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Abstract

Function-as-a-Service (FaaS) pertains to a recent advancement in cloud computing known
as serverless computing. A group of technologies provided as ”services” that shift the
responsibility of provisioning resources to the cloud operator and offer a fine-grained cost
model. Despite the growing popularity of FaaS within the research community, evaluating
the performance and cost of different resource management, scheduling, and provisioning
policies remains a difficult endeavor. Conducting experiments in the cloud is costly and
usually yields unpredictable results due to the underlying hardware heterogeneity of cloud
infrastructures. Whereas previous work has focused on providing open-source FaaS im-
plementations, the requirements for conducting a custom practical systems study in FaaS
remain steep both intellectually and financially.

To render practical systems research in FaaS more accessible, we propose in this work
OpenDC Serverless: an expandable trace-based simulator that provides a toolkit for mod-
elling and testing custom FaaS patterns. The simulator exposes custom interfaces for the
implementation of resource allocation, management, and scheduling policies. It further
supports the modification of its core architectural components. Moreover, included in the
toolkit is an experimentation framework that specifies an easy-to-convert-to trace format,
facilitating the exchange of inputs in the community. OpenDC Serverless also provides an
interface for conducting controlled and repeatable experiments. It allows checking each
experiment with fine granularity, through a metric monitoring system that allows tracking
of detailed metrics in the simulation.

We prototype OpenDC Serverless and conduct with it representative experiments. We
showcase the simulation performance of OpenDC serverless in a reproduction experiment
that involves the optimisation of a real FaaS workload through the use of a custom op-
erational policy; The results indicate that the simulator produces valid results. We then
highlight the ability of OpenDC Serverless to explore and characterize real scenarios with
an experiment on simulating cold-starts in AWS Lambda.
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1 Introduction

Serverless computing is a relatively new cloud-computing paradigm that is becoming in-
creasingly popular. Amidst the increasing complexity of cloud offerings (briefly discussed
in a Forbes article by Joe McKendrick [3]), serverless computing aims to provide a simplis-
tic ”swiss knife” for cloud developers. By offering compute, storage, and analytics services
that aim to reduce a number of challenging back-end endeavors, the emerging serverless
technologies aim to shift the developer’s focus primarily towards the business concerns of
his application. Moreover, serverless technologies also aim to increase the accessibility of
the cloud for new users, by providing simpler interfaces to cloud resources than current
Platform as a Service (PaaS) technology. The attractiveness and rising popularity of the
serverless paradigm promises business growth and prosperity for both cloud providers and
developers as outlined first by researchers from the SPEC RG Cloud group [51], [50], and
also by researchers from Berkeley [33] in their respective visions for serverless computing.

New technologies are considered part of the Serverless family of cloud services when
they abstract operational concerns, such as resource provisioning and load-balancing from
the user, subject to additional properties. provide an event driven interface, and charge
users at a much finer granularity than traditional Infrastructure-as-a-Service (IaaS), such
as Amazon EC2 [7].

The serverless approach to cloud computing holds good promise [50]. It simplifies the
aspects related to cloud budget management in IT companies, by reducing various costs
associated with developing rigid back-end infrastructures and, by closely tracking actual
resource usage. In addition, the serverless approach shortens an application’s road to
deployment, by cutting down the time spent on back-end development, enabling faster
profit, especially for smaller companies.

The landmark technology of this family of services is Function-as-a-Service (FaaS), an
easy-to-use, event-driven interface for developing and deploying cloud applications, cou-
pled with a fine-grained monitoring and billing model. The premise is simple. Users
upload their functions to the cloud, which get triggered by HTTP requests and/or other
types of events (e.g. timers, messages). Moreover FaaS aims to eliminate most of the
hurdles in the developer’s path that are unrelated to the business logic of his application.
It achieves this by handling operational concerns for the reduced granularity of functions.
In practice, each function is independently provisioned, scales automatically and receives
invocations through the cloud provider’s own messaging infrastructure. Consequence of
this operational model, the cloud provider can and does charge the developer in very small
increments of function execution time (e.g., only 100ms in AWS Lambda); this is much
finer grained than conventional billing, and makes the FaaS model less wasteful [50].

