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Chapter 1

Introduction

In modern computing running complex analysis and modelling is more often
than not executed in cloud based datacenters which perform the computa-
tion. Some of the problems as a result of higher demand are: increased energy
demand, need for upgrading hardware at a faster rate, and more construction
required for new datacenters. This comes with a significant environmental
cost. This demonstrates the necessity of research into methods to mitigate
this cost.

Operational traces form the backbone of workload and scheduling analy-
sis of modern datacenters. In this thesis we describe a dataset of such traces
where we have collected hardware metric time series with a 15 second granu-
larity for over 100 metrics. Those metrics include CPU, GPU, memory, disk
and networking information obtained through the Intelligent Platform Man-
agement Interface (IPMI) and the Nvidia Management Library (NVML).

Traces such as these are vital because they allow systems administrators
to make informed design decisions rather than making assumptions without
the data to back them up, as well as allowing full stack analyses of the OS-
level operation of datacenters.

Datacenters are large systems comprised of multiple computers hereafter
referred to as nodes. These nodes can vary in setup and are used to com-
pute information within a datacenter. Nodes are usually housed in racks of
which there can be many in the datacenter itself. To compute information
these systems use a scheduler which takes compute jobs submitted by users
and automatically selects nodes or even dedicates whole racks to run the
calculations needed as per the parameters of the job.

All these data were collected by the monitoring system and time series
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database named Prometheus from the SURFsara HPC cluster Lisa with a
release from the Cartesius cluster expected in the future. Additionally, this
dataset contains job and scheduling information from the system as well as
topology information and the scheduling configuration.

Traces such as these are valuable because they allow for in-depth analy-
ses of datacenter operations. For example, power usage comparison between
different clusters, partitions, nodes and jobs, as well as workload analysis
and predictions, all of which can serve to reduce the environmental foot-
print of the datacenter with improved scheduling which lowers overall energy
consumption.

Several notable trace archives have been made available for research in
the past resulting in various articles including but not limited to, the Parallel
Workloads Archive (PWA) [6] for analysis of parallel workloads on super-
computers. Another such archive is The Workflow Trace Archive (2019) [14]
which looks into workflow traces found in datacenters, clouds and HPC sys-
tems. Large archives such as the Google [11] and Microsoft [5] collections
are particularly important due to the rarity of large multi-day archives from
such high profile corporations. None of the aforementioned archives have the
low level metric granularity of our SURFace [9] archive. To our knowledge
there does not exist a published archive with this level of detail. Our work
uniquely fills this gap in modern data collections allowing for new avenues of
research when it comes to the analysis of data center operations.

Our data is collected from the Dutch National Infrastructure Lisa. This
infrastructure consists of 343 nodes and we collect the data by querying a
monitoring system on the cluster for each of our collected measurements.

1.1 Research questions

In our work we aim to publish a dataset of considerable detail, this requires
a significant amount of analysis work as well as development work to ac-
complish. Through this we define several research questions that we need to
resolve:

1. How do we collect such a vast amount of data and what are the potential
pitfalls when performing such large scale data collection? To be able
to publish a dataset of this size we must first define how to collect the
data and design ways to store it.
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2. What kind of processes are required to automate such a data collection
to facilitate future data releases? Collecting this much data necessitates
the development of data collection scripts.

3. What kind of knowledge can we derive from the archive by character-
izing the jobs that run on datacenter clusters?

1.2 Main contribution

In answering these questions we contribute the following to the research
community at large:

1. An archive that has been made available to the public for research and
is available at https://zenodo.org/record/3878143.

2. The process of collecting and processing a large amount of data from
traces like these. As well as, highlights of some common pitfalls re-
searchers can encounter.

3. An overview of the automation process and the setup required at the
data center.

4. Job characterizations and analysis from a national infrastructure with
an overview of how the system is used.

The archive published alongside this thesis is a significant improvement
over existing archives due in part to the granularity of the data. The archive
is a collection of system measurements called metrics collected from a data-
center. This dataset contains measurements at 15 second intervals per node,
per metric resulting in billions of unique datapoints collected over the course
of three months with releases planned on a monthly basis using automated
scripts to ensure consistent data releases. Additionally it provides system
information in the form of scheduling configuration, topology information,
and metrics that are usually not available in other trace archives. These
novel metrics include for example memory utilization, GPU power and tem-
perature measurements. This archive alongside the work showcased in this
thesis opens up important and interesting avenues for future research and
may prove invaluable to datacenter planning for years to come. We also have
access to unreleased job data consisting of six months of data collected from
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January 2020 to July 2020. The reason we have six months of Job informa-
tion is that it requires less processing than the hardware metric information
to be used for analysis.

1.3 Thesis outline

The structure of the thesis is as follows. In chapter 2 we cover existing
literature on this subject and show what kind of analysis already exists on
data similar to what this archive contains as well as briefly discuss what
other recent archives have contributed in this field. In chapter 3 we provide
an overview of the system, the project requirements, and the overall design
of the archive. In chapter 4 we discuss in depth the implementation of the
data collection and how the problems faced during development were solved.
In chapter 5 we characterize the jobs that run on the cluster to demonstrate
what types of workloads can be expected. Finally, in chapter 6 we conclude
our work by highlighting our findings and propose future developments.
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Chapter 2

Related Work

In this chapter we discuss previous work related to our own. Additionally,
we contrast their work with ours to highlight how we improve upon previous
work.

As mentioned before this is by no means the first trace archive and anal-
ysis on a data-center system. A not insignificant number of archives and
articles on those archives have already been published and here we present
the articles most relevant to our work.

2.1 Academic Trace Archives

In this section we discuss research work on trace archives from various aca-
demic sources and contrast their work with ours.

Parallel Workloads Archive

One of the oldest repositories for workload archives is the aforementioned
Parallel Workloads Archive (PWA)1. The archive consists of workload logs
and workload models collected from systems around the world. This is meant
to provide free access to data and analysis for researchers with the intent to
facilitate further research into parallelism and scheduling on large computer
systems.

The main goal of the PWA paper [6] which accompanies the archive is to
highlight these points:

1https://www.cs.huji.ac.il/labs/parallel/workload/
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• How to work with the logs hosted by the PWA.

• Evaluation and system design has much to gain from having access to
detailed workload logs.

• The importance of data reliability when producing performance evalu-
ations.

• Even if workload logs are automatically generated they may have data
quality problems.

• Identifying such data quality problems can be difficult and a report on
those problems if found is necessary.

• There are existing methods to improve data quality.

Feitelson et al. observe that data and logs such as the ones they have in
their archive all have data quality problems. The authors outline the 5 most
important qualities that logs such as these should have. Those are, by order of
importance, accuracy, consistency, security, timeliness and completeness [8].

They conclude that even though computer science is a discipline of rapid
advancement where empirical data becomes outdated early, datasets such as
the PWA, and by extension our SURFace archive [9], are highly important to
ensure that advancement is data driven rather than based on assumptions.
Additionally, they highlight the importance of data sharing since a single
user cannot be expected to analyze and detect artifacts in the data on their
own. Therefore, sharing our findings is just as important as sharing the data
itself.

Our work provides an improvement over existing archives in PWA due
to the data granularity and detail. The diversity of the metrics we have
collected as well as the collection frequency provide a better insight into how
datacenter hardware performs on a daily basis.

Grid Workloads Archive

The Grid Workloads Archive (GWA)2 is meant to expand the availability of
grid workload traces and encourage collaboration of grid researchers.

