and filters. The most commonly used example is the FIFO (First

In First Out). On the other hand, classes can be used to implement pipelines with filters

– such as the u32 – which classify the packet based on the metadata.

TC is a complex tool designed to perform many tasks with many knobs, making it

crucial to understand how they function before experimenting with them. We summarize

its parameters and their use cases as follows:

• Queuing Disciplines are added using qdisc. Qdiscs can be extended with child

qdiscs which provide extra functionality. As an example, the default Linux configu-

ration utilizes a combination of mq and fq_codel, where mq controls the traffic going

through different NICs, and fq_codel controls the packets beforehand.

• Classes are defined (only within classful qdiscs) by using class. This allows the

separation of traffic, where each class can have its own shaping and scheduling rules.

• Controlling the Bandwidth can be done by using rules such as (but not limited

to) rate or ceil to limit bandwidth or latency to set the maximum allowed latency.

• Policing limits rate and drops packets that exceed the limit. It is implemented by

police within the TC parameters.
1iproute2 is a collection of tools to monitor and modify networking in the Linux kernel

8

2.2 TC in the Linux Networking Stack

• Network Emulation can be implemented – using netem – with tools such as delay,

loss to simulate packet loss, duplicate to introduce duplicate packets, corrupt for

packet corruption and reorder.

• Classification can be done using filter with different filtering mechanisms such as

u32 for header-based classification, fw for firewall mark-based classification and bpf

to classify packets with Berkeley Packet Filters.

For clarification, we give an example of classful queuing, using qdiscs, classes and filters.

For this purpose we use HTB, where we create a hierarchical structure with a prioritization

scheme:

1. Adding the qdisc, where unmatched traffic goes to the class 1:20, set by default

tc qdisc add dev NIC root handle 1: htb default 20

2. Creating a root class with a total bandwidth set by the rate

tc class add dev NIC parent 1: classid 1:1 htb rate RATE

3. Creating (two) child classes with different priorities – set by prio, where the

lowest number gets the highest priority – and guaranteed bandwidth – set by rate

and ceil.

tc class add dev NIC parent 1:1 classid 1:10 htb rate RATE ceil RATE prio 1

tc class add dev NIC parent 1:1 classid 1:20 htb rate RATE ceil RATE prio 2

In this example we set the class 1:10 to have higher priority than the class 1:20.

4. Assigning a qdisc for each class, where we use a pfifo (for simplicity)

tc qdisc add dev NIC parent 1:10 handle 10: pfifo

tc qdisc add dev NIC parent 1:20 handle 20: pfifo

5. Filtering flows into classes based on port number, using u32.

tc filter add dev NIC protocol ip parent 1:0 prio 1 u32 match ip dport PORT flowid
1:10

tc filter add dev NIC protocol ip parent 1:0 prio 1 u32 match ip dport PORT flowid
1:20

9

2. BACKGROUND

2.3 The qdiscs in TC

TC includes various qdiscs which are implemented to be used in various different sce-

narios. We summarize the intended use cases and their characteristics as the following:

• FIFO-based qdiscs. Pfifo is a simple FIFO queue with a fixed packet limit, making

it simple and effective. Similarly, bpfifo can be utilized to control limits in terms

of byte instead of packet count, enabling byte-level enforcement. Lastly, pfifo_fast

implements 3-band prioritization depending on the TOS 1 bits in the IP header of

packets. All of the FIFO based qdiscs are work-conserving by nature as they transmit

packets constantly, while not offering any prioritization or fairness.

• fq stands for fair queuing and is the default optimized choice for the kernel. It can

also be extended with the CoDel (Controlled Delay) algorithm, which drops packets

– in contention scenarios – to reduce latency, using fq_codel. These two qdiscs are

designed to provide per-flow fairness and work-conservation, while not having any

prioritization effect.

• TBF (Token Bucket Filter) is a simple shaping algorithm which is used to enforce

bandwidth needs, where packets follow a token based algorithm. This qdisc supports

no QoS properties.

• SFQ (Stochastic Fair Queuing) is designed to provide fairness using its random per-

flow hashing and its underlying queues, while being lightweight in terms of system

utilization. SFQ provides a hash-based algorithm to provide fairness, and addition-

ally work-conservation, while having no priority scheme available.

• DRR (Deficit Round Robin) is designed to provide fair distribution of bandwidth

while maintaining simple characteristics and lower load on the system. The qdisc

provides per-flow fair sharing (as of the round robin algorithm), and also yields

work-conserving behavior with no prioritization instrument.

• QFQ (Quick Fair Queuing) is a low overhead scheduler with fairness guarantees

which is designed to maintain its properties when scaled. The flow-aware algorithm

provides strict fairness and work-conservation, while not providing prioritization.
1Type of Service (TOS) or Differentiated Services (DS) is an 8-bit field within the IPv4 and IPv6

header, which indicates how a packet should be treated in terms of performance. Using the field, packets
can be indicated to minimize delay, maximize throughput, etc.

10

2.3 The qdiscs in TC

• HTB (Hierarchical Token Bucket) is a more complex qdisc when compared to the

rest, allowing hierarchical bandwidth shaping and classification, which is aimed to

enable precise control and provide QoS properties. These characteristics make it

suitable for many situations including scalable networking such as datacenter. The

qdisc provides all of the QoS properties; due to its bandwidth borrowing algorithm it

assists in being work-conservative, due to its bandwidth sharing algorithm it provides

fairness and lastly, it supports strict prioritization for classes.

• MQ (Multi Queue) is used to control traffic into hardware queues when multiple

NICs are presents. The hardware qdisc is designed to be work-conservative but does

not contain any algorithm that aims to provide prioritization and fairness.

• CBQ (class-Based Queuing) is a classful scheduler, designed to divide the band-

width among classes in a hierarchical scheme. The qdisc offers a complex imple-

mentation, which is designed to offer prioritization, but offers limited fairness and

work-conservation. We discard this qdisc due it being complex and obsolete for

modern-day use.

11

2. BACKGROUND

12

3

Survey on Network QoS and TC
Usage

In this section we conduct two surveys to answer RQ1, How do we define perfor-

mance QoS in high-speed networks and how does the state-of-the-art use TC

to provide these performance QoS properties? . The first survey in section 4.2, de-

fines network performance QoS within the context of this thesis, throughout its use within

previous research in the networking field. This way we address the first part, How do we

define performance QoS in high-speed networks?, of the RQ1. On the other hand,

the second survey in section 4.3 aims to understand how TC has been used throughout

previous research and real-world use cases. This way, we cover the second part, How does

the state-of-the-art use TC to provide these performance QoS properties?, of

RQ1, using the definitions from section 4.2.

3.1 Method for the Survey

Before evaluating a large number of papers that are used to answer the research questions,

it is important to select and filter the papers using a structured approach and a relevant

criteria. For this reason, we use a combination of a systematic search – searching specific

databases with specific terms and keywords – and the Snowball method – acquiring papers

recursively starting from a selection of papers.

The used key-words for the search can be listed as the following: Quality of Service, QoS,

Data centers, Datacenter networks, Cloud computing, Traffic Control, Fairness, Work-

conservation, Prioritization.

13

3. SURVEY ON NETWORK QOS AND TC USAGE

Finally, the inclusion and exclusion criteria stands as the following: (1) For section 4.2,

the scope of the papers are to concern only networking in data centers, whereas in section

4.1 we opt for a wider approach, including networking out of the scope of data centers.

(2) Storage related, or non networking related works are to be excluded. (3) While no

exclusion criteria is to be made for the year of the publications, papers standing behind

the current state-of-the-art infrastructure speeds and sizes are to be excluded.

3.2 Defining Network Performance QoS

The definition of QoS varies depending on the context of its application and how the

analyzed system is approached (19). For its use in this thesis, a solid description and

explanation should be established, by reviewing its previous definitions in the context of

data centers and networking.

Early QoS models such as the Integrated Services Model defined in RFC (20) have set

foundational definitions. The model defines QoS as the ability to ensure performance levels

in critical real-time applications with various types of traffic, dividing the core concept into

three components; resource reservation, admission control and packet scheduling. These

mechanisms, not only provided an initial model for QoS, but have also contributed in

preparing a foundation for more scalable approaches. An example of this can be seen in

another architecture included in the RFC, the Differentiated Services Model (21). The

specification aims to provide a coarse-grained approach to the QoS problem, solving the

scalability issues of the previous work.

In addition to models, QoS is also used as a way to define metrics that a service or

an application can be measured under. A common way to approach QoS is to define it

as the pure network performance which concerns bandwidth, delay, packet-loss and jitter

(22, 23). The approach stands as sufficient for most systems, where the output is of the

highest priority.

However, with the increasing size of the infrastructures (3), additional considerations

such as the hardware performance metrics – such as CPU overhead – are also taken into

consideration. Hardware metrics are crucial in order to optimize performance, especially

in shared resource infrastructures such as data centers using virtualized machines.

Lastly, as an indirect metric, the cost of the operation in terms of energy and/or capital

has been an increasing concern for many data-centers (24). Energy consumption has been

the main concern over the past years, with many research and investment towards reducing

14

3.2 Defining Network Performance QoS

the consumption and the environmental effects (25, 26, 27, 28). When it comes to capital,

many companies have been trying to find ways on reducing costs.

For the scope of this thesis, we define performance QoS as a collection of the following

properties:

• Work conservation is defined as being able to keep the resources – as an example,

the entire bandwidth – occupied. The property is not a quantifiable property due to

many reasons. However, many approaches exists for evaluating work-conservation.

As an example, Popa et al. in (29) comment on the trade-off between bandwidth

and link utilization, while evaluation their data center focused bandwidth allocation

framework – ElasticSwitch. While they do not aim to quantify work-conservation in

their work, they relate per-tenant utilization to work-conservation, and investigate

the per-tenant idle capacity. However, such measurements, while they fit to their wok,

may not be suitable in scenarios with properties such as rapid changes in traffic, due to

the measurement being an average of the utilization – where high average utilization

does not always make a system work-conservative.