Most major providers such as AWS Lambda [9], Microsoft Azure [17], and Google
Cloud [13] already offer prominent FaaS services used by a range of different compa-
nies [10]. A review of serverless use cases and their characteristics by Eismann et al. [27]
has collected and characterized a total of 89 use cases. In the report, Eismann et al.
identified various real-world applications types ranging from monitoring and background
tasks to scientific and business-critical applications, thus, showcasing the diversity of do-
mains where serverless use cases are emerging. In conclusion, with its innovative outlook
on simplifying cloud computing, and a projected 8 billion dollars market size by 2021 [2],
serverless computing is set to put a strong foothold on the software development market.
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1.1 Previous work

The fast growth of FaaS raises an important need for research in the field. However,
because of the technology’s young age, high rate of growth, and its existing production
platforms revealing little information about their operation and architecture, much of
the existing work in the community is divided into two prominent main directions: (1)
designing custom prototypes of FaaS platforms [24], [39] and (2) benchmarking studies
with the goal of learning how existing FaaS platforms operate [37], [52].

We also identify a 3rd small set of studies which have set the community’s interest
on establishing consensus on an open source architecture for FaaS computing systems.
Most notably, the SPEC RG Cloud group’s FaaS reference architecture [48] is the first
systematic approach to designing FaaS systems that captures the main architectural and
operational implications of FaaS systems.

Lastly, Hongseok et al. have explored the simulation of a distributed cloud organization
of FaaS in their study [32]. While their work could be considered the first opening on FaaS
simulation, it only explores the specific scenario of simulating FaaS in a geo-distributed
computing mode and thus pertains more to the field of parallel and distributed computing.
Moreover, the study is mainly focused on highlighting the correlation between cost and
the execution location of a function in a distributed cloud organization of FaaS and thus
does not explore the workload aspect of FaaS simulation. Therefore, Hongseok et al.’s
work cannot be considered the first full-fledged FaaS simulator.

1.2 Problem statement

Despite the community’s efforts to provide open-source implementations and architectures
of FaaS (e.g. OpenLambda [29]), exploring, testing and evaluating different configurations
of FaaS platforms remains challenging. This issue is due to the steep requirements of
conducting a practical study on FaaS cloud systems, which include:

1. Implementation availability. The first requirement for such studies is an ade-
quate implementation or representation of FaaS systems. While this was a prominent
problem during the technology’s very beginnings when little information was known
about what lies behind the curtains of serverless, open-source initiatives by the com-
munity such as Apache OpenWhisk [8], OpenFaaS [22], Kubeless [15], Fission [18],
and others have helped lift some of the obscurity surrounding the technology’s func-
tioning.

2. Implementation complexity. The second requirement relates to the complexity
of configuring FaaS frameworks. The existing open-source implementations of FaaS
are all specific to a certain level and are usually not simple nor standard to config-
ure for researchers that are not actively involved in the serverless scene. Most of
these frameworks have different container (function execution environment) orches-
tration schemes and different levels of architecture flexibility as described in Table
1 and Section 2 of Mohanty et al.’s evaluation of open source serverless computing
frameworks [40]. Overall, this issue reduces the accessibility of implementing and
evaluating of custom operational policies in open-source FaaS frameworks.

5



3. High funding requirements. The actual cost of running experiments associated
with these studies can become quite high. Even if requirements 1 and 2 are satisfied,
running experiments requires having a meaningful deployment environment (VM’s
and containers with enough amounts of CPU/RAM and a solid networking interface)
for the chosen framework and workload. In addition, deploying these systems often
requires domain expertise. This can be particularly costly for large-scale experiments
and can restrict the choice of workload due to insufficient resources.

4. Performance unpredictability. The fourth requirement relates to the perfor-
mance variation and predictability of cloud experimentation environments from ser-
vices [31] to networking and other resources [46]. Cloud platforms typically present
three issues in experimentation: performance unpredictability, lack of control over
influencing factors and limited repeatability. These issues moreover relate to the mul-
titude of uncontrollable factors that come in play in cloud platforms and are already
well documented by studies such as Leitner et al.’s work on hardware heterogeneity
and multi-tenancy (multiple users provisioned with the same cloud resources simul-
taneously) in IaaS [35]. Furthermore, hardware heterogeneity and multi-tenancy are
also present in serverless as respectively shown in sections 4.4 and 6 of [52]).

