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Abstract—Realistic, relevant, and reproducible experiments often need input traces collected from real-world environments. We focus
in this work on traces of workflows—common in datacenters, clouds, and HPC infrastructures. We show that the state-of-the-art in
using workflow-traces raises important issues: (1) the use of realistic traces is infrequent, and (2) the use of realistic, open-access traces
even more so. Alleviating these issues, we introduce the Workflow Trace Archive (WTA), an open-access archive of workflow traces
from diverse computing infrastructures and tooling to parse, validate, and analyze traces. The WTA includes >48 million workflows
captured from >10 computing infrastructures, representing a broad diversity of trace domains and characteristics. To emphasize the
importance of trace diversity, we characterize the WTA contents and analyze in simulation the impact of trace diversity on experiment
results. Our results indicate significant differences in characteristics, properties, and workflow structures between workload sources,
domains, and fields.

Index Terms—workflow, open-source, open-access, traces, characterization, archive, survey, simulation.
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1 INTRODUCTION

Workflows are already a significant part of private datacenter
and public cloud infrastructures [1], [2]. This trend is likely
to intensify [3], [4], as organizations and companies tran-
sition from basic to increasingly more sophisticated cloud-
based services. For example, 96% of companies responding
to RightScale’s 2018 survey are using the cloud [5], up from
86% in 2012 [6]; the average organization combines services
across five public and private clouds. To maintain, tune, and
develop the computing infrastructures for running workflows
at the massive scale and with the diversity suggested by
these trends, the systems community requires adequate
capabilities for testing and experimentation. Although the
community is aware that workload traces enable a broad
class of realistic, relevant, and reproducible experiments,
currently such traces are infrequently used, as we summa-
rize in Figure 1 (left) and quantify in Section 2. Toward
addressing this problem, we focus on improving trace avail-
ability and understanding by proposing a new, free and
open-access Workflow Trace Archive (WTA), as detailed in
Figure 1 (right) and in the remainder of this work.

The need for workflow traces is stringent [4], [7]. In
this work, we adopt the workflow model of Coffman and
Graham [8]. In this model, a workflow is considered a
directed acyclic graph (DAG) where each vertex represents
a task and an edge a computation/data constraint. As such,
we do not consider workflow formalisms with iteration
(loops) and human interaction, such as BPMN/BPEL [9]
and Petri nets [10]. We consider as tasks a broad range of
activities, that is, black boxes ranging from simple compute
and data operations to entire workflows, recursively.
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Fig. 1: A visual map to this work: (left) The problem: infre-
quent use of Realistic (≈ 40%) and Open-source (≈ 15%)
workflow-traces in representative articles (see Section 2),
which can affect the relevance and reproducibility of ex-
periments for the entire community. (right) Toward an an-
swer: the WTA stakeholders, process, and tools provide the
community with open-source traces of relevant workflows
running in public and private computing infrastructures.

A workflow trace is a recording of useful, relevant infor-
mation during the processing of the workflow. Traces can be
used to create models with, or used in emulations and simu-
lations to replay the execution of a workflow in a controlled
environment, etc. Not only the sheer volume of workloads
has increased significantly over time [2], but also the users
of datacenters and cloud operations are expecting increas-
ingly better Quality of Service (QoS) from the workflow-
management systems, including elasticity, reliability, and
low-cost, under strong assumptions of validation [4], [7] and
reproducibility [3], [11]. Developing workflow management
systems to meet these requirements requires considerable
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scientific and technical advances and, correspondingly, com-
prehensive trace-based experimentation and testing. This
can be conducted (i) in vivo, i.e., experimenting in live/pro-
duction settings, (ii) in vitro, i.e., experimenting using emu-
lation, and (iii) in silico i.e., experimenting in simulation [12].

Testing such systems, especially at cluster and datacenter
scale, often cannot be done in vivo, due to downtime or
the operational costs required. Instead, workflow traces can
be replayed in silico, allowing multiple setups to run in
parallel, testing individual components, etc. without the
downtime nor costs. Although realistic workflow traces are
key for testing, tuning, validating, and inspiring system
designs, they are currently still scarce [13]. Prior work, such
as WorkflowHub [14], has introduced numerous workflow
traces, yet only from the science domain. As Figure 1 (left)
indicates, and Section 2 quantifies and explains, less than
40% of relevant articles focusing on workflow systems con-
duct experiments with realistic traces, and less than 15%
conduct experiments with realistic and open-source traces.

The current scarcity of traces forces researchers to either
use synthetically generated workloads or to use one of
the few available traces. Synthetic traces may reduce the
representatives and quality of experiments, if they do not
match relevant real-world settings. Using realistic traces
that correspond to a narrow application-domain may result
in overfitting; Amvrosiadis et al. [15] demonstrate this for
cluster-based infrastructures. Additionally, a lack of realistic
traces may lead to limited or even wrong understanding
of workflow characteristics, their performance, and their
usage, which hampers the reuse of the systems tested with
such (workloads of) workflows [16]. This gives rise to the
research question RQ-1: How diverse are the workflow traces
currently used by the systems community?

We identify the need to share workflow traces collected
from relevant environments running relevant workloads
under relevant constraints. Effective sharing requires uni-
fied trace formats, and also support for emerging and new
features. For example, since the introduction of commercial
clouds, clients have increasingly started to ask for better
QoS, and in particular have started to increasingly express
non-functional requirements (NFRs) such as availability,
privacy, and security demands in traces [4], [17]. This leads
us to research question RQ-2: How to support sharing workflow
traces in a common, unified format? How to support in it arbitrary
NFRs?

Persuading both academia and industry to release data is
vital to address the problems stated prior. We tackle this is-
sue with two main approaches. First, by offering tools to ob-
scure sensitive information, while still retaining significant
detail in shared traces. Second, by encouraging the same
organization to share the data across its possibly multiple
workflow management systems (sources), and by explicitly
aiming to collect data across diverse application domains and
fields. The availability of diverse data and tools stimulate the
benefits of making available such traces, while simultane-
ously reducing the concerns of competitive disadvantage
or of an (accidental) disclosure of sensitive information.
The community is already helping with both approaches,
by increasingly focusing on the problem of reproducibility.
For example, ACM introduced artifact review and badges
to stimulate the release of both software and data artifacts

for reproducibility and verification purposes [18]. We add
to this community-effort ours, which is scientific in nature:
RQ-3: What is the impact of the source and domain of a trace on
the characteristics of workflows?

Addressing research questions 1–3, our contribution is
four-fold:
1) To answer RQ-1, we conduct the first comprehensive

survey of how the systems community uses workflow
traces (Section 2). We collect, select, and label articles
from top conferences and journals covering workflow
management. We analyze the types of traces used in the
community, and the domains and fields covered in pub-
lished studies. To improve reproducibility and promote
extensions, we make public all (raw) data used for this
survey.

2) To answer RQ-2, we design the WTA for open-access to
traces of workloads of workflows (Section 3). We identify a
comprehensive set of requirements for a workflow trace
archive. A key conceptual contribution of the WTA is the
design of a unified trace format for sharing workflows,
the first to generalize NFRs support at both workflow-
and task-levels. The WTA currently archives a diverse
set of (1) real workflow traces collected from real-world
environments, (2) realistic workflow traces used in peer-
reviewed publications, and (3) workflow traces collected
from simulated and emulated environments commonly
used by the systems community. WTA also introduces
tools to detail and compare its traces.