Similarly, Hu et al. in (30) present a work-conserving bandwidth allocation algorithm,

Trinity, which guarantees each tenant a minimum bandwidth while redistributing idle

bandwidth to active tenants. To provide experiments that support their claim for the

work-conserving algorithm, they conduct experiments using throughput as a metric.

Resulting in a higher (per-tenant and aggregate) throughput compared to other algo-

rithms, thus supporting their design, standing by the claim that higher throughput

indicates using the capacity more effectively, thus supporting work-conservation.

On the other hand, Liu et al. in (31) present a bandwidth guaranteeing and redis-

tributing algorithm similar to the previous papers. However, during their evaluation,

they include queue occupancy – the data waiting to be transmitted – in their measure-

ments in addition utilization and throughput. The queue occupancy metric measures

the traffic that uses the bandwidth, thus detecting under or over utilization, which

identifies work-conserving behavior.

Another approach to different metrics used can be observed in Homa (32), where

Montazeri et al. present a transport protocol for datacenter networks. While the

paper does not contain nor comment work-conservation as is, they use the previous

metrics (utilization and throughput) , from which they suggest an effective approach

to resource usage, which aligns with the definition of work-conservation.

15

3. SURVEY ON NETWORK QOS AND TC USAGE

In order to have a metric that is both quantitative and suitable for the scope of this

thesis, we approach the property as the following: (1) The property is to be viewed

as a qualitative property, where we can define a system as work-conservative or not.

(2) We introduce a sub-property, utilization which concerns both the per-application

bandwidth and the per-application throughput.

This way, we are to discuss a property of a system, supporting with a quantitative

metric that aligns with the scope of the experimentation.

Lastly, Alizadeh et al. in (33) include metrics such as queue occupancy and link

utilization for evaluation. While they do not utilize work-conservation as a term ei-

ther, their approach avoids using the entire bandwidth, making the design non-work-

conservative – to improve latency – pointing out the trade-offs between utilization

and latency. On the other hand, the paper indirectly supports the idea of approaching

work-conservation as a qualitative resource. For instance, the intentional headroom

introduced by Alizadeh et al. in their design improves latency but lowers the utiliza-

tion. Thus if we rely on utilization as the only metric, conclusions that do not fit

into the scope of the system could be derived regarding the work-conservation of the

system. This way, approaching utilization as a supporting metric aids in providing

a qualitative description of the system.

• Fairness (or Fair-sharing) is defined as the act of equally sharing the resources among

different tenants. While the property initially does not appear to be quantifiable,

many ways to approach the property exists. Shi et al. in (34), discuss the meaning

and interpretation of fairness (or fair-sharing) and quantify it using various measures.

One of the quantitative indexes that is presented is the Jain’s Fairness Index, firstly

introduced by Jain et al. in (35). The index provides 4 critical properties; scalability,

boundedness, continuity and metric independence. The index can be represented as

the following equation:

f(X) =

[
n∑

i=1
xi

]2
n∑

i=1
x2i

, (1)

Where X represents a set of resource allocations, and x represents a single allocation

within that set.1

1Allocation in the context can refer to the allocation of resources such as the bandwidth

16

3.2 Defining Network Performance QoS

However, as a downside of the provided measurement, Shi et al. argue that the

measurement is for the entire system and cannot identify unfairly-treated individual

parts of the system. Other metrics such as the entropy are also included in the

discussion.

In (36), Alizadeh et al evaluate fairness for the proposed algorithm, DCTCP, by

comparing per-flow throughput of multiple flows. This way, the authors show that

their implementation avoids starvation and provides fairness. While the measure-

ments help identify starvation scenarios, they do not represent a quantitative index

but rather metrics that support a qualitative property. In contrast, (37), Wang et al.

proposes an improved version of DCTCP, the DCTCP-FQ which includes active and

fair queuing methods. Within their experiments, Wang et al. once again measure

the per-flow throughput but also use the previously described Jain’s Fairness Index

over the metric. This way, the authors describe the comparison (of DCTCP and

DCTCP-FQ) within their experiments with a quantitative metric.

Lastly, Popa et al. in ElasticSwitch (29) utilize only the allocation of per-tenant

bandwidth within their experimentation to comment on the fairness of the system.

Nevertheless, for the scope of this investigation, we believe that Jain’s index provides

a sufficient quantitative metric for the fairness property and that it can be used for

the experimentation. Thus we use the index to measure fairness in the bandwidth of

the system and the latency of the individual packets.

• Prioritization is defined as being able to prioritize classified flows (whether it is

a tenant or an individual packet) over others. Many approaches use latency – the

average response time – and tail latency – the worst-case response time – to comment

on prioritization (38, 39, 40), where a higher priority is argued to have a shorter

latency (41, 42).

In pFabric (43), Alizadeh et al. introduce a flow-prioritized transport design, achiev-

ing efficient flow scheduling using priority tags within packets. The paper does not

define prioritization as a metric but it evaluates different metrics to prove prioriti-

zation. Alizadeh et al. use Flow Completion Time (FCT) – both mean and tail –

within their experiments. This way they prove that smaller flows complete faster

than larger ones, confirming the effectiveness of their prioritization algorithm. How-

ever, the approach is affected by the size of the flow and thus lacks practicality when

real-word scenarios arrive.

17

3. SURVEY ON NETWORK QOS AND TC USAGE

PIAS is a prioritization algorithm designed for data center networks that works in-

dependent of flow sizes, presented by Bai et al. in (44). The algorithm is based on

a dynamic approach in contrast to the previously described deterministic algorithm

pFabric. The paper evaluate its effectiveness via an experiment. Within the exper-

iment, the authors, once again, use Flow Completion Time – mean and tail – as a

metric to prove that their implementation provides effective prioritization. However,

to count for the unknown flow size and the dynamic demotion of packets (to lower

priority queues), Bai et al. introduce a supporting metric, which measures latency

for each priority level. The paper argues that higher priority levels are expected to

have lower latency. Thus the authors validate their claim by using the additional

metric within their experiments.

To continue, in (45), Grosvenor et al. present their implementation of a prioriti-

zation system based on classes, combining rate limiting and priority queuing. The

implementation isolates latency sensitive flows from bulk traffic in datacenter-like

networks, achieving predictable latency for applications with high priority. The im-

plementation is evaluated using latency and jitter (per priority class). The authors

demonstrate the low delay on traffic classified as higher priority in increased (back-

ground) traffic scenarios.

On the other hand, Ren et al. in (46), conduct experiments to evaluate their im-

plementation of a predictable and low latency messaging system. To show that

high priority tenants have higher tail latency, and that their implementation reduces

the tail latency. Additionally, a Service Level Objective (SLO) is defined for the

experimentation, and the violation rates of the SLO (with and without their imple-

mentation) are compared. This way they are to investigate their implementation,

not only by measuring (tail) latency – similar to the previous papers – but also by

defining a system-specific SLO which serves as a tool for comparison.

Another example of quantifying prioritization can be observed in (47). While what

Zuhra et al. present in the paper – a QoS aware routing protocol designed for

Wireless Body Sensor Networks (WBSN) – does not directly align with the scope

of the thesis – networking in data centers – it does set an example on prioritization

measurements. Zuhra et al. evaluate their implementation, comparing the average

latency of different priority levels. They argue that the prioritized classes experiences

lower average latency. Additionally, the packet delivery ratio (PDR) is used to argue

18

3.3 Understanding the Use of TC

that higher priority packets have a higher PDR, as they are less likely to be dropped

(in high network traffic and congestion scenarios).

In conclusion, we have observed many approaches to measure and argue prioritization

quantitatively across various papers. To be used in the evaluation sections, we use

average latency and the rate of SLO violations to quantify prioritization.

The definition and the metrics are to be used throughout the paper, including the bench-

marking sections (5 and 6).

The motivation behind choosing certain properties over others is to approach a well

established field within a different perspective. As reviewed before, it is clear that in the

past, QoS has been defined repeatedly under the same (if not really similar) properties,

which are related to pure network performance. By approaching QoS as a collection of

work conservation, fairness and prioritization on top of the already established properties,

we widen the effect of the research.

3.3 Understanding the Use of TC

A complex tool such as TC should be studied respectively before benchmarking an

reaching to conclusions. Thus, we begin by reviewing how TC works, and how it has been

used in previous work.

Bandwidth Enforcement and Rate Limiting plays a key role in virtualized data

center-like environments. As an example, the BwE framework (48) relies on a large-scale

deployment of HTB, demonstrating the complexity of TC at scale. The framework is hier-

archically structured; while bandwidth and rate allocations are applied on the host-level,

the decisions are abstracted on a centralized control level. Within the BwE framework,

HTB acts as a tool to enforce bandwidth allocations (and collect measurements) on the

host-level, the lowest level of the BwE hierarchy. While TC requires complex monitoring

and frequent adaptation, Kumar et al. provide a centralized framework that abstracts the

tool, allowing global enforcement policies to be applied on the per-host level. The frame-

work underlines the importance of both abstracting and optimizing TC and highlights its

configurations, in modern-day, large-scale and performance oriented systems. Similarly,

Zhang et al. present Amoeba (49), a Deadline-based Network Abstraction (DNA). The

abstraction guarantees transfer deadlines by implementing a feedback-based centralized

controller, which controls the per-tenant bandwidth. While the controller calculates the

per-tenant rate, each tenant is enforces to apply the rate received by the controller using

19

3. SURVEY ON NETWORK QOS AND TC USAGE

HTB. The qdisc is used on end-host servers which are to initiate transfers between data

centers. Each transfer within the system is classified into a class within the two-level HTB

hierarchy, where the root class classifies outgoing packets, and the children enforcing per-

flow rates. This way, Zhang et al. provide a way to dynamically enforce rate allocations

controlled by a centralized controller, and achieving high utilization, where flow deadlines

are met. Additionally, the authors highlight that, the CPU overhead is negligible (ap-

proximately 3%) despite of the fine-grained bandwidth control HTB provides, making it

practical and scalable for its application within modern-day, high-speed and scalable data

center infrastructures.

