
Vrije Universiteit Amsterdam

Bachelor Thesis

Design and Evaluation of a Cloud
operated Storage System for

Minecraft-like Games

Author: Yann Regev (2616577)

1st supervisor: ir. Jesse Donkervliet
daily supervisor: ir. Jesse Donkervliet
2nd reader: Prof. dr. ir. Alexandru Iosup

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 12, 2020

Abstract

The video game industry is immensely large, grossing over $150 billion dollars in
revenues in 2019. Video game servers require high performance machines to operate,
this poses financial issues for small game companies. Minecraft is a voxel-based game
allowing players to modify a MVE by mining and placing blocks to build structures.
Minecraft-like games and MVEs, offers players an endless virtual world to explore and
modify. This, combined with the large number of player, provides motivation for scal-
ing the games storage. To address these challenges, this thesis presents the design of
a cloud-operated storage service for Minecraft-like games. To evaluate the system, we
conduct real-world experiments. Our results show that using cloud operated storage
reduces local storage usage, and can read and write game data from cloud operated
storage while meeting the QoS required by MVEs. This system provides a first step
to turn Minecraft-like games from monolithic to serverless architectures.

2

Contents

1 Introduction 4
1.1 Problem statement . 4
1.2 Main contributions . 5
1.3 Thesis structure . 5

2 Background 6
2.1 Modifiable virtual environments . 6
2.2 Serverless computing . 8

3 System design 9
3.1 System requirements . 9
3.2 Design overview . 10
3.3 Layered storage design . 11
3.4 System parameters . 11
3.5 External tools . 12

4 Experimental setup 14
4.1 Environment . 14
4.2 Yardstick . 14
4.3 Workload . 14
4.4 Data collection . 15

5 Experimental results 16
5.1 World storage parameters results . 17
5.2 Latency hiding policies . 18
5.3 Related work . 18

6 Conclusion 18

7 Future work 19

3

1 Introduction

Online computer games are a billion dollar per year industry [10], with millions of players
enjoying video games across the globe. The sizable community, consuming video games
regularly, has brought with it a large and thriving market for video games.

With over a 176 millions copies sold, Minecraft is one of the most popular games of all
times [13]. It offers players an effectively infinite and modifiable virtual world and defines
no specific objectives, allowing players a large amount of freedom when choosing how to
play the game. Minecraft is a voxel-based game, consisting of 3D blocks which represent
different elements such as dirt, stone, ores, tree trunks, water, and lava. Players play the
game by mining and placing blocks to build structures.

Minecraft offers online multiplayer sessions through LAN, local split-screen, game as a
service, and servers self-hosted by private owners and businesses. Existing deployments of
Minecraft servers do not scale well, requiring more resources to support more players [15].

Because of the poor scalablity of Minecraft-like games, only big companies can afford
the activity of hosting Minecraft-like game servers. Therefore, alternative and cheaper
solutions are sought to make this activity more affordable and available.

To scale the game, J. Donkervliet et al. [14], present a vision of scaling Modifiable Virtual
Environments (MVEs) using serverless and cloud computing. Serverless computing is a
type of cloud computing service which allows users to run event-driven applications where
users pay for the resources utilized, and the operational logic is hidden from the user [7].
Furthermore, resource capacity is potentially much larger than privately owned hardware.
Therefore, we conjecture that it can provide a solution to the scalability of data storage
issues of Minecraft and Minecraft like games. Using serverless computing offers several
advantages. Firstly, the resources are managed by the cloud provider. Secondly, the clients
pay for the resources they use. Lastly, when the server is split to services it becomes more
modular and therefore easier to add and maintain features.

Despite growing usage of serverless computing, the latency and performance of these
services remains poorly documented. Low latency is a key requirement for playing online
games. While the low latency requirements in games such as real-time strategy and RPG
games is linear, in first-person games like Minecraft requiring high precision, the perfor-
mance in precision and accuracy decreases in an exponential decay with a sharp drop
in accuracy at around 100ms [2]. This shows that game-play experience degrades most
noticeably in games with avatar game-model especially in the first-person perspective.
Therefore, the possibility of running real-time systems using serverless technology remains
unknown.

1.1 Problem statement

MVEs offer players an endless virtual world to explore and modify. Using procedural
generation, the game creates world data as players explore the world [4]. In addition,
Minecraft creates data such as location, items, experience level, and appearance of every
player that has joined the server. Minecraft’s monolithic architecture poses scalability
challenges for data storage, due to the game data being stored locally, building up as more
content is created.

