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Abstract

Serverless computing is a new cloud paradigm
that enables the rapid development of business
cases and offers an efficient pay-as-you-use model.
Function-as-a-service is an extension of the serverless
model that offers the runtime environment for the
user functions, along with the management of a func-
tion lifecycle (scaling, managing updates, and others)
The big cloud providers are offering their FaaS plat-
forms which allows the users to integrate the workflow
with other cloud offerings. These platforms are closed
source, which doesn’t allow researchers to explore
their architectures. The SPEC Research Group has
presented their reference architecture of the server-
less platforms by analyzing the open-source services.
In this survey we analyze the architecture of some
of the most popular open-source serverless platforms,
and compare it to the reference architecture. We also
discuss the similarities and differences between these
platforms, based on the solutions to most common
problems of serverless platforms: cold start optimiza-
tion, metadata storage, and scaling.

1 Introduction

Serverless computing platforms enable the users
to focus solely on their application by not only man-
aging the resources and infrastructure, but also by
providing the dynamic allocation of servers and con-
tainers. The benefits for the users are clear: they do
not have to spend time and resources on server ops,
but they delegate this responsibility to the serverless
provider, who takes care of uptime and elastic scaling

of the components when necessary. The users also do
not pay for the unused resources, which provides a
cost benefit as compared to IaaS model.

Most of the serverless computing providers of-
fer compute runtimes, better known as Function-as-
a-Service (FaaS), which allow writing single func-
tions, which are executed by various triggers, such as
HTTP. This model is an extension of the microservice
design pattern, and requires a switch from the tradi-
tional software design approach. In the FaaS model
we have many functions running independently, usu-
ally state-less, that need to communicate to accom-
plish more complex tasks.

The most popular FaaS platforms are offered as
part of the large cloud platforms like AWS, Google
Cloud and Microsoft Azure, which provide stable
ground for researchers [10, 4, 11, 20, 16] and indus-
try professionals [2] to write papers on creating ap-
plications, benchmarks and general analysis of these
platforms. These platforms are, however, closed-
source which limits knowledge sharing and deeper
architectural analysis. On the other hand there are
many open-source projects. These projects give a
clear picture of how the serverless platforms are op-
erating, and have been the subject of many papers
[6, 13, 1, 12].

One of the papers, written by the SPEC Research
Group [3], based on extensive analysis of the server-
less platforms proposed a reference architecture for
serverless platforms, which consists of three layers:
resource layer, which manages underlying resources
needed for functions to run, function layer, which
deals with manages everything related to lifecycle of
a single function, and workflow layer, which man-
ages function orchestration. This paper did not fo-
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cus on the interactions and data-flow between the
sub-components of each layer, and it did not de-
scribe its interaction to components outside of the
ones described in the architecture. We observe that
in the current literature there is no in-depth analysis
of differences in architecture between different FaaS
projects. A finer-grained analysis of the components
of each layer is also missing in the literature. In this
work, we survey current, open-source platforms for
serverless operations to fill in the gaps observed in
the literature. To satisfy the purpose of this paper,
we propose a following research question:

How to identify the fine-grained architectural com-
ponents and their interactions in the function man-
agement layer of the serverless platforms? Once we
establish the analysis method we use it to answer the
following two questions:
How to compare, across the well-known serverless
platforms, the data and control flow occurring be-
tween the components of the function management
layer? and
How do the function layer components of the well-
known open-source serverless platforms map to the
reference architecture for the serverless platforms pro-
posed in the SPEC-RG paper?

To answer the research questions posed we need
to conduct a survey into the current state-of-the-art,
by providing a deep analysis of at least 5 serverless
platforms, describing the data and control flow for
each of them. Using insights gained from the sur-
vey a generalized fine-grained model of the function
management layer architecture will be made.

The contributions to answer our research ques-
tions are following:

1. A systematic method for analysis of papers,
documentation and code of the well known
open-source platforms (S2). We adapt the
novel Multivocal Literature Review proposed
by Garousi et al. [5] to suit this survey.

2. A novel model to understand FaaS platforms
(S3.2). Our model extends the state-of-the-art
model proposed by the SPEC-RG Cloud Group
in 2018. The key extension is a set of finer-
grained architecture elements for the Function
Management layer.

3. Analysis of the data-flow and architecture of the
chosen platforms (S4). We present core compo-
nents along with external components for each
platform, describe their function and analyze
the data flow based on function invocation.

4. Comparison and analysis of the proposed archi-
tectures of the each platform to the SPEC-RG

reference architecture (S5). We map identified
components to the SPEC-RG architecture and
discuss mapping differences.

2 Method for Finding, Select-
ing, and Characterizing Rel-
evant Material

Here we present a method which was used to per-
form the analysis of the serverless open-source plat-
forms. We explain what are the common methods
and processes for finding, selecting, and analysing
relevant material. We also provide reasoning why
these processes could not be fully applied in the case
of this survey, and what are the differences in our
method that helped us conduct this survey. Further-
more we explain our choice of open-source serverless
platforms.

2.1 Analysis of Widely Used Methods

The common processes in the field when it comes
to gathering the literature and performing the sur-
vey are snowballing, unguided traversal of the ma-
terial and the Systematic Literature Review method
proposed by Kitchenham et al. [7].

The first two methods are unguided, and the
biggest drawback is the lack of reproducibility of the
process. The literature gathering process started by
two different researchers, even when started with the
same set of query words, will end up with two com-
pletely different literature sets. However, these pro-
cesses are simple and straightforward. The System-
atic Literature Survey is a method that, if performed
correctly, solves the reproducibility issues of the first
two method. We have followed this method when it
comes to gathering relevant scientific literature.

However, the drawback of the SLR method is that
it takes as input only academic peer-reviewed articles.
Initial queries have indicated a lot of primary liter-
ature on the general topic of serverless, but no sat-
isfying in-depth analysis of different platforms. This
means that most of the information we need for this
survey is present in grey literature (GL): blog posts,
videos, online books, and especially relevant for this
survey, documentation and code repositories.

We have identified a novel method, Multivocal
Literature Review (MLR) [5]. The idea of this
method is that in cases when there is not enough pri-
mary literature present, we expand our scope to per-
form a secondary study and consult sources from the
grey literature. Schenuer and Lautner [14] have al-
ready performed MLR in the field of serverless bench-
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# Question Answer MLR-AutoTest

1 Is the subject “complex” and not solvable by considering only the
formal literature?

Yes Yes

2 Is there a lack of volume or quality of evidence, or a lack of consensus
of outcome measurement in the formal literature?

Yes Yes

3 Is the contextual information important to the subject under study? Yes Yes
4 Is it the goal to validate or corroborate scientific outcomes with prac-

tical experiences?
No Yes

5 Is it the goal to challenge assumptions or falsify results from practice
using academic research or vice versa?

Yes Yes

6 Would a synthesis of insights and evidence from the industrial and
academic community be useful to one or even both communities?

Yes Yes

7 Is there a large volume of practitioner sources indicating high prac-
titioner interest in a topic?

Yes Yes

Table 1: MLR questionnaire with our answers and expected answers for MLR (MLR-AutoTest).

marking, justifying it by the combination of high in-
dustry and academia interest in the topic. We have
included a questionnaire from the MLR guidelines in
1 which shows that our survey benefits from inclusion
of GL. This questionnaire is consisted of 7 questions
that check if there is a sufficient reason for consulting
grey literature.