Traffic Shaping and Scheduling. Carousel (50), a scalable traffic shaping and

scheduling framework, which uses TC as a supporting mechanism for packet shaping. Saeed

et al. use the Hierarchical Token Bucket (HTB) within their implementation to shape the

traffic by queuing packets, waiting for available bandwidth. While the qdisc does not

perform scheduling exclusively, it plays a critical role in support the rest of the implemen-

tation which is responsible for packet scheduling. Each leaf class of the HTB corresponds

to a specific BwE task flow group, which enables in, not only per-group (coarse-grained)

rate limiting, but also per-group traffic shaping – unlike the previously commented per-

tenant (fine-grained) implementations. The grouping of multiple flows paves way to a

more scalable approach, due to a reduced number of qdiscs. This way the paper highlights

the trade-off between granularity and scalability, and addresses the potential scalability

limitations of HTB, utilizing it as a coarse-grained supporting mechanism.

QoS enforcement, specifically prioritization, can be implemented in TC via the

prio queuing discipline (qdisc). An example of the use can be observed in QJUMP (45),

where Grosvenor et al. present their implementation which uses TC to isolate latencies

of differently prioritized classes. The paper implements strict traffic separation among

classes, which results in low latency. With their implementation, the authors underline

the capabilities of TC in data-center like scenarios where enforcing network properties –

such as prioritization – becomes an objective, while outperforming similar mechanisms. To

continue, Waskiewicz Jr et al. in (51) discuss various features of TC with QoS enforcement

being the goal, within Data Center Bridging (DCB) scenarios. The paper discusses the

use of TC qdiscs such as prio, multiq and cbq, the use of the u32 classifier and the skbedit

functionality. Firstly, the authors suggest that, in DCB scenarios, prio – the commonly

used priority qdisc – should be replaced by multiq – the multi queue qdisc, which applies a

round-robin scheduling algorithm. The presented approach provides true separation across

queues in the hardware, instead of the software-based priority scheme prio applies. The

20

3.3 Understanding the Use of TC

authors argue that true separation only exists while using multiq, as in prio, a lower priority

packet can still delay a higher priority packet, due to them using the same hardware queue.

The paper acknowledges cbq – a classful hierarchical qdisc – as a potential candidate for

the implementation. Despite the potential prioritization and shaping capabilities of cbq

the papers highlight it as complex to configure and less predictable when compared to prio

or multiq. Secondly, the paper uses the u32 classifier to classify the packets into classes.

Later on, these packets’ metadata is accessed and modified by the skbedit functionality,

setting the target queue for the packet.

Network Emulation and Simulation. Many approaches to TC concern the use of

qdiscs in like netem (Network Emulation) or HTB to provide realistic simulations for data

center like networks. For example, netem can be used to introduce delay and packet loss to

flows, as observed in (44). Bai et al. evaluate cross-datacenter congestion control protocols

by using netem to control the round-trip times. Similarly in (52), Zhang et al. investigate

the behavior of Explicit Congestion Notification (ECN) – a network congestion signaling

mechanism which avoids dropping packages, for protocols such as IP, TCP and UDP –

under a fixed Round Trip Time(RTT) value. The paper adds delay within the traffic to

emulate asymmetric RTT behavior. This way, the paper demonstrates the instability of

ECN under the non-fixed RTT scenario, while highlighting how TC can be used to emulate

realistic models. Lastly, in (53), Becker et al. analyze the accuracy and scalability of TC’s

netem for large-scale and realistic emulation. The paper evaluates the overhead of netem,

as well as the accuracy, when emulating latency and packet loss. They highlight that

netem reaches bottlenecks – in terms of jitter and CPU – when scaled. Lastly, as another

example, in (54) Ali et al. integrate TC in a virtualized environment to control network

characteristics – such as the bandwidth and the delay – to emulate network behavior,

using the qdiscs. While the paper does not specify the qdiscs and knobs used, their

implementation of the Load Balancing algorithm is evaluated realistically using TC.

Finally, TC not only stands as a research tool, but also is being used as a component of

complex, state-of-the-art virtual networking mechanisms. Open vSwitch (55) – "a multi-

layer, open source virtual switch" – uses TC in its implementation, enabling fine-grained

control, supporting features such as QoS enforcement, tunneling and hardware offloading,

acting as a key component to modern day, software-defined infrastructures. To start with,

the previously seen HTB is used to apply per-port limits, enforcing per-tenant bandwidth

limits, as well as using police for policing. Additionally, the implementation uses flower

– a knob which allows per-packet control based on flow – to perform hardware offload-

21

3. SURVEY ON NETWORK QOS AND TC USAGE

ing, reducing the CPU overhead. The use of TC in such state-of-the-practice systems

demonstrates the importance and the scalability potential of the tool.

3.4 Summary

In section 4.1 we start by surveying papers from which we define our QoS properties.

We start by exploring papers that use different metrics to argue work-conservation, and

conclude that it is to be supported and argued using utilization of per-application bandwidth

and per-application throughput. To continue, we observe that Jain’s Fairness Index is a

standard way to quantify fairness in data center networks. Lastly, we explore into metrics

that support prioritization in papers related to data center networks, from which we con-

clude that average latency is to be used for further evaluation within the thesis. This way

we address the first part of RQ1 directly, answering How do we define performance

QoS in high-speed networks? with the metrics found to be used in evaluation.

In section 4.2, we explore the different deployments of TC in data center networks. We

find out that TC covers a wide range of applications within data center-like environments.

We find out that the use of TC in previous research falls under four main categories: Band-

width Enforcement and Rate Limiting, Traffic Shaping and Scheduling, QoS enforcement,

and lastly Network Emulation and Simulation. While some of the papers cover more than

a single category, the section aims to clarify the use of TC in an efficient manner. Ad-

ditionally, we find out that HTB was among the most commonly used features of TC,

playing a critical role under all the mentioned categories. This way we address the second

part of RQ1, answering How does the state-of-the-art use TC to provide these

performance QoS properties?.

22

4

Experimental Setup

Within this chapter, we define and specify the setup and the configurations on which

the experiments will be held, and provide a structured evaluation plan.

4.1 Hardware

The datacenter-tenant simulation throughout the evaluation utilizes 2 separate nodes,

which share a large portion of the properties and configurations. The host devices consist

of the following properties:

• a 20-core 2.00Ghz Intel(R) Xeon(R) Silver 4416+ CPU with a single socket,having

20 physical cores. For the node that acts as the server, hyperthreading is enabled.

• 256GB of DDR4 DRAM

• a Mellanox ConnectX-5, capable on operation at 100 Gbps.

The benchmarks run on virtual machines (VM) that have the following properties:

• a 10-core 2.00GHz Intel(R) Xeon(R) Silver 4416+ CPU with one socket, 10 physical

cores and 1 thread for each core. Using a single NUMA node.

• 8GB of DDR4 RAM allocated to the VM from a single NUMA node.

• a Mellanox ConnectX-5 backed virtual NIC, passed through using SR-IOV, with 9000

byte MTU (jumbo frames)

23

4. EXPERIMENTAL SETUP

4.2 System Configuration

The host machines have the following software specifications:

• Ubuntu 22.04.4 LTS

• Kernel version 5.15.0-124-generic for node8 and 5.15.0-140-generic for node9

• QEMU version 9.0.1

The guest VMs have the following software specifications:

• Ubuntu 20.04 LTS

• Kernel version 5.12.0+

As demonstrated by Cai et al. in (56), TSO and GSO can be used to reduce CPU

overhead on high-speed networks with greater packet lengths. The paper provides evidence

which imply that with packet lengths smaller than 4.5KB, using TSO or GSO provides no

additional benefit. We confirm this on our setup by conducting a micro-benchmark (using

iperf3) that assesses a small packet length – 1KB. With the results from the experiments,

we confirm that enabling the optimizations do not provide any benefit. However, for

consistency and to approximate real-world datacenter setups (57), we keep TSO and GSO

enabled. Additionally we disable LRO and GRO to facilitate per-packet qdisc evaluation,

and per-packet inspection (57).

4.3 Software

To generate benchmarks and obtain network metrics we use the following tools:

• We use iperf3 (version 2.10.0) to generate TCP flows and simulate concurrent TCP

connections.

• We use netperf (version 2.6.0) in TCP_RR mode, allowing us to measure round-trip

latency.

To measure system metrics, we use the following tools throughout the evaluation:

• We use pidstat (version 12.2.0) to obtain per-process CPU statistics

• We use sar (version 12.2.0) to monitor system CPU statistics, allowing us to monitor

per-core activity.

24

4.4 Performance Metrics

Lastly we utilize custom bash scripts to automate the experimentation process and

python scripts to visualize the data, using pandas and matplotlib. With the use of these

tools and scripts, we are able to form a reproducible and consistent framework for evalu-

ating qdisc performance under different conditions.

4.4 Performance Metrics

Throughout the evaluation part we use different metrics for different properties and

measurements defined in our survey (section 3), which can be listed as the following:

• Bandwidth is measured in Gbits/s or Mbits/s directly obtained from the log files

of the benchmark generators. We obtain both per-flow and per-system bandwidth

to evaluate the qdiscs both for overhead and for the QoS properties.

• CPU utilization is measured as a percentage within the sar and pid files. To ensure

consistency, we observe both the per-process statistics and the system wide statistics.