3) To address RQ-3, we compare key workload character-
istics across traces, domains, and sources (Section 4).
Our effort is the first to characterize the new trace from
Alibaba, and the first to investigate the critical path
task length, level of parallelism, and burstiness using
the Hurst exponent on workloads of workflows. Overall,
the archive comprises 96 traces, featuring more than 48
million workflows containing over 2 billion CPU core
hours.

4) To validate our answers to RQs 1–3, we analyze various
threats (Section 5). We conduct a trace-based simulation
study and qualitative analysis. Our results for the former
indicate systems should be tested with different traces
to validate claims about the generality of the proposed
approach.

2 A SURVEY OF WORKFLOW TRACE USAGE

To assess the current usage of workflow traces in the sys-
tems community and the need for a workflow archive, we
systematically survey a large body of work published in
top conferences and journals, and investigate articles that
perform experiments using workflow traces, either through
simulation or using a real-world setup. The process and
outcome of this survey answer RQ-1.

2.1 Article Selection and Labeling
Selection: Figure 2 displays our systematic approach to
select articles relevant to this survey, based on [19]. First, we
collect data from DBLP [20] and Semantic Scholar [21]. We
filter them by venue, retaining only articles from the 10 key
conferences and journals in distributed systems listed in the
caption of Table 1, including TPDS. While not an exhaustive
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TABLE 1: Workflow trace usage in venues having at least one paper returned in the initial query. The venues with > 5 hits
have their individual column. The column “Other” shows combined results for conferences with ≤ 5 hits: ATC, CLOUD,
CLUSTER, e-Science, Euro-Par, GRID, HPDC, JSSPP, IC2E, ICDCS, ICPE, IPDPS, NSDI, OSDI, SC, SIGMETRICS, WORKS.
Percentages are computed from the total in the corresponding column, e.g., 13 out of 37 for the cell corresponding to row
R and column FGCS.

Acronym Total FGCS CCGrid TPDS Other

T Articles using traces 104 37 17 17 33

R Articles using realistic traces 40 (38%) 13 (35%) 8 (47%) 6 (35%) 13 (39%)
R+O Articles using traces that are both realistic and open-access 14 (13%) 6 (16%) 2 (12%) 3 (18%) 3 (9%)
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relevant articles
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Fig. 2: The article selection process. Subsequent stages
decrease the amount of articles: from a corpus of 18,412
articles, down to 104 relevant references.

list, this covers a significant part of the systems community.
This yields 18,412 articles. Next, we automatically select
all articles from the last decade (2009–2018) containing the
word “workflow” in either title or abstract, yielding 397
articles. This step provides articles that focus on all aspects
of workflows, e.g. scheduling, analysis, and design. Finally,
to obtain insights into workflow traces usage, we manually
check the 397 articles. Overall, this systematic process yields
104 articles using workflow traces. To highlight the rele-
vance of papers, we use Google Scholar to obtain citation
counts. In total the 104 papers have been cited 3,965 times.

Labeling: We label for each of the 104 articles the type
of trace usage. For articles explicitly describing their use,
we use the label realistic for traces collected from real-world
workflow executions. For all others, including workflows
extrapolated from real-world data or generated from known
statistical distributions, we use the label synthetic.

We further label traces as open-access (or open-source)
if they are available online and to a broad audience, and
closed-access (or closed-sources) otherwise. In our analysis,
we include among the open-access traces only those that are
also realistic.

We also label traces by domain and field. Domains are
corresponding to the area of study of which the trace orig-
inates from. We label sub-domains within these domains
as fields. We adopt the domains and fields reported by the
respective authors, where mentioned. If the domain or field
are not mentioned, yet the application appears in another
article by name and with labels, we remain consistent in
our labeling by adopting the domain/field from this prior
article. We have not encountered cases where an application
is labelled as belonging to multiple domains or fields. We
identify in articles explicit use of traces from the domains
“scientific”, “engineering”, “multimedia”, “governmental”,
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Fig. 3: (top) Top-5 (out of 6) domains and (bottom) Top-5 (out
of 28) fields from which the community sources workflows.
(“Uncategorized” for unclear domain or field.)

and “industry”, and from fields such as “bioinformatics”,
“astronomy”, “physics”, etc. We further label a trace with
uncategorized when its origin remains unexplained.

All data used in this survey is available as open-access
data1 and can be used to verify and extend this survey.

2.2 Types of Traces Used in the Community

We analyze here the types of traces used by the community,
with the following Observations (Os):
O-1: Less than 40% of articles use realistic traces.
O-2: Only one-seventh of all articles use open-access traces.

Table 1 presents the types of traces used in the com-
munity, focusing on realistic (R) and open-access (R+O)
traces. The community uses traces for experiments across
both conference and journal articles, across various levels of
(high) quality. In contrast to this positive finding, the results
indicate that, from the total number of articles using traces
at all, the fraction of articles using realistic and even open-
access traces is relatively small. Across all venues, only 38%
of the articles use at least one realistic trace, and only 13%
of the articles use at least one open-access trace.

These findings match the perceived difficulty in repro-
ducing studies in the field [11], [12], and may hint why so
few of these seemingly successful designs are adopted for
use in practice [22].

2.3 Workflow Domains and Fields

We analyze the domains and fields from which the commu-
nity sources workflows, with as main observations:

1. https://github.com/atlarge-research/wta-analysis

https://github.com/atlarge-research/wta-analysis
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O-3: The community sources workflows from 5+ domains
and 25+ fields.

O-4: Traces containing scientific workflows are used signif-
icantly more (20x) than workflows from other domains,
e.g., industry and engineering, in the surveyed articles.

O-5: Bioinformatics workflows are the most commonly
used, but three other fields exhibit usage within a factor
of 3.

O-6: Many traces have uncategorized domain (14%) and/or
field (31%).

Overall, we find that the community uses diverse work-
flows, sourced from 5+ domains and 25+ fields.

We further investigate the distribution of use, per do-
main and per field. Figure 3 (top) shows that the scientific
domain is over-represented in the literature in the top-five
trace domains encountered, due to the large number of
available open-access traces and from their conventional use
in prior work. In particular, a large portion of the articles
use workflow traces from the Pegasus project, which covers
the scientific domain. The number of traces in this domain
exceeds 200, which is larger than the number of articles in
the study as each article uses multiple traces. In contrast,
the next-largest domains are industry and engineering, each
with less than 10 traces representing less than one-twentieth
of the scientific domain.

We remark the positive diversity of the workflow do-
mains, considering that the entire community is tempered
by the extreme focus on scientific workflows. This confirms
the bias demonstrated by Amvrosiadis et al. [23] with the
popular Google-cluster traces. A similar situation appears
for fields, but more tempered, as Figure 3 (bottom) indicates.
A large portion of the traces have their domains and fields
as “uncategorized” (14% and 31%, respectively) which is
unhelpful when determining if the proposed solution works
in a certain environment.

Overall, the results reveal that the community has a
strong bias for one domain (scientific) and favors scientific
fields (especially bioinformatics). We conjecture the large
amount of open-access data from these fields facilitates this
bias. This is consistent with our findings O-4 and O-5,
and with the assumption of people selecting traces with
equal probability. An alternative is that the domains and
fields whose data are used more, share artifacts that are
more easily reused and rerun. An example of a well-known
initiative for reproducibility in the scientific domain is the
MyExperiment repository [24]. To overcome such biases,
and to further reduce the large fraction of uncategorized
traces evident in both plots of Figure 3, we posit the com-
munity should require that open-access and diverse traces be
used in articles claiming the generality of their techniques
and indicate the domains and fields of the workflows used.