2.2 Method Description

We have first performed selected steps from SLR
to analyze academic literature. In 1 we have identi-
fied the need for a review and specified the research
questions. In this section we describe our review pro-
tocol 2.2, define search queries and select primary
studies 2.3.2. In 4 we perform data extraction and
monitoring, and in 5 we perform data synthesis.

Multivocal Literature Review method expands
Systematic Literature Review method by providing
guidelines on how to search, validate and select grey
literature. We identify platforms to be searched
and perform a secondary and tertiary study selection
2.3.3.

2.3 Selection and Identification of Lit-
erature

2.3.1 Selection Strategy

We define the following inclusion and exclusion
criterias to select only literature that provides rele-
vant information:

1. We include literature with at least one server-
less architecture or data-flow analysis.

2. We exclude literature that provide only analysis
or implementation of solutions on top of exist-
ing platforms (if first point is not satisfied).

3. We exclude literature that are concerned with
closed-source platforms.

This selection criteria limits significantly the amount
of academic literature, as not many academic papers
have been written about serverless architecture. It
also scopes grey literature as there is a much larger
set of articles / blog posts / videos about implemen-
tation of solutions on serverless platforms than about
inner workings of these platforms.

2.3.2 Primary Literature

For this research, we identified Google Scholar,
Serverless Literature Dataset by Spillner and Al-
Ameen [17] and AIP database tool developed at VU
Amsterdam, as the platforms to be searched for pri-
mary literature.

Next, following standard SLR guidelines, we de-
fine a set of search strings to be combined in a search
query. These strings (Table 2) have been selected
on basis of trying to capture knowledge about gen-
eral serverless architecture and data-flow model, and
also knowledge about platforms that have been cho-
sen for analysis in this survey (2.4). We supply these
query strings with strings open-source, components
or architecture to narrow down the resulting set.

2.3.3 Grey Literature

It is important that the information from the ar-
ticles comes from trustworthy sources, because grey
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literature is not peer-reviewed as the primary sources
in conference papers and magazines.

We decided to judge our sources by the following
criteria: Producer authority, methodology, objectivity,
date, novelty and outlet type. We have identified three
types of grey literature that is interesting in the con-
text of this survey: Articles and blog posts, Confer-
ence videos and Codebase and official documentation.

In the first category we have identified following
platforms: Google Search, Hacker News Algolia, Red-
dit and Medium. In the second category we identified
just one platform: YouTube. In the case of the third
category we identified GitHub as the primary plat-
form as all the projects have their code repositories
hosted by GitHub. Along with GitHub we have also
identified official project websites which contain of-
ficial documentation. The query parameters are the
same as the ones mentioned in Table 2. The search
results are presented in Table 3.

2.4 Platform selection

The scope of this paper is the analysis of platforms
that provide function management layer, as defined
by the SPEC-RG reference architecture. The work-
flow layer is out of scope, and resource layer is anal-
ysed only when describing its interaction with func-
tion management layer.

The list of open-source FaaS platforms that we
found thanks to the relevant data-set from the SPEC-
RG paper [19] and also analysing new serverless
projects that came out after the SPEC-RG paper was
published is presented in Table 2. We characterize
them by properties which highlight community recog-
nition and project activity. It is important to note
that a lot of these projects are backed by large com-
panies (for example IBM, Oracle), so there is likely
a divergence between the open-source code and the
code that is running in the production. That is why
some of these projects seem inactive, while the actual
usage and development effort is hard to estimate.

As we see from the Table 3, there is a lot of ac-
tivity in most of the projects. By far the most recog-
nised project is OpenFaas, which is leading in the
number of stars. It is also one of the most used open-
source platforms in practice. We pinpoint Open-
Whisk, Knative serving, Fission, Kubeless, and nu-
clio as projects that are active and have a large com-
munity recognition. Azure Functions Core Tools and
riff have been published as open-source projects rela-
tively recently, and they have not caught attention of
the community, but they are active nonetheless. On
the other hand, VMware dispatch, OpenLambda and
fn are stale projects. VMware dispatch and fn are

projects backed by VMware and Oracle respectively,
so we assume that the development on these projects
is mostly closed-source, with open-source lagging be-
hind. OpenLambda is a project created by academia,
and it’s activity should not be compared to the com-
mercial projects.

We have decided to analyze OpenWhisk, Kna-
tive serving, OpenFaas, Fission, and Open-
Lambda. We have chosen these projects because
of their relevance and activity, and in the case of
OpenLambda due to it’s different nature which pro-
vides useful information about different perception of
serverless in industry and academia. We would have
preferred to analyze more projects, but we have de-
cided to scope it due to the time limit of this survey.

2.5 Threats to Validity

Although the MLR method shows a lot of
promise, it is still a novel and untested method. As
we mentioned before, using grey literature will pro-
duce errors because the sources are not peer reviewed
as the academic papers. We tried judging the grey lit-
erature sources based on aforementioned attributes,
but we cannot judge every source as reviewers do with
every paper posted to the journals.

Another possible shortcoming of this survey is
based on the selection of the query strings. No-
tably, the term lambda is used to describe serverless
functions, and it is used by the wider community.
However, both academic papers and grey literature
is mostly revolved around AWS Lambda (which is
excluded based on our selection criteria), so finding
the relevant literature was a very extensive task that
we could not perform due to the scope of this survey.

3 General Architecture Model

In this section we present an existing reference
architecture proposed by the SPEC Research Group,
we also provide a conceptual contribution by further
expanding the serverless reference architecture pro-
posed by the SPEC research group. In this section we
answer the research question RQ1: How to identify
the fine-grained architectural components and their
interactions in the function management layer of the
serverless platforms?

3.1 Reference Architecture Mapping

The SPEC-RG reference architecture contains fol-
lowing components:
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Query # Selected # Analysed

serverless 8 8
FaaS (function-as-a-service) 3 1
OpenLambda 2 2
OpenWhisk 5 4
OpenFaas 3 2
Knative 4 3
Fission 3 1

Total: 28 21

Table 2: Primary literature identification and study, third column indicates deduplicated literature.

Query CG1 CG2 CG3

serverless 5 1 -
FaaS (function-as-a-service) 1 0 -
OpenLambda 2 0 1
OpenWhisk 7 1 2
OpenFaas 5 2 4
Knative 5 3 2
Fission 5 2 2

Total: 30 9 11

Table 3: Number of Analysed grey literature resources: Articles and blogposts (CG1), Conference videos
(CG2), and Codebase and official documentation (CG3).

Project Latest commit Stars # Commits Section

OpenFaas Mar 19th, 2020 17.2k 1,858 4.3
Kubeless Mar 17th, 2020 5.5k 1,005 -
Fission Mar 20th, 2020 5k 1,134 4.5
OpenWhisk Mar 20th, 2020 4.6k 2,760 4.1
fn Dec 19th, 2019 4.5k 3,393 -
nuclio Mar 19th, 2020 3.2k 1,277 -
Knative serving Mar 21st, 2020 2.8k 3,961 4.4
riff Mar 2nd, 2020 776 1,268 -
OpenLambda Dec 6th, 2019 669 811 4.2
Azure Functions Core Tools Mar 14th, 2020 531 1,142 -
VMware Dispatch Jan 8th, 2019 518 538 -

Table 4: Analysis of GitHub repositories (master branch) of open-source serverless projects on 22nd of
March, 2020.
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Figure 1: Reference architecture of subcomponents in the Function Management Layer.