We observe the %wait, %usr and %system columns within the files, which help us

understand the results.

• Latency is measured as the average latency of the individual packets in terms of

micro-seconds, within the first evaluation. Additionally, to evaluate the properties,

we introduce a SLO violation scheme which allows us to comment on the properties

such as prioritization. This way we bridge our findings from RQ1 and use them as

key metrics within the evaluation. We calculate latency via the throughout field

within the generator logs, which we take the inverse of.

This way, we combine our main findings from the survey on section 3, to connect the

different parts of the thesis and establish metrics to be used in section 5 and 6 during the

benchmarks, to comment on the overhead and the QoS properties of various qdiscs.

4.5 Qdiscs

We chose a varying range of qdiscs, obtained both from the survey and additional ones

which help extend the scope of the thesis. We list the qdiscs with brief descriptions as

follows:

25

4. EXPERIMENTAL SETUP

• mq + fq_codel , being the default selection within the Linux kernel, we include it

in the research as a baseline comparison. The kernel utilizes mq in scenarios where

multiple NICs are present. However in our setup, even though multiple NICs are

deployed, only a single NIC is utilized by the VM, thus making the effect of mq

negligible. Within this setup, fq_codel acts as the main qdisc, controlling the flow.

Nevertheless, we keep the default setup untouched to have a relevant baseline. Lastly,

we discard fq, fq_pie and SFQ from the experiments due to the their similarities to

fq_codel.

• pfifo is included in the research as a minimal effect qdisc allowing us both to sanity

check if needed and also highlight the performance of the other qdiscs, especially

when it comes to providing QoS properties. We do not include the other FIFO based

qdiscs (bpfifo and pfifo_fast) due to their similarities.

• HTB has been established as the most commonly used qdisc – in data centers – in

section 3. In our research it plays a critical role to observe the trade-offs between

performance and QoS ensuring.

• QFQ has a strong theoretical approach to QoS properties, while maintaining op-

timized performance. However the scalability remains unclear, thus we include the

qdisc in the thesis.

• DRR is designed to balance performance with QoS enforcement, playing a key role

compared to other qdiscs, and thus is included within the scope of the thesis.

This way, we cover a varying range of qdiscs which are applicable to the context of

modern-day data-centers. We solely include a selection of the qdiscs, from the most sim-

ple classless qdiscs, to the most commonly used and more complex classful qdiscs. The

selections covers all of the relevant qdiscs in terms of data-center and QoS relevance, while

discarding the redundant ones.

26

5

Measuring TC Performance
Overhead

Within this section we perform benchmarks to evaluate the performance of the selected

qdiscs, with the goal of directly answering RQ2, What is the performance overhead in

bandwidth, CPU and latency of using TC?

5.1 Method to Evaluate Performance Overhead

To answer RQ2, we evaluate the overhead of the qdiscs in terms of bandwidth, CPU

utilization and latency. We achieve this by dividing the experiments in two sections, 5.2

and 5.3.

In section 5.2, we conduct 2 series of experiments using iperf3. Firstly we focus on the

increasing packet length, which is set by the -l option within the tool. As the values, we

increase the packet length, starting from the minimum value (1 byte) to the maximum (1

megabytes). This way, we are to: (1) Saturate the qdiscs and observe the saturation point

and (2) Find reasonable packet lengths to use within the upcoming experiments.

Then we continue with scaling up clients, where we deploy separate instances of iperf3,

with packet lengths obtained from the previous experiment, which help us link the two

experiments and comment on the scalability at an optimized point. We increase the number

of clients with the goal of observing the scalability point of the qdiscs in multi-tenant

scenarios, replicating real-world datacenter scenarios.

We obtain results from the iperf3 log files, which calculates the bandwidth every second,

giving both the individual and the average of the whole experiment. Additionally the log

includes the number of retransmissions which help us justify cases where unexplainable

27

5. MEASURING TC PERFORMANCE OVERHEAD

(a) (b)

Figure 5.3: (a) Bandwidth vs. Packet Size, (b) CPU Utilization vs. Packet Size.

bandwidth values occur. We obtain CPU values from the log files of pidstat and sar,

giving us adequate per-process and system wide information, separated into user, wait

and system.

In section 5.3, we follow the same approach and first saturate in terms of packet length

and then in terms of client count. However, we use TCP_RR in netperf as our benchmark

generator, as – unlike iperf3 which measures bandwidth directly – TCP_RR measures

round-trip latencies of packets, allowing us to observe the latencies of individual flows.

This way we can comment on the latency of the qdiscs under similar conditions.

In summary, we utilize a planned approach with the goal of measuring the pure overhead

introduced by the qdiscs while comparing them to each other, when no shaping or QoS

scheme is deployed.

5.2 Bandwidth and CPU Overhead

We start by investigating the effects of the changing packet size on the bandwidth and

the CPU utilization. For this experiment we hypothesize that the qdiscs will perform

similarly in terms of bandwidth but show difference when it comes to CPU utilization,

especially with more complex ones such as HTB and QFQ. Since we increase the packet

length, we hypothesize that the bandwidth will increase until reaching the saturation point

of the qdiscs.

In figure 5.3 (a) we observe the increasing bandwidth length and highlight the saturation

point, which sits at 128KB for all of the qdiscs, underlining the similarities. On the

other hand, with graph (b), we observe a significant difference we observe that HTB

28

5.2 Bandwidth and CPU Overhead

(a) (b) (c)

(d) (e) (f)

Figure 5.10: CPU performance under scaling clients with packet lengths of 1KB, 4KB and
64KB.

introduces between 5% to 30% CPU overhead when compared to other qdiscs

for packet lengths greater than 1KB (KF1). This is due to HTB ’s internal per-byte

token algorithm (which we discuss further using the following experiments), justifying the

increase in CPU utilization. This way, we highlight the expected CPU cost of HTB and

how packet length selection controls the CPU overhead.

Secondly, we conduct a saturation of the client number, where we keep the packet length

controlled and increase the client instances. We hypothesize that simpler qdiscs such as

pfifo will experience a decrease in terms of bandwidth, especially on higher client counts,

whereas more complex ones such as HTB will outperform the others, while as a con-

sequence, utilizing more resources. For this we pick 3 different packet lengths: 1KB –

representing a small workload, 4KB – representing a moderate workload and 64KB –

representing an inflated workload. Using these workloads, we do not over saturate our

experiment and control the variable further and provide more accurate conclusions.

29

5. MEASURING TC PERFORMANCE OVERHEAD

We firstly compare (a), (b) and (c) in figure 5.10 observing that larger packet lengths are

less optimal, in terms of CPU overhead, for qdiscs – which we have demonstrated previously

– within multi-tenant situations and show a decrease in bandwidth as the number of clients

increase.

Using the 1KB experiment in (a) , we observe a flat line for bandwidth and moderate to

high (between 60 and 70%) CPU utilization. As qdiscs behave similar under the conditions,

we conclude that the bandwidth is limited by packet processing further within

the networking stack rather than qdisc logic (KF2). We support this by observing

graph (d), where HTB does not show a significant utilization (whereas it was to be CPU

heavy within the previous experiments) and leads us to hypothesize that the overhead rises

from packet processing or beyond – which we cannot assess with our setup.

To continue, we observe a diverging bandwidth graph on graph (b) with a 4KB packet

size. The CPU graph, (e) of the experiments exposes a consistent overhead (around 5%) of

using HTB, as well as DRR, which shows a higher utilization overall compared to the other

qdiscs. Hereby, we observe that classful qdiscs introduce 5% more CPU overhead

caused by underlying logic (KF3). In contrary to the previous experiment where we

argued that the utilization was beyond qdiscs, we now observe a difference in the graphs,

thus concluding that the observed overhead is indeed caused by the qdisc logic when 4KB

workload is used.

Using even larger packet lengths, 64KB, we observe HTB experiencing a drop in band-

width, whereas the CPU utilization does not contain a proportional effect. Starting from 4

clients, HTB drops between 5 to 7 Gbits/sec (between 12 and 17%) in bandwidth. As the

packet length grows, the CPU is utilized less for system calls. However, HTB fails to keep

up with other qdiscs, not because it is heavy on the CPU, but due to its token bucket pro-

cessing logic. HTB deploys a token bucket algorithm where tokens are consumed per-byte

and not per-packet. This leads to a bottleneck; as the packet length grows, packets consume

more tokens (as they are larger in terms of bytes), and HTB fails to keep up. To summa-

rize, we find an internal HTB bottleneck, where token consumption grows due

to the increased number of bytes after 4 clients and 64KB packets, where HTB

fails to keep up, leading to a 12 to 17% decrease in bandwidth (KF4). On the

other hand, using the same graphs we observe that pfifo and the default configuration

(mq+fq_codel) maintain bandwidth with a stabler utilization, demonstrating

better scalability (KF5).

30

5.3 Latency Overhead

(a) (b)

Figure 5.13: (a) Latency vs. Packet Size, (b) CPU Utilization vs. Packet Size.

5.3 Latency Overhead

We firstly conduct an increasing packet length experiment to assess the baseline perfor-

mance under increasing packet lengths and sanity check our results, where we hypothesize

that the latency will increase as the packet length increases.

In figure 5.13 we see the hypothesized rise in latency in graph (a). We firstly observe that

the latency follows an indistinguishable increase until 64KB. Then we observe a steeper

increase in latency between 64KB and 256KB for pfifo, DRR and QFQ, while a more

gradual increase is observed in mq+fq_codel and HTB. However after 256KB we observe

that all qdiscs converge to the same line, thus allowing us to conclude the effect of packet

size on latency. At larger packet lengths we observe bottlenecks caused by limitations

beyond qdiscs – such as network interface limitations – whereas in smaller packet lengths,

the overhead in latency is caused by the underlying logic of the individual qdiscs.