5. Workload availability. Although analyzing the performance of systems when
subjected to relevant workload (or workload traces) is a common approach in the
community, there are very few public FaaS workloads/traces currently available.
The scarcity of real-world serverless traces complicates the testing and validation of
custom operational strategies in FaaS. Nevertheless, we commend Shahrad et al. for
their public release of the first real-world Azure Functions trace alongside their a
characterization study in [45].

As such, serverless computing currently suffers from the same “computing for the 1%
problem” that IaaS technologies endured during the early days of cloud computing. The
problem relates to the difficulty of simultaneously satisfying all the above requirements for
a conclusive practical study in FaaS, essentially reserving FaaS systems research to the few
who can satisfy all the above requirements. Simulation technologies such as OpenDC [30]
and CloudSim [32] have contributed to reducing the issue in IaaS, as they allow cloud
researchers and developers to evaluate the performance of their provisioning and service
delivery policies in a repeatable and controllable environment free of cost in addition to
being open-source.
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1.3 Research questions

The aim of this work is to provide a scientific instrument that can help bring the explo-
ration of different FaaS architectures and operations to the other “99%”. We ask four
main research questions:

RQ1 How can a FaaS simulator model the essential elements of FaaS architectures? This
question is important in addressing requirement 1 from the previous section in the
sense that, to provide an adequate experiment framework for FaaS studies, we need
to model the basic essentials of a FaaS architecture while avoiding the use of pro-
prietary architectural patterns. Hongseok et al. laid valuable ground-work on this
matter by modelling a number of these architectural components in their study on
simulating a distributed cloud organization of FaaS. Moreover, The SPEC RG Cloud
group’s reference architecture for FaaS presents a systematic approach to designing
FaaS platforms, further reducing the complexity of this challenge and thus largely
contributing to a solution.

RQ2 How can a configurable FaaS simulator allow for exploration and testing of different
or custom operational policies? This question tackles requirement 2 from the pre-
vious section. With this question, we contemplate whether simulation is capable of
modelling the complex operational concerns associated with FaaS and furthermore
of offering a framework for researchers/cloud developers to test and develop their
custom solutions to operational problems. Shahrad et al. have used in-house simu-
lation to test their custom operational policy before conducting real-world tests and
deploying the technology on Azure in [45].

RQ3 Can FaaS simulation reduce the temporal and material costs of experiments in the
field? This question tackles requirement 3 from the previous section. IaaS simulators
(e.g. OpenDC, CloudSim) allow the researcher to conduct low-cost experiments on
simulating VMs (Virtual machines), therefore, we ask ourselves whether the same
outcome is achievable in FaaS.

RQ4 How can simulation of FaaS platforms provide a controllable environment for re-
peatable experiments, but maintain the accuracy of results provided by real-world
experiments? This question relates to the fourth requirement for FaaS experimen-
tation. A simulator could choose to safely ignore or model performance variation in
cloud platforms, therefore we ask ourselves which steps we should take to conceive
a repeatable experiment environment with meaningful and controllable variations.

By combining the above collection of research questions, we simply ask ourselves whether
we can design, implement and evaluate the first configurable and extendable trace-based
FaaS simulator. For the purposes of this work, the fifth requirement from Section 1.2 is
fulfilled by the open-access to the Microsoft Azure Functions trace, however, FaaS trace
scarcity remains a large obstacle in the field of FaaS system research. With this work,
we also aim to provide incentive for the release of real-world production FaaS workload
traces.
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1.4 Research approach

To address the research questions, we develop in this work, OpenDC Serverless, the first
trace-based, configurable open-source FaaS simulator. Through this work, we aim to
provide an early framework for education and research in FaaS simulation that satisfies
the four first requirements of Section 1.2, accordingly with OpenDC’s vision [30].