2http://gwa.ewi.tudelft.nl/
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Iosup et al. [7] focus mainly on the lack of existing publicly available grid
workload archives. They also discuss that grid workloads traditionally consist
of single node jobs as opposed to parallel workloads which are generally multi
node jobs. Additionally, they present the application of GWA in several
areas. It is worth noting that the GWA is referenced on the PWA website
which is a great example of collaboration within the scientific community.

The GWA archive consists of traces from nine different grid environments.
All of these grid workloads are available at the GWA website. And through
their work they designed, produced and published a set of workload trace
archives.

Our SURFace Archive [9] consists of a single cluster. However, the data
we collect is more fine grained and is planned to be released consistently
every month. This ensures that researchers will always have access to up
to date data and the ability to analyse historical trends. Additionally, our
focus aligns with the focus of GWA with regards to providing public access
to cluster workloads and hardware metrics. This enables researchers to plan
based on data rather than assumptions.

The Workflow Trace Archive

Versluis et al. [14] in their work on the Workflow Trace Archive (WTA)3

stress the importance of diverse workflow traces. The importance of this is
due to the lack of existing traces which is evident in the fact that less than
40% of the research papers they inspected are making use of realistic data
in their analyses. And what is worse is that less than 15% of them are using
open access traces. This has a serious impact on the reproducibility of their
work.

They published the WTA archive which is a set of workflow traces from 10
different cloud systems which encompasses more than 48 million workflows.
It is worth noting that the WTA has grown in size since then due to allowing
organizations to contribute to the trace archive with their own data.

Versluis et al. also provide workflow characterizations in their work which
highlight the difference between types of workflows such as parallelism. This
emphasizes that to obtain a good overview of workflows researchers must
perform analyses on traces from different sources.

To contrast, our archive focuses on one source for the data, but provides

3https://wta.atlarge-research.com/
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a much more fine grained look at datacenter activity through hardware mea-
surements rather than focusing on workflow data. However, once we are
able to supplement our data with the job information from these systems
workflow analysis becomes possible.

2.2 Industrial Trace Archives

In this section we discuss industry traces from the Google and Microsoft
clusters.

Google Trace Archive

Mishra et al. [11] observe that the increased prevalence of cloud computing
in modern industries necessitates good scalability in compute clusters which
deal with ever increasing workloads. Their work aims to improve capacity
planning and task scheduling on large scale systems.

They describe an approach to workload classification and correlate it with
workload traces from the Google Cloud Backend4. They use a number of
methods to classify the workloads and combine them into different categories
to reduce the overall number of workloads on the system. This results in
faster execution on the system rather than every task being assigned its own
workload.

Through their work they identified that most of the tasks that run on the
system have a short duration. However, most of the resources on the system
are allocated to longer tasks. We have seen similar indications through our
work with the SURFace archive and job accounting data from Lisa where out
of over 1.9 million jobs that are executed, roughly 10 thousand of those jobs
have a longer duration than one day. However, those jobs consume about
80% of the allocation time on the system.

In their work they examined 20 days of data. By contrast our work pro-
vides researchers with access to 3 months of information with more releases
planned in the near future. The length of our data collection provides a mul-
titude of benefits such as long-term trend analysis and enough diurnal and
weekly data to be statistically significant.

4https://github.com/google/cluster-data
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Microsoft Trace Archive

Cortez et al. in their work [5] perform workload characterization of Microsoft
Azure VM [4]. Which includes a distribution of resource consumption. Their
reasoning for their research is the lack of existing data on production Virtual
Machines (VM). They aim to provide more data which with research could
improve resource allocation in production systems.

Additionally, they show that VM workloads in the production systems
they examined have a consistent pattern to them. This allowed them to
develop software which after training offline which they claim can accurately
predict the cloud workloads on these systems.

They then show that the prediction software improves performance in
systems using real VM traces through improved resource allocation and uti-
lization and reduces instances of the scheduler over-committing resources.

Through their work they published a dataset of traces collected from
several large scale Microsoft Azure VM systems5.

In our work we aim to facilitate such analysis on different types of pro-
duction clusters with research workloads similar to the SURFsara systems.
These different workloads enable researchers to have a more complete picture
of datacenter workloads and reduced homogeneity of published datasets.

2.3 Importance of Variety in Trace Sources

In this section we briefly summarize the article by Amvrosiadis et al. [2].
In their work they state that data scarcity leads to users overfitting their
expected workload types to the Google trace. Through their analysis they
found that private cluster workloads resemble High Performance Computing
(HPC) workloads more than they do the Google cluster workloads.

In their paper they introduce four new traces. Two of which originate in
privately owned clusters and two from public HPC clusters. They perform
characterization of the workloads from these newly introduced clusters and
contrast it with the Google dataset. They found that there is a significant
difference between the workloads on these clusters compared to the google
workload. This emphasizes the importance of variance in available logs,
especially when performance evaluations are taken into account.

5https://github.com/Azure/AzurePublicDataset
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Alongside their work they published a trace archive consisting of the
LANL Trinity and LANL Mustang clusters as well as the two traces recorded
from the Two-Sigma system6. Similar to our traces this allows for further
analysis into the workloads of various different systems to reduce overfitting
to one type of workload.

6https://www.pdl.cmu.edu/ATLAS/
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Chapter 3

SURFace Archive

In this chapter we describe our design of the SURFace archive published on
Zenodo1. Including the requirements to collect the data, as well as, the design
choices that were made along the way when the data was being processed.

The trace archive published alongside this thesis consists of software
and hardware traces collected from Dutch national Compute Cluster, LISA,
hosted at SURFsara [9]. An upcoming article in USENIX;login; [13] is ex-
pected to be released soon as a result of our work. Additionally, we are pro-
viding support for three upcoming projects. We plan to add to this archive
the job data for each job that runs on the cluster.

In this and the following chapter we answer the following two research
questions:

• How do we go about collecting such a vast amount of data and what are
the potential pitfalls when performing such large scale data collection?

• What kind of processes are required to automate such a data collection
to facilitate future data releases?

3.1 Dataset Information

We introduce hardware metric timeseries collected from a production cluster
used by researchers from various research centers in the Netherlands.

The archive has numerous advantages over existing archives as shown in
figure 3.1. The amount of novel data we provide in the archive as well as

1https://zenodo.org/record/3878143
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Platform Nodes CPUs RAM GPUs per node Length

SURFsara gold 6130 192 16 96GB -

3 months

SURFsara silver 4110 96 16 96GB -
SURFsara gold 5118 29 24 192GB 4x Titan RTX
SURFsara bronze 3104 23 12 256GB 4x GeForce 1080Ti
SURFsara bronze 3104 2 12 256GB 4x Titan V
SURFsara gold 6126 1 48 2TB -

Table 3.1: Hardware information for the Lisa system.

Figure 3.1: A visual representation of what we are providing with our work
compared to what exists in previously released archives.
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the granularity is unparalleled in the wild and opens up multiple promising
avenues for future research. As shown in Figure 3.1, existing previous archives
have typically contained at least one of these metrics.

1. Scheduler Job/Task Logs: Job information from the scheduler which
allow for workflow analysis on the systems through analysis of jobs.

2. Resource Usage: An overview of resource usage on a high level, which
enables researchers to make some assumptions of system usage.

3. Machine Information: The overall capacity of the system. This typi-
cally makes resource allocation comparable to machine information to
see if a system could be over-committing resources to a particular job.

What we are introducing is an archive which contains significantly more
detailed data with more measurements, greater diversity of metrics and in-
formation than comparable archives that we have looked at.

Our archive consists of 138 metric time-series collected at 15 second in-
tervals. This means that each day of measurements consists of 5760 data
points per node for each metric that is collected. To put that in perspective
that is more than 750.000 data points for a GPU node in a single day.