3 THE WORKFLOW TRACE ARCHIVE

In this section, we outline the design of the WTA, the
unified trace format used, tools to support consumers with
the trace selection according to their use-case, and give a
summarized overview of the current contents of the archive.
Furthermore, that facilitates the continuous growth of the
archive, we provide tools for trace anonymization and a
collection of trace parse scripts for different trace sources.

Similar to how the design of experiments is now com-
monly described in publications in our field, as the setup
leading to experimental results, we include an overview of
the design process that led to the design presented in this
section. Outlining the design and the process that led to the
design is important for understanding how the final design
came to be and how it fits the intended goal [25].

We started by listing initial requirements (see Section 3.1)
that the WTA has to fulfill, and co-evolved the requirements
with the development of the solution (the archive). For example,
we added explicitly the requirement to provide scripts and
datasets to aid users in building their own tools, as we dis-
covered how difficult it was to engineer them from scratch
(see Section 3.6). Next, we defined an initial format, centered
around a number of unique features, such as non-functional
requirements (NFRs) that are missing in other workflow
trace formats. We improved this format iteratively, to meet
the requirements and/or to pass various thought exper-
iments. For the latter, whenever we encountered a new
data-format that was not fully covered by our format, we
discussed which properties and/or objects should be added
to the format (see Section 3.4). We assessed the trade-
off between format comprehensiveness (what to include?)
and brevity (what is too much or too complex?) based on
personal experience, on the perceived importance of data-
fields in literature, and on their frequency of use in other
archives. Finally, we designed the analysis tools iteratively,
including in them initially our own ideas and then aspects
highlighted by other archives, literature reports, and per-
ceived shortcomings.

3.1 Use Cases and Requirements
We foresee four direct use cases for the WTA. First, trace
characterization and workload analysis for understanding
and tuning systems. As workloads evolve it is important
to characterize the changes in, e.g., structure and resource
consumption to see if schedulers require change, can be
improved or if these changes can be exploited. Such char-
acterizations can provide interesting insights (see Section 4).

Second, experimentation using emulation or simulation.
As discussed in Section 1, emulations and simulations may
be the only viable option for specific scenarios (e.g., what
if?, long-term operational analysis). Having an archive that
offers diverse, heterogeneous traces allows for more diverse
testing scenarios. Especially when a new scheduler is devel-
oped for multiple domains or scenarios, it is important to
experiment with diverse workloads covering the scenarios
and domains targeted (see Section 5, C-1).

Third, workload and operational models can arise from
the characterization and simulation results. In turn, these
models can lead to new insights or to new variations to
experiment with.

Last, such data can be used for education and training.
As systems grow more complex, education and training
becomes more important for both students and employ-
ees [26]. Models and heterogeneous traces are useful in
education, to demonstrate scenarios and to provide hands-
on experience.

To meet these use cases, we identify five key require-
ments for the structure, content, and operation of a useful
archive for workflow traces.
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R-1: Diverse Traces for Academia, Industry, and Education.
Trace archives, such as Google’s and Alibaba’s, offer only
workloads from a single domain, e.g., industrial workloads.

We identify as requirement that an archive must include
a diverse set of traces to cover a broad spectrum of workflow
sizes, structures, and other characteristics, including both
general characteristics to many domains and fields, and
idiosyncratic characteristics corresponding to only one do-
main or field. This requirement is based on the conjectures
that different traces can have workflows with significantly
different characteristics (tested in Section 4) and such differ-
ences impact system performance (tested in Section 5, C-1).

Addressing this requirement is important for academia
to demonstrate the generality and applicability of a novel
approach, for industry to test production-ready systems or
to validate techniques proposed by academia [27], and for
education to train employees on more complex systems.
R-2: A Unified Format for Workload of Workflows Traces.

To improve the reusability of diverse traces and to
support the reproducibility of experimental results, long-
term, we identify as a requirement the use of a unified
trace format for workloads of workflows. The format must
cover a broad set of data about the workloads and about the
workflow management systems including: workload meta-
data; workflow-level data including NFRs; task-level data
including per-task NFRs and operational metadata; inter-
dependencies between tasks and other operational elements
such as data transfers; system-level information including
resource provisioning, allocation, and consumption; etc.

Addressing this requirement simplifies trace exchange
and integration effort, prevents redundant work for other
users, and supports the development of dataset indepen-
dent tools (expressed as R-3).
R-3: User level adapted insights into Trace Properties.

To improve trace discovery, the archive must provide
detailed trace insights adapted to the level of the broad
audience, from beginner to expert, as implied by R-1.
Broad insights include extrinsic properties, such the number
of workflows and tasks, and intrinsic properties, such the
workflow arrival patterns and the resource consumption
per-task. In contrast, detailed expert-level insights include
analysis of single traces at workload-, workflow-, and system-
level; and collective analysis across all traces or traces filtered
by a feature (e.g., all traces of a domain or field). These
properties must be accessible through readily available tools
(see R-4) and, possibly, through interactive online reports.
Addressing this requirement helps to correlate information
across different traces, resulting in better quantitative evi-
dence, intuition about otherwise black-box applications, and
understanding that helps avoiding common pitfalls [28].
R-4: Tools for Trace Access, Parsing, Analysis, Validation.

The most important tool is the online presence of the
archive itself. The archive must further provide tools to
parse traces from different sources to the unified format (see
also R-2), to provide insight into traces (see also R-3), and
to validate common properties (e.g., the presence of and
correctness of properties). An absence of such tools would
lead to users unable to select appropriate traces, validate
their properties, and compare them.

The archive should further aid users in building more
sophisticated tools. Newly built tools can then be added to

the selection of tools so more parties can make use of them
(contributing to R-5)
R-5: Methods for Contribution.

The archive must reflect the continuous evolution of
workflow use in practice, by increasing the coverage of dif-
ferent scenarios. We make a distinction between two types
of contribution: (1) traces from a new domain or application-
field, and (2) traces, introducing new properties. To facilitate
the former contribution, the archive must provide a method
for the upload and (basic) automated traces verification. To
facilitate the latter, the format must integrate specific pro-
visions that enable upgrades and long-term maintainability,
such as adding a version to each component of the format.

Addressing this requirement encourages new and exist-
ing contributors to submit new traces. In particular, tools to
add new domains are of particular importance, to support
emerging paradigms with realistic data.

3.2 Overview of the WTA

We design the WTA as a process and set of tools helping a
diverse set of stakeholders. We consider three roles for the
WTA community members, outlined in Figure 1. The con-
tributor supplies, as the legal owner or representative, one
or more traces to the WTA. A workflow trace contains his-
torical task execution data, resource usage, NFRs, resource
description, inputs and outputs, etc. To fulfill R-5, the WTA
team assists the contributor in parsing, anonymizing, and
converting the traces into the unified format (Section 3.4),
minimizing the risk of competitive disadvantage, and ver-
ifying their integrity. WTA fulfills R-1 as it incrementally
expands with contributors of traces from different domains
with different properties.