Based on the SPEC RG Cloud reference architecture for FaaS [48], the simulator models
the essential architectural components required for a basic FaaS system in an extendable
and customizable fashion. We use clear separation of concerns between all the different
architectural layers to allow users to modify whichever component they desire with no
design overhead. Moreover, we design several configurable and expandable interfaces to
allow the users to implement custom operational policies

Furthermore, the simulator provides an experiment framework designed to be used and
configured by students, cloud researchers, cloud providers and curious third-parties alike.
This framework allows for input of operational parameters (e.g. policies), pricing models,
delay models, seeds and more in a centralized input manner using configuration files.
Furthermore we designed a custom trace format with simplicity and adaptability as our
priorities, thus allowing future real-world traces to be easily converted to it.

To show that we can extract valuable data from experimentation using the simulator,
we present two experiments centered around simulating and comparing custom cold start
mitigation policies.

The first experiment we conduct is a reproduction of the Azure Hybrid Histogram cold
start mitigation policy experiments from Shahrad et al.’s recent study on characterizing
and optimizing real Azure Functions workloads [45]. With this first experiment, we aim
to show that we can obtain data comparable to real-world experiment results through
exploring and testing custom operational policies in the simulator.

The second experiment we conduct, is a 24 hour long experiment where we execute real
workloads with various invocation patterns both in the simulator, and in AWS Lambda.
With this second experiment, we aim to show that we can, to an extent, simulate cold
starts in AWS Lambda and possibly evaluate the platform’s cold start mitigation policy.

We then subsequently show that the simulator can greatly reduce experimentation costs
through a comparison of the resources it took us to simulate the reproduction experiment
and the resources used for the real-world run in terms of both time and money.

Lastly, we highlight the control and repeatability aspect of the simulator by showing
that we can obtain repeatable results with controlled variations using proper seeding of
randomization methods on the multiple iterations of our reproduction experiment.

In conclusion, we propose in this work the first FaaS simulation study to extract valuable
data from real-world Faas traces. But the work does not end here; we present a number of
open limitations in FaaS simulation, which spotlight the importance of pursuing research
on FaaS simulation.
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1.5 Structure of this thesis

The first half of this thesis encompasses the conceptual design contributions. We begin by
explaining the backgrounds and concepts needed to understand the design in Section 2.
We present the design of the simulator in Section 3, in which we first provide an overview
of the system and then explore the main features in depth. In the second half of this thesis,
we present the practical contributions. We begin by describing our experiment setups for
both the Azure Hybrid Histogram experiment reproduction and the AWS Lambda cold
start simulation in Section 4. Subsequently, we present the results obtained through both
experiments in Section 5 and moreover provide small summaries of the key findings at
the end of each of the experiment’s results. Lastly, we end this work with an analysis of
open limitations in Section 6 and a conclusion containing a summary of this work’s main
contributions and future research directions in Section 7.
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2 Background Concepts and Models

In this subsection, we present the key concepts needed to understand this work. First,
we define the Function-as-a-Service (FaaS) terminology used throughout this work. Then,
we highlight and briefly define some of the the components of the SPEC RG Cloud FaaS
reference architecture that are used for the simulator’s design.

2.1 Function-as-a-Service terminology

In FaaS, the user configures his function by first uploading his code, choosing a certain
amount of provisioned memory and then setting an invocation trigger (e.g. HTTP re-
quest). Then, every time the function is triggered, the provider spins up an execution
container, allocates memory to it and chooses the duration of its lifetime. In this subsec-
tion we define the terminology used in the latter sentences.

Function triggers. FaaS platforms offer various ways of triggering function invoca-
tions. These events can vary from simple HTTP requests and timers to more complex
events such as event orchestrations (e.g. AWS Step Function) or storage orchestrations
(e.g. Amazon DynamoDB).

Execution container. An execution container embodies the run time environment of
a cloud function. When started, the execution container loads the function code, ade-
quate compiler or interpreter and required runtime libraries, then, it prepares to receive
invocations for whichever function it loaded.

Function provisioning. In popular FaaS platforms, when a user creates a function,
he chooses the maximum amount of provisioned memory for it. If during execution, the
function exceeds the provisioned memory, the function can be terminated by the FaaS
platform.