In this thesis, we propose a new system that uses cloud operated storage instead of

4

traditional local storage for Minecraft-like games. We believe that using cloud operated
storage will reduce the upfront storage required by self-hosted server owners, and will
therefore make it more affordable to maintain privately owned server.

The challenge of using cloud operated storage is to meet the QoS required for MVEs.
MVEs require data availability and consistency. Data stored in local storage, is quickly
available to the game server. On the other hand, cloud operated storage latency remains
poorly documented. However, because it relies on network latency and bandwidth, it is
safe to assume that accessing files on cloud operated storage is much slower than locally
stored files. In addition, cloud operated storage systems often exhibit eventual consis-
tency [1]. This means the server may read stale data from the cloud, and data consistency
is only eventually guarantied. There is no research on how this can affect QoS of MVEs.
Therefore, the effects remain unknown.

This thesis, aims to examine the performance of using the cloud operated storage to store
the world data of a Minecraft server, while meeting the QoS required. This project offers
to give insight on the possibility of running Minecraft as serverless systems. This thesis
designs and evaluates a cloud-based storage system for Minecraft. The main research
questions of this project are:

1. How to design a cloud operated storage service for serverless Minecraft-like games
or MVEs, and how to meet the Quality of Service required for such games?

2. How to allow the user (game developer) to fine-tune the systems behavior, to trade-
off local storage and network usage to meet their specific requirements?

3. How to evaluate the performance of such a system?

By addressing these points, we hope to give insight on the possibility of running Minecraft
and Minecraft-like games on serverless platforms with relative ease, and at a fraction of
the cost of conventional platforms.

1.2 Main contributions

The main contributions of this paper are:

MC1 The Design and implementation of a Minecraft server using cloud operated persistent
storage, that allows developers to trade-off local storage and cloud storage.

MC2 The evaluation of this system, by conducting real-world experiments.

1.3 Thesis structure

The remainder of the thesis is structured as follows. Section 2 gives background informa-
tion about Minecraft-like games and MVEs, and serverless computing. Section 3 presents
a design of a cloud operated persistent storage system for Minecraft-like games, and de-
scribes its requirements. Sections 4 and 5 describe the setup of the experiments, the tools
and environment that were used, and the analysis of the results.

5

2 Background

This section elaborates on the architecture of Modifiable Virtual Environments (MVEs),
and on the persistent storage model of Minecraft and the scalability issues that exist in
the current model. Section 2.1 explains what a Modifiable Virtual Environment is, the
different elements that comprise the Minecraft universe, and the entities that exist in the
game. In addition, the current storage model of the game, and the problem that arises
from it. Section 2.2 discusses the background about serverless computing.

2.1 Modifiable virtual environments

Modifiable Virtual Environments (MVEs) are real-time, online, multiplayer environments
which allow users to modify the world’s parts, create new content by combining different
components, and interact with the world through programs [5]. MVEs typically use a
client server architecture, where the user runs a client which send and receive continuous
updates between the user and the server. The server simulates the changes to the world
and sends the new state to all the clients. The clients hold a cache of the surrounding of
the avatar. The client can interact with the world by performing various different MVE
actions (e.g. mining blocks, crafting items). Changes to the world are simulated locally
while also sent to the server, this is done to give the user a hide latency from the user.
The server is typically a multi-threaded monolithic application that has several important
roles. Firstly, to keep a persistent copy of the different game states, this includes world,
player locations, inventories, and world metadata (weather, time of day, etc.). Secondly,
it simulates changes in the world such as Non Playable Characters, and world events
(weather, time). Lastly, as players explore the world, the server dynamically generates
newly explored areas of the world.

2.1.1 Minecraft worlds

Minecraft comprises three different worlds: the over-world, the nether, and the end. The
over-world is the dimension where all players begin their journey. It is divided in biomes
which determines the characteristic of the terrain inside it. The biomes type also deter-
mines the weather, mobs, and size existing inside of it. The nether is a dangerous hell-like
dimension. To access this dimension players must construct a portal that will allow them
to travel between the dimensions. The reason players would typically want to access this
dimension is to gather resources which do not exist elsewhere. The nether is a cave-like
location filled with lava, fire, and dangerous monsters. The end is a dark space-like dimen-
sion consisting of separate islands. To access this dimension players must find a special
location in the world where they can construct a portal. The end consists of one large
island surrounded by several smaller islands. In order for the player to travel back to the
over-world the player must die or defeat a monster called the end dragon. The worlds
are divided into smaller pieces. A world is comprised of innumerous amount of regions,
regions are comprised of 32x32 chunks, a chunk is comprised of 512x512 blocks. Figure 1
depicts the structure of a region.

6

Figure 1: Representation of the Minecrafts world mapping.