The user represents non-expert or expert trace con-
sumers. Non-expert users often need to rely on generic
domain or trace properties, whereas the expert users have
detailed knowledge of their system and require fine-grained
details for selecting the correct trace. In addition, expert
users may comment on (missing) properties and may de-
velop new tools, models or other techniques to further com-
pare and rank the traces. Both user types require assistance
in selecting the most suitable trace given a set of criteria
(Section 3.5) as well as analysis and validation (Section 3.6)
from the available set of traces (Section 3.7). To support both
user types, the WTA discloses both high-level and low-level
details.

3.3 Workflow Model

There are numerous types of workflow models used across
different communities. A 2018 study by Versluis et al.
finds DAGs are the most commonly used formalism in
computer system conferences [29]. Popular formalisms such
as CWL [30] and Condor DAG [31] are also DAG-based.
Therefore, for the first design of this archive, we adopt

DAGs as the workflow model.
A workflow constructed as a DAG in which nodes are

computational tasks and directed edges depict the compu-
tational or data constraints between tasks. Entry tasks are
tasks with no incoming dependencies and, once submitted
to the system, immediately are eligible for execution. Sim-
ilarly, end tasks are nodes that have no outgoing edges. A
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Fig. 4: The WTA trace format.

collection of workflows submitted to the same infrastructure
over a certain period of time is considered a workload.

Although popular, we specifically do not focus in this
work on BPMN and BPEL, Petri nets, hyper graphs, gen-
eral undirected, or cyclic graphs. These formalisms either
include business and human-in-the-loop elements [32] or
add additional complexity due to having a large set of
control structures such as loops, conditions, etc. [9] which
we consider out of scope for this work.

Executable formalisms are meant to define what re-
sources and software should be available before execution.
Our formalism needs to capture the system state during
execution. Both types of formalisms are needed, and are
complementary to each other. For example, a person could
use the CWL to define and run their workload, then turn
to our formalism and tools to analyze its execution and
subsequently improve various operational aspects.

Given the different nature of these formalisms, if we
were to extend an existing executable workflow formalism,
e.g., CWL, several elements would not be used. This would
lead to feature creep. Conversely, the additions made by our
formalism could be regarded as feature-creep by the CWL
community. This is emphasized by the CWL community
currently developing CWLProv [33]. This formalism aims at
fully reproducible workflows, including re-execution which
is not a goal of the WTA. While promising, CWLProv is
still a work in progress; elements such as capturing resource
usage (e.g., CPUs and power consumption) are still lacking.

3.4 Unified Trace Format

Creating a unified format (R-2) requires from the designer a
careful balance between limiting the number of recorded
fields while supporting a diverse set usage scenarios for
all stakeholders in Section 3.2. Modern logging and tracing
infrastructure can capture thousands of metrics for each
machine and workflow-task involved [34], from which the
designer must select. We specifically envision support for
common system and workflow properties found in the
typical scenarios considered in the top venues surveyed in
Section 2, such as engineering a workflow engine [35], char-
acterizing the properties of workloads of workflows [36],
and designing and tuning new workflow schedulers [37].

Our unified format attempts to cover different trace
domains, while preserving valuable information, such as
resource consumption and NFRs, contributing to fulfilling
R-1 and 3. The full technical description of the format can be
found in our technical report [38] and on the WTA website2.

2. https://wta.atlarge-research.com/traceformat.html

By analyzing the raw data formats, we carefully selected
useful properties to include in our unified format, omitting
low-level details, such as cycles per instruction, page cache
sizes, etc.

Answering RQ-2 and fulfilling R-2, our trace format
is the first to support arbitrary NFRs both at task and
workflow levels. For example, one of the LANL traces
(introduced in Table 2) contains deadlines per workflow
and the Google cluster data features task priorities, both
are supported by the WTA unified format. Capturing these
properties is important to test QoS-aware schedulers.

As depicted in Figure 4, the WTA format includes
seven objects: Workload, Workflow, Task, TaskState Resource,
ResourceState, and DataTransfer. Each of these objects con-
tains a version field, updated whenever the set of properties
is altered (R-5).

Each trace is a single workload, consisting of multiple
workflows and their arrival process. Workload properties
include the number of workflows, tasks, users, domain and
field when available, authors list, and resource consumption
statistics. Each workload belongs to one or more domains.
and contains a description including its source, execution
environment, etc.

Each workflow in the workload has a unique identifier,
an arrival time, and contains a set of tasks and several prop-
erties, including scheduler used, number of tasks, critical
path length, NFRs, and resource consumption. Each work-
flow also has the name of its field of study, when possible.
Different related fields constitute a domain.

Each Task has a unique identifier and lists its submis-
sion and waiting time, runtime and resource requirements,
including required (compute) resource type, memory, net-
work, and energy usage. Additionally, each task provides
optional dictionaries for task-specific execution parameters
and NFRs. To model dependencies between tasks, the WTA
format maintains for each workflow its topology by specify-
ing parents and children per task. Similarly, data dependen-
cies are recorded as a list of data transfers.

Resource objects cover various resource types, such as
cloud instances, cluster nodes, and IoT devices. A resource
has a unique identifier and contains several properties, such
as resource type (e.g., CPU, GPU, threads), number, proces-
sor model, memory, disk space, and operating system. An
optional dictionary provides further details, such as instance
type or Cloud provider. The ResourceState event snapshots
periodically the resource state, including availability and
utilization. Analogous to the ResourceState, the TaskState
records periodically the resource consumption of the task
(the Task object records the resource demand).

Each DataTransfer describes a file transfer from a source
to a destination task, which can be a local copy on the same
resource or a network transfer from a remote source, etc.
To support bandwidth analysis, a data transfer introduces
submission time, transfer time, and data size. Each data
transfer also provides an optional dictionary with detailed
event timestamps (e.g., pause, retry).

3.5 Mechanisms for Trace Selection
We address R-3 by assisting archive users in retrieving ap-
propriate traces for their scenarios, using filter and selection
mechanisms. The website is the most important such filter

https://wta.atlarge-research.com/traceformat.html
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TABLE 2: Overview of the current WTA content, grouped by source. Legend: D=Domain, DS=Datasets, PA=parameters,
PL=Platform, S=Setup, A=Applications, WL=workload, WF=workflow, T=task, U=user, G=group, *=minimum, Eng =
Engineering, Sci = Scientific, Ind = Industry, TCH = Total Core Hours. Items in bold are workloads introduced by this
work. Items where workflows are for the first time analyzed in this work are in italics. The symbol ‡ next to S7 indicates
data with promise to release, but for which the legal forms have not been completed yet; WTA can already release all other
workloads.
Source ID. Name #WL D DS #PA #PL #S #A #WF #T #U #G Year(s) Timespan TCH

S1. Askalon Old 2 Eng - - 1 - mixed 4,583 167,677 *7 *6 2007 19 months 4,685,300
S2. Askalon New 67 Sci - *2 2 67 *3 1,835 91,599 *67 *67 2016 47 days 193
S3. LANL 2 Sci - - 1 - mixed 1,988,397 475,555,927 - - 2011-2016 63 months *9,625,431
S4. Pegasus 8 Sci - - *6 - 8 56 10,573 9 - 2011 4 days 1,477
S5. Shell 1 Ind - - 1 - mixed 3,403 10,208 - - 2016 10 minutes 25
S6. SPEC 2 Sci - - 1 - mixed 400 28,506 - - 2017 - 1,231
S7. Two Sigma‡ 2 Ind - - 1 - mixed 41,607,237 50,518,481 610 1 2016 16 months 69,992,196
S8. WorkflowHub 10 Sci *5 *4 5 - 3 10 14,275 10 - 2017 - 52
S9. Alibaba 1 Ind - - 1 - mixed 4,210,365 1,356,691,136 1 1 2018 8 days 1,526,925,484
S10. Google 1 Ind - 1 1 - mixed 494,179 17,810,002 430 1 2011 29 days 434,821,345

Total 96 - *5 *7 *20 67 - 48,310,465 1,900,898,384 *1,134 *76 - - 2,046,052,734

TABLE 3: Trace anonymization methods used in WTA tools.