Cold start, warm start. Cold starts occur when an invocation is received for a
function that has no available execution container. The time spent deploying the container,
retrieving the function’s code and preparing the runtime environment is referred to as the
cold start delay. Warm starts represent the opposite scenario. If an invocation is received
for a function that has an available execution container, the invocation is simply routed
to the said container, thus skipping all the delay caused by initialization procedures.

Cold start mitigation strategy. A cold start mitigation strategy tweaks execution
container lifetime and tries to optimize the trade-off between reducing cold starts and the
resources consumed by idle execution containers. A typical strategy operates by setting
a fixed execution container lifetime. Other strategies adjust execution container lifetime
dynamically, and some strategies keep a pool of warm execution containers.
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Figure 1: The SPEC-RG reference architecture for FaaS platforms reproduced from Figure
1 of [48].

2.2 SPEC RG reference architecture for FaaS

The SPEC RG reference architecture for Function-as-a-Service (FaaS) [48] provides one
of the first systematic approaches to designing FaaS platforms. Figure 1 shows the three
hierarchical layers of the reference architecture. For the simulator’s design, we chose to
model the core components required for a generic FaaS platform. In this subsection, we
present and briefly describe the architectural components and operational patterns used
in the simulator’s design in a manner that highlights their purpose for this work.

2.2.1 Architectural components

For this work, we primarily set the spotlight on the Function Management Layer of which
we model the following components:

F4 Function Instance: the Function Instance is an execution container for functions.
Each instance is specific to a function and can be spawned multiple times concur-
rently.

F3 Function Deployer: the Function Deployer takes care of creating new Function In-
stances. This process involves loading the function’s code and preparing the func-
tion’s runtime environment. Once it has retrieved all the required parameters for
the deployment, the deployer delegates the actual deployment to the Resource Man-
ager/Scheduler.

F5 Function Router: the Function Router takes care of routing a function’s invocations
to one of its Function Instances. this component can request deployments from the
Function Deployer if no instance is available .

Moreover, since we want to sketch together a lightweight FaaS system, we chose to only
model some inter-dependent components from the other layers.

R2 Resource Manager: the Resource Manager monitors and manages the state of vir-
tual machines and execution containers (Function Instances). This component is
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responsible for making sure the resources are in an adequate state, for example if a
Function Instance has finished a job, the manager should de-allocate its memory.

R3 Resource Scheduler: the Resource Scheduler is responsible for choosing on which
resources Function Instances are deployed. The scheduler is moreover responsible
for taking appropriate actions (e.g. start or terminate resources...) to reach an
optimal state of resources.

W3 Workflow Scheduler: the Workflow Scheduler is responsible for feeding invocation
requests to the Function Router, it decides which functions run when.

We chose not to model both the Function Registry and Builder due to the small amount
of logic these components add to the simulation. Instead we can incorporate their effects
in the Function Deployer.

As for the Function Autoscaler, we choose to model it in future extensions of this work.
Moreover, since we are not planning to model the physical aspect of resources, we chose
to omit the use of Node Agents in the resource orchestration layer.

Lastly, when it comes to the workflow composition layer, we choose to only model the
Workflow Scheduler for the reason that we only model sequential workflows, meaning
we compose functions in the order they were executed. Therefore, the scheduler can
encompass both the Workflow Engine’s and Registry’s logic.
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(altered to only model the components used for this work and not include the workflow

execution pattern).

2.2.2 Operational patterns

Since we are not using the entirety of the SPEC RG reference architecture for FaaS, we
adapted the function execution operational pattern to our use case for this work. Figure 2
shows our altered version of the function execution pattern. in this subsection, we explain
some of the changes we made to the original pattern and explain why the original parts
are not needed.

When explaining our choices of architectural components, we mentioned that we do not
model the Function Builder and Registry but instead chose to incorporate their impact in
the Function Deployer. In this sense, the simulated Function Deployer models the delay
impact caused by both the Function Builder and Registry. Moreover, we omit the workflow
execution pattern presented in the original figure since our simulation use case is entirely
sequential and trace-based.
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Table 1: OpenDC Serverless function history file format.