We then observe varying CPU utilizations on graph (b). Where we observe that the

default setting, mq+fq_codel experiences an improvement of 4% of utilization

after 192KB (KF6), while the rest follow a similar pattern. However, we observe that

DRR experiences additional 1 to 2 percent overhead in terms of CPU when compares to

the others, introduced by the per packet decision logic. Lastly, we observe that HTB and

pfifo follow a similar pattern. This is due to the fact that HTB is deployed with pfifo as

the underlying child qdisc.

Followingly, we continue with scaling up the number of clients (flows), where we hypoth-

esize that the latency will increase when the number of clients increase due to contention

and retransmissions. Our hypothesis is that simple qdiscs will outperform more complex

31

5. MEASURING TC PERFORMANCE OVERHEAD

(a) (b) (c)

(d) (e) (f)

Figure 5.20: Latency performance under scaling clients with packet lengths of 1KB, 4KB
and 64KB.

qdiscs as we assess the latency, where qdiscs that have less internal processing to perform

send packets faster, leading to lower latency.

In figure 5.20 (a), we observe the hypothesized rise in latency – with 1KB packet length–,

where qdiscs perform close to identical. However, using graph (d), we observe that at 96

clients we reach 100% CPU utilization – a system bottleneck. Thus we only confirm that,

with smaller packets, qdisc logic’s effect on latency becomes negligible.

To continue, in graph (b), when we use a packet length of 4KB, qdiscs do not

show a clear divergence in terms of latency nor CPU utilization (KF7).

Lastly, in graph (c), we observe a steep increase in latency of around 20% – which also

starts earlier – when using HTB – which is also reflected in the CPU utilization in graph

(f). This way we support our comments in section 5.2, confirming KF3 and KF4. Lastly

we conclude that the saturation point arises early, where the system bottlenecks (after 40

clients).

32

5.4 Summary and Key Findings

5.4 Summary and Key Findings

We list the key findings within the experiments performed in section 5.2 and 5.3 as the

following:

• KF1: We observe between 5% and 30% CPU overhead when comparing HTB to the

rest of the qdiscs, in single-tenant scenarios with packet lengths larger than 1KB.

• KF2: We find that the bandwidth is limited by packet processing further in the

stack rather than qdisc logic when using packet lengths of 1KB.

• KF3: We observe that classful qdiscs (HTB and DRR) introduce 5% additional

CPU overhead when using a moderate load of 4KB.

• KF4: We observe a token consumption bottleneck in HTB, after 4 clients and 64KB

of packets, leading to between 12% and 17% decrease in bandwidth.

• KF5: We observe better scalability due to stabler utilization when using mq+fq_codel

and pfifo within our three different packet lengths.

• KF6: We find an improvement of 4% in CPU utilization when using mq+fq_codel,

when using packet lengths greater than 192KB in our latency-sensitive setup.

• KF7: We observe no difference in terms of latency or CPU utilization among qdiscs

when using 1KB and 4KB packet lengths.

using our findings, we answer RQ2, What is the performance overhead in bandwidth,

CPU and latency of using TC? as follows: We find that TC introduces non-negligible

overheads, especially with classful qdiscs such as HTB and DRR, highlighting the cost

tradeoffs and bandwidth limitations under contention in multi-tenant scenarios.

33

5. MEASURING TC PERFORMANCE OVERHEAD

34

6

Measuring QoS Properties

Within this section we perform benchmarks to evaluate the performance of the selected

qdiscs, with the goal of directly answering RQ3, To what extent does TC ensure the

previously determined performance QoS properties in multi-tenant setups?.

6.1 Method for Measuring QoS Properties

To assess the different properties, we divide the experimentation into 2 different section,

each assessing a single property. This way, we isolate properties and approach the research

question with a structured plan.

In section 6.2 we evaluate prioritization using multiple instances of benchmark gen-

erators which are bind to different priority classes using filters. We summarize the

prioritization experiments as the following:

• P0: We use this experiment to establish a controlled experiment environment, by

using 2 classes – only for classful qdiscs – with no priority applied. This way we are to

observe a difference when the priority scheme is applied, validating our experiment.

We use a single instance of iperf3 and a single instance of netperf – our latency

sensitive flow – to measure the baseline performance of our tools using the setup.

• P1: We utilize 2 classes, where one gets higher priority than the other, and we

observe the baseline prioritization of the qdiscs. We utilize the higher priority class

as our latency-sensitive measuring class, which runs netperf in TCP_RR mode. On

the other hand the lower priority class runs iperf3 – for more precise flow control

– and generates background traffic. Then we scale up the number of flows within

the lower priority class to observe wether the qdisc provides the same prioritization

35

6. MEASURING QOS PROPERTIES

under increasing background traffic. We do this by increasing the instances of iperf3

flows assigned to the lower priority class.

We apply P0 and P1 solely for HTB, the only qdisc among our selection on the previous

section that supports strict prioritization using classes.

In section 6.3 we address the fairness of the qdiscs, using two experiments, which we

summarize as follows:

• S0: We use our experiment data from section 5, and evaluate the fairness of qdiscs

under ideal conditions – concurrent flows and equal packet lengths, with increasing

clients.

• S1: We introduce flows with different demands, which helps us evaluate actual per-

formance under varying realistic scenarios. For this reason, we vary the packet length

of the flows, where 50% of the flows get the base packet lengths, 25% less than the

base length and the rest of the 25% more than the base length.

Lastly, we base all our experiments which run on a single packet length, using 4KB, as

previously – on chapter 5 – we have observed that smaller packet lengths (such as 1KB)

did not cause sufficient traffic to make a difference among qdiscs. Similarly, with greater

packet lengths (such as 64KB), qdiscs suffered from lack of system resources (CPU) and/or

extreme contention causing inaccurate conclusions.

As to conclude our method, using our experiments P0, P1, S0 and S1, we assess two

out of the three QoS properties defined in our survey on chapter 3, covering the qdiscs

evaluated on the previous chapter.

6.2 Tenant Prioritization

We hypothesize that, when HTB is deployed without rate limits, using only class pri-

orities, assigning a lower numerical class (prio 1) to the latency sensitive netperf will

reduce the latency under contention (greater number of clients), when compared to the

setup which utilizes no priority scheme. We relate this to HTB ’s strict priority mecha-

nism, which will ensure that packets that belong to higher priority classes (lower numerical

values) are dequeued before the rest of the packets (from lower priority flows).

In figure 6.3 (a), we observe a sharp increase as the background clients increase, peaking

around 48 clients, for both configurations. At lower number of clients, the performance of

the setups are identical, as background load stands insufficient to saturate the qdisc and

36

6.3 Fairness

(a) (b)

Figure 6.3: Comparison of P0 and P1 for HTB, with 4KB packet length

cause contention. However, once we increase the number of clients – beyond 40 clients

–, the priority enabled setup (P1) experiences an improvement in latency for the higher

priority class. We observe a consistent reduction, ranging from 10% (at 40 clients)

up to 350% (at 72 clients) (KF8), when compared to P0.

Further on, graph (b) support our findings, showing a relation between the latency and

the bandwidth. Here, we confirm that the decreased latency does not come at a cost of

decreased bandwidth, confirming the strict priority effect of using HTB.

6.3 Fairness

We begin the experiment by applying S0, where all flows use equal packet lengths,

running concurrently. Using these ideal conditions, we hypothesize that the qdiscs will

provide perfect fairness when using Jain’s Fairness Index (equal to 1). We plot our data

from section 5, using 3 different packet lengths, 1KB, 4KB and 64KB.

Using figure 6.7, we confirm our hypothesis; the fairness index yields 1 (perfect

fairness) for all qdiscs, when using 1KB (graph (a)) and 4KB (graph (b)) packet

lengths (KF9). However, when the clients use a 64KB packet length (graph (c)), around

5% of a drop is observed when using HTB, after 40 clients (KF10). We link this

drop in fairness to the bandwidth degrading from section 5, with larger packet lengths.

The same conditions also hold for fairness via per-application throughput (not displayed

in the figures), where we compute the index via packets per second, which yields to the

same exact plot as bandwidth fairness. Subsequently, while S0 confirms our hypothesis on

ideal conditions, it also highlights the need to test fairness using non-ideal and closer to

realistic situations. This way, we motivate our choice for a second evaluation, S1.

37

6. MEASURING QOS PROPERTIES

(a) (b) (c)

Figure 6.7: Jain’s Fairness Indexes calculated with per-application bandwidth for packet
lengths of 1KB, 4KB and 64KB.

(a) (b)

Figure 6.10: Jain’s Fairness Indexes calculated with per-application bandwidth and per-
application throughput with a base packet length of 4KB

We continue with S1, where we introduce different packet lengths to observe the effect

on fairness. Firstly, unlike the previous experiment, we discard 2 clients and start with 4

clients directly due to the use of 3 different packet lengths. For our introduction of varying

conditions, we use a base packet length of 4KB (as motivated before) which bounds to

50% of the flows. The 25% of the flows get 1KB while the rest of the 25% gets 8KB packet

lengths, imitating more realistic conditions when compared to S0. We chose the packet

lengths to observe differences in fairness while not effecting system performance from other

perspectives (such as CPU utilization).

In figure 6.10, we firstly observe that, when compared to the previous experiment S0,

our varying packet lengths have caused a light drop in fairness of around 2-3% – when

measured using per-application bandwidth on graph (a). However, when we compute

38

6.4 Summary and Key Findings

the index using per-application throughput (in packets per second), we observe

a significant decrease in fairness of around 20% when compared to S0 (not

displayed on the figures) (KF11). We reveal that, even when bandwidth fairness

suggests near ideal behavior, flows experience less-fair treatment in terms of

packets per second (KF12), pointing out that smaller packets are disadvantaged.