3.2 System Overview

The Dutch National Infrastructure, Lisa consists of 343 nodes. Of which
there are 54 GPU nodes and 289 compute nodes2 3.1. The system handles
primarily research based workloads from research institutions accross the
Netherlands.

The metric data is collected by system and saved in short term storage
by the time-series monitoring system Prometheus3 [3]. Prometheus stores
time series based data collected from software daemons hosted on each node.
These daemons transmit sensor data from different systems on the node to
a central server node that stores the data.

Job scheduling is handled by the SLURM Workload Manager [10] and
stored in the accompanying accounting software Slurm Accounting (Sacct).
Sacct stores various job information from the system.

2https://userinfo.surfsara.nl/systems/lisa/description
3https://github.com/prometheus
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3.3 Requirements

Collecting such data from a professional, production cluster requires prepara-
tion, access rights, and proper data-collection technology. For this particular
archive the author was employed as an intern to work on the project at
SURFsara from September 2019 until July 2020, because the data is only
accessible from within the system itself. Additionally, this project requires a
basic understanding of using HTTP requests.

In our work we made use of Python scripts to perform the data collection
and parsing. The libraries required to run the scripts can be found in the
code base appendix under Required Libraries B.1.

3.4 Overview of the SURFace Archive

When designing the SURFace archive we had to take our stakeholders into
account. The data provider SURFsara is our contributor. They contribute
the data to the project and provide access to the system which allows us to
collect the data. Our trace contains the metric measurements from the Lisa
cluster. This includes resource usage, resource descriptions and job data.
We work with SURFsara in designing the processes to perform the collection
and anonymization of the data and publication. Additionally, we work on
the analysis and research of the data post collection.

The potential consumers of the data are split into two stakeholders. Sys-
tems admins can use the data we collect to predict the workloads of the
clusters they oversee as well as decide on upgrades for other existing clusters.
Researchers have a vested interest in exploring the user behavior on such
systems and how well resources are allocated to develop schedulers and find
ways to optimize power usage in production clusters.

3.5 Design

In this section we explain some of our design choices made during when
working on this project.
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Data Collection

As previously mentioned our data collection and conversion process is han-
dled by Python scripts. We chose Python due to the simplicity of implemen-
tation. Languages such as C++ or Java would have required a much bigger
time investment in designing the required frameworks to facilitate data col-
lection. The Python scripts are developed by the author of this thesis with
support from the project supervisors and employees at SURFsara and they
are responsible for maintenance and improvement of these scripts. The col-
lection script queries the Prometheus database for the data. Additionally it
queries the Sacct database for the job data. This data collection runs on a
daily basis on the system.

Storage Format

We use Parquet [15] as our chosen storage format due to the fact that it
takes up a minimal amount of space. This storage format also has native
Spark [12] support and is also readable by Tensorflow [1] without additional
libraries.

The output format from the monitoring software on the Lisa cluster is
in complex Java-script Object Notation (JSON) which is purely in string
format and as such has suboptimal space complexity. Therefore, we needed
to come up with a better storage format which takes up less space while
also allowing for fast look-ups. Among those we considered were using an
SQL database which while better than JSON still proves inadequate for such
a large time-series due to the amount of tables and rows per table. CSV,
while good for machine learning, shares the problem JSON has with regard
to storage space.

We converged on Parquet which is a columnar storage format with built
in compression which reduces the space complexity by a significant amount.
Parquet is also capable of interfacing with Spark-SQL which is an analytics
engine for large-scale data processing. Another motivation behind Parquet
it that the Tensorflow library has native support for it making it a suit-
able format to use in conjunction with machine learning frameworks for data
analysis. Parquet was designed by Apache to be an efficient columnar stor-
age format with support for multiple types of compression algorithms and
capability of storing large blocks of data with minimal space complexity.

15



Job ID Unique ID number of the job
Group ID Unique ID of the User group the submitter is in
User ID Unique ID of the User
Partition The Partition the user selected for the job
Submit Submission time in seconds since epoch
Start Start time of the job in seconds since epoch
End End time of the job in seconds since epoch
Elapsed raw Job runtime in seconds
CPU time raw CPU time in seconds
Number of CPU’s Number of CPU’s allocated to the job
Number of nodes Number of nodes allocated to the job
Node list A list of the nodes allocated to the job
Exit code The exit code4 of the program
State End state of the job
Timelimit User selected time limit. (Default 5 min.)

Table 3.2: List of the sacct output we query.

Slurm

The Slurm data is queried in the format readable from Table 3.2. This data
is then parsed and the GroupID gets removed, the Job ID and User ID’s get
encrypted as well as the nodelist. Due to GDPR concerns as of now this data
is not published alongside the archive. We do plan to release this data once
these concerns have been addressed or our anonymization has been deemed
sufficient.

Data Anonymization

Our collection of job data comes with some inherent problems. Some of the
information contained in the data could allow users of the system to poten-
tially identify other users which can have serious implications for SURFsara
and our research team if identifiable. Therefore we were faced with the ques-
tion. How can we ensure that user information cannot be obtained from our
data without destroying the data itself?

Our data does contain some identifying characteristics which necessitate
methods of anonymization such as hashing and encrypting those charac-
teristics. This is a difficult problem to solve and we are currently further
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investigating methods of ensuring user anonymity. We further discuss this
in chapter 4, section 4.6.

Data cleanup

After the data collection we noted that some metrics in the collection never
return a value or consistently always return a single unchanging value. This
could mean that the monitoring for that particular metric could be disabled
or the sensors for those sensors are not working. This necessitated the de-
velopment of a parsing script to filter out those metrics. This is further
discussed in chapter 4, section 4.5.

Automating the Data Collection

We are working toward the development of an automated script that will
facilitate the daily data collection and monthly data uploads to our Zenodo
repository. This ensures that no data is lost and that the data is uploaded
on a regular schedule to the repository to provide consistent data releases for
future research. This is further discussed in chapter 4, section 4.7
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Chapter 4

Implementation

In this chapter we discuss the implementation of the project, some of the
problems encountered and the design decisions made during the development
process. We start by going over the various systems we explored starting with
Graphana. Followed by the time-series systems Graphite and Prometheus.
After this we discuss how we parse the output from Prometheus followed
by an explanation of the job data collection. Finally we go into the data
cleanup, anonymization and collection automation. We conclude the chapter
with a high level explanation of our data collection process.

During the implementation of the data collection project we encountered
several problems and design issues we had to address as well as setbacks we
had to work past. At the start of this project the goal was to extract data
from the Cartesius cluster followed by the Lisa cluster. After identifying
potential means to collect the data and gaining access to those systems we
encountered several problems that needed to be addressed. We discuss these
problems in the following sections.

4.1 Graphana

The first few weeks of the project were spent on building an understanding
of the systems at SURFsara and finding out how they process their internal
data. To visualize the data SURFsara uses the Grafana Analytic Platform
and queries time-series databases to enable graphing of the data. We deemed
this platform to be promising as it was already visualizing the data we wanted
to collect. However, after obtaining elevated access privileges it soon became

18



apparent that there was no accessible API to retrieve data from Graphana.
After some inquiries we were informed that this is not a planned feature

of the platform. We did some research into attempting to web scrape the
Graphana interface for the data but we quickly abandoned that due to the
complexity of such a project would amount to a new research project on its
own. The only way to collect the data from Graphana would be to manually
download the information every day with multiple clicks per data point so
a decision was made to drop any further attempts to collect data from this
source.