1. Function Registry (F1): Store which con-
tains source code, deploy archive and function
metadata. Used for building, deploying and
searching for functions.

2. Function Builder (F2): Responsible for
building source code into deployable archive
that can be run inside containers. Part of this
component are usually also dependency tracer
and package fetcher.

3. Function Deployer (F3): Ensures that the
instance of a function is deployed. Combines
function metadata and deploy archive and in-
teracts with the underlying resource manage-
ment layer to create one or more function in-
stances.

4. Function Instance (F4): Representation of a
function, able to execute based on various trig-
gers. Function code is attached to a container
and that represents a Function Instance, but
typically there are also other containers or pro-
cesses injected together with the function con-
tainer.

5. Function Router (F5): Has overview of all
Function Instances, and acts as the entry point
in the function management layer. It has a load
balancing role when there is multiple Function
Instances. Also queues requests when there is
no Function Instances available.

6. Function Autoscaler (F6): Responsible for
autoscaling of Function Instances, based upon
number of requests. Usually combined with
other components that reports usage statis-
tics based on which autoscaler increases or de-
creases number of Function Instances.

3.2 Going Beyond Reference Archi-
tecture

Here we present our extension to the reference ar-
chitecture, which goes one level deeper into subcom-
ponents of the reference architecture. It is based on
the analysis of the platforms presented in S4.

It is important to note that the mapping of
these components to their parent components varies
substantially between different platforms. However,
dropping the boundaries between the reference archi-
tecture components and presenting the architecture
as a combination of these subcomponents carries a
risk of overfitting and mispredicting what is currently
used in practice.

1. Function Registry: We describe different
data that is handled by the Function Store.

(a) Function Metadata: Contains informa-
tion about size, programming language,
amount of resources requested, minimum
scaling and other information useful for
build, scaling and deployment.

(b) Function Source Code: User uploaded
code, used by Function Builder to build
executable.

(c) Function Deploy Archive: Stored
in the Function Store by the Function
Builder after building the function. Used
by Function Deployer to attach the exe-
cutable to the container.

2. Function Builder:

(a) Dependency Tracer: Traces changes in
dependencies, usually as a part of a func-
tion invocation or as a scheduled job.
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(b) Package Fetcher: Responsible for fetch-
ing new packages as part of the build pro-
cess.

(c) Builder: Responsible for fetching and
compiling source archive.

3. Function Deployer:

(a) Fetcher: Responsible for fetching deploy
archive from the store.

(b) Manager: Responsible for keeping track
of free containers. Usually the place where
cold start optimizations are implemented.

4. Function Instance:

(a) Function Watcher: Entrypoint of the
request in the function instance. Unmar-
shals requests and forwards them to the
Executor. Also can report requests to Au-
toscaler.

(b) Function Executor: Container or a pro-
cess inside container that is responsible for
executing function.

5. Function Router:

(a) Load Balancer: Component that decides
on which function instance to send the re-
quest to.

(b) Function Cache: Used for looking up
function addresses to check whether there
is a function instance running.

6. Function Autoscaler:

(a) Resource Layer Operator: Interacts
with the underlying resource layer to in-
crease or decrease number of instances.
Does this by automatically changing con-
figuration of the resource layer, therefore
automating this process.

(b) Alerter: Component that receives alerts,
or reports itself on the load, and notifies
Resource Layer Operator to increase or de-
crease number of instances.

4 Platform Analysis

We structure the analysis in the following way: for
each platform, we first introduce the platform. Then
we present the architectural overview of the system,
and describe the functionalities of the components

and how they interact. Then, we describe function
invocation flow as a way of describing control flow
between components identified in the architectural
overview. In the next step we explain the data flow
among the different components. By doing these two
steps we answer the research question RQ2: How to
compare, across the well-known serverless platforms,
the data and control flow occurring between the com-
ponents of the function management layer? Lastly,
we map system components to the SPEC-RG refer-
ence architecture and discuss this mapping. With
this mapping and the discussion we answer the final
research question RQ3: How do the function layer
components of the well-known open-source serverless
platforms map to the reference architecture for the
serverless platforms proposed in the SPEC-RG pa-
per?

4.1 Apache OpenWhisk

Figure 2: OpenWhisk architecture diagram. Existing
open source technologies are marked with an icon.
We map components to the SPEC RG reference ar-
chitecture, and label the main component-mappings
with F1-6.

Apache OpenWhisk1 is an open-source serverless
platform under the Apache foundation. It is imple-
mented as the FaaS platform in IBM Cloud. Consid-
ering its strong support from industry, the project
is well documented and covered in many articles,
blog posts and books [15]. OpenWhisk supports Go,
NodeJS, Java and Swift runtimes, and also supports
execution of Docker containers which adds support
for virtually any language. It is the only analysed
platform that is built using Scala.

1github.com/apache/openwhisk
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4.1.1 System Overview

OpenWhisk consists of the following core compo-
nents:

1. Nginx: HTTP and reverse proxy server, used
for SSL termination and forwarding http re-
quests

2. Controller: core component that receives
an HTTP request from user, and also other
non user-initiated triggers. Interacts with the
database for authentication and checking enti-
tlements (rights), and also for CRUD opera-
tions on functions.

3. Load Balancer: component that keeps track
of all the registered executors (Invokers) that
can execute the action. Forwards function ac-
tivations from Controller to Invokers. It can be
centralized or distributed.

4. Kafka: distributed messaging queue used for
communication between Load Balancers and
Invokers. It provides fault-tolerance and buffer-
ing of activations.

5. Invoker: component responsible for managing
Docker containers and deploying functions into
the containers.

6. CouchDB: database used for storing function
code and entitlements.

Figure 2 shows how these components are organized
in the architecture. OpenWhisk has been built us-
ing existing open source technologies that are high-
lighted in this diagram. Core components are drawn
with square boxes and icons, and internal components
are marked with round boxes. In orange we can see
the mapping to the SPEC-RG reference architecture
components, which is analysed in 4.1.4.

4.1.2 Function Invocation Flow

Figure 3 depicts the invocation flow of Open-
Whisk. The activation request reaches Nginx as a
first contact with the system and it is forwarded to
the Controller. Once Controller receives an activa-
tion, it checks user and action (function in Open-
Whisk) entitlements in CouchDB to ensure the au-
thenticated user has the rights to invoke action. If
the user has the right entitlement for the action, the
action metadata is sent to the Load Balancer.

The Load Balancer chooses an Invoker from its
pool based on computing a hash for a user namespace
and action, ensuring that for the same action and

namespace Load Balancer will always try scheduling
the action on the same Invoker. If the Invoker is full
and cannot accept any more requests, the algorithm
is used again to find an empty Invoker which can ex-
ecute actions.

All communication between Invokers and Load
Balancers goes through Kafka, which allows services
to subscribe to new messages. Invokers can create
and destroy containers based on the configuration of
the maximum number of containers. Invokers also
keep a pool of prewarmed containers that are used to
optimize cold start times. Once an Invoker receives
action metadata from Kafka, it retrieves the actione
executable from the Whisk Store, which is also a part
of the CouchDB. If the action executable is missing, it
means that the user concurrently deleted the action,
which returns an error.