3 Design of the Simulator

We start this design section by presenting the conception process of the simulator’s trace
format in Section 3.1 followed by the functional and non-functional requirements of the
simulator’s design in Section 3.2. After defining all its requirements, we present a high
level overview of the simulator’s architecture in Section 3.3, which we then explore by
walking through a typical execution of the simulation in Section 3.4. Lastly, we offer a
deeper look into request routing in Section 3.5, function instances in Section 3.6, resource
management and scheduling in Section 3.7 and finally, monitoring in Section 3.8.

3.1 Conception of the OpenDC Serverless trace format

At the start of this project’s design-cycle, there were no publicly available Function-as-a-
Service (FaaS) traces. We therefore had to first design a trace format to be a precursor for
the simulator’s design. Our requirements for designing a trace format were centered around
modelling the essential metrics recorded in a FaaS workload. A complicated trace with
a multitude of different fields would probably end up containing more information than
needed and would complicate the conversion process of real-world traces to the OpenDC
serverless trace format. To avoid such an issue, we took inspiration from a pre-release
description of the Azure Functions trace format [12].

In the process of designing the trace, we sketched a small collection of requirements
presented in the list below

1. The full trace should be a directory of CSV files, with each file representing the
history of a single function.

2. Each history file should only contain the essential metrics produced by FaaS work-
loads (timestamp, invocations, execution time, allocated resources). Moreover, the
timestamps should be consistent across all functions.

3. For scalability reasons execution time and allocated resources should be averaged.
This change in granularity should allow the history file’s size to scale reasonably.

4. The trace format should be able to be mapped to the Azure Functions trace. (The
only information originally available about the Azure Functions trace was a small
bullet point list of the what the traces will contain on the Azure dataset 2019 Github
page [12]).

After going through a few revisions of the trace format, we ended up with the small 7
column function history file format presented in Table 1.
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With this format, we satisfy our requirement of having all the essential metrics in addi-
tion to adding function provisioning fields (provisioned cpu and memory) which represent
the provisioning values specified by the user when creating the function (later on used
to determine cold start duration in Section 3.6). Furthermore, the trace format averages
execution time, provisioning and allocation metrics per invocation to satisfy the scalability
requirement. Finally, we present in the Section 4.2.2 how our trace format satisfies the
requirement of mapping to the real-world Azure Functions trace.

3.2 Requirements

The simulator’s design requirements are grouped in 2 main categories. Architectural
requirements (where requirement x under this category is labeled A.x) and Simulation
requirements (labeled S.x). Most of the architectural requirements are directly extracted
from the reference architecture [48]. Together they form the minimum core specification
of components in a Function-as-a-Service (FaaS) infrastructure. Simulation requirements
on the other hand, are mostly composed of customizable platform specifics such as cost
and metric monitoring, as well as system management. In this section we present below a
list of these requirements followed by a small analysis of stakeholders and use cases

A.1 The system should model Virtual machines (VMs), and allow for input custom VM
layouts.

A.2 The system should model execution containers and their deployment.

A.3 The system should support customizable delay modelling (custom cold starts, metat-
data lookup delay, etc...).

A.4 The execution container should support invoking and termination.

A.5 The system should support customizable routing of invocations from the trace to
available execution containers. Moreover, the system should deploy a new execution
container if none are available.

A.6 The system should support customizable resource management and allocation.

S.1 The system should support centralized configuration input, i.e. a configuration file
with all customizable parameters should be passed to the simulator.

S.2 The system should sequentially schedule invocation requests from the trace and keep
track of trace time.

S.3 The system should support both trace and simulation configuration input and pars-
ing.

S.4 The system should support tracking customizable metrics from the simulation and
moreover organize them in a report.

S.5 The system should support tracking the cost of the simulated computations using
different customizable pricing models.
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S.6 The system should compile a report of the recorded metrics at the end of the simu-
lation.

S.7 The system should support repeatable executions and controlled randomization
through the use of deterministic seeding methods.

Use cases. We manage to capture in the list below a number of research, education
and business related use cases for our system

1. Users can use this tool to reproduce and evaluate research studies conducted in real-
world FaaS environments. We show a small reproduction study using our tool in
Sections 4.1 and 4.2.

2. Users can use this tool to evaluate and scope out any faults in operational poli-
cies before their deployment on production FaaS platforms. The reproduced study
experiment in Section 4.2 provides a small glimpse into this use-case.