4.2 Graphite and Prometheus

After the lack of success with our work on with Graphana we moved onto
the time-series databases it was querying. The platform used for Cartesius,
called Graphite, is a monitoring tool for hardware and cloud infrastructure.
Graphite stores time-series data that it receives from the Baseboard Manage-
ment Controller (BMC) which is configured to push sensor information once
every 10 minutes. Graphite has a HTTP API accessible through terminal
requests from a system with administrative access, however, due to delays in
receiving credentials to allow for querying we moved onto the Lisa cluster.

The Lisa cluster makes use of a robust time series database called Prome-
theus. Prometheus is open source and uses PromQL which is a query lan-
guage that allows for a multitude of complex queries to access the data stored
in the database. Prometheus works differently from Graphite in a way that
it scrapes data from software daemons running on each node. Notably Lisa
makes use of node exporter1 and nvidia gpu prometheus exporter2 to facili-
tate the data monitoring.

We acquired access to an administrative node to begin our data collec-
tion testing on Lisa and began preliminary analysis and collection using curl
scripts to construct and collect some data. Shortly after that we modified
how the data is accessed by using a special node on the Lisa system so that
data collection could be performed without requiring access to the systems
admin node for collection.

1https://github.com/prometheus/node exporter
2https://github.com/mindprince/nvidia gpu prometheus exporter
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4.3 Parsing Output from Prometheus.

The output from Prometheus is in complex JSON format. What we mean by
complex is that it is a nested data structure for each metric, which contains
a large array of data structures that consist of node information as well as
an array of time series for each node. The measurements collected are stored
as a tuple of time and value. To be able to access this data we developed
scripts in Python 3.7 that use several packages to interface with the JSON
data on a daily basis. These packages are can be found in the appendix at
B.1:

1. json: Exposes an api that allows the user to interface with JSON for-
matted data.

2. Pandas: an open source, BSD-licensed library providing high-performance,
easy-to-use data structures and data analysis tools for the Python pro-
gramming language.

3. pyArrow: provides a Python API for functionality provided by the
Arrow C++ libraries, along with tools for Arrow integration and in-
teroperability with pandas, NumPy, and other software in the Python
ecosystem.

4. pyArrow.parquet: Enables python bindings to multi threaded C++
code that allows for reading and writing of parquet files.

Using the json library we are able to interface with the Prometheus data
and for each result we extract in a linear fashion each node as well as the
accompanying time series data. We decouple the data tuples and then insert
the data into a Pandas dataframe, which is a sort of column based data
structure, where the index column is the time data in seconds since epoch
and each column represents a day of data collected for a node. Subsequently,
we make use of the pyArrow library to convert the pandas dataframe to a
pyArrow table which enables the use of the pyArrow Parquet library to save
each metric in Parquet format.

4.4 Slurm

The Lisa and Cartesius clusters use the Slurm workload manager which is
a highly scalable cluster management and job scheduling system for Linux
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clusters. Slurm handles the job scheduling on these systems and can be
configured in a multitude of ways to improve scheduling and the occupancy
of the compute clusters. It is worth noting that on both of the clusters the
default time limit for each job is 5 minutes. The users of the system can set
a longer time limit with a cap of 5 days on most partitions. The job data is
then stored in the Slurm accounting database which enables access to various
historical data on the jobs that have run on the cluster. The most relevant
of those we have found to be:

1. Job submit, start, and end time.

2. The timelimit on a per job basis.

3. Number of nodes reserved as well as a list of nodes by name.

4. the state of the job, such as, completed, failed, cancelled and timeout.

5. Exit code of the jobs, which may provide information on failed jobs if
they, for example, have a segmentation fault.

Included in our data collection script is code that queries Slurm for job
accounting data to allow for more robust analysis of the operational traces on
the system. These job data can be instrumental in detecting ways to improve
scheduling and energy efficiency in datacenters as well as researching system
and user behavior on large compute clusters.

4.5 Data Cleanup

We developed a simple parsing script that ran through each metric and iden-
tified the problematic ones and removed them from the dataset as well as
stopped querying for those metrics from the Prometheus system. This re-
duced the number of initial metrics from 191 to 133 which saves a considerable
amount of time during the data collection as well as disk space.

4.6 Anonymization of the Data

To better facilitate analysis it is useful to be able to tell if a certain user on
the system is uploading multiple jobs with a similar hardware signature. Our
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first approach was to attempt to encrypt the user id’s and the accompanying
job id’s to prevent other users of the system from looking them up through
the Linux user base and the Slurm scheduler. We also encrypted our node
names to make it harder.

However because these data contain the submission, start, and end times
of jobs this proves difficult since rare occurrences on the system would be
easily identifiable, such as very large jobs that reserve most of the cluster.
Even non significant events could be identified due to the fact that it is highly
unlikely that two jobs share the same submit, start, and end times for each of
those values. From that information anyone with access to the system could
discover the user behind each individual job in the dataset.

Obfuscating those time values would effectively destroy the usability of
the job data. Due to this we have had to delay the release of the job data with
our current archive. However, discussions are under way to find a solution
to this problem or at least, in part, release some job data overview such as
how many jobs are running at any one time and which partitions they are
running on, which nodes are reserved and which are idle.

Work is currently ongoing to see if a release of job information is possible
some time in the future.

4.7 Automating the Data Collection

We are working on an automatic script that will upload an archive to Zenodo
monthly. We achieve this by running automated processes on an administra-
tive node within the Lisa cluster. Uploading to the Zenodo archive requries
the use of an API they have set up on their end. This helps to ensure regular
data releases as well as reliability in a monthly release and facilitates future
research and experiments in relation to datacenter operations.
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Chapter 5

Job Characterization

In this chapter we characterize the kinds of jobs that run on the Lisa cluster.
The data we are working with is a collection of 1,927,420 jobs that ran on
the cluster and were collected over a 6 month period. We aim to replicate
some of the characterizations demonstrated by Amvrodiasis et. al. [2]. We
conclude the chapter by showing the common types of jobs that run on the
system. As well as, a comparison of our results to the other paper.

5.1 The Job Data

The data we use consists of six months of job data collected from the Dutch
National Supercomputer, Lisa. This job data consists of 1.927.420 jobs and
was recorded from 1st of January 2020 until 30th of June 2020. This allows
us to perform analysis on job trends within the cluster. When looking at the
job data we will consider the following information:

1. Job Trends: We show the submissions per day accross the 6 months.

2. Partition: The partition the job ran on.

3. Times: The submission, start and end time of jobs.

4. Runtime: The amount of system time occupied by a job

5. State: Which displays the final state of the job, such as completed,
cancelled, failed.
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Figure 5.1: Job submission trends from 1st of January until the 30th of June.

Analysis of each of these metrics separately and combined gives a good pic-
ture of user behavior and job trends on the cluster.

Figure 5.1 shows the submission trends on the system which are relatively
stable over the whole dataset. However, there are noticeable peaks in sub-
mission rates in the months of May and June. These upticks correlate with
a contract on data analysis with relation to a research contract with scientist
performing analysis of the Covid-19 genome in an effort to come up with
methods to treat the virus. To make better sense of the submissions per day
we make a boxplot of the averages per day. As can be seen in Figure 5.2
when one considers the left figure you can see the whiskers are catching the
largest outliers and those outliers fall on Monday, Wednesday and Friday. As
is apparent these outliers are in the 100’s of thousands of jobs with Friday
being the largest outlier. When you inspect the zoomed in figure you can see
that on weekdays the average job submissions lie between 3-5000 jobs per
day, with weekends dipping down to around 2,500 jobs per day.