Obfuscation method Description

IP Encodes IPv4 addresses
Mail and host Obfuscate mail and host names
File paths Hide file paths in Linux and Windows format
Executable files Encode executable file names, e.g., py, sh, exe, jar
All files Hide all file names, ending with 2, 3, or 4 letters
Keywords Anonymize a list of custom keywords
All Apply all obfuscation methods listed above

and mechanism, containing an overview of all traces in a
general table with the number of workflows, tasks, users,
etc. This table is sortable and searchable, allowing website
users to interact with the more than 90 traces currently in
the WTA (column “#WL”, row “Total” in Table 2).

We provide, online and as separate tools, a detailed
report for each trace. Each report includes automatically
generated statistics, such as the number of workflows and
tasks, then resource properties such as compute, memory,
and IO, and job and task arrival times and runtime distribu-
tions (see Section 4). The metrics featured in the report are
reported as important by prior studies [39], [40] and enable
developers to select traces appropriate for their intended
use-case.

3.6 Tools for Analysis and Validation
We implement the unified trace format using the Parquet file
format and the Snappy compression algorithm. Parquet is a
binary file format that is supported by many big data tools
such as Apache Spark, Flink, Druid, and Hadoop [41]. Many
programming languages also have libraries to parse this
format, such as PyArrow for Python and parquet-avro for
Java. Snappy3 compression reduces the size of the dataset
significantly and has low CPU usage during extraction.

Beside trace selection support and to address R-4, the
WTA offers several tools to facilitate and incentivize the
continuous growth of the archive. Most of these tools re-
quired significant engineering effort to develop, due to the
typical challenges of big data processing (high volume,
noisy data, diverse input-formats, etc.). The WTA simplifies
the upload of new traces by providing a set of parsing
scripts for different trace sources, such as Google, Pegasus,
and Alibaba. Parsing traces can become non-trivial, once

3. https://github.com/google/snappy

they grow both in complexity and size. Such traces require
big data tools, such as Apache Spark, and enough resources,
a cluster, to compute. Noisy data raise another non-trivial
issue: both Google’s and Alibaba’s cluster data contained
either anomalous fields, undocumented attributes, and non-
DAG workflows. Some of these issues were never discov-
ered by their respective communities and were corrected in
our parsing tools. Debugging, filtering, and correcting noisy
big data requires significant compute power and detailed
engineering.

Because traces may contain sensitive information, the
WTA offers a trace anonymization tool, which supports users
to automatically replace privacy and security-related infor-
mation, to avoid an accidental reveal of proprietary infor-
mation. Specifically, to remove sensitive information from
trace files, we use two common techniques [42], culling and
transforming. Culling is done during trace conversion, by
omitting parts of the raw trace data which do not match our
workflow trace format. For the transformation, as presented
in Table 3, our anonymization tool automatically scans the
workflow trace file for sensitive data, such as IP addresses,
file paths, names, etc., by string pattern matching. Beside
these standard sensitive-data checks, the WTA offers the
option to search for custom privacy-critical strings.

Finally, all matched strings are replaced by a salted SHA-
256 hash key. This approach using cryptographic hash func-
tions offers protection of sensitive data, while preserving the
relationships between the matched values in the same trace
file [42]. Additionally, our tool hides potential relations to
other trace files by adding a salt of length 16 to the hash key
generation, which is randomly generated on each tool run.

To validate traces, the WTA provides a validation script
that checks the integrity and summarizes important char-
acteristics of a trace. During trace conversion, using the
validation script, we successfully identified several parse
bugs and inconsistencies in the data that we subsequently
corrected.

Specifically, because tasks build the base of each trace,
our tool checks if all contained tasks are well defined. This,
for example, means that all parsed control dependencies,
such as children and parents, link only to existing tasks
with valid properties. A task property is valid, if the parsed
property type matches the property type definition, and the
property value is allowed e.g. task runtime > 0. Based
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TABLE 4: Overview of properties available per source. Legend: X = available, ∼ = partially available, blank = not available,
Task details = individual task information.

Source ID Task details Task resource req. Structural information Disk Memory Network Energy NFRs

S1 X X X
S2 X X X
S3 ∼ X ∼ X
S4 X X X
S5 X X X

S6 X X X X
S7 X X ∼ X
S8 X X X X X
S9 X X X X X X
S10 X ∼ X X X

on and similar to this fundamental validation, our tool
provides options to check the workflow and data transfer
properties to identify inconsistencies, as well.

These tools help combating perceived barriers to share
data described by Sayogo et al. [43]. Several technologi-
cal barriers are addressed by using a unified format and
validation (data architecture, quality, and standardization),
Legal and policy barriers are more difficult to address. Our
anonymization tool aids in overcoming the data protection
barrier, yet legal and other enforced policies may require
tailored solutions.

Besides offering these tools, the WTA also hosts the
trace data, addressing logistic and economical barriers. The
increasing focus on sharing data artifacts by the community,
is lowering the barrier regarding competition for merit and
reputation for quality and bolsters the culture of open shar-
ing. Finally, each trace has its own DOI by also uploading
it to Zenodo4 which can be cited and thus provides authors
with the appropriate credits (incentive barrier).

3.7 Current Content
Having a diverse set of traces available is necessary to use
in experimentation. When using traces in experimentation,
different traces should be used to prove generality of the
proposed approach (see Section 5). Gathering and parsing
raw logs and other traces requires significant computing
effort. Using 16 nodes (32 eight-core Xeon E5-2630 v3 and
1TB RAM) from the Dutch DAS5 super computer [44],
several traces require up to a day to compute using big data
tools such as Apache Spark. In total, the WTA team spent
more than two person months on converting traces to the
unified trace format. By offering these parse scripts and the
data, we contribute to R-4.

The WTA features currently 96 workloads from 10 dif-
ferent sources, with over 48 million workflows and 2 billion
CPU core hours. All of them are available on the WTA
archive website5. Each workload is uniquely identified by a
combination of the following properties if available: source,
runtime environment, application, and application param-
eters [45]. Tables 2 and 4 summarize these traces. From
these tables we observe that WTA contains a vast amount
of different traces, from different sources and domains, with
various number of workflows, properties, number of tasks,
timespans, and core hour counts. Although supported by
our format, no trace currently has information on energy

4. https://zenodo.org/
5. https://wta.atlarge-research.com/
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consumption, highlighting the need of such traces [14].
These traces are collected by combining open-access data
(logs, traces, etc.) and closed-access data throughout the
years in collaboration with both industry and academia.
This contributes to R-1.

This diversity enables new workflow management tech-
niques and systems to be thoroughly tested for their feasi-
bility, strengths, and, equally important, weaknesses.