If the executable is present, the Invoker tries to
find a warm container (container that is running and
its in use for the specific action and namespace), and
if it finds it it executes the action and returns the
result. If it does not find the warm container, it
checks the prewarmed container pool (preconfigured
running containers) to find a suitable running con-
tainer. If there is no suitable container, only then
the cold start is used. Since the number of containers
in the pool is limited, in case a new container needs
to be initialized, possibly an unused container will be
removed.

Once the result is obtained, it is stored in results
database in CouchDB. Load Balancer and Invokers
are communicating using acknowledgments. When
a Load Balancer receives a result ack, if the activa-
tion was blocking, it retrieves the result from the re-
sults database and sends it to the user. If the activa-
tion was non-blocking, the Load Balancer already re-
turned activation id once it got confirmation from the
Invoker that the action execution has started. Users
can query the results and activation status by using
the activation id. Once Load Balancer receives com-
pletion ack, it releases the Invoker activation slot.

4.1.3 Data Flow

In this section we describe the data flow between
the high level architecture components identified in
the Figure 2.

The system entrypoint, Nginx receives and for-
wards HTTP requests to the Controller. The HTTP
requests include credentials, which the Controller
sends as queries to the database to check whether
the user has rights to perform the action specified in
the HTTP request. The database sends the query re-
sponses to the Controller which are used to allow or

8



Figure 3: OpenWhisk function invocation flow.

deny the user action. The Controller again interacts
with the database, this time the Whisk database.

In case of the new function creation, the Con-
troller sends function code, default parameters, and
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resource restrictions to the Whisk database where
new entry is created. In case of the function invo-
cation, the Controller sends a query to the Whisk
database to fetch the function. Then the Whisk
database sends the function code, default parame-
ters, and resource restrictions back to the Controller.
The Controller sends the function metadata needed
for running the function to the Load Balancer.

This data is the data retrieved from the Whisk
database merged with the function parameters sup-
plied in the HTTP request. The function metadata,
together with the Invoker address selected by the
Load Balancer is then forwarded through Kafka to
the right Invoker. Invoker either sends the function
parameters to the running function container, or in-
jects the function executable into a new container.
In case a new container is needed, the Invoker sends
the request with container configuration to the Con-
tainer pool to retrieve the container address. The
system returns the user the HTTP response with the
activation id of their invocation.

4.1.4 Reference Architecture Mapping

In OpenWhisk, Controller has the central role,
therefore it encompasses multiple roles by the com-
ponents defined in the reference architecture. Since
Controller receives both requests for creating and in-
voking actions, its role is both to build the function
executable if necessary, and to route incoming re-
quests. It is important to note that Load Balancer
is the part of controller. Load Balancer’s role is to
route the requests to the correct Invoker. Invoker,
as a container pool manager, has a role of elastically
scaling containers, which are Function Instances, and
to deploy and monitor them. The following mapping
is produced:

• F1: CouchDB

• F2: Controller

• F3: Invoker

• F4: Container

• F5: Load Balancer

• F6: Invoker

4.2 OpenLambda

OpenLambda2 was created as a research project
from University of Wisconsin. They defined the FaaS
computing model as Lambda model, as inspiration

from Amazon Lambda. It was built as a platform
for researchers to evaluate new approaches to server-
less computing [6], create benchmarks and develop
applications. The project is written in Go and at the
moment it’s stale, although we assume the project
is still widely used and developed under different re-
search groups.

4.2.1 System Overview

The architecture of OpenLambda is shown in Fig-
ure 4.2.1. We highlighted external open-source tech-
nologies that are part of the platform (CouchDB, Ng-
inx, Docker). Also, we marked the Worker compo-
nent with dashed line to highlight that it is not a
functional component, but a distribution unit that
encompasses core components of OpenLambda. The
round boxes are internal components while square
boxes are the core components.

The core components are following:

1. Nginx: HTTP and reverse proxy server, used
in OpenLambda as a scheduler. It provides lim-
ited scheduling techniques. A more sophisti-
cated scheduling technique that takes into ac-
count locality (which is useful for optimizing
cold start) is presented in [18].

2. Worker: Worker is the unit of distribution
in OpenLambda. It contains core components
necessary for function management.

(a) Lambda Server: Entry point of the re-
quest. It disambiguates the requests and
forwards them via Lambda Manager to the
Lambda Function

(b) Lambda Manager: Lambda Manager is
the component that manages function life
cycle. It keeps a map of existing func-
tions, function instances and also registers
tools such as Dependency Tracer, Handler
Puller and Package Puller to track and in-
stall required packages and dependencies
for functions. It contains a sandbox pool
used for creating instances.

(c) Lambda Function: Component repre-
senting the function registered in the sys-
tem. It keeps track of Function Instances,
updates to the function, code directory
and metadata needed to create a sand-
box. Lambda Function also employs auto
scaling techniques, based on number of re-
quests and time needed for function exe-
cution.

2github.com/open-lambda/open-lambda
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(d) Lambda Instance: Instance of the func-
tion, it is a snapshot of the function at
the time of the instance creation. It is a
virtual instance, backed by a sandbox, if
there is one available.

(e) Sandbox: Abstraction of the resource
management layer, it is a container in-
stance that is used by the Lambda In-
stance.

3. Function Registry: Database option used for
retrieving function metadata and code. Due
to change feed abstraction, CouchDB or Re-
thinkDB are preferred options.

Figure 4: OpenLambda architecture diagram. Exist-
ing open source technologies are marked with an icon.
We map components to the SPEC RG reference ar-
chitecture, and label the main component-mappings
with F1-6.

4.2.2 Function Invocation Flow

Invocation flow is highlighted in Figure 4.2.2. The
function enters the system via Nginx proxy, and it
gets forwarded to one of the workers. Request is re-
ceived by Lambda Server, which retrieves the func-
tion based on the url. Lambda Manager either re-
turns a function that is already registered, or creates
a new Lambda Function. The task is forwarded to
one of the Lambda Instances via a queue. Once the
task is received by the Lambda instance, it checks
if there is a sandbox mapped to it already. If there
is one, the Lambda Instance checks its status and

based on the response it either executes function in
the existing sandbox, or creates a new sandbox and
executes the function (cold start).

Figure 5: OpenLambda invocation flow.

4.2.3 Data Flow

The HTTP request is received and forwarded by
the Nginx proxy to the Lambda Server. The Lambda
Server sends the name of the function to the Lambda
Manager which returns the Lambda function meta-
data back to the Lambda Server. The Server then
passes the HTTP request to the channel that the
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Lambda Function task is listening to. The Lambda
task forwards the HTTP request to the Lambda In-
stances that wait for the requests. The Lambda in-
stance forwards the HTTP request to the sandbox
proxy. The sandbox sends an HTTP response di-
rectly to the client that sent the request.

4.2.4 Reference Architecture Mapping

In OpenLambda, the Lambda Function is the
heart of the system. It has the responsibility of scal-
ing Lambda Instances, and also keeps track of the
function updates to deploy or update Lambda in-
stances. However, most of the functionalities for up-
dating and tracing dependencies are logically mapped
to the Lambda Manager component, so their differ-
ence is not very clear if judged only by the reference
architecture. Even though in the SPEC-RG refer-
ence architecture mapping the Function Router (F4)
component is mapped as missing, we do think that
the Lambda Function resembles this behavior, as it
has the channel in which it places the request for the
available Lambda Instance.