As for the jobs we collected. The partitions they ran on as well as the
number of jobs per partition can be seen in Table 5.1.
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Partition Name Nr of jobs
normal 1,844,618
gpu shared 29,484
gpu titanrtx shared 10,901
gpu short 10,328
gpu titanrtx 7,121
gpu shared course 5,583
gpu 5,486
short 4,457
sw 3,463
shared 1,996
Other 3983

Table 5.1: Number of jobs assigned to each partition.

End state Count Ratio
Total 1,927,420 100%
Completed 1,739,887 90.27%
Failed 100,455 5.21%
Cancelled 65,338 3.39%
Timeout 20,700 1.07%
Out of memory 864 0.048%
Node failure 176 0.00903%

Table 5.2: End states of all jobs running from January to July.
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(a) Full representation of job submission
rates per day.

(b) Zoomed in image of job submission
rates.

Figure 5.2: Plots that show submissions per day. The whiskers represent
outliers and have been set to capture all of them. The second image shows
a zoomed in version of the first. This allows the reader to get a better sense
of the normal values of job submissions per day

5.2 Characterization

Table 5.2 shows that most jobs on the system complete without problems.
Additionally, users of the system tend to have good intuition as to the timeout
should be. Node failures and out of memory errors are exceedingly rare as
well which tells us the system is very stable.

When comparing tables 5.1 and 5.2 we can see that 95.7% of jobs run
on the normal partition and that 90.27% of jobs successfully complete. It is
therefore apparent that categorization of jobs in this way does not get us very
far so additional categorization is required. We added a categorization of the
jobs by their runtime as well as the final end state of the jobs to provide
us with a clearer picture of what kind of jobs run on the Lisa cluster. This
resulted in Figure 5.3. The categorization is as follows: Jobs that run for
five minutes or less, one hour or less, six hours or less, one day or less, more
than one day.

When we consider the plots we can see that 85.7% of jobs have a runtime
of less than 5 minutes and out of those 5.6% of them fail. By contrast if
we consider the longest jobs on the system they account for 0.53% of the
jobs on the system however when looking at the the right graph we can tell
that most of the runtime on the system is taken up by those jobs, and 46.6%
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(a) Number of jobs per category. (b) Runtime of jobs per category.

Figure 5.3: Plots (a) and (b) show a categorized version of the job counts
and the job runtime respectively.

of those jobs fail due to timeouts, crashes, node failures, memory errors or
cancellations. This follows the intuition that the longer jobs run the more
likely they are to fail due to crashes, system failures or timeouts.

5.3 Analysis

We find that if we categorize jobs by runtime almost all jobs that run on the
system are short jobs that run for 5 minutes or less. However most of the
system occupancy comes from the longest lasting jobs which last for one day
or longer. Additionally, it follows from intuition that longer jobs are the jobs
most likely to fail due to timeout, system failure, out of memory or other
problems.

The most used partition on the system is the normal partition, the reason
for this cannot be ascertained but intuitively this may be because users do
not understand how to request partitions on the system. The number of
users utilizing the shared GPU partition is promising. This means the GPU
partitions are having their intended effect of sharing the load on the system
between jobs that do not need full node utilization.
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Chapter 6

Conclusion

We collected and published the SURFace trace archive. Alongside the trace
archive we also published an article in USENIX;login [13]. This archive is
already proving to be a valuable resource for systems research by the @Large
research group as well as internally at SURFsara with planned submissions
to well-known conferences in the near future. We also collected and worked
on anonymizing job data. This data is slated for release in the future once
privacy concerns have been addressed and the anonymization is deemed suf-
ficient.

At the start of this thesis we highlighted several research questions. We
answered them as follows:

RQ1: We developed processes and scripts to facilitate a large scale data
collection. These processes required the development of scripts and data
parsing methods to store and work on the data.

RQ2: We found out that to automate data collection processes we need
the assistance of systems administrators to run automated data collection
jobs on a daily basis.

RQ3: To characterize the jobs we first need to categorize them by runtime
to be able to have a good idea of what the most common type of job is on
the system and follow that up by categorizing by job end state for example:
completed, failed and timeout.
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6.1 Future work

In the future a planned data collection will be released from the Dutch Na-
tional Supercomputer, Cartesius. Due to lack of resources the data collection
from the Cartesius systems is outside the scope of this project and as such
it was left for future research. Additionally, each of the categories from the
metrics A has the potential for further analysis on HPC systems and resource
management. Our work can still be improved upon with more robust metric
validation. The collection and storage of the data as well as the processes
used for to parse the data could still be improved.
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Appendix A

Metrics

The following contains a list of metrics collected during this project.

A.1 General Hardware Metrics

• surfsara power usage

• surfsara ambient temp

• node context switches

• node intr

• node entropy available bits

• node load1

• node load5

• node load15

• node procs blocked

• node procs running

• node forks
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A.2 Memory Metrics

• ((node memory MemTotal bytes%20-%20node memory MemFree bytes%20-
%20node memory Cached bytes)%20%2F%20(node memory MemTotal bytes))%20*%20100

• ((node memory SwapTotal bytes%20-%20node memory SwapFree bytes)%20%2F%20(node memory SwapTotal bytes))%20*%20100

• node memory MemTotal bytes

• node time%20-%20node boot time bytes

• node memory PageTables bytes

• node memory SwapCached bytes

• node memory Slab bytes

• node memory Cached bytes

• node memory Buffers bytes

• node memory MemFree bytes

• node memory Committed AS bytes

• node memory Mapped bytes

• node memory Active bytes

• node memory Inactive bytes

• node memory CommitLimit bytes

• node memory Dirty bytes

• node memory HardwareCorrupted bytes

• node memory Unevictable bytes

• node memory SwapTotal bytes%20-%20node memory SwapFree bytes

• node memory MemTotal bytes%20-%20node memory MemFree bytes%20-
%20node memory Buffers bytes%20-%20node memory Cached bytes%20-
%20node memory Slab bytes%20-%20node memory PageTables bytes%20-
%20node memory SwapCached bytes
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• node memory Shmem bytes

• node memory Mlocked bytes

• node vmstat pswpin

• node vmstat pswpout

• node memory Writeback bytes

• node memory Active file bytes

• node memory Inactive file bytes

• node memory VmallocChunk bytes

• node memory VmallocUsed bytes

• node memory DirectMap1G bytes

• node memory DirectMap2M bytes

• node memory DirectMap4k bytes

• node memory AnonHugePages bytes

• node memory AnonPages bytes

• node memory Active anon bytes

• node memory SReclaimable bytes

• node memory SUnreclaim bytes

• node memory NFS Unstable bytes

A.3 Graphical Processing Unit Metrics

Node that gpu metrics come in pairs of four per node from the system. To
save on storage space we opted to combine them into one column in the
dataset by packing them into a 64 bit integer using a bit packing method
where each value takes up 16 bits of space.
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• nvidia gpu temperature celsius

• nvidia gpu power usage milliwatts

• nvidia gpu memory used bytes

• nvidia gpu fanspeed percent

A.4 IO metrics

• node disk bytes read

• node disk bytes written

• node disk reads completed

• node disk writes completed

• node disk read time ms

• node disk write time ms

• node disk io time weighted

• node disk io time ms

• node filefd maximum

• node filefd allocated

A.5 General Networking Metrics

• node network receive packets

• node network transmit packets

• node network receive errs

• node network receive drop

• node network transmit drop

• node network receive multicast
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A.6 Networking Sockstat metrics