3. Users can compare and evaluate different allocation, request routing and cold start
mitigation strategies by implementing them through the simulator’s interfaces.

4. Users can evaluate how different workloads run on different amounts of provisioned
resources in terms of delays, cold starts, resource utilization, etc...

5. Users can explore and characterize FaaS performance in different data center envi-
ronments. This would help characterize what a good environment for FaaS workloads
could be.

6. Users can extract workload characteristics by analyzing customizable metrics pro-
duced from multiple simulations. These characteristic could range from frequency
of invocations to percentage of cold starts over time and more.
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Stakeholders. We refrain from citing indirect stakeholders such as End Users, but
instead mention their relation to the direct stakeholders of this technology

1. FaaS researcher: researchers often do not have full access to the platforms they
are researching on. Considering that most of the current existing work is either
benchmarking related or reverse-engineering of existing FaaS technologies [34] [24],
the need for simulation becomes paramount in research focused on improving FaaS
such as workload characterization studies and studies for delay mitigation solutions.

2. Platform provider: the FaaS provider has to ensure quality of service to its cus-
tomers. Research and development is generally done in-house with largely commer-
cial technologies such as FaaS. However, despite having full access to the actual FaaS
platforms, there is often a strong need for pre-deployment simulation of the technol-
ogy being researched as we see in [45]. This need arises from corporate matters such
as securing funding, early demonstration of effectiveness and quality assurance.

3. FaaS user: the FaaS user develops applications for end users. While the interest of
such an actor in the simulator might not be apparent, serverless application develop-
ers typically have to deal with the operational quirks of FaaS, and thus would most
likely benefit from the insight a simple-to-use simulator provides about their work-
loads. End users would then naturally benefit from an improved quality of service
(e.g. lower latency).
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3.3 High-level overview of the system

Figure 3 shows a high-level overview of the simulator. In this section, we will go over
every component in the system, citing its purpose briefly, highlighting which requirement
it satisfies and which section presents more specific details.

Experiment framework: inputting and parsing experiment configurations
and trace files. The simulator’s trace comes as a directory of CSV files, each representing
the history of a single function. Moreover, each file contains 7 columns which we explore
in more detail in Section 3.1. The simulator also takes as input a directory of experiment
configuration JSON files, each containing all the necessary parameters to for one distinct
simulation. These parameters include but are not limited to: pricing model, delay model,
allocation policy, resource management policy and virtual machines. Moreover, both forms
of input are parsed accordingly in the parsing component. This part of the system satisfies
requirement S.1 and S.2 and S.3.

Experiment framework: simulation core. The simulation core is the heart of the
simulator, it initializes all the different FaaS services with the provided configuration pa-
rameters, seeds all the randomization methods to ensure repeatability, and then proceeds
to start a loop where it sequentially schedules and sends invocation requests to the routing
component in addition to providing time updates to the resource management component.
This class thus serves as the clock and event feeder of the simulation. This part of the
system satisfies requirement S.2 and S.7.

Compute: routing. The routing component is responsible for routing invocations
to instances of their respective function, it operates off of a queue and uses a routing
policy to determine which instance to route to. The process is described in more detail in
Section 3.5. This part of the system satisfies requirement A.5.

Compute: computation. The computation component envelops all the logic sur-
rounding the function instance, our model of a FaaS execution container. The instance
is deployable through the use of the function deployer. Furthermore, deployment delays
(cold starts, lookup delay, etc...) are modelled using a delay model. This part of the
system satisfies requirements A.2, A.3 and A.4.

Resource: management and scheduling. The resource management component
models both VM’s (virtual machines) and instance hypervisors through the resource man-
ager. Similar to VMMs (Virtual machine monitors) from AWS Lambda [23], instance
hypervisors model the software that enables FaaS workload virtualization on top of VM’s
(i.e. it manages function instances). Moreover, this component provides an interface for
resource scheduling through the resource scheduler. More details are presented in Sec-
tion 3.7. This part of the system satisfies requirement A.6.