• F1: Function Registry

• F2, F3: Lambda Manager

• F4: Lambda Instance

• F5,F6: Lambda Function

4.3 OpenFaas

OpenFaas3 is the most community recognized
FaaS platform, written in Go as most of the plat-
forms in this survey. It is a platform that delegates re-
source management layer responsibilities. It supports
any resource management tools such as Kubernetes or
Docker-swarm, and it also supports forwarding func-
tions through Amazon Lambda or Fargate, as long
as the operator (point of interaction betweeen Open-
Faas API gateway and the rest of the system) imple-
ments the interface provided by OpenFaas. The rec-
ommended container orchestration engine is Kuber-
netes, which is supported with an OpenFaas provider
for Kubernetes called faas-netes.

The Kubernetes provider works in two modes: ei-
ther by directly using Kubernetes resources to man-
age functions, or by defining custom resources using
Kubernetes Custom Resource Definition Function.
Function is composed of basic Kubernetes resources -
Secret, Deployment and Service. The function meta-
data is stored in the manifest file for a Function ob-
ject, and upon creation and updates, OpenFaas Ku-

bernetes Operator is creating or updating the related
basic Kubernetes resources.

OpenFaas is a part of the PLONK stack, which
consists of Prometheus (error reporting), Linkerd
(service mesh), OpenFaas, NATS (asynchronous mes-
sage bus) and Kubernetes. OpenFaas offers a com-
mercial solution OpenFaas Cloud, which is a multi-
tenant instance of OpenFaas with integrated CI/CD
pipeline and external authentication system.

4.3.1 System Overview

Figure 6: OpenFaas architecture diagram. We map
components to the SPEC RG reference architecture,
and label the main component-mappings with F1-6.

OpenFaas system consists of the following com-
ponents (highlighted in Figure 6).

1. API Gateway: Provides access to the system
from external sources, used for creating and in-
voking functions. Also used for scaling func-
tions according to demand. Contains UI for
performing these functionalities.

2. Provider: Interface for the OpenFaas back-
end which enables functionalities that are per-
formed by API Gateway. OpenFaas supports
various backends, container orchestrators like
Kubernetes and Docker-swarm, or other FaaS
and CaaS platforms like AWS Lambda and
AWS Fargate. The recommended provider is
faas-netes, which enables Kubernetes as a
backend for OpenFaas.

3. Watchdog (Function Container): Small
Golang web server that receives function re-
quests, and forwards them to the function pro-
cess. It is the init process for the container,
and there is two versions. The deprecated one,

3github.com/openfaas/faas
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watchdog, provides only one mode which forks
one process per request. The current watchdog,
of-watchdog provides five modes, with http
mode being the default one. It forks the pro-
cess when the watchdog is created, and it for-
wards the requests to the http port of the func-
tion container. The cold start is optimized by
keeping the container running (warm) through-
out the watchdog lifetime. The other supported
modes are serializing fork (for backwards com-
patibility with original watchdog, streaming
fork, which forks a process per request and deals
with a request body larger than the memory ca-
pacity, afterburn, which uses a single process for
all requests, and thefinal static mode, which is
used for serving static content. Modes 2-4 are
considered experimental.

4. Prometheus: Prometheus is an open-source
alerting and monitoring toolkit. In OpenFaas
it is used in combination with AlertManager
to collect metrics on the function load which
are used by the OpenFaas gateway to elastically
scale function containers.

5. AlertManager: Reads usage statistics (re-
quests per second) from Prometheus and based
on configured thresholds fires alerts to Open-
Faas Gateway.

6. Handler(Function Container): User-defined
process running inside Function Container

7. Provider Function Store: Function meta-
data store, it is related to the type of back-
end used. In faas-netes function metadata is
stored as a manifest file for a Function CRD.

4.3.2 Function Invocation Flow

A large portion of the flow is handled by the or-
chestration backend that depends on the choice of
the provider, we describe a high-level function man-
agement side on Kubernetes with faas-netes as the
backend provider. The function invocation is received
through API gateway, which is the entrypoint of the
system. The function is forwarded via the message
queue (queue worker enables the asynchronous pro-
cessing) to the orchestration provider. The functions
are deployed in Kubernetes as containers which con-
sist of the Watchdog and the Handler. Handler is
the process which represents user created function.
Watchdog receives the http request, and forwards
it to the Handler. Once the Handler is done, the
Watchdog forwards the response to the API Gateway

which sends the response back to the user. The asyn-
chronous function invocation is supported by callback
urls, and NATS queue.

Figure 7: OpenFaas invocation flow.

4.3.3 Data flow

The API Gateway receives the request from the
client and interacts with the provider by sending the
HTTP requests to the REST API. The request is
then forwarded to the underlying resource orchestra-
tor which the provider is based on. The Function
Container receives the HTTP requests which are for-
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warded from the Watchdog to the Handler. The Han-
dler sends the response back to the Watchdog which
sends the HTTP response back to the user.

4.3.4 Reference architecture mapping

The OpenFaas reference architecture mapping
done by the SPEC-RG correctly identified that the
resource management layer is delegated. OpenFaas
delegates the resource management to the aforemen-
tioned tools and platforms and supports providers
which interact with the function management layer.

This allows OpenFaas to use some functionalities
of these tools even in the function management layer.
For example, autoscaling functionality is built upon
the underlying scaling functionality of Kubernetes.

OpenFaas Gateway role is to scale the function
containers based on the alerts received by AlertMan-
ager. OpenFaas is delegating the responsibility of
building and deploying the functions to the user,
either through using the command-line interface or
CI/CD pipeline. Therefore, the function is built into
an immutable Docker image and the deployment is
handled by providing a manifest file for the Func-
tion CRD (in case Kubernetes is used as backend
provider). The deployment is then handled by re-
source orchestration layer and OpenFaas does not ex-
plicitly define a component on function layer for this
task.

OpenFaas supports function creation and deploy-
ment by providing function templates for variety of
programming languages. Function routing is another
functionality that is delegated to the underlying load
balancing mechanisms by the backend provider.

• F1:Provider Function Store

• F2: faas-netes (delegated)

• F3: missing

• F4: Handler

• F5: Provider (delegated)

• F6: API Gateway

4.4 Knative Serving

Knative Serving4 is a tool for rapid deployment
and automated scaling of containers in Kubernetes.
It has been developed by Google. It is part of a
Knative offering, which also contains Knative Build,
which is a tool that enables continuous integration,

building and running containers in Kubernetes clus-
ter, and Knative Eventing, which is a event triggering
framework within a cloud-native environment. Kna-
tive Serving is not a platform, as the other projects
Analysed here, it is rather a collection of Kuber-
netes extensions that simplify management of server-
less workloads. That means that it does not fully
abstract the resource layer, and the developers still
have to make changes to Knative custom objects to
roll out a deployment. Knative Serving defines a set
of objects that are defined as Kubernetes Custom Re-
source Definitions. It combines this with custom con-
trollers into the Kubernetes Operator pattern, which
allows for the extended behavior on top of Kuber-
netes. Knative Serving uses Istio Virtual Service to
split traffic between different deployments.