• node sockstat TCP alloc

• node sockstat TCP inuse

• node sockstat TCP mem

• node sockstat TCP mem bytes

• node sockstat TCP orphan

• node sockstat TCP tw

• node sockstat UDP inuse

• node sockstat UDP mem

• node sockstat UDP mem bytes

• node sockstat sockets used

• node sockstat RAW inuse

A.7 Networking Netstat Metrics

IP

• node netstat Ip InHdrErrors

• node netstat Ip OutDiscards

• node netstat Ip OutNoRoutes

• node netstat Ip InReceives

• node netstat Ip InDelivers

• node netstat Ip OutRequests
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TCP

• node netstat Tcp CurrEstab

• node netstat Tcp InErrs

• node netstat Tcp InSegs

• node netstat Tcp OutRsts

• node netstat Tcp OutSegs

• node netstat Tcp ActiveOpens

• node netstat Tcp AttemptFails

• node netstat Tcp EstabResets

• node netstat Tcp PassiveOpens

TCP EXT

• node netstat TcpExt TCPAbortOnClose

• node netstat TcpExt TCPAbortOnData

• node netstat TcpExt TCPAbortOnMemory

• node netstat TcpExt TCPAbortOnTimeout

• node netstat TcpExt TCPAbortFailed

• node netstat TcpExt TCPTimeouts

• node netstat TcpExt DelayedACKLocked

• node netstat TcpExt DelayedACKLost

• node netstat TcpExt DelayedACKs

• node netstat TcpExt TCPForwardRetrans

• node netstat TcpExt TCPSlowStartRetrans
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• node netstat TcpExt TCPSynRetrans

• node netstat TcpExt TCPSpuriousRTOs

• node netstat TcpExt TCPSpuriousRtxHostQueues

• node netstat TcpExt TCPFullUndo

• node netstat TcpExt TW

• node netstat TcpExt TWKilled

• node netstat TcpExt TWRecycled

• node netstat TcpExt TCPDSACKIgnoredOld

• node netstat TcpExt TCPDSACKOfoRecv

• node netstat TcpExt TCPDSACKOfoSent

• node netstat TcpExt TCPDSACKOldSent

• node netstat TcpExt TCPDSACKRecv

• node netstat TcpExt TCPDSACKUndo

• node netstat TcpExt TCPDSACKIgnoredNoUndo

• node netstat TcpExt TCPSackRecovery

• node netstat TcpExt TCPSackRecoveryFail

• node netstat TcpExt TCPSackShiftFallback

• node netstat TcpExt TCPSackShifted

• node netstat TcpExt TCPFastOpenCookieReqd

• node netstat TcpExt TCPFastRetrans

• node netstat TcpExt TCPHPAcks

• node netstat TcpExt TCPHPHits

• node netstat TcpExt TCPAutoCorking
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UDP and ICMP

• node netstat Udp InDatagrams

• node netstat Udp OutDatagrams

• node netstat Icmp InMsgs

• node netstat Icmp OutMsgs

• node netstat Icmp InErrors

• node netstat Icmp InTimeExcds
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Appendix B

Code-Base

This section contains the code base for the project.
Keep in mind due to privacy reasons parts of the scripts have been re-

moved.

B.1 Required Libraries

• PyArrow

• Pyarrow - parquet

• Pandas

• OS

• JSON

B.2 Data Collection

1 import os

2 import json

3 import numpy as np

4 import time

5 import threading

6 import queue

7 import sys

8 from datetime import datetime
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9 from subprocess import Popen

10 from subprocess import PIPE

11

12 """ Constants """

13 DATA_PATH = "/project/kristian/"

14 QUERY_LIST = "querylist"

15 #this is the start of the curl query that is constructed in

the buildQuery(query) function

16 CURL_START = "curl -s ’145.101.32.28:9090/ api/v1/query_range?

query="

17 #this is the time interval of the collected datapoints

18 QUERY_RESOLUTION = "&step=15’"

19

20

21 #for each key value pair in dictionary append to queue

22 def fillQueue(dict):

23 for key ,val in dict.items():

24 q.put(val)

25 q.join()

26

27 #while queue has jobs perform jobs , this is thread safe

28 def worker ():

29 while True:

30 item = q.get()

31 if item is None:

32 break

33 runLoop(item)

34 q.task_done ()

35

36 #populate the list of workers

37 def generateWorkers ():

38 for i in range(num_worker_threads):

39 t = threading.Thread(target=worker)

40 t.start ()

41 threads.append(t)

42

43 #depopulate the list of workers

44 def terminateWorkers ():

45 for i in range(num_worker_threads):

46 q.put(None)

47 for t in threads:

48 t.join()

49

50 #parse file for queries

51 def loadFile(fileName):
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52 counter = 0

53 d = {}

54 with open(fileName) as f:

55 for line in f:

56 d[counter] = line.strip(’\n’)

57 counter = counter + 1

58 return d

59

60 #build curl query

61 def buildQuery(query):

62 #this accesses the address where prometheus is.

63 queryMetric = query

64 queryStart = "&start="

65 queryEnd = "&end="

66 #queryRes = "&step =15’"

67 return CURL_START + queryMetric + queryStart + str(start)

+ queryEnd + str(end) + QUERY_RESOLUTION

68

69 def runLoop(queryName):

70 print(’query: ’ + queryName)

71

72 query = buildQuery(queryName)

73 result = os.popen(query).read()

74 jsonData = json.loads(result)

75

76

77 os.mkdir(DATA_PATH + "logs/" + queryName)

78 with open(DATA_PATH + "logs/" + queryName + "/" +

queryName , ’w’) as outfile:

79 json.dump(jsonData , outfile)

80

81

82

83

84 """

--------------------------------------------------------------------------------------------------------------

"""

85

86 """ Get relevant time values """

87 #TODO:: upgrade this to use UTC to avoid daylight savings

problems

88 def getTime ():

89 now = datetime.now()

90 return int(time.mktime(datetime.timetuple(datetime(now.

year , now.month , now.day))))
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91

92 def epoch_to_utc(epoch):

93 ’’’Convert epoch timestamp to ISO UTC timestamp ’’’

94 return time.strftime(’%Y-%m-%dT%H:%M:%S’, time.gmtime(

float(epoch)))

95

96 """

--------------------------------------------------------------------------------------------------------------

"""

97

98 """ Collect sacct information """

99 class Sacct ():

100

101 def __init__(self , start , end , values , states):

102 self._start = start

103 self._end = end

104 self._format = values

105 self._states = states

106 self._sacct ()

107

108 def _sacct(self):

109 ’’’Collect output from sacct ’’’

110 sacct_command = ’/usr/bin/sacct --allocations --

allusers --format %s --noheader --parsable2 --state =%s --

start =%s --end=%s’ % (

111 ’,’.join

(self._format), ’,’.join(self._states), self._start , self.