2.1.2 Players

Players are controlled by client software. They can modify the world by “mining” blocks
and placing them elsewhere to build things, players can also craft items by combining
different blocks together.

In order to store blocks and other items each player has an inventory consisting of 27
storage slots, in addition there are eight slots called quick-bar for quick access. When a
player logs out of the server information about the players such as location, inventory,
avatar, and equipped items are stored in persistent memory in a unique player data file.

2.1.3 Non playable characters

Non playable characters (NPCs), also known in Minecraft as mobs, are “living” entities
which are affected by the world in a similar way that a player is. Mobs can be divided
into three different categories: passive, neutral, and hostile. Passive mobs are harmless
to players and will not attack back if provoked. This type consists of livestock, villagers,
and fish. Neutral mobs will only attack when they are provoked. Hostile mobs will attack
players when he is in a certain range. Mobs existing on chunks that have been offloaded
from the game-loop are stored in persistent memory and remain unchanged until they are
loaded again.

2.1.4 Storage model

Minecraft generate the content of the world dynamically and stores the data that is created
for current and future use on the servers local storage, this includes both player data, and
world data. The server includes a cache where locations recently visited by players are
loaded. This means that the more players join and explore the world the more content is
created, and the more capacity is needed to store the data.

7

2.2 Serverless computing

Serverless computing is a form of cloud computing which allows users to run event driven
operations and pay for the execution time and resources used [8]. This allows developers
to focus on high level abstractions, leaving the lower end such as hardware and supporting
services to be mapped by the cloud operators. Serverless computing adheres to three
principles

1. Operational logic is hidden from the user.

2. Users only pay for the resources they utilize.

3. The computational model is event driven [7].

Due to high cost, software used to be developed as monolithic architecture to fit on
one server. However, this meant that every change to the code could bring the entire
server down. Serverless computing, brought a change due to the ability to provision
resources, lowering prices. Developers now had the possibility to build applications as
microservices where each service is made into Functions-as-a-Service (FaaS) [6]. A function
is an executable code that runs on demand with the arrival of an event [11]

2.2.1 Cloud operated persistent storage

Cloud operated persistent storage is a type of serverless computing which has three im-
portant properties. It should not provision its users, storage should scale to fit without
user intervention, and the user should pay for the amount of data stored and amount
of requests made. When using traditional storage, over-provisioning is the only method
available to prepare for traffic spikes. The elasticity of Cloud operated storage provides
a solution for over-provisioning. In addition, by paying only for the resources utilized,
the cost scales with storage used, preventing the users paying for unused storage, unlike
traditional storage.

Amazon S3, is a cloud based persistent storage. S3 is expected to offer low data-
access latency, 99.999999999% durability per object, 99.99% availability, and eventual
consistency. Since its launch, S3 has acquired a large range of costumers for private users
to small and large businesses [?]. Charging for S3 is based on storage volume, and per
requests and data retrieval.

S3 organizes user data in buckets. Each bucket can store an unlimited amount of objects.
Each object has a name, data, and metadata.

Evaluation of Amazon S3 by M. Palankar et al. [12], show that S3 has data durability
and high availability. However, D Bermach et al. [1] show that S3 eventual consistency
can lead to inconsistencies in data. To the best of our knowledge, limited research has
been done on incorporating Cloud operated storage in Minecraft-like games.

8

Serverless storage

World data

Player data

Minecraft server

Minecraft client

Networking

Virtual world
data

World cache
(Memory)

World
generator

Cloud operated storage

Serverless
Interface

Player data
cache

Game loop

World data
- Overworld chunk files
- Nether chunk files
- End chunk files

Player data
- Location
- Inventory
- Experience level

Message MessageData

Existing Modified Added

Local
storage
(Disk)

Legend

Figure 2: Cloud operated storage model

3 System design

This section presents a design of a serverless/cloud-based persistent storage system for
Minecraft-like games. Section 3.1 describes the requirements of the system, and of the
cloud operated storage. Section 3.2 describes the design of the Minecraft server with
Cloud operated storage, and presents the layered storage design of the system. Section 3.3
Describes the layered storage design used in the system. Section 3.4 Describes the system
parameters adjustable by the user, how they affect storage and network use, and how they
can be used by developers. Section 3.5 Describes the external tools used in the system.

3.1 System requirements

This section, gives the requirements that need to be met for this system to be a viable
solution to the scalabily issues of Minecraft-like games.

R1 Enable running MVEs on devices with limited storage.

R2 Hide read/write latency from the user.

R3 Must read chunks from cloud operated storage before they are in a players view port.