4.4.1 System Overview

Figure 8: Knative Serving architecture diagram. We
map components to the SPEC RG reference architec-
ture, and label the main component-mappings with
F1-6.

Knative Serving architecture consists of the fol-
lowing components (highlighted in Figure 8):

1. Gateway: Entrypoint of a request to the sys-
tem. It maintains a view of all running services

4github.com/knative/serving
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and routes requests to the already running ser-
vices. It is an ingress gateway, and Knative
is using the Istio Gateway by default. It is a
load balancer operating at the edge of service
mesh that receives incoming HTTP/TCP con-
nections.

2. Activator: Buffer that is used in case of cold
start.

3. Autoscaler: Component that interacts with
underlying Kubernetes layer. It receives reports
from function containers and instructs Kuber-
netes to create new pods (sets of containers).

4. Pod: A function instance, consisting of:

(a) Queue Container: Container created
automatically by Knative configuration
that acts as a reverse proxy. It interacts
with the Autoscaler component to elasti-
cally scale pods.

(b) User Container: Container defined by
the user-specified image.

4.4.2 Kubernetes Resource Description

As we mentioned in the Knative Serving intro-
duction, Knative Serving defines custom Kubernetes
resources to provide serverless lifecycle management
on top of Kubernetes. The following resources are
defined:

1. Service: Main Knative resource. Service ob-
ject is initialized with workload specification
and traffic specification. Former will create a
Configuration object from which a Revision ob-
ject is created and the latter will create a Route
object. Updating the Service object will subse-
quently update the Route object and Configu-
ration object, and create a new Revision object.

2. Route: Route is a Knative representation of Is-
tio Virtual Service. It controls the traffic split
between different Revision objects.

3. Configuration: Configuration object creates
new Revision object based on the updated
workload specification.

4. Revision: Revision object consists of Ku-
bernetes Service, Kubernetes Deployment and
Knative Pod Autoscaler (which is an extension
of Kubernetes Horizontal Pod autoscaler). Re-
visions are snapshots of serverless functions at
the time of the configuration update.

4.4.3 Function Invocation Flow

Knative Serving invocation flow is highlighted in
Figure 9. Once the function request is received by the
Gateway component, if the Gateway does not have a
direct route to the Revision object, it means the Re-
vision object does not contain any active pods, and
the pod needs to cold start. The request is then sent
to the Activator component, which buffers the re-
quest and forwards it to the Autoscaler component.
Autoscaler component requests through Kubernetes
API the creation of a new pod. Once the new pod for
this revision is created, Autoscaler sends a signal back
to Activator, which notifies the Gateway component
which creates a direct route to the pod. The Activa-
tor sends the buffered request to the newly created
pod. Once the request is received by the Queue con-
tainer, it sends a signal to the Autoscaler component
to update its inflight request count. The Autoscaler
component increases and decreases number of repli-
cated pods based on configured thresholds of inflight
requests count. Once the task is finished by the User
Container, it is returned back to the requestor, and
the Queue Container sends a signal to the Autoscaler
to decrease its inflight request count.

4.4.4 Data flow

The data exchanged between different compo-
nents in Knative Serving is mostly user initiated
HTTP requests at the high level. Gateway sends
HTTP requests to Activator component, and directly
to the function pods. Activator sends requests for
creating pods to the Autoscaler. Autoscaler sends
addresses of new pods to Activator, which Activa-
tor forwards to Gateway for direct connection later.
Autoscaler also interacts with underlying resource
layer by sending requests for creating and destroy-
ing pods. Activator and Gateway send the HTTP
requests to the running pod, where they are received
by the Queue container. Queue container sends re-
quests for increasing and decreasing request count to
the Autoscaler. The request is forwarded from Queue
container to User container, and the response is re-
turned from the User container to the Queue con-
tainer. Queue container returns the response to the
Gateway.

4.4.5 Reference architecture mapping

As we already mentioned, Knative Serving is not
a true serverless platform, meaning that it does not
completely alleviate the operational burden from the
developers. Developers still need to have the knowl-
edge of the underlying Kubernetes mechanisms and
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Figure 9: Knative Serving invocation flow.

need to change the Knative Serving CRD configura-
tion to create a new update.

In that sense, a lot of components identified in
the SPEC-RG reference architecture paper are miss-
ing or delegated, as it is correctly identified in the
mapping. Knative Serving doesn’t have a dedicated
Function Registry, but since it is built on Kubernetes
and relies on containers, integration of any kind of
container registry such as Docker Hub or Google Con-
tainer Registry is possible. YAML files for the Service
CRD, which are function metadata, are stored inside
the Kubernetes cluster as the other YAML files. Even
though this component is marked as present in the
SPEC-RG mapping, we would rather identify it as
delegated.

Building of functions is a function of aforemen-
tioned Knative Builder, and it is marked as dele-
gated in the SPEC-RG mapping. We agree with this
as it follows the same logic as in OpenFaas Builder
and Deployer delegation. Deploying functions is, as
with OpenFaas, delegated to the resource manage-
ment layer. That means that Knative Serving does
not have a separate function deployer component in
the function management layer. As we already dis-
cussed, in Knative Serving, a instance of a function
is the Kubernetes pod that contains User Container
and Queue Container. When the function is scaled,
the Kubernetes pod is replicated or destroyed.

The Function Router in Knative Serving is the
Istio Gateway, which has the overview of all pods
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related to a Service, therefore this functionality is
marked as delegated. Knative Pods Autoscaler rep-
resents the Function Autoscaler component present
in the SPEC-RG architecture mapping.

• F1: Kubernetes CRD and Container Registry
(delegated)

• F2: Knative Builder (delegated)

• F3: Missing

• F4: Pod (User Container and Queue Con-
tainer)

• F5: Istio Gateway (delegated)

• F6: Knative Autoscaler

4.5 Fission

Fission5 is a Kubernetes based serverless plat-
form that is written in Go. It is created by the
Platform9 company It relies on Kubernetes CRD to
fully manage serverless function behavior in Kuber-
netes. It also extends the functionalities by providing
automated deployment and function building, which
makes it a complete platform. It supports environ-
ments for NodeJS, Python, Ruby, Go, PHP, Bash,
and any Linux executable.

4.5.1 System Overview

Fission consists of following core components
which are highlighted in Figure 10:

1. Controller: Entry point to the system, it ac-
cepts CRUD requests and triggers for functions.
It also forwards the requests in case there are
other internal services in the Kubernetes cluster
than Fission.

2. Executor: Receives requests for creating new
function instances from the Router. Retrieves
function metadata (Kubernetes CRD) and in-
vokes one of executor types to deploy the func-
tion. Contains following executor types:

(a) PoolManager: Used for short-living
functions that require low cold start times.
Maintains pools of warm containers, which
can then be attached with function code
upon Executor invocation.

(b) NewDeploy: Used for functions that
need to handle large amount of traffic.

Creates Kubernetes Horizontal Pod Au-
toscaler, Service and Deployment. It can
maintain minimum number of function in-
stances, or scale to and from 0 if the min-
imum number is not defined.

3. Router: Has overview of function instances
and routes requests to them. If the function
instance is not present, it requests Executor to
create a new instance. It is stateless.

4. Function Pod: Function instance that is cre-
ated by Executor. It contains two containers
and a shared volume.

(a) Fetcher: Receives CRD for a function
and the URL to the deployment archive
which it downloads, verifies integrity and
stores in the shared volume.