4 A CHARACTERIZATION OF
WORKLOADS OF WORKFLOWS

To answer RQ-3, we perform in this section a character-
ization of the workloads in the WTA. These workloads
originate from publicly available archives combined with
workloads we obtained from collaborations. As we expect
these workloads to be heterogeneous in many dimensions,
we characterize them using a variety of metrics and proper-
ties, including workflow size, resource usage, and structural
patterns. Our characterization reveals significant differences
between workloads from different domains and sources.
Such differences further support our claim that the commu-
nity needs to look beyond just scientific workloads, and con-
sider a wider range of domains and sources for experimental
studies when developing workflow management systems
aimed at multiple domains or for general applicability.

We present in this section only detailed insights that lead
to new observations for the community. We include in our
technical report other types of analysis, such as task and
workflow inter-arrival times, task and workflow runtimes,
and their breakdown per domain and source [38].

4.1 Structural Patterns
O-7: Scientific, industrial, and engineering workflows ex-

hibit various structural patterns, but at least 60% of
tasks in a domain match the dominant pattern of that
domain.

O-8: Industry workflows stand out by exhibiting primarily
scatter patterns, as opposed to pipeline operations.

https://wta.atlarge-research.com/
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TABLE 5: The design and setup of our characterization.
ID § Description Traces Metric Granularity

E1 4.1 Analyze structural patterns in workflows per domain All but S3, 7, 10 Structural patterns Workflow level
E2 4.2 Longitudinal analysis S1, S3, S7, S9, S10 Tasks per day Workload level
E3 4.3 Analysis of burstiness per trace All but S4-8 Hurst exponent Workload level
E4 4.4 Measure the level of parallelism per workflow All but S3, 7, 10 Level of parallelism Workflow level
E5 4.5 Analysis of critical path length All but S3, 7, 10 Critical path length Workflow level
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Fig. 6: Daily task-arrival trend, per source.

This characterization quantifies five structural patterns
in workflows often used by researchers [46]: scatter (data
distribution), shuffle (data redistribution), gather (data ag-
gregation), pipeline, and standalone (process). Investigating
these structural patterns is important to understand the
types of applications being executed and tune a system’s
performance. We exclude from this analysis the LANL, Two
Sigma, and Google traces, which lack structural information,
that is, task parent-child relationship information.

Figure 5 depicts the structural patterns found per do-
main. From this figure, we observe that in each domain a
dominant pattern emerges that accounts for 61–85% of tasks.
In the scientific and engineering domains, the majority of
tasks are simple pipelines. Interestingly, the industrial work-
flows include primarily scatter operations. This observation
matches known properties of the Alibaba trace, which ac-
counts for over 99% of tasks with structural information
we analyzed in this domain. In particular, the Alibaba trace
includes MapReduce jobs, each consisting of many “map”
tasks (scatter operations) and a smaller number of “reduce”
tasks (gather operations).

4.2 Arrival Patterns

O-9: From all domains, industrial traces show on average
orders of magnitude higher rates of task arrival.

O-10: Scientific traces can show high variability in task
arrival rates, unlike industrial and engineering traces.

O-11: Two Sigma shows a typical workday diurnal pattern.
To investigate the weekly trends that may appear in

workload traces, we depicts in Figure 6 for several traces
the average number of tasks that arrive per day of the
week. We omit the Askalon new source from the hourly
task-arrival plot as they contain 4 or 5 data points, which
is too few to plot a trend. We observe that traces have
significantly different arrival rates and patterns. The Al-
ibaba trace features the highest task arrival rates, peaking
at over 10,000,000 tasks per hour. Google and the Two

0 5 10 15 20
Hour of day

101

103

105

107

Av
g.

 n
um

. t
as

ks
 p

er
 h

ou
r workload

Alibaba
Askalon Old 2

Google
LANL 1

Two Sigma 1
Two Sigma 2

Fig. 7: Hourly task-arrival trend, per source.

Sigma workloads follow with 100-10,000 tasks per hour. This
shows that industrial workloads included in this work have
significantly more tasks per hour than the other compute en-
vironments, which agrees with companies such as Alibaba
and Google operating at a global scale. The non-industrial
traces show significant fluctuations throughout the week,
whereas both Alibaba and Google do not. This might be
due to the global, around-the-clock operation of Alibaba’s
and Google’s services, which can lead to a more stable task
arrival rate.

To observe differences in daily trends, we depict the
average task rate per hour of day in Figure 7. This figure
reaffirms our observation that the two largest traces–Alibaba
and Google–have a relatively stable arrival pattern through-
out the day. In contrast, the Two Sigma 1 trace exhibits
a typical office hours pattern; task arrival rates increase
around hour 7 and start dropping around 17. The same
pattern occurs to a lesser extent in the Two Sigma 2 trace.
The highly variable arrival rates of tasks in the LANL traces,
as observed in Figure 6, are also evident in our analysis of
daily trends. We study this in more depth in Section 4.3.

4.3 Burstiness

O-12: Most traces investigated exhibit bursty behavior
within small window sizes.

O-13: The LANL trace exhibits maximum burstiness at
medium window sizes.

O-14: The largest traces (Alibaba and Google) exhibit
uniquely bursty behavior: low burstiness at small and
high burstiness at large, window sizes.

To investigate if workloads expose bursty behavior, a
special kind of arrival pattern, the Hurst exponent H is
used. H quantifies the effect previous values have on the
present value of the time series. A value of H < 0.5
indicates a tendency of a series moving in the opposite di-
rection based on the previous values, and thus exhibit jittery
behavior (sporadic burst). A value of H > 0.5 indicates a
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Fig. 9: Workflow level-of-parallelism, per domain.

tendency to move in the same direction, and thus towards
well defined peaks (sustained burst). When H = 0.5, the
series behaves like a random Brownian motion.

In this experiment, we inspect busty behavior by com-
puting the Hurst exponent for task arrivals. The results of
this experiment are visible in Figure 8. From this figure,
we observe most traces depict bursty behavior at least
for one of small, medium, and large window size. They
are also not bursty for at least one window size. This is
expected, as in most systems task arrivals vary at (sub-
)second interval. Interestingly, LANL traces exhibit most
bursty behavior at medium window sizes. This might be
due to national laboratories workflows being submitted in
batches. A batch of tasks is submitted all at once, leading
to a burst. But, the batch itself is processed at a constant
rate. The workload is also stable over longer time periods
as evidenced by H ≈ 0.5 for larger windows. Finally,
the two largest traces in this work, Alibaba and Google,
exhibit increasingly burst behavior for larger windows. This
indicates that for larger arrival times, the workloads (in
absolute numbers) vary more than for the other sources.
This matches the observations in Section 4.2.

4.4 Parallelism in Workflows
O-15: Task parallelism per workflow can differ significantly

between workload domains and sources.
O-16: Industrial workflows exhibit the highest level of par-

allelism.
O-17: Out of all sources, Alibaba workflows have the high-

est level of parallelism, followed by Pegasus and Work-
flowHub.