Within S1, we also highlight the importance of inspecting fairness from two different per-

spectives, bandwidth and throughput. Lastly, even when we deviate from ideal conditions

by using varying packet lengths, we observe the non-negligible drop in fairness.

6.4 Summary and Key Findings

We list the key findings within the experiments performed in section 6.2 and 6.3 as the

following:

• KF8: We observe an improvement of 10% to 350% in latency for the higher priority

class when using HTB with a strict prioritization scheme in our setup, when compared

to no prioritization.

• KF9: In our setup, we observe a perfect fairness index, under ideal conditions with

packet lengths of 1KB and 4KB.

• KF10: In our setup, we observe 5% drop in the fairness index of HTB after 40

clients.

• KF11: We find that packet fairness decreases by 20% when flows of different packet

lengths are introduced while using our setup.

• KF12: In our setup, we find that, even when bandwidth fairness suggests near ideal

behavior, flows experience less-fair treatment in terms of packets per second

Using our key findings, we answer RQ3, How and to what extent does TC ensure the

previously determined performance QoS properties in multi-tenant setups? in two parts:

(1) In terms of prioritization, within our setup, HTB reduces the latency of prioritized

classes up to 350%. (2) In terms of fairness in our setup, all qdiscs perform identical,

yielding a perfect fairness score under ideal conditions and a high-score (on average) of

0.95 when calculated with bandwidth and 0.8 when calculated via packets per second.

39

6. MEASURING QOS PROPERTIES

40

7

Reporting Negative Results and
Limitations

7.1 Negative Results

Bandwidth drop on increasing clients has been observed throughout the experi-

ments on RQ2, where we hypothesis an increase due to more flows sending more packets.

While we tried to mitigate the observation by applying various micro-benchmarks, opti-

mizations and system setting changes, we have not found a method to do so. We believe

that the issue lies within either the underlying TCP or iperf3 algorithms, which stand out

of our scope of investigation. Nevertheless, the certainty does not effect the results as the

qdiscs are compared within the same environment, where the behavior of the system and

TCP is the same.

7.2 Limitations

Limitations on the system setup concern generalizability, as our experiments are

conducted using a single system setup, they leave uncertainty when applied within different

systems with different characteristics – such as but not limited to different Linux versions,

NICs or system configurations.

Limitations on the tools concern generalizability, especially when using benchmark

generators and tools that replicate connections and packets. Tools such as iperf3 and

netperf do not represent real world scenarios where flows experience truly random and

flawed behavior.

41

7. REPORTING NEGATIVE RESULTS AND LIMITATIONS

Limitations on prioritization rise as we could not evaluate the prioritization of all of

the qdiscs due to them not supporting classful behavior or strict prioritization. Addition-

ally, our experiments are limited to a single prioritization scenario, whereas more varied

workloads (such as more prioritization classes) should be evaluated to amplify the findings.

Limitation on fairness include experiments being performed under close to ideal work-

loads, where flows are essentially indistinguishable. While we utilize varying packet lengths

within a single experiment, our approach did not stand sufficient to fully evaluate fairness

of qdiscs under realistic scenarios. Introducing factors such as delay or bursts to assess

fairness will strengthen the experiments and the conclusions.

42

8

Related Work

In the field of networking, evaluating the performance of tools becomes a key element in

designing, choosing and utilizing both conceptual and practical systems. Evaluating and

optimizing certain tools and systems not only enables efficiency but also paves way for

further research and development. Thus many others are exploring efficient and optimized

frameworks and tools that aid development.

Evaluating the performance of tools within the state-of-the-art provides an under-

standing of the tools and further optimizations. As an example, in (56), Cai et al. mea-

sure Linux network stack performance in high-speed environments, exceeding 100Gbps,

highlighting bottlenecks in kernel optimizations. Unlike our scope on evaluating specific

QoS needs and overhead expectations, they focus on highlighting when optimizations are

needed, thus recommending the use of certain optimizations – as an example, TSO – for

specific cases. This allows other researchers and developers in using their recommendations

to optimize and/or adapt their work to certain scenarios.

Implementing and evaluating tools becomes fundamental as the networking field

scales. As an example, Tu et al. address the limitations of Open vSwitch in modern-day

applications in (58) and present an optimized alternative. They highlight that such tools

require modern day optimizations and revisions to keep up with the current advancements.

On the other hand, in (43), Alizadeh et al. address the advancements by simplifying their

approach. In the paper they present pFabric, in their words, a "minimalistic datacenter

transport design that provides near theoretically optimal flow". They provide an algorithm

which can separate flow scheduling and rate control and show that simplicity plays an im-

portant role in optimizing flow performance. Additionally, they evaluate their implemen-

tation and explore the effect of different buffer sizes and rate control algorithms. Similarly,

43

8. RELATED WORK

Homa (32), a receiver based transport protocol, achieves improved message complete times

when compared to pFabric – especially when evaluated with mixed workloads.

Advancements in other domains, require as much input as on Linux based datacenter

networking. As an example, Kumar et al. in (59) evaluate user-space network stacks within

a mobile 5G core, highlighting both the capabilities of an optimized stack and improving

QoS within next-generation networks.

44

9

Conclusion

In this thesis, we have approached TC and QoS using a survey (section 3) and two

evaluations (section 5 and 6) to answer our main RQ, How does TC control performance

QoS in the network and to what extent does it provide performance, scalability and QoS

when applied to high speed and scalable networks?

9.1 Answering Research Questions

RQ1 How do we define performance QoS in high-speed networks and how does

the state-of-the-art use TC to provide these performance QoS properties?

To address this question, we have conducted a survey, divided into two parts – TC and

QoS –, aiming to explore state-of-the-art research, focusing on high-speed networks.

Firstly, we find that QoS definitions differ significantly among the context, thus requiring

a carefully organized scheme when utilized for a specific cause. As for this, we focus on

3 properties – being work-conservation, fair-sharing and prioritization – where we define

the properties and metrics to be used within our context – high-speed networks. We

address the properties as follows (1) work-conservation as per-application bandwidth and

per-application throughput, (2) fair-sharing using Jain’s Index and lastly (3) prioritization

as average latency.

Secondly, we explore papers that utilize TC as either a key-component within their design

or a tool to complete their research. For this reason, we summarize and divide TC into

4 main titles, and observe how the state-of-the-art use TC to dispatch the concepts. In

our survey, TC’s use is summarized in (1) Bandwidth Enforcement and Rate Limiting, (2)

Traffic Shaping and Scheduling, (3) QoS Enforcement and (4) Network Emulation. This

45

9. CONCLUSION

way we not only answer our research question which focuses on QoS properties, but we

also provide a better understanding of TC as a tool.

Using our findings from the survey, we not only clarify QoS definitions and TC employ-

ment, but we also pave the groundwork of our experiments, which rely on RQ1.

RQ2 What is the performance overhead in bandwidth, CPU and latency of

using TC?

To answer the question, we have evaluated qdiscs under both increasing packet lengths

and increasing clients, following our method in section 5.1.

We find that TC introduces a non-negligible overhead, when using HTB, which show

high CPU utilization and bandwidth limitations in cases of contention. Using our setup,

we have found between 5% to 30% CPU overhead with packet lengths greater than 1KB.

On the other hand, while the difference in latency of the qdiscs are negligible when using

1KB and 4KB packet lengths, we observe an increase in latency of 20% (on average) when

using HTB.

RQ3 To what extent does TC ensure the previously determined performance

QoS properties in multi-tenant setups?

To answer the question, we assess two of the QoS properties defined under section 2

while answering RQ1 – prioritization and fairness.

We show that in terms of prioritization in our setup, HTB reduces the latency of classes

with high priority by up to 350% under contention scenarios, proving it to be efficient for

prioritization.

Secondly, we show that in our setup, all qdiscs achieve perfect fairness under ideal

conditions. With varying packet lengths, qdiscs still show a consistent fairness among

them, while Jain’s Fairness Index yields a high score. However, once we calculate the

index via packets instead of bandwidth, we observe a 20% drop, highlighting disadvantages

of flows with smaller packet lengths.

Main RQ How does TC control performance QoS in the network and to what

extent does it provide performance, scalability and QoS when applied to high

46

9.1 Answering Research Questions

speed and scalable networks?

Throughout our survey and our experimental approaches, we have found how TC controls

and enforces performance and QoS goals such as bandwidth, latency, tenant prioritization

and tenant fairness. However, its effectiveness, overhead and the extent it meets these

performance objectives is shaped by the underlying qdisc, flow characteristics and the

scale of deployment.

We find that TC’s overhead in CPU and latency is tied to qdisc and load selection.

Particularly, we observe that HTB introduces additional CPU overhead, especially in high

contention under multi-tenant situations. Additionally, we reflect the effect of using greater

packet lengths and its effect on HTB, where we observe an increase in latency and a decrease

in bandwidth.

Additionally, our findings suggest that TC enforce the evaluated QoS behaviors (prioriti-

zation and fairness) when assessed using our setup, such as improved latency for prioritized

flow classes and consistent fairness when scaled. These observations are obtained under

specific controlled conditions, where we test prioritization only for HTB and evaluate both

properties using a single environment, helping us to highlight the importance of context in

interpreting QoS properties.

Overall, we believe that TC provides performance QoS in scalable networks, but its

practicality relies on careful configuration of the qdiscs and workloads.

Using our findings and conclusions which answer the RQs, we recommend the following

for the use of TC and QoS definitions in the context of high speed, scalable data centers:

• We recommend defining performance QoS properties and metrics contextually, based

on the system characteristics, workload selection and network goals.

• We recommend trade-off aware deployment and configuration of TC, as each qdisc

highlights a trade-off between scalability, QoS enforcement and overhead.

• We recommend the selective deployment of HTB, due to its CPU overhead and per-

formance decrease, especially in high-load environments, unless strict prioritization

is required.