(b) Environment Container: Language
specific container that runs user-defined
functions. Contains an HTTP Server that
serves HTTP requests from the clients.
Also contains a loader which loads func-
tions from shared volume.

5. Builder Manager: Responsible for man-
aging function builders, Builder Pods. Up-
dates Builder Service (that subsequently up-
dates Builder Pods) based on updates to en-
vironment and packages, represented by Envi-
ronment and Package Kubernetes CRD.

6. Builder Pod: Pod used for building function
code. Has the same structure as Function Pod:
two containers and a shared volume.

(a) Fetcher: Receives requests from Builder
Manager to pull and verify the source
archive from StorageSvc. Saves it to the
shared volume.

(b) Builder Container: Language specific
container that loads the source code from
the shared volume and compiles function
source code into executable.

7. StorageSvc: Storage for all function source
and deploy archives.

5github.com/fission/fission
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Figure 10: Fission architecture diagram. We map
components to the SPEC RG reference architecture,
and label the main component-mappings with F1-6.

4.5.2 Function Invocation Flow

Function invocation is highlighted in Figure 11.
The entrypoint of the system is the Controller, which
forwards the request to the Fission Router. The
Router checks if there exists a trigger for a function in
API request. If not, it returns a 404. Otherwise, the
Router checks its cache for address of the Function
Pod.

If there is no address present in the cache, it
means there is no Function Pod running so it needs
to be cold started. The Router sends the request for
a new address for a specific function to the Executor.
The Executor fetches the function metadata from Ku-
bernetes CRD and invokes one of the Executor types
to create a new Function Pod.

PoolManager has a pool of warm generic pods
which can quickly be specialized to reduce the cold
start times. PoolManager invokes the fetcher con-
tainer inside the generic pod, which then pulls the de-
ploy archive from StorageSvc, stores it in the shared
volume for Environment Container to load it. Pool-
Manager creates only one pod per function.

On the other hand, NewDeploy creates Kuber-
netes Deployment, Service and Horizontal Pod Au-
toscaler, which enables scaling of the Function Pods.

Once the Pod is created, Executor sends a new ad-
dress to the Router which then sends the Request to
this address. Environment Container inside Function
Pod receives the HTTP request via HTTP server, ex-
ecutes the function and returns the response to the
Router, which then propagates it to user via Con-
troller.

Figure 11: Fission invocation flow.

Each subsequent request for the same function is
sent directly from Router to Function Pod, as long
as the Function Pod is not idle for a while to get
destroyed and removed from the cache.

4.5.3 Data flow

4.5.4 Reference architecture mapping

Fission is a complete serverless platform, mean-
ing it handles all the responsibilities of the function
management layer mentioned in the reference archi-
tecture.

StorageSvc stores deploy and source archives for
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the functions. Function metadata is stored in Ku-
bernetes CRD. Together they fulfill the role of the
Function Registry in the reference architecture map-
ping. Builder Pod has the role of the Function
Builder, by pulling source archive from StorageSvc,
and along with the function metadata in CRD cre-
ates and stores the executable back to StorageSvc.

The role of a Function Deployer is taken by the
Executor, along with its Executor types. Its role is
to fetch the deploy archive from the StorageSvc and
ensure there is at least one Pod running with the
function specific Environment Container.

Function Instance is the Function Pod. It is a
composition of two containers and shared volume
through which these two containers communicate.
Fission Router is the Function Router in the reference
architecture mapping. It keeps track of all the ad-
dresses of Pods, and based on the presence of the ad-
dress it either sends the request directly or it queues
the request and waits for deployment of the function.

Executor, or more precisely NewDeploy Execu-
tor type is the component that represents the Func-
tion Autoscaler in the reference architecture. Since
PoolManager is used for functions with low traffic to
minimize cold start times that might occur more fre-
quently but it does not scale Function Pods, NewDe-
ploy on the other hand is more suitable for functions
with high traffic load. It uses Kubernetes Service and
HorizontalPodAutoscaler to scale Pods up and down.

The mapping is also highlighted in orange in the
architecture diagram in Figure 10.

• F1: StorageSvc

• F2: Builder Pod

• F3: Executor

• F4: Function Pod

• F5: Router

• F6: Executor (NewDeployment)

5 Discussion and Comparison

The analyzed platforms are designed to handle
different use cases and are aimed at the different types
of users. The difference in focus causes the perfor-
mance in the key aspects of serverless to vary. We
look at some of the key serverless aspects in this sec-
tion.

We discuss and compare the analysed platforms
in the following topics: General analysis, Routing,
and Cold start optimizations. We also discuss the
relevance of the reference architecture for these plat-
forms.

5.1 General Comparison

We identify two types of platforms while analyz-
ing the platforms: zero-ops platforms and serverless
toolings.Zero-ops platforms handle the whole function
lifecycle management from building to deploying and
running the service. Their aim is to provide a devel-
oper friendly platform where developers immediately
start writing functions while hiding all the resource
and function management away. In case of the plat-
forms we have analyzed, the zero-ops platforms would
be OpenWhisk, (partially) OpenLambda and Fission.

On the other hand, serverless toolings are exten-
sions that enable management of serverless workloads
on underlying resource management systems. Promi-
nent resource management tool, used in some way by
all of the analyzed platforms is Kubernetes. Kuber-
netes is a modular tool, with a possibility of defining
custom objects that automate Kubernetes workflows.

The serverless toolings that we have identified are
OpenFaas and Knative Serving. OpenFaas provides
to some extent the full platform interaction as the
zero-ops platforms, but some of the functionalities,
like function building and function storage is del-
egated to other tools and platforms. Also in case
of deploying the function, there is no function level
behavior meaning the whole process is handled at
the resource management layer. The advantage of
OpenFaas is that it is not tied to Kubernetes and
can work with any resource management tool as long
as it is conforming to the faas-provider interface.
OpenFaas provides a proprietary zero-ops platform
OpenFaas Cloud, but the zero-ops flow is achieved
by providing CI/CD integration, so these extensions
are mostly delegated.

Knative Serving on the other hand does not pro-
vide a GUI and does not try to provide the full server-
less platform experience. It is tied to Kubernetes
and requires operations support. When defining new
updates, the Kubernetes CRD needs to be updated.
Knative is not aimed at the end-user, it is more of a
platform for creating, deploying and managing server-
less workloads.

5.2 Routing

Something that reference architecture by SPEC-
RG did not catch, is the routing types in the server-
less platforms. There is higher-level routing which is
the action of routing the request to the right func-
tion instance manager. Function instance manager is
the component that has the overview of all function
instances, and it is effectively a representation of an
active function in the system.
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Once the request is received by the right func-
tion instance manager, it needs to be routed to the
right function instance. This is the lower level rout-
ing that is handled by the Function Router com-
ponent in the reference architecture. Many plat-
forms, such as Knative Serving and OpenFaas bypass
the higher level routing, meaning that the Function
Router component is the Gateway itself. Gateway
has the overview of all Function Instance addresses
and therefore routes the requests directly to the Func-
tion Instance. In the other platforms, namely Open-
Whisk and Fission, there are components responsible
for routing the requests to the instance managers.