With the structural patterns observed, we investigate if
the large occurrence of the pass-through patterns expresses
in a high level of parallelism. The level of parallelism
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Fig. 10: Workflow level-of-parallelism, per source. Curves
are shaded by domain, to further reveal patterns.
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indicates how many tasks can maximally run in parallel for
a given workflow, provided sufficient resources. Figure 9
depicts the approximated level of parallelism per domain.
The approximation algorithm used produces results very
close to the true level of parallelism as demonstrated by
Ilyushkin et al. [47]. From this figure, we observe the in-
dustrial domain exhibits the highest level of 99th percentile
parallelism, up to hundreds of thousands of tasks. This is
likely a consequence of the many MapReduce workflows,
which are highly-parallel by nature, that are present in the
Alibaba trace. Alibaba also contains bag of tasks work-
flows, which by nature have a high parallelism.Scientific
workflows exhibit low median parallelism but high 99th
percentile parallelism, featuring levels of parallelism up to
thousands of tasks. Engineering traces exhibit a moderate
amount of median parallelism, between industry and scien-
tific, with at most 1000 concurrent running tasks.

Figure 10 shows the level-of-parallelism per source.
From this figure, we observe that Alibaba exhibits the
highest levels of parallelism, as discussed previously. Sec-
ond are the Pegasus and WorkflowHub workflows. These
sources contain a variety of scientific applications, com-
monly known for their parallel structures, as observed in
Section 4.1. Other traces demonstrate less parallelism, with
up to 1000 concurrent running tasks. As Shell exist entirely
of sequential pipelines, the source does not exhibit any
variation.

4.5 Limits to Parallelism in Workflows

O-18: Workflows from the scientific domain have signifi-
cantly different critical-path lengths.

O-19: The amount of tasks on the critical path is the highest
for engineering workflows.

O-20: Although highly parallel, industrial workflows ex-
hibit longer critical paths than scientific workflows.

The critical path (CP) refers to the longest sequence of
dependent tasks in a workflow, from any entry task to any
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exit task. By quantifying the CP length, we investigate if
workflow runtimes are primarily dominated by a few heavy
tasks, or by many small tasks. Figure 11 presents the results
of this characterization per workload domain. From this
figure we observe the CP length for engineering workflows
is the highest. This matches with the parallelism obser-
vations in Sections 4.1 and 4.4. Interestingly, even though
industrial workflows are often highly parallel, their critical
paths are often longer than those of scientific workflows.
This indicates that industrial workflows are bigger in size
than scientific workflows, which our data supports.

Figure 12 presents the results of CP characterization per
workload source. From this figure we observe the CP length
differs significantly per trace. Based on the prior findings,
the engineering traces are expected to show longer critical
paths. As we can observe, the Askalon old traces contains
workflows with the longest critical path. Alibaba workflows
also exhibit long critical paths, indicating their workflows
next to being highly parallel, also contain a lot of tasks with
stages. More concentrated, the other traces exhibit lower
critical path lengths, yet the traces are still clearly distinct.
As the Shell trace contains solely sequential workflows, the
critical path length is one.

5 ADDRESSING CHALLENGES OF VALIDITY

In this section, we discuss challenges to the validity of this
work. We address the challenges through either trace-based
simulation (the first) or argumentation (the others).

Challenge C-1. Trace diversity does not impact the
performance of workflow schedulers. As outlined in Sec-
tions 3.7 and 4, the WTA traces are diverse. However, what
is the impact of trace diversity?

To demonstrate the impact of trace diversity on sched-
uler performance, we conduct a trace-based simulation
study. The simulator used is an optimized version of
DGSim [48] which we publish as open-access artifact6. We
simulate workloads from five sources using two scheduler
configurations. We equip the simulated scheduler with ei-
ther the first-come first-serve (FCFS) or the shortest job first
(SJF) queue sorting policy. For both scheduler configura-
tions, we further use a best-fit task placement policy. We
do not use a fixed resource environment to prevent bias
when sampling or scaling traces [28]. Instead, we tailor the
amount of available resources for each trace to reach roughly
a 70% resource utilization on average, based on the amount
of CPU (core) seconds of trace and its length. Although

6. Available at https://github.com/atlarge-research/wta-sim

TABLE 6: The performance in simulation of two schedulers
for traces from different sources. Lower values are better.

Source of Trace

Metric Policy Askalon Old Askalon New Pegasus Shell SPEC

Avg. ReT FCFS 2.02 · 105 s 167 s 2.43 · 104 s 9.76 s 491 s
SJF 1.74 · 105 s 113 s 2.12 · 104 s 9.52 s 248 s

Avg. BSD FCFS 1.53 · 104 65.1 1.31 · 103 1.13 47.4
SJF 0.14 · 104 11.6 0.10 · 103 1.06 2.2

Avg. NSL FCFS 1.05 · 105 2.50 2.35 · 103 1.12 13.9
SJF 0.01 · 105 3.14 0.06 · 103 1.07 1.78

ambitious, 70% resource utilization is achievable in parallel
HPC environments [49] and can be seen as a target for
cloud environments. To evaluate the performance of each
scheduler, we use three metrics commonly used to assess
schedulers’ performance [50], [51]: task response time (ReT),
bounded task slowdown (BSD, using a lower bound of 1
second), and normalized workflow schedule length (NSL,
the ratio between a workflow’s response time and its critical
path). The entire experiment, including software and data,
can be reproduced on Code Ocean7.

We report the performance of each simulated scheduler
in Table 6 per source. From this table we observe significant
differences between schedulers and trace sources. In par-
ticular, we find that the relative performance of schedulers
differs between trace sources. For example, SJF outperforms
FCFS on the normalized schedule length metric by up to
two orders of magnitude on traces from Askalon Old and
Pegasus. In contrast, on traces from Askalon New and Shell,
the scheduling policies perform similarly. For other metrics,
these differences are present, but less pronounced. SJF per-
forms better than FCFS on response time and slowdown
for each trace source, but the differences in performance
between the schedulers vary greatly across traces.

Overall, we kept the working environment fixed per
trace, yet obtained significantly different results depending
on the scheduler and input trace. Thus, our trace-based
simulations give practical evidence that researchers require
experimenting with different traces to claim generality and
feasibility of their proposed approaches.

C-2. Limited venue selection in the survey. Besides
omitting venues that yielded no results on our initial query,
we made sure that journals, workshops, and conferences
were covered at various levels in term of quality. The
selected venues are highly ranked in several of the available
rankings, including CORE8, Google Scholar9, and AMiner10.
As these rankings use different metrics to define the top-
ranking, we made a selection that covers different types of
venues that also match our experience in terms of quality,
see the list in Table 1. We believe this covers the field of
systems community to a degree where conclusions can be
drawn from. We specifically focus on articles published
in the systems communities as specialized communities,
e.g., bioinformatics, focus on systems that solve domain-
specific problems, but rarely conduct in-depth experiments,
including trace-based, to test the system-level capabilities
and behavior.