47

9. CONCLUSION

• We recommend the consideration of both per-byte (bandwidth) and per-packet (through-

put) when assessing fairness with Jain’s Fairness Index to ensure accurate fairness

evaluation.

9.2 Future Work

Our research supports future investigation in different directions. To start with, further

research on the effect of filters when classifying flows on overhead or the properties could

provide deeper understanding of how classification effects the performance of the qdiscs,

especially when under high contention due to increased number of clients.

Additionally, while we only focused on fairness and prioritization for the evaluation part,

future studies could focus on extending the QoS definition and asses properties such as but

not limited to work-conservation and energy efficiency. Further on, we leave the exploration

of the QoS properties – prioritization and fairness – under distinct scenarios to future work.

Lastly, the thesis paves way for research regarding the broader exploration of TC and its

qdiscs as modern network demands continue to evolve and grow. We highlight the need for

constant evaluation and development of tools and mechanisms that are designed to balance

performance, overhead and QoS properties in modern-day, scalable and high-speed data

centers.

48

References

[1] Alexandru Iosup, Fernando Kuipers, Ana Lucia Varbanescu, Paola

Grosso, Animesh Trivedi, Jan Rellermeyer, Lin Wang, Alexandru Uta,

and Francesco Regazzoni. Future Computer Systems and Networking

Research in the Netherlands: A Manifesto, 2022. 1

[2] Zili Meng, Tingfeng Wang, Yixin Shen, Bo Wang, Mingwei Xu, Rui Han,

Honghao Liu, Venkat Arun, Hongxin Hu, and Xue Wei. Enabling high

quality {Real-Time} communications with adaptive {Frame-Rate}. In 20th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 23),

pages 1429–1450, 2023. 1

[3] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,

Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel

Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing. Com-

mun. ACM, 53(4):50–58, April 2010. 1, 14

[4] Stefanos Antaris, Dimitrios Rafailidis, and Sarunas Gidzijauskas. A deep

graph reinforcement learning model for improving user experience in live

video streaming. In 2021 IEEE International Conference on Big Data (Big Data),

pages 1787–1796. IEEE, 2021. 1

[5] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu. A

large scale study of data center network reliability. In Proceedings of the

Internet Measurement Conference 2018, pages 393–407, 2018. 1

[6] Amazon Web Services. Amazon Web Services (AWS) - Cloud Computing

Services, 2025. 1

[7] IBM. IBM Cloud | Cloud Computing Services, 2025. 1

[8] Google. Google Data Centers, 2025. 1

49

https://arxiv.org/abs/2206.03259
https://arxiv.org/abs/2206.03259
https://doi.org/10.1145/1721654.1721672
https://aws.amazon.com
https://aws.amazon.com
https://www.ibm.com/cloud
https://datacenters.google

REFERENCES

[9] Zhi-Wei Xu. Cloud-Sea Computing Systems: Towards Thousand-Fold Im-

provement in Performance per Watt for the Coming Zettabyte Era. Journal

of Computer Science and Technology, 29(2):177–181, Mar 2014. 1

[10] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Pad-

hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari

Sridharan. Data center TCP (DCTCP). SIGCOMM Comput. Commun. Rev.,

40(4):63–74, August 2010. 1

[11] International Data Corporation (IDC). Worldwide Cloud IT Infras-

tructure Market Share, 2024. https://my.idc.com/getdoc.jsp?containerId=

US50267124, 2024. Accessed April 18, 2025. 2

[12] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. Beyond soft-

net. In 5th Annual Linux Showcase & Conference (ALS 01), 2001. 2

[13] Jiaxin Lin, Adney Cardoza, Tarannum Khan, Yeonju Ro, Brent E

Stephens, Hassan Wassel, and Aditya Akella. {RingLeader}: efficiently

Offloading {Intra-Server} Orchestration to {NICs}. In 20th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI 23), pages 1293–1308,

2023. 2

[14] National Laboratory for Applied Network Research (NLANR). Na-

tional Laboratory for Applied Network Research, 2025. Accessed April 18,

2025. 2

[15] Hewlett Packard. Netperf: A Network Performance Benchmark, 2025.

Accessed April 18, 2025. 2

[16] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu, Yisong Qiao,

Zhiguo Li, Kun Liu, Jie Lu, Jianyuan Lu, et al. Sailfish: Accelerat-

ing cloud-scale multi-tenant multi-service gateways with programmable

switches. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, pages 194–

206, 2021. 7

[17] Alibaba. Alibaba Cloud, 2025. 7

[18] Zhiyu Zhang, Shili Chen, Ruyi Yao, Ruoshi Sun, Hao Mei, Hao Wang, Zix-

uan Chen, Gaojian Fang, Yibo Fan, Wanxin Shi, et al. vPIFO: Virtualized

50

https://doi.org/10.1007/s11390-014-1420-2
https://doi.org/10.1007/s11390-014-1420-2
https://doi.org/10.1145/1851275.1851192
https://my.idc.com/getdoc.jsp?containerId=US50267124
https://my.idc.com/getdoc.jsp?containerId=US50267124
http://www.nlanr.net
http://www.nlanr.net
https://hewlettpackard.github.io/netperf/
https://www.alibabacloud.com/

REFERENCES

Packet Scheduler for Programmable Hierarchical Scheduling in High-Speed

Networks. In Proceedings of the ACM SIGCOMM 2024 Conference, pages 983–999,

2024. 7

[19] Miquel Moreto, Francisco J Cazorla, Alex Ramirez, Rizos Sakellariou,

and Mateo Valero. FlexDCP: a QoS framework for CMP architectures.

ACM SIGOPS Operating Systems Review, 43(2):86–96, 2009. 14

[20] Robert Braden, David Clark, and Scott Shenker. Integrated services in

the internet architecture: an overview. 1994. 14

[21] Steven Blake, David Black, Mark Carlson, Elwyn Davies, Zheng Wang,

and Walter Weiss. Rfc2475: An architecture for differentiated service,

1998. 14

[22] Inayat Ali, Seungwoo Hong, and Taesik Cheung. Quality of Service and

Congestion Control in Software-Defined Networking Using Policy-Based

Routing. Applied Sciences, 14(19), 2024. 14

[23] Zhao Weibin, D Olshefski, and H Schulzrinne. Internet quality of service:

An overview. Technical Report CUCS-003-00, 2000. 14

[24] Awada Uchechukwu, Keqiu Li, Yanming Shen, et al. Energy consumption

in cloud computing data centers. International Journal of Cloud Computing and

Services Science (IJ-CLOSER), 3(3):31–48, 2014. 14

[25] John Judge, Jack Pouchet, Anand Ekbote, and Sachin Dixit. Reducing

data center energy consumption. Ashrae Journal, 50(11):14, 2008. 15

[26] Huigui Rong, Haomin Zhang, Sheng Xiao, Canbing Li, and Chunhua Hu.

Optimizing energy consumption for data centers. Renewable and Sustainable

Energy Reviews, 58:674–691, 2016. 15

[27] Ralph Hintemann and Simon Hinterholzer. Energy consumption of data

centers worldwide. Business, Computer Science (ICT4S), 2019. 15

[28] Md Abu Bakar Siddik, Arman Shehabi, and Landon Marston. The en-

vironmental footprint of data centers in the United States. Environmental

Research Letters, 16(6):064017, may 2021. 15

51

https://www.mdpi.com/2076-3417/14/19/9066
https://www.mdpi.com/2076-3417/14/19/9066
https://www.mdpi.com/2076-3417/14/19/9066
https://dx.doi.org/10.1088/1748-9326/abfba1
https://dx.doi.org/10.1088/1748-9326/abfba1

REFERENCES

[29] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C. Mogul,

Yoshio Turner, and Jose Renato Santos. ElasticSwitch: practical work-

conserving bandwidth guarantees for cloud computing. In Proceedings of the

ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, page 351–362,

New York, NY, USA, 2013. Association for Computing Machinery. 15, 17

[30] Shuihai Hu, Wei Bai, Kai Chen, Chen Tian, Ying Zhang, and Haitao Wu.

Providing bandwidth guarantees, work conservation and low latency simul-

taneously in the cloud. IEEE Transactions on Cloud Computing, 9(2):763–776,

2018. 15

[31] Zhuotao Liu, Kai Chen, Haitao Wu, Shuihai Hu, Yih-Chun Hut, Yi Wang,

and Gong Zhang. Enabling work-conserving bandwidth guarantees for

multi-tenant datacenters via dynamic tenant-queue binding. In IEEE IN-

FOCOM 2018-IEEE Conference on Computer Communications, pages 1–9. IEEE,

2018. 15

[32] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-

hout. Homa: A receiver-driven low-latency transport protocol using net-

work priorities. In Proceedings of the 2018 Conference of the ACM Special Interest

Group on Data Communication, pages 221–235, 2018. 15, 44

[33] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,

Amin Vahdat, and Masato Yasuda. Less is more: Trading a little band-

width for {Ultra-Low} latency in the data center. In 9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 12), pages 253–266, 2012.

16

[34] Huaizhou SHI, R. Venkatesha Prasad, Ertan Onur, and I.G.M.M.