_end)

112 if debug:

113 print("Sacct Command :\n" + sacct_command)

114 # use UTC timestamps as input and get epoch

timestamps in output

115 stdout , stderr = Popen(sacct_command , shell=True ,

stdout=PIPE , stderr=PIPE , env={’SLURM_TIME_FORMAT ’: ’%s’,

’TZ’: ’UTC’}).communicate(input=None)

116 if stderr:

117 print(stderr , file=sys.stderr)

118 sys.exit (1)

119 self._sacct_output = stdout.decode ().splitlines ()

120

121 def get_jobs(self):

122 ’’’Parse sacct output and return iterator ’’’

123 for line in self._sacct_output:

124 if debug:

125 print(’DEBUG: sacct_output [%s]’ % line)
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126 sacct_fields = line.split(’|’)

127 if len(sacct_fields) != len(self._format):

128 print(’ERROR: sacct output does not match

format ’, file=sys.stderr)

129 sys.exit (1)

130 yield line

131

132

133 def getAndSaveSacctData ():

134 sacct_values = (’jobid’, ’gid’, ’uid’, ’partition ’, ’

submit ’, ’start’, ’end’, ’elapsedraw ’,

135 ’cputimeraw ’, ’ncpus ’, ’nnodes ’, ’

nodelist ’,

136 ’exitcode ’, ’state ’, ’timelimit ’)

137

138 sacct_states = (’CANCELLED ’, ’COMPLETED ’, ’FAILED ’, ’

NODE_FAIL ’, ’OUT_OF_MEMORY ’, ’PREEMPTED ’, ’TIMEOUT ’)

139

140 test_sacct = Sacct(epoch_to_utc(start), epoch_to_utc(

start + CONST_DAY), sacct_values , sacct_states)

141

142 job_list = list()

143

144 for line in test_sacct.get_jobs ():

145 job_list.append(line)

146

147 with open(DATA_PATH + "sacct/sacct_" + str(start) + "-" +

str(start + CONST_DAY), ’w’) as outfile:

148 for line in job_list:

149 outfile.write(line + ’\n’)

150

151 print("Sacct data collected")

152

153 """

--------------------------------------------------------------------------------------------------------------

"""

154

155 """ Compress collected json data """

156 def tar():

157 os.system("tar czf " + DATA_PATH + "archives/logs_" + str

(start) + "_" + str(end) + ".tar.gz " + DATA_PATH + "logs/

")

158 print("tar successful")

159

160 """ post run cleanup """
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161 # delete all collected json file post archiving them with tar

162 def cleanup ():

163 os.chdir(DATA_PATH + "logs/")

164 os.system("rm -r *")

165 os.chdir("../ datascript/")

166 print("Cleanup complete")

167

168 """

--------------------------------------------------------------------------------------------------------------

"""

169

170 """ Setup """

171 # load queries into dictionary

172 q = queue.Queue ()

173 threads = []

174 num_worker_threads = 1

175

176 # Getting start and end times using the getTime function

177 # then generate the indexes required for this day to be used

in the conversion to parquet

178 midnight = getTime ()

179 CONST_DAY = 86400

180

181 # the number 1 stands for the number of days back in time you

’re collecting

182 start = midnight - CONST_DAY * 1

183 # 15 stands for number of seconds , this avoids overlap with

the next day.

184 end = start + CONST_DAY - 15

185

186

187 # Generates a list of range from start to end on a step of 15

to match with the collected data

188 indexes = np.arange(start , end + 15, 15).tolist ()

189 debug = False

190

191 """ Generate workers and fill up the queue to start the data

collection """

192 generateWorkers ()

193 fillQueue(loadFile(QUERY_LIST))

194 terminateWorkers ()

195 getAndSaveSacctData ()

196

197 print("Data collection complete")

198
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199 """ Compress then cleanup collected data """

200 tar()

201 cleanup ()

B.3 JSON Parser

1 import json

2 import pandas as pd

3 import pyarrow.parquet as pq

4 import pyarrow as pa

5 from collections import OrderedDict

6 # [Redacted encryption libraries]

7

8 # for encryption purposes

9 # [Redacted encryption keys]

10

11 # Constants:

12 NODE_LIST = ’nodeList ’

13 GPU_NODE_LIST = ’gpuNodeList ’

14

15 # function that encrypts the node name passed as argument

16 def encryptNodeName(nameArg):

17 # [Redacted encryption code]

18

19 # Function opens a file using the argument as filename , reads

the contents into a list and returns it.

20 # Function includes logic to enable encryption of node names

by reading the numbers from the nodenames and encrypting

them separately

21 def loadNodeList(fileName):

22 nodes = []

23 with open(fileName) as f:

24 for line in f:

25 toAppend = line.strip(’\n’).strip(’ ’)

26 # to enable on read encryption uncomment this

line

27 #toAppend = encryptNodeName(toAppend)

28 nodes.append(toAppend)

29 return nodes

30

31 # deprecated function that is no longer in use

32 def loadFile(fileName):

33 counter = 0

34 d = {}

35 with open(fileName) as f:
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36 for line in f:

37 d[counter] = line.strip(’\n’)

38 counter += 1

39 return d

40

41 # the string to num functions attempt to convert the argument

to float or int respectively , if they fail the print an

error message and then return

42 # these are being used to validate the inputs from compute

nodes and gpu nodes respectively , if gpu is true then it

converts to int these should be combined into one function

43 # once it has been normalized what ’no reading ’ looks like

from nodes

44 def stringToNum(string , gpu):

45 if(gpu):

46 try:

47 return int(string)

48 except ValueError:

49 print("Value error int on " + string)

50 else:

51 try:

52 return float(string)

53 except ValueError:

54 print("Value error float on " + string)

55

56 print("conversion error")

57

58 # function checks the if any indexes are missing and injects

a no measurement value if that index does not exist

59 # if it does exist it makes sure that the value given is

converted to a numeric instead of storing it as a string

60 # in case of gpu’s it appends 0 else -1.0, however this needs

to be normalized such as no measurement should always be

represented the same way.

61 def convertAndPad(values , indexes , gpu):

62 valueList = list()

63 if (len(values) != len(indexes)):

64 test = dict(values) #converting this to dictionary

for easy lookups

65 # this for loop specifically goes through the list of

indexes , if that index does not exist in the dataset

66 # then inserts a non measurement value into the

metric , non measurement value needs to be normalized to a

specific value

67 for index in indexes:
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68 if(index not in test):

69 if(gpu):

70 valueList.append (0)

71 else:

72 valueList.append ( -1.0)

73 else:

74 valueList.append(stringToNum(test[index], gpu

))

75 else:

76 # note value in this case is a tuple (time , value) so

when appending it has to be indexed in this way value [1]

77 # note that this is different from the above code due

to that code using a dictionary where the time has become

the index

78 # potentially could use dictionary for both parts of

this loop to simplify the function.

79 for value in values:

80 valueList.append(stringToNum(value [1], gpu))

81

82 return valueList

83

84

85 ’’’

86 Structure of json file

87 data

88 result[ #result is an array of subtrees each of which

contains the metric and values branch

89 metric[

90 instance # this stores the full node name r##n##.

lisa.surfsara.nl

91 minor number # this stores the iteration for that

specific node , e.g. in nvidia metrics ’0’ is the first

gpu and ’3’ is the fourth gpu

92 #few other ones that are not as relevant but may

be worth exploring

93 ]

94 values[

95 (timestamp , measurement) #in the array of

values the data is stored like this.

96 ]

97 .

98 .

99 .

100 .

101 ]
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102 ’’’

103 # reads the json input and splits it indo nodes and metrics

respectively , then returns a dictionary containing all the

nodes and their values respectively.

104 # includes a comment block used for encryption of node names

during parsing

105 # with the data being a nested datastructure to reach the

metrics and node information you need to dig into it

106 # TODO:: Handle special cpu cases where we are getting results

per cpu , needs to be designed to handle that somehow

107 def splitJson(jsonObject , dict , indexes , queryName):

108 dict.clear()

109 for result in jsonObject[’data’][’result ’]:

110 if ’instance ’ in result[’metric ’]: #check if result

contains no metric

111 k = result[’metric ’][’instance ’]

112 v = result[’values ’]

113

114 # will skip all non compute nodes , this means no

administration node , software node , login node or

fileserver is included in the metrics

115 if not (k.startswith(’r’)):

116 continue

117

118 # node names come as a full address on lisa to

make the dataset easier to read we prune the node down to

just r##n##

119 k = k.split(’.’, 1)[0]

120

121 # to enable on parse encryption of node names

uncomment this line

122 # k = encryptNodeName(k)

123

124 valueTupleList = [i for i in v]

125 values = convertAndPad(valueTupleList , indexes ,

False) # because there is no gpu present in this split

this passes false

126 dict[k] = values

127

128 # same intro as splitJson , however this code is only valid

for metrics in nvidia so the potential to merge the

functions and handle nvidia using helper functions

129 # may be a much better solution.