For Cloud operated storage to provide a viable solution for Minecraft-like game storage
it must provide the following:

• Durability: Loss of data is costly or even unacceptable as players might lose progress
they have made.

9

• Availability: Player must have access to all the world and their individual player
data. Therefore, world data and player data must be available at any given time.

• Performance: If data retrieval is too slow, players might experience missing chunks
in the world leading to lose of immersion. Therefore, fast data access is an important
feature.

• Consistency: Players sharing the same world must see the same world and experience
the same events. Therefore, consistency in data between players is important.

3.2 Design overview

This subsection describes the changes made to the server to support storage on c.loud
operated storage. One of the biggest changes to the server is turning the storage system
into a layered design. Figure 2 illustrates the different layers, the new components are
shown in green. The first layer is the cloud operated storage, this layer hold data that is
currently unused by the server. The serverless interface is the gate to request files, the
interface determines if the file exists locally or on the cloud and retrieves the file to the
server if it exists. The second layer is the local cache, this layer holds data for a specified
integer time after it has been closed by the server. When the time has elapsed, the file is
written to the online storage. The third layer consists of the player and world cache, this
layer hold files currently read or written to by the server. The server cache holds the files
for a specified integer amount of time. When the timer has expired the file is closed and
kept in the local storage cache.

3.2.1 World data storage

The world data is currently stored in region files which hold 32x32 chunks, the server
opens the entire region file for editing while it loads the individual chunks when in the
proximity of players, this causes more data to stay locally while it could be stored on cloud
storage. By splitting up region files to their individual chunk it will therefore be possible
to decrease the amount of local storage required. Figure 2 shows the caching layer between
the storage and the server is in place in order to reduce loading time for areas that are
currently or have been recently explored by players. When a player reaches a chunk that
is not currently loaded, the cache layer is searched for the chunk. When a cache miss
occurs the cloud storage is searched for the existence of the file. If the file exists its data
is downloaded to the cache and loaded into the game

3.2.2 Player data storage

Player data consist of the current location of the player, the contents of his inventory,
and the players current experience points. The file should be modulated into different
components, some components are always displayed to the player and cannot be unloaded,
but other less frequently accessed data should be stored in cloud storage and moved to
the cache and loaded to the server once the player accesses it.

10

Persistent Serverless storage
(Cloud)

Local storage
(Disk)

Server cache
(Memory)

Level 2
Cheapest

large and scalable

Level 0
Fastest

most expensive

Level 1
Expensive

limited in size

Microseconds

Milliseconds

Seconds

Figure 3: Layered storage design.

Player view port

Loading distance

Legend: Offloaded/ungenerated region

Player

Region being read Loaded region

Figure 4: Depiction of the adjustable pa-
rameter loading distance.

3.3 Layered storage design

The system is designed to have a layered storage shown in Figure 3. Level 0 is the server
cache, it exists in the servers memory and therefore the fastest to access, this level of
storage contains files currently being observed and modified by users. It is the most costly
level as it requires memory and storage, and it increases searching time in the cache.
Level 1 is local storage, files in this storage have a caching time after being offloaded
from the server cache. This level offers quick access to files, however high caching times
will increase reliance on local storage. Level 3 is the Cloud operated storage. This level
is the slowest to access but has a large cheap storage space. Files on Cloud operated
storage await unmodified until required by the server. Level 0 and level 1 have a caches
and therefore have adjustable caching time. The trade-off of adjusting the caching time is
between reliance on local storage and latency.

3.4 System parameters

There are three parameters modifiable by the host. They are adjustable to set the trade-
off between local storage reliance and the cloud storage latency, to compensate for high
latency or small storage space. The first parameter, is the integer time of the world cache.
This parameter lets the developer adjust the amount of time region files exist in the server
cache. When a region file is loaded to the server the cache timer starts, when it expires the
file is closed from the game and moved to local storage. Changing this parameter allows
the host to adapt the behavior for the amount of memory and local storage available,
which corresponds to R1, longer times will require more memory and storage but might
be preferable when the network has high latency. The second parameter, is the integer
time of the local storage cache. This parameter lets the developer adjust the time a file
exists on the servers local storage, when the timer expires the file is written to cloud
storage and removed from local storage. Longer times will increase the local storage use
but in the case the network has high latency or the cloud operated storage has high reading
times, this corresponds to R1. The third parameter, is the distance from the player the
world files are read from cloud operated storage. Figure 4 depicts the distance port, and

11

the different stages of the regions before being displayed to the user. This parameter
lets the developer decide on the optimal distance from a player for a chunk to be read
from cloud storage to local storage. Based on the reading speed from cloud storage, this
parameter should be modified in order for the players not to experience missing chunks
or corrupt data. These parameters address the requirements by giving flexibility to the
game developer to allowing the trade-off between local storage or network reliance, this
corresponds to R2, and R3.