5.3 Cold Start Optimizations

Apart from OpenLambda, which has a basic check
for paused containers, we have observed cold start op-
timizations in each platform. The usual approach to
optimizing cold start is a pooling technique. In Open-
Whisk, this technique is called pre-warming. There is
a pool of pre-warmed containers that already contain
language runtime environment. This is very simi-
lar to the technique implemented by Fission in the
PoolManager, where a pool of generic containers is
maintained per each language environment. Contain-
ers are then “specialized” by injecting function code.
The main idea of this technique is avoiding the ex-
pensive Docker run call.

In case of the cold start in OpenWhisk the func-
tion code needs to be compiled (in case the language
is compiled). Since Fission stores the deploy archive
in the database, it avoids the compilation step which
gives it better cold start times. OpenWhisk partly
solves this issue with aggressive caching.

In case of OpenFaas and Knative Serving [8] there
is no build process involved in cold start. In case there
is no running functions, it requests Kubernetes or
other resource management tool to run the container.
Therefore, scaling from zero is achieved by persisting
the function metadata and creating a new pod with
Function Instance. The same approach is used in
Fission NewDeployment. Some attempts of imple-
menting pooling technique in Knative are present in
[9].

5.4 Function Instance comparison

In terms of Function Instance organization, we
have noted differences across different platforms. We
identified two different designs present: single con-
tainer design and double container design. The
serverless platforms attach components to user func-
tion container to easily manage container lifecycle

and report relevant metrics.

Single container design is the Function Instance
architecture where a watcher process is attached to
the user process inside the same container. This pro-
cess is usually an HTTP server which allows mod-
ification of requests and overview of the amount of
requests the Function Instance is receiving. This ap-
proach has a performance advantage because there is
no overhead of communication between two contain-
ers using HTTP. On the other hand, there are some
security concerns as the function code is not isolated
inside a container.

We have observed this design in OpenFaas
and OpenWhisk. OpenFaas runs the process
of-watchdog which is a server written in Go. It also
controls behavior of the user process, by either fork-
ing and destroying a user process every time a request
is received (which increases latency) or running one
user process for the Function Instance lifetime. In
OpenWhisk the process is HTTP server as well. This
component accepts two calls: init which compiles the
source code and run which runs the user process.

Double container design is the Function Instance
architecture where the watcher process is in the con-
tainer of its own. This increases the overhead because
of the communication between processes, but also al-
lows for isolation of user container and increased se-
curity.

The platforms that implement double container
function instance are Fission and Knative. Since both
platforms are Kubernetes based, they are grouping
these containers in a single pod. However, there is
a difference in responsibilities between watchers in
these 2 platforms. In case of Knative, the responsi-
bility of the watcher container (Queue Container) is
to report the request metrics to the Autoscaler com-
ponent to provide elastic scaling. In Fission, the role
of the second container is to watch the changes in
the Kubernetes CRD and fetch the deploy archive if
there is a new one available. In case of Fission there
is also a third component present inside a pod, the
shared volume, through which user container can use
the deploy archive fetched by the Fission fetcher.

5.5 Reference Architecture Mapping

We have noticed a lot of similarities between the
reference architecture and the architecture of the an-
alyzed platforms. The components that seem to
be always present are Function Store, Function In-
stance, Function Router and Function Autoscaler.
This seems to be the core of every platform offering.
We have observed that Function Builder and Func-
tion Deployer are missing from some platforms (or
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delegated to external toolings provided by the same
project). This is mainly connected to the serverless
toolings, Knative Serving and OpenFaas, whose core
offering is revolved around extensions to the resource
management layer, mainly Kubernetes.

We have identified some inconsistencies in the ref-
erence architecture mapping that we already men-
tioned in the platform analysis. For example, Func-
tion Builder is marked as missing in OpenFaas, while
it is marked as delegated in Knative Serving. How-
ever, both platforms are using toolings that are ex-
ternal to this platform but inside the larger offering,
namely faas-netes and Knative Build.

We have also identified two different routing be-
haviors in these platforms as mentioned in the Rout-
ing subsection. Function Router definition in the ref-
erence architecture section is not clear enough. Func-
tion Router’s responsibility is to route the request
to the right Function Instance and to queue the re-
quest if there is no Function Instance available. How-
ever most of the platforms we have observed (Open-
Whisk, Fission, OpenFaas) have routers that behave
differently, or share functionality between two com-
ponents. For example, Fission Router keeps address
of the Function Service in cache. It does not keep
the address of each Function Instance, it only knows
there is at least one running. The task of routing
the request to the Function Instance is handled by
Function Service. However, the Fission Router has
the queuing behavior mentioned. We think that the
Function Router is not concerned with routing to the
right Function Instance, but to the Function itself,
however the Function is represented in the system
(Invoker, Kubernetes CRD, Lambda Manager etc.)

6 Conclusion

Serverless, and more precisely Function-as-a-
Service continue to grow as more and more businesses
and developers realize the advantages that function-
as-a-service provides. However, current market is
revolved around serverless platforms offered by big
cloud providers. AWS Lambda, Google Cloud Func-
tions and Azure Functions are still market leaders
by a large margin. Their projects are unfortunately
largely closed-source which stiffles the innovation and
causes the unavoidable vendor lock-in.

However, there are many promising open-source
projects, with a lot of community recognition as we
presented here. These projects are an invaluable
source of information on the current innovations in
the serverless industry. By analyzing the data flow
and architecture of these platforms we can hypoth-

esize about what is happening in the closed source
projects.

In this work we utilize the Multivocal Literature
Review (MLR) method to gain an insight into ad-
vances in the field of serverless platforms. By using
this method we also expand the reference architec-
ture of the serverless function management layer with
a granular overview of each of the components. With
this we answered the research questions posed in the
Section 1.

RQ1. How to identify the fine-grained architec-
tural components and their interactions
in the function management layer of the
serverless platforms? To answer this ques-
tion we utilized the MLR method to analyze
the primary and grey literature for 5 of the most
well-known serverless platforms. From there we
identified the similarities in the functionalities
of different components in the function manage-
ment layer. Using this insight in the Section 3.2
we present the fine-grained architecture.

RQ2. How to compare, across the well-known
serverless platforms, the data and control
flow occurring between the components
of the function management layer? To an-
swer this question in the Section 4 we presented
an extensive analysis of the data and control
flows in the well known serverless platforms.
Along with the textual analysis we presented
the diagrams which explain the interactions be-
tween the architecture components.

RQ3. How do the function layer components
of the well-known open-source serverless
platforms map to the reference archi-
tecture for the serverless platforms pro-
posed in the SPEC-RG paper? To answer
this question in the Section 4 we created the
mapping of the components identified in the
serverless platforms to the SPEC-RG server-
less reference architecture. We pointed out the
inconsistencies between the mapping we pro-
duced and the mapping produced in the server-
less reference architecture paper, and provided
possible reasons for the differences.

We see that a lot of the projects are utilizing other
cloud native open-source projects, many of them in-
cubated by the Cloud Native Computing Founda-
tion (CNCF). Interconnecting these projects creates
a stronger ecosystem that everyone benefits from.

We conclude that there is still a lot of work to be
done in the field of serverless, and serverless is not
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suited for every use case. However, by examining the
projects we see that the community is getting increas-
ingly interested. We call for the large cloud providers
to open-source their serverless platform code to speed
up the innovation.
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