130 # difference is this function handles nvidia metrics

specifically because they come in 4 results for each node.
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131 # it compares the currently read node to the previously read

node , once there is a mismatch it calls packToInt64 which

returns a list that is added

132 # to the dictionary , instead of reading node names this

function could be modified to read minor number and watch

for it to reset to 0,

133 # so every time minor number hits zero it would package the

values.

134 def splitGPU(jsonObject , dict , indexes , queryName):

135 prevNode = ’NONE’

136 prePack = []

137 minorNum = 0

138

139 dict.clear()

140 for result in jsonObject[’data’][’result ’]:

141 if ’instance ’ in result[’metric ’]: #check if result

contains no metric

142 k = result[’metric ’][’instance ’].split(’.’, 1)[0]

143 v = result[’values ’]

144

145 if not (k.startswith(’r’)):

146 continue

147

148 if(prevNode == ’NONE’):

149 prevNode = k

150

151 # if the previous node is not equal to the

current node then the integer packaging needs to be done

and the lists cleared

152 # could also simplify this by just checking the

minor number and if the minor number in the newly read

tree is = 0 then

153 # you have to package the values before loading

in the new node.

154 elif(prevNode != k):

155 dict[k] = packToInt64(prePack)

156 prePack = []

157 prevNode = k

158

159 minorNum += 1

160

161 valueTupleList = [i for i in v]

162 values = convertAndPad(valueTupleList , indexes ,

True)

163
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164 # if nvidia gpu power is found then the queryName

should be modified to

165 # be nvidia_gpu_power_watts so that we can claim

correctness in naming since at the moment

166 # it is milliwatts while the data represented is

in watts due to this modification

167 # this modification and the memory one are here

to make sure the data fits into 64 bit values when

packaged

168 # another way would be to modify the queries to

prometheus to include the calculations to do this

calculation so that it is unnecessary here

169 #modified the branches to simplify the code

170 if (queryName.startswith(’nvidia_gpu_power ’)):

171 values = [int(x / 1000) for x in values]

172 # newValues = [int(x / 1000) for x in values]

173 # prePack.append(newValues)

174

175 elif (queryName.startswith(’nvidia_gpu_memory ’)):

176 values = [int(x / 1048576) for x in values]

177 # newValues = [int(x / 1048576) for x in

values]

178 # prePack.append(newValues)

179

180 # if neither of the previous ones is true then it

the function just appends the value unchanged

181 prePack.append(values)

182

183 # checks if prepack contains information from one final

node , if there isn’t it returns else it

184 # runs the pack to int once more

185 if(len(prePack) == 0):

186 return

187

188 dict[k] = packToInt64(prePack)

189 prePack = []

190

191 # packs the values from a list of lists into a 64 bit value

192 # expects this format prePackaged [[value],[value],[value],[

value ]] where each value is a 16bit number or less

193 # this function then uses bitwise or ’|’ and shifting ’<<’ to

pack them into a 64 bit value

194 # and creates a new list called postPack [] that consists of

all the lists inside prePackaged combined into one

195 def packToInt64(prePackaged):
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196 postPack = []

197 for n in range(len(prePackaged [0])):

198 c = 0

199 for j in range(len(prePackaged)):

200 if(j > 3):

201 break

202 c = c | (prePackaged[j][n] << 16 * j)

203 postPack.append(c)

204

205 ’’’ Consider

206 if(max(postPack).bit_length () > 64):

207 print warnings

208 ’’’

209 if(max(postPack).bit_length () > 64):

210 print(’Max value larger than 64 bits’)

211 print(max(postPack))

212 print(’len of j: ’ + str(len(prePackaged)))

213 #if(max(postPack) > 0xFFFFFFFFFFFFFFFF):

214

215 return postPack

216

217 # opening function to the script , takes as an argument the

jsonObject containing the query result

218 # the name of the query and the list of indexes for the day

that is being parsed

219 # the index list will have to be generated elsewhere , it’s

from midnight to midnigt - 15sec , with 15 second intervals

so 5760 values.

220 def pandasParq(jsonObject , queryName , indexes):

221 dict = {}

222 #the reason for loading in the nodelists for gpu nodes

and then all nodes

223 #is to validate if any nodes are missing in the dataset ,

however since nodelists in the future will not be static

this requires redesign

224 #one issue with parquet is that if there is a difference

between two files e.g. column wise etc then you have to

merge the parquet datasets

225 #however when trying to merge such large datasets i ran

into issues with memory , finding a reliable source of

nodelists outside of having to manually update

226 #would be an amazing solution

227 nodeList = loadNodeList(NODE_LIST)

228 nodeList.sort()

229 gpuNodeList = loadNodeList(GPU_NODE_LIST)
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230 gpuNodeList.sort()

231 gpu = False

232

233 if(queryName.startswith(’nvidia ’)):

234 gpu = True

235

236 #different split functions if you have gpu or non cpu

metric , would like to merge those and create sub functions

that they call with.

237 if(gpu):

238 splitGPU(jsonObject , dict , indexes , queryName)

239 else:

240 splitJson(jsonObject , dict , indexes , queryName)

241

242 # validation code - might be best to separate this into a

separate function

243 # this checks the dict against the nodelist

244 # if the node is not in the dictionary it calls

convertAndPad with an empty list , indexes and true/false

depending on what is needed.

245 # convertAndPad then generates a list filled with 0 or

-1.0 depending on gpu or not , becomes simpler if we make

sure all non readings are the same

246 if(gpu):

247 for node in gpuNodeList:

248 if not node in dict and len(dict) > 0:

249 values = convertAndPad ([], indexes , True)

250 dict[node] = values

251 else:

252 for node in nodeList:

253 if not node in dict and len(dict) > 0:

254 values = convertAndPad ([], indexes , False)

255 dict[node] = values

256

257 # ordering the columns of the dictionary after validation

and adding missing nodes ensures that all parquet files

are the same.

258 # note this does not reorder the values in the dataset

only ensures that the columns are always in the same order

.

259 oDict = OrderedDict(sorted(dict.items ()))

260

261 #checks if the program indeed got results from the

provided metric. this is a validation check to make sure

data was
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262 #returned from this query

263 if indexes and len(dict) > 0:

264 #maybe can use the nodelist when creating the

dataframes instead of the dicts , then loop over the dict

and set the values to the

265 #correct frame

266 df = pd.DataFrame(data=oDict , index=indexes , dtype=

object , copy=False)

267 writeParquet(df , queryName)

268

269 #saves to parquet dataset from the dataframe and using the

queryName for the folder to save it to

270 def writeParquet(df , queryName):

271 df.index.name = ’time’

272 df = df.astype(’Int64 ’)

273

274 table = pa.Table.from_pandas(df, preserve_index=True)

275

276 #the write to dataset will generate the parquet file as

part of the dataset in the existing folder , in case of no

dataset being located

277 #at the root_path it write_to_dataset will start it

278 #this could be worth a redesign to open the existing

dataset if it is there and appending the new data to the

dataset

279 #TODO:: adjust queryname for gpu memory since it is

modified to be Megabytes and gpu power since it is watts

not milliwatts

280 pq.write_to_dataset(table , root_path="/project/kristian/

lisa.parquet/" + queryName , flavor="spark")
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