3.5 External tools

This subsection gives details about the external tools used in the system. Section 3.5.1
gives information about the Glowstone server and the modification required for it to work
with cloud operated storage. Section 3.5.2 gives information on Amazon S3 cloud operated
storage, and gives some example code used in the system.

3.5.1 Glowstone adaptation

Glowstone is an open source lightweight minecraft server written from scratch. Its main
goal is to provide a lightweight implementation of the bukkit API1 , its simplicity affords
it a performance improvement over the original software Minecraft provides. Glowstone
creates the first four regions of each world when the server is first started. The different
worlds are generated with the use of a seed, it is an integer which represents a starting
point for the world generation formula. It provides a thread per world model and provides
synchronization only when required by the bukkit API.

The Minecraft server region file class is adapted to work with cloud operated storage.
There are two main changes to enable the use of cloud operated storage while still main-
taining QoS. The Minecraft server is modified to work with cloud operated storage. One
of the changes was adding the ability to load and unload region files from local storage
to the cloud, this is done in the serverless interface. to determine whether a file can be
safely uploaded to cloud storage, the server determines the distance of the players from
the region and whether further changes should be made to the file. To determine if a file
should be read from the cloud, every pulse the players position was evaluated and when
sufficiently close, the file is retrieved to local cache where it could be used by the server.
Another change is the addition of a player chunk distance measurement (Loading-port)
shown in Figure 4. This was necessary to be able to hide the reading time from the cloud.
This measurement was used to load a chunk at distance greater than the players field of
view to avoid reading missing chunks or corrupt data.

1 if (!path.exists() && s3.doesObjectExist(bucketName, fileName)) {

2 S3Object object = s3.getObject(new GetObjectRequest(fileName));

3 FileUtils.copyInputStreamToFile(object.getObjectContent(), path);

4 }

Listing 1: Querying and reading a file from S3

1https://bukkit.gamepedia.com/Main_Page

12

https://bukkit.gamepedia.com/Main_Page

1 for (int x = centralX - radius * distance; x <= centralX + radius *

distance; x++) {↪→

2 for (int z = centralZ - radius * distance; z <= centralZ + radius *

distance; z++) {↪→

3 File f = new File(filename + (x >> 5) + "." + (z >> 5) + ".mca");

4 if ((!f.exists()) && (s3.doesObjectExist(bucketName, filename))) {

5 try {

6 f.createNewFile();

7 final int x1 = x;

8 final int z1 = z;

9 new Thread(() -> {

10 try {

11 S3Object object = s3.getObject(new

GetObjectRequest(bucketName, filename));↪→

12 FileUtils.copyInputStreamToFile(object.getObjectContent(),

f);↪→

13 } catch (IOException e) {

14 e.printStackTrace();

15 }

16 }).start();

17 } catch (IOException e) {

18 e.printStackTrace();

19 }

20

21 }

22 }

23 }

Listing 2: Distance-port, and reading from S3

3.5.2 Amazon S3

Amazon S3 uses the AWS-SDK for program integration. The SDK uses a simple key-value
store objects, these object are stored in one or more buckets. An object consists of a key,
value, and metadata. AWS has worldwide servers, therefore the region wished to be used,
needs to be set on the s3 client. For this project the region chosen is EU-central. Then,
a bucket is created for the server to hold the world data, and a folder is created for each
of the three worlds. Once the setup is complete, the region files can be written to S3.
Listing 1 shows how a region file is read from S3 if it does not exists locally. Listing 2
shows how the distance-port cycles through the chunks near the player and determines if
a region file needs to be requested from S3, and starts a downloading thread if needed.

13

Property Value

OS Windows 10 Home
CPU Intel core i7-4510U 2.0GHz
Disk Toshiba mq01abd100
Network 40Mb/s
RAM 16GB DDR3
Glowstone 1.12
aws-java-sdk 1.11.465

Table 1: Specification of the machine

4 Experimental setup

One of the fundamental ideas of this project is to give the ability to run Minecraft servers
on affordable machines. Therefore, for the experiment a local affordable machine was
used. Section 4.1 describes the specification of the machine used for the experiment, and
the tools and their versions. Section 4.3 describes the workload used in the experiments
in order to evaluate the performance of the system. Section 4.4 describes how data was
collected from the experiments to visualize and analyse the results.