Niemegeers. Fairness in Wireless Networks:Issues, Measures and Chal-

lenges. IEEE Communications Surveys Tutorials, 16(1):5–24, 2014. 16

[35] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. A quan-

titative measure of fairness and discrimination. Eastern Research Laboratory,

Digital Equipment Corporation, Hudson, MA, 21(1), 1984. 16

[36] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-

hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari

52

https://doi.org/10.1145/2486001.2486027
https://doi.org/10.1145/2486001.2486027

REFERENCES

Sridharan. Data center tcp (dctcp). In Proceedings of the ACM SIGCOMM

2010 Conference, pages 63–74, 2010. 17

[37] Haoyu Wang, Xiaoqian Zhang, Allen Yang, and Bo Sheng. DCTCP-FQ:

Enhancing Fairness and Convergence Time in Data Center Congestion

Control. In 2025 International Conference on Computing, Networking and Com-

munications (ICNC), pages 699–703. IEEE, 2025. 17

[38] Pulkit A Misra, María F Borge, Íñigo Goiri, Alvin R Lebeck, Willy

Zwaenepoel, and Ricardo Bianchini. Managing tail latency in datacenter-

scale file systems under production constraints. In Proceedings of the Fourteenth

EuroSys Conference 2019, pages 1–15, 2019. 17

[39] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. Tales

of the tail: Hardware, os, and application-level sources of tail latency. In

Proceedings of the ACM Symposium on Cloud Computing, pages 1–14, 2014. 17

[40] Gaoxiong Zeng, Li Chen, Bairen Yi, and Kai Chen. Optimizing tail latency

in commodity datacenters using forward error correction. CoRR, 2021. 17

[41] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications

of the ACM, 56(2):74–80, 2013. 17

[42] Kevin Zhao, Prateesh Goyal, Mohammad Alizadeh, and Thomas E. An-

derson. Scalable Tail Latency Estimation for Data Center Networks. In

20th USENIX Symposium on Networked Systems Design and Implementation (NSDI

23), pages 685–702, Boston, MA, April 2023. USENIX Association. 17

[43] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick

McKeown, Balaji Prabhakar, and Scott Shenker. pFabric: Minimal

near-optimal datacenter transport. ACM SIGCOMM Computer Communication

Review, 43(4):435–446, 2013. 17, 43

[44] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang.

PIAS: Practical information-agnostic flow scheduling for commodity data

centers. IEEE/ACM Transactions on Networking, 25(4):1954–1967, 2017. 18, 21

[45] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert NM

Watson, Andrew W Moore, Steven Hand, and Jon Crowcroft. Queues

53

https://www.usenix.org/conference/nsdi23/presentation/zhao-kevin

REFERENCES

{don’t} matter when you can {JUMP} them! In 12th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 15), pages 1–14, 2015. 18, 20

[46] Xiaoqi Ren, Ganesh Ananthanarayanan, Adam Wierman, and Minlan Yu.

Hopper: Decentralized Speculation-aware Cluster Scheduling at Scale. In

Proceedings of the 2015 ACM Conference on Special Interest Group on Data Commu-

nication, SIGCOMM ’15, page 379–392, New York, NY, USA, 2015. Association for

Computing Machinery. 18

[47] Fatima Tul Zuhra, Kamalrulnizam Bin Abu Bakar, Adnan Ahmed Arain,

Khaled Mohamad Almustafa, Tanzila Saba, Khalid Haseeb, and Naveed

Islam. LLTP-QoS: low latency traffic prioritization and QoS-aware routing

in wireless body sensor networks. IEEE Access, 7:152777–152787, 2019. 18

[48] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasi-

nadhuni, Enrique Cauich Zermeno, C Stephen Gunn, Jing Ai, Björn Car-

lin, Mihai Amarandei-Stavila, et al. BwE: Flexible, hierarchical band-

width allocation for WAN distributed computing. In Proceedings of the 2015

ACM Conference on Special Interest Group on Data Communication, pages 1–14,

2015. 19

[49] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen Tian, Hao Wang,

Haibing Guan, and Ming Zhang. Guaranteeing deadlines for inter-

datacenter transfers. In Proceedings of the Tenth European Conference on Com-

puter Systems, pages 1–14, 2015. 19

[50] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam,

Carlo Contavalli, and Amin Vahdat. Carousel: Scalable traffic shaping at

end hosts. In Proceedings of the Conference of the ACM Special Interest Group on

Data Communication, pages 404–417, 2017. 20

[51] Peter P Waskiewicz Jr. Converged Networking in the Data Center. In

Linux Symposium, page 297. Citeseer, 2009. 20

[52] Junxue Zhang, Wei Bai, and Kai Chen. Enabling ECN for datacenter

networks with RTT variations. In Proceedings of the 15th international conference

on emerging networking experiments and technologies, pages 233–245, 2019. 21

54

https://doi-org.vu-nl.idm.oclc.org/10.1145/2785956.2787481

REFERENCES

[53] Soeren Becker, Tobias Pfandzelter, Nils Japke, David Bermbach, and

Odej Kao. Network emulation in large-scale virtual edge testbeds: A note

of caution and the way forward. In 2022 IEEE International Conference on Cloud

Engineering (IC2E), pages 1–7. IEEE, 2022. 21

[54] Tariq Emad Ali, Ameer Hussein Morad, and Mohammed A Abdala. Traf-

fic management inside software-defined data centre networking. Bulletin of

Electrical Engineering and Informatics, 9(5):2045–2054, 2020. 21

[55] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,

Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,

et al. The design and implementation of open {vSwitch}. In 12th USENIX

symposium on networked systems design and implementation (NSDI 15), pages 117–

130, 2015. 21

[56] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang,

and Rachit Agarwal. Understanding host network stack overheads. In

Proceedings of the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page

65–77, New York, NY, USA, 2021. Association for Computing Machinery. 24, 43

[57] Erfan Sharafzadeh, Raymond Matson, Jean Tourrilhes, Puneet Sharma,

and Soudeh Ghorbani. {Self-Clocked}{Round-Robin} Packet Scheduling.

In 22nd USENIX Symposium on Networked Systems Design and Implementation

(NSDI 25), pages 1437–1465, 2025. 24

[58] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. Revisiting

the open vswitch dataplane ten years later. In Proceedings of the 2021 ACM

SIGCOMM 2021 Conference, pages 245–257, 2021. 43

[59] Ashwin Kumar, Priyanka Naik, Sahil Patki, Pranav Chaudhary, and

Mythili Vutukuru. Evaluating network stacks for the virtualized mobile

packet core. In Proceedings of the 5th Asia-Pacific Workshop on Networking, pages

72–79, 2021. 44

55

https://doi-org.vu-nl.idm.oclc.org/10.1145/3452296.3472888

REFERENCES

56

Appendix A

Reproducibility

A.1 Abstract

The artifact includes the benchmarking framework used to evaluate qdiscs on sections

5 and 6. It includes the scripts as well as the obtained raw data and the plots from the

experiments, for different packet lengths, number of clients and varying conditions. The

artifact ensures reproducibility of the results commented on the previous sections, including

the setup and configurations used.

A.2 Artifact check-list (meta-information)

• Program: TC-benchmark (https://github.com/yyyeeettt3/TC-Benchmark)

• How much time is needed to prepare workflow (approximately)?: 15 minutes

• How much time is needed to complete experiments (approximately)?: between
2 and 11 hours (depending on the experiments)

• Publicly available?: The benchmarking framework is publicly available via the GitHub
repository

• Code licenses (if publicly available)?: MIT License

A.3 Description

A.3.1 How to access

All artifacts (the configurations, scripts and data) are available in the public GitHub

repository (https://github.com/yyyeeettt3/TC-Benchmark)

57

https://github.com/yyyeeettt3/TC-Benchmark
https://github.com/yyyeeettt3/TC-Benchmark

A. REPRODUCIBILITY

A.3.2 Hardware dependencies

The hardware is expected to have multiple cores (more than 4) and a high-speed NIC

(our experiments reach 50Gbit/s bandwidth).

A.3.3 Software dependencies

The benchmarks are designed to be run on the following (or compatible) dependencies:

• Ubuntu Linux 20.04+

• Kernel version 5.12.01

• iperf3 version 2.10.0

• netperf version 2.6.0

A.4 Experiment workflow and Customization

Experiments can be found under /experiments, making our evaluations in section 5

and 6 replicable. For any script, modifying the QDISCS and QDISCS_SETUP within the files

allows the addition (or removal) of qdiscs (additional setup files are needed for qdiscs which

are note evaluated previously). Additionally, the scripts are modifiable in terms of packet

length, number of clients, number of repetitions and tool configurations, which can all be

modified via the script files, as described in README.md.

The scripts can be executed as ./name-of-the-script. After executing the scripts the

files, results are saved under /replicated_results, whereas our obtained results are under

results. Additionally, we include our plotting scripts saved under /processing.

A.5 Evaluation and expected results

The results when our experiments are replicated should be similar to our results in section

5 and 6. However, different setups, both in terms of hardware or software could impact

the results.

58

	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Research Methodology
	1.4 Thesis Contributions
	1.4.1 Conceptual
	1.4.2 Artifact
	1.4.3 Experimental

	1.5 Plagiarism Declaration
	1.6 Thesis Structure

	2 Background
	2.1 Networking in Data Centers
	2.2 TC in the Linux Networking Stack
	2.3 The qdiscs in TC

	3 Survey on Network QoS and TC Usage
	3.1 Method for the Survey
	3.2 Defining Network Performance QoS
	3.3 Understanding the Use of TC
	3.4 Summary

	4 Experimental Setup
	4.1 Hardware
	4.2 System Configuration
	4.3 Software
	4.4 Performance Metrics
	4.5 Qdiscs

	5 Measuring TC Performance Overhead
	5.1 Method to Evaluate Performance Overhead
	5.2 Bandwidth and CPU Overhead
	5.3 Latency Overhead
	5.4 Summary and Key Findings

	6 Measuring QoS Properties
	6.1 Method for Measuring QoS Properties
	6.2 Tenant Prioritization
	6.3 Fairness
	6.4 Summary and Key Findings

	7 Reporting Negative Results and Limitations
	7.1 Negative Results
	7.2 Limitations

	8 Related Work
	9 Conclusion
	9.1 Answering Research Questions
	9.2 Future Work

	References
	A Reproducibility
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.3.1 How to access
	A.3.2 Hardware dependencies
	A.3.3 Software dependencies

	A.4 Experiment workflow and Customization
	A.5 Evaluation and expected results