Monitor: cost and usage monitoring. The monitoring component is responsible
for keeping track of every function’s metrics during the simulation. It does so through
the usage and cost monitors. More details are presented in Section 3.8. This part of the
system satisfies requirements S.4 and S.5.

Monitor: report. Once the simulation is done, the monitoring component compiles
together a report containing all of the metrics recorded in a series of formatted entries.
The contents of the report are presented at the end of Section 3.8. This part of the system
satisfies requirement S.6.
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3.4 A walk through a simulation

In this subsection, we walk through a simulation step by step without going into much
detail. However, we first need to define the important notion of a simulation cycle. A
simulation cycle refers to the time interval between two entries in the trace. a typical
simulation cycle consists of formulating Invocation requests according to the trace entry,
routing them to a Function Instance or deploying new instances, sending time updates to
the resources, and writing all the recorded metrics onto the report. Furthermore, To know
more about what each component does, refer to Section 3.3.

Initialization. First, the user has to input both a trace directory and one or more
configuration files. Depending on how many configuration files were inputted, the experi-
ment framework launches one or more simulation cores (Experiments) with their respective
parameters (parsed from the configuration files) and a copy of the parsed trace each.

Simulation cycle: first time update. At the start of every simulation cycle, the
simulation core issues a time update to the resource management component. The update
then propagates down all the way to function instances. This is done at this moment
to appropriately update the state of the resources in preparation for the handling of
invocation requests.
From here on, the cycle branches into one of two different scenarios.

Simulation cycle: scenario 1: new function instance deployment. For every
invocation request in the request queue, the routing component attempts to route it to
an existing available function instance. In the event where there is no available function
instance to handle the request, the routing component asks the function deployer to deploy
a new instance of the concerned function. The deployer then asks the resource scheduling
component to select, according to the allocation policy, an appropriate instance hypervisor
to deploy the instance on. Once all the aforementioned steps are completed, the instance
is then deployed and its execution is delayed for a duration chosen according to the delay
model, akin to a cold start delay.

Simulation cycle: scenario 2: routing to an existing function instance. In the
event where there are available function instances of the concerned function. The routing
component routes the invocation request to an instance chosen according to a routing
policy.

Simulation cycle: second time update. At the end of every simulation cycle, the
simulation core issues another time update to the resource management component. The
update again, propagates down all the way to function instances. This is done at this
moment to update the state of the resources in preparation for metric logging.

Simulation cycle: monitoring. Throughout the simulation, the system keeps track of
various function and system specific metrics. The monitoring component tracks each and
every function’s metrics using function profiles (discussed in more detail in Section 3.8).
All of the cycle’s recorded metrics are systematically written to a report file at the end of
every simulation cycle.

Termination. Once the simulation reaches its end time, the monitoring component
outputs the reports. The simulation core then proceeds to terminate all of the running
components.
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3.5 In-depth look at Routing

Request routing is an essential function of FaaS platforms. At the heart of this process is
the Function Router. The router operates a request queue (customizable interface of a
queue). Each Invocation Request is representative of one entry in a function trace and
is composed of the following data fields:

1. Function identifier: unique id extracted from the trace file of the function

2. Number of invocations: total number of invocations specified in the trace entry

3. Time stamp: time specified in the trace entry.

4. Execution duration: this parameter represents the average execution time for each
invocation in this request

5. Allocated CPU / memory: CPU (Mhz) and memory (mb) allocated to the each
instance than handles a invocation from this request

To serve the requests, the router initiates a handling loop, where it goes through invocation
requests one by one and for each, decides whether to route it to an existing instance, ask
for an instance deployment, or, delay the request to the next simulation cycle. The process
is illustrated in Figure 4.

We also include an interface to specify routing rules, which we conveniently name
the Routing Policy. The policy specifies a set of of customizable rules for selecting
an available function instance to route a request to. Once supplied with the invocation
request, the routing policy returns an available instance chosen according to its specified
routing logic. Some examples of routing policies are
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1. The sequential routing policy which first filters the set of instances to only include
instances that are available and have enough resources on their respective VMs and
then returns the first instance in the filtered get.

2. The random routing policy which again filters the set of instances to only include
instances that are available and have enough resources on their respective VMs and
then returns a random instance from the filtered get using