4.1 Environment

Table 1 shows the specification of the machine used to run the experiment, in addition the
table shows the Glowstone, and Amazon AWS software development kit that were used
for the experiment. The modified Glowstone and yardstick were run on the machine to
prevent network issues between the client and user to affect the experimental work.

4.2 Yardstick

Yardstick is a benchmarking tool for Minecraft-like games [15]. It provides a framework
that subjects a Minecraft server to workloads determined by the virtual world and a set
of bots that simulate real player behavior. Yardstick monitors both the machine and the
application running the emulated players. It is comprised of three main components, the
server and API’s, the player emulation, and the monitoring and logging tool. For this
project, a customized player behavior was written for yardstick to add the ability for
players to fly in a straight line in the map.

4.3 Workload

The first experiment was conducted to test the difference in local storage use, when cloud
storage was used to store files not currently used by the server, and when only local storage
was used. The experiment used a newly initialized server with no generated region files.
Yardstick was used to simulate two players joining the server and flying straight in two
opposite directions to generate as much terrain as possible. This experiment was repeated
thirty time, in thirty minutes intervals to see the variance and consistency of the storage
usage. The Glowstone cache was set to one minute to minimize the amount of unused

14

files stored, the local cache was set to thirty seconds before writing to cloud storage
and removing the local copy. The second experiment was conducted to test different
latency hiding policies. This involved using the distance measurement added to Glowstone.
Glowstone has a default view-port of eight chunks from the player which makes it a critical
distance, if a chunk is fully read less then eight chunks away from a player, the player will
experience missing chunks and possibly corrupt data. The experiment involved testing
three different distances from the players, the values tested were 24, 32, and 40 chunks
on the x and z axis in a square area. When a chunk was in this range from a player it
was read from cloud storage. For this experiment, the game server was initialized with
region files where the bot will visit generated and stored on the cloud, yardstick was used
to create one bot to fly in the area of already generated regions. A server cache time of
one minute was used, and a local cache of thirty seconds.

4.4 Data collection

To collect the data from the experiments, a script written in Python, and a logger written
in Java and incorporated in the server to log certain events such as request made to the
cloud, and reading and writing time to the cloud.

For the first experiment, the folder containing the world’s region files was sampled every
minute. The first measurement was a cumulative measurement, the second was periodic
measurement. The cumulative measurement logged the total sum of data generated by
the server. The periodic measurement logged the amount of data currently in the folder.
The data was plotted in a graph to show the difference in storage usage between the two
approaches.

Data collection for the second experiment used the log generated by the server which
included the players location, and the chunk location to determine the distance between
them when the region file containing the chunk was fully read from cloud storage. The local
storage size was measurement using the periodic measurement script from first experiment.
The data was plotted on two separate plots. The first is a CDF showing the distance in
chunks between the player and chunk read from the cloud. The second is a graph showing
the amount of local storage used.

15

5 Experimental results

The section discusses the experiment results obtain from both experiments. Our main
findings are:

MF1 Local storage use is reduced when using cloud operated storage to store currently
unused files.

MF2 Adjusting the parameters allows to make a trade-off between local storage and net-
work reliance.

MF3 Using latency hiding policies it is possible to hide the reading time from cloud storage
from the users.

0 5 10 15 20 25 30
Time (Minutes)

0

20

40

60

80

100

120

140

160

M
eg

ab
yt
es

Without cloud storage
With cloud storage

Figure 5: The amount of data in Megabytes in local storage when using only local storage
and when using cloud storage. The faded curves indicate runs of the experiment, and the
solid curve indicates the mean result.

Figure 5 shows the result of the first experiment. Because of variance in results, the
experiment was conducted with thirty iterations of thirty minutes and shows the difference
in local storage usage with and without cloud storage. The faded lines show the results of
the iterations, and the thicker lines show the mean of the results. The vertical axis shows
the amount of world data stored in local storage in Megabytes. The horizontal axis shows
the progression over time. The results show that while there is a similar increase within
the first twelve minutes of the experiment, the graph shows a downwards trend in local
storage use as the experiment progresses. The graph shows local storage use grows linearly
when more parts of the world are generated. When using cloud storage the Figure shows
a wave pattern where local data usage increases when new content is generated before
offloading unused regions to the cloud, which creates the pattern seen.

16

0 5 10 15 20 25 30 35 40 45 50 55
Distance (Chunks)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Loading distance of 24 chunks
Loading distance of 32 chunks
Loading distance of 40 chunks

Figure 6: CDF plot showing the distance of
the player from a chunk when the read from
cloud storage is completed. The blue color
represents a loading distance of 24 chunks.
The orange color represents a loading dis-
tance of 32 chunks. The green color repre-
sents a loading distance of 40 chunks.