7. https://doi.org/10.24433/CO.8484557.v1
8. http://portal.core.edu.au/conf-ranks
9. https://scholar.google.com/citations?view op=top venues&

amp;hl=en&amp;vq=eng computingsystems
10. https://cn.aminer.org/ranks/conf

https://github.com/atlarge-research/wta-sim
https://doi.org/10.24433/CO.8484557.v1
http://portal.core.edu.au/conf-ranks
https://scholar.google.com/citations?view_op=top_venues&amp;hl=en&amp;vq=eng_computingsystems
https://scholar.google.com/citations?view_op=top_venues&amp;hl=en&amp;vq=eng_computingsystems
https://cn.aminer.org/ranks/conf
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C-3. Level of data anonymization. The Google team
published interesting work data [42], but their anonymiza-
tion approach, of normalizing values of both resource con-
sumption and available resources, reduces significantly the
usability of traces and the characterization details they pro-
vide. We argue this type of anonymization is not preferred.
When available resources per machine, e.g. available disk
space, memory, etc., and resource consumption numbers are
normalized, reusing traces for different environments be-
comes difficult. Researchers then need to make assumption
on what kind of hardware the workflows were executed
as done in the work of Amvrosiadis et al. [15] or need to
assume a homogeneous environment. Instead, obfuscation
techniques, such as multiplying both consumption and re-
sources by a certain factor, allow for relative comparisons
and the possibility to replay scheduling the workload on
the resources while still concealing the original data.

C-4. The Workflow Trace Format. A fourth challenge is
the properties included in the workload trace format. For
each encountered property in other formats, we carefully
decided whether to include it or not. Low-level details such
as page caches are omitted to not complicate unnecessarily
the traces. If future work demands change, the versioning
schema per object will allow for these additions. In defining
the fields of our trace format, we also looked at a variety
of workflow specification languages and formalisms, from
the very generic (e.g., BPMN/BPEL and Petri net) to the
executable workflow formalisms (e.g., CWL and DAX).

6 RELATED WORK

We survey in this section the relevant body of work fo-
cusing on trace archives and on characterizing workloads.
Differently from other archives, the WTA focuses on work-
loads of workflows, preserving workflow-level arrival patterns
and task inter-dependencies not found in other archives.
Differently from other characterization work, ours is the
first to reveal and compare workflow characteristics across
different domains and fields of application.

Open-access trace archives: Closest to this work is Work-
flowHub [14], which archives traces of workflows executed
with the Pegasus workflow engine and offers them in a
unifying format containing structural information. Work-
flowHub also provides a tool to convert Pegasus execution
logs to traces, similar to our parsing tools. Different from
this work, WorkflowHub’s traces include a single workflow
and thus not a workload with a job-arrival pattern. Work-
FlowHub also does not provide statistical insights per trace
and thus, they do not meet requirements R-1 and R-3, and
only partially meet R-4.

Also relatively close to this work, the ATLAS repository
maintained by the Carnegie Mellon University [15] contains
two traces (the S3 traces in this work), with other two traces
announced but not yet released (as announced, the S7 traces
in this work). None of their published traces contains task-
interdependency data, so, although overlapping with our
S3 and S7, the ATLAS work is different in scope and in
particular does not address workflows. Further, they do not
consider different domains nor fields, and their archive lacks
a unified format, statistical insights, selection mechanisms,
and tooling—thus, they do not meet our requirements R1–4.

Other trace-archives with similarities to this work
include the MyExperiment archive (ME) [24], the Parallel
Workloads
Archive (PWA) [52], and the Grid Workloads
Archive (GWA) [53]. ME stores workflow executables,
and semantic and provenance-data, but not provide
execution traces as WTA does and thus has different
scope. The PWA includes traces collected from parallel
production environments, which are largely dominated by
tightly-coupled parallel jobs and, more recently, by bag-
of-tasks applications. The GWA includes traces collected
from grid environments; differently from this work, these
traces are dominated by bag-of-tasks applications and by
virtual-machine lease-release data.

Workload characterization, definition, and modeling:
There is much related and relevant work in this area, from
which we compare only with the closely related; other char-
acterization work does not focus on comparing traces by
domain and does not cover a set of characteristics as diverse
as this work, leading to so many findings. Closest to this
work, the Google cluster-traces have been analyzed from
various points of view, e.g., [54], [55], [56]. Amvrosiadis
et al. [15], [23] compare the Google cluster traces with
three other cluster traces, of 0.3-3 times the size and 3-
60 times the duration, and find key differences; our work
adds new views and quantitative data on diversity, through
both survey and characterization techniques. Bharathi et
al. [46] provide a characterization on workflow structures
and the effect of workflow input sizes on said structures.
Five scientific workflows are used to explain in detail the
compositions of their data and computational dependencies.
Using the characterization, a workflow generator for param-
eterized workflows is developed. Juve et al. [36] provide a
characterization of six scientific workflows using workflow
profiling tools that investigate resource consumption and
computational characteristics of tasks. The teams of Feitel-
son and Iosup have provided many characterization and
modeling studies for parallel [57], grid [58], and hosted-
business [59] workloads; and Feitelson has written a seminal
book on workload modeling [60]. In contrast, this work
addresses in-depth the topic of workloads of workflows.

7 CONCLUSION AND ONGOING WORK

Responding to the stringent need for diverse workflow
traces, in this work we propose the Workflow Trace Archive
(WTA), which is an open-access archive containing work-
flow traces.

We conduct a survey of how the systems community
uses workflow traces, by systematically inspecting articles
accepted in the last decade in peer-reviewed conferences
and journals. We find that, from all articles that use traces,
less than 40% use realistic traces, and less than 15% use any
open-access trace. Additionally, the community focuses pri-
marily on scientific workloads, possibly due to the scarcity
of traces from other domains. These findings suggest exist-
ing limits to the relevance and reproducibility of workflow-
based studies and designs.

We design and implement the WTA around five key
requirements. At the core of the WTA is an unified trace
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format that, uniquely, supports both workflow- and task-
level NFRs. The archive contains a large and diverse set of
traces, collected from 10 sources and encompassing over 48
million workflows and 2 billion CPU core hours.

Finally, we provide deep insight into the WTA traces,
through a statistical characterization revealing that: (1) there
are large differences in workflow structures between sci-
entific, industrial, and engineering workflows, (2) our two
biggest traces– from Alibaba and Google– have the most
stable arrival patterns in terms of tasks per hour, (3) indus-
trial workflows tend to have the highest level of parallelism,
(4) the level of parallelism per domain is clearly divided,
(5) engineering workloads tend to have the most tasks on
the critical path, (6) the three domains inspected in this
work show distinct critical path curves, (7) in order to claim
generality of an approach, one should test a system with
a variety of traces with different properties, possibly from
different domains.

In ongoing work, we aim to attract more organizations
to contribute real-world traces to the WTA, and to encour-
age the use of the WTA content and tools in educational
and production settings. One of our goals is to develop
a library system administrators can integrate into their
systems to generate traces in our format. Our preliminary
experience with this learns that developing such a library,
even for a single system, requires significant engineering
effort and is thus left for future work. We aim to support
other formalisms in the future, including directed graphs,
BPMN workflows, etc. based on the community’s needs.
Investigating if formalisms such as CWLProv can be used to
further enhance the archive’s content, possibly by merging,
is another interesting item for future work. Finally, we aim
to improve the trace format and statistics we report for each
trace, based on community feedback.

REPRODUCIBILITY STATEMENT

We support reproducible science. A full description on how
to reproduce our findings can be found in our technical
report [38]. The WTA datasets are available online on the
archive’s website https://wta.atlarge-research.com/. The
WTA tools, simulator, and parse scripts and survey data are
available as free open-source software at
https://github.com/atlarge-research/wta-tools,
https://github.com/atlarge-research/wta-sim, and
https://github.com/atlarge-research/wta-analysis, respec-
tively. The experiment conducted in Section 5, C-1 can
be reproduced using our Code Ocean capsule available at
https://doi.org/10.24433/CO.8484557.v1.
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