0 5 10 15 20 25 30
Time (Minutes)

100

150

200

250

300

M
eg

ab
yt
es

Loading distance of 40 chunks
Loading distance of 32 chunks
Loading distance of 24 chunks

Figure 7: Shows the amount of local stor-
age used in experiment two. The blue color
represents a loading distance of 24 chunks.
The orange color represents a loading dis-
tance of 32 chunks. The green color repre-
sents a loading distance of 40 chunks.

The results of experiment two are shown in Figure 6 and Figure 7. Figure 7 shows
the distance in chunks between a player and a chunk when its corresponding region file
has been fully read from cloud storage. The horizontal axis, shows the distance in chunks
between the player and the chunk, when the region file containing the requested chunk was
fully read from S3. The vertical axis shows the fraction of data. The Figure shows that
while there are a few exceptions, especially very close to the player, the larger the loading
distance from the player, the further away the chuck are fully read. The minimal loading
distance was 13, 14, and 15, respectively, and the maximal 41, 49, and 60, respectively.
The view-port was at a distance of 8 chunks away. Therefore, the results show that all
distances were successful in hiding the reading time from cloud storage. Figure 6 is linked
to Figure 7. It shows the amount of local storage that was required for the different values
of the distance-port. The vertical axis shows the amount of data stored in local storage
in Megabytes. The horizontal axis shows the progression in time. The results show that
the larger the loading distance from the player the larger the amount of data required in
local storage. However, this also gives more time for chunks to be fully read from cloud
storage. This is favorable when network latency is high, but will require more available
storage.

5.1 World storage parameters results

The results from experiment 2 shown in Figure 6 and Figure 7, show that all the policies
have successfully managed to fully read the regions required by players before they are
within viewing distance. This is good results, the implication of this, is players do not
experience missing chunks caused by the cloud operated storage latency. Figure 7 shows,
that changing the loading port range changes the distance files are fully read from cloud

17

operated storage. Figure 6 shows the change in local storage reliance by using different
loading port distance. The amount of reads from cloud storage has increased with the
loading distance, for a distance of 24 an average of 63 reads were made, for a distance 32
an average of 109 reads were made and for a distance of 40 an average of 130 requests were
made. The increase is due to more region files required for the same duration as more
distant chunks are required. However, the fact that more files are loaded further away
allows more time for these files to be fully read, this is useful when having high network
latency. These results show that changing the loading port distance grant developers the
choice between local storage and cloud operated storage reliance. This is useful when
developers are working with limited storage space, or high latency networks.

5.2 Latency hiding policies

The results in Figure 6 and Figure 7, show that all the policies used in the experiment
were successful at hiding the reading time from cloud storage. The players view port was
set to eight chunks away, while the closest chunk was loaded at a distance of 13 chunks
away. However, network latency can change with factors such as distance from the cloud
storage servers and network activity. Therefore, this numbers might not always be true
for the same workload, it is therefore important to measure the network speed and latency
based on the server location and the cloud operated storage being used and adjust the
parameters accordingly.

5.3 Related work

This thesis proposes one way of scaling Minecraft-like games using serverless computing.
Other methods to increase scalability are being researched. Peer-to-peer or hybrid ar-
chitectures offer to support a large amount of players however they suffer draw backs of
cheating and limited bandwidth [16]. P. Kabus et al [9] suggest in their paper a spectrum
of options that might solve the cheating issues that arise in peer-to-peer systems. Many-
craft [3] increases the scalability of a single Minecraft instance to 1,000 players in a static
world.

6 Conclusion

Minecraft-like games do not scale well and require large high-performance machines to
maintain operations. This poses a challenge for small game studios or private server owners
as the upfront and operational cost is high. Serverless computing, offers a solutions for the
high cost required, this is due to users only paying for the resources utilized. In addition,
serverless computing resource capacity is larger then privately owned hardware, therefore
it can provide a solutions to Minecraft-like games scalability issues.

The results of the experiments show, that when using cloud operated storage the amount
of local storage required stays stable while the amount of data without serveless grows
linearly. The results also show that by employing policies that read chunks further than
the view port of the player, it is possible to hide the latency of the cloud operated storage
reading time from the user. However, the latency of the cloud operated storage depends
on several factors such as distance from the server, and network speed. To ensure optimal

18

work of the cloud operated storage with Minecraft-like games it is necessary to adjust the
parameters to fit the host’s situation.

7 Future work

This work tested several latency hiding policies. However, many such policies can still be
tested to reduce network activity while still keeping the local storage use at a minimum.
Some of the policies that can be tested are, reconsigning player hot-spots, portal locations,
and locations hidden from player view such as by mountains. In addition, this paper
only reviewed and benchmarked the Amazon S3 cloud operated storage. Many different
cloud operated storage solutions are available and benchmarking them might yield better
result, and will give more flexibility to developers. Another important work, is performing
experiments and gathering feedback from real players, this can add more depth to the
results and add data that cannot be collect by using bots.

This system is just the first stepping stone in to what will hopefully become a fully
serverless system, where terrain is generated by serverless event-driven platforms, and
NPCs are controlled by serverless containers.

19

References

[1] David Bermbach and Stefan Tai. Eventual consistency: How soon is eventual? an
evaluation of amazon s3’s consistency behavior. 2011.

[2] Mark Claypool and Kajal T. Claypool. Latency and player actions in online games.
Commun. ACM, 49(11):40–45, 2006.

[3] Raluca Diaconu, Joaqúın Keller, and Mathieu Valero. Manycraft: Scaling Minecraft
to Millions. In NetGames, pages 1 – 6, 2013.

[4] Jesse Donkervliet, Animesh Trivedi, and Alexandru Iosup. Towards supporting mil-
lions of users in modifiable virtual environments by redesigning minecraft-like games
as serverless systems. In Proceedings of the 12th USENIX Conference on Hot Topics
in Cloud Computing, 2020.

[5] Jesse Donkervliet, Animesh Trivedi, and Alexandru Iosup. Towards supporting mil-
lions of users in modifiable virtual environments by redesigning minecraft-like games
as serverless systems. In 12th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 20), 2020.

[6] Erwin Van Eyk, Alexandru Iosup, Johannes Grohmann, Simon Eismann, André
Bauer, Laurens Versluis, Lucian Toader, Norbert Schmitt, Nikolas Herbst, and
Cristina L. Abad. The SPEC-RG reference architecture for faas: From microser-
vices and containers to serverless platforms. IEEE Internet Comput., 23(6):7–18,
2019.

[7] Erwin Van Eyk, Joel Scheuner, Simon Eismann, Cristina L. Abad, and Alexandru
Iosup. Beyond microbenchmarks: The SPEC-RG vision for a comprehensive serverless
benchmark. In Companion of the 2020 ACM/SPEC International Conference on
Performance Engineering, ICPE 2020, Edmonton, AB, Canada, April 20-24, 2020,
pages 26–31, 2020.

[8] Erwin Van Eyk, Lucian Toader, Sacheendra Talluri, Laurens Versluis, Alexandru Uta,
and Alexandru Iosup. Serverless is more: From paas to present cloud computing.
IEEE Internet Comput., 22(5):8–17, 2018.

[9] Patric Kabus, Wesley W. Terpstra, Mariano Cilia, and Alejandro P. Buchmann. Ad-
dressing cheating in distributed mmogs. In Proceedings of 4th ACM SIGCOMM
Workshop on Network and System Support for Games, page 1–6, 2005.

[10] Newzoo. Newzoo. 2016 global games market report. annual report of trends, insights
and projections for the global games market. 2016.

[11] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. SOCK: rapid task provisioning
with serverless-optimized containers. In 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, pages 57–70, 2018.

[12] Mayur Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel. Amazon
s3 for science grids: a viable solution? 2008.

20

[13] Minecraft statistics. https://minecraft-statistic.net/en/global statistic.html. 2020.

[14] Alexandru Uta, Dmitry Duplyakin, Cristina Abad, Nikolas Herbst, and Alexandru
Iosup. 3rd workshop on hot topics in cloud computing performance (hotcloudperf’20):
Performance variability. In ICPE ’20: ACM/SPEC International Conference on
Performance Engineering, Edmonton, AB, Canada, April 20-24, 2020, pages 301–
302, 2020.

[15] Jerom van der Sar, Jesse Donkervliet, and Alexandru Iosup. Yardstick: A benchmark
for minecraft-like services. In Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering, ICPE 2019, Mumbai, India, April 7-11,
2019, pages 243–253, 2019.

[16] Amir Yahyavi and Bettina Kemme. Peer-to-peer architectures for massively multi-
player online games: A survey. ACM Comput. Surv., 46(1):9:1–9:51, 2013.

21

	Introduction
	Problem statement
	Main contributions
	Thesis structure

	Background
	Modifiable virtual environments
	Serverless computing

	System design
	System requirements
	Design overview
	Layered storage design
	System parameters
	External tools

	Experimental setup
	Environment
	Yardstick
	Workload
	Data collection

	Experimental results
	World storage parameters results
	Latency hiding policies
	Related work

	Conclusion
	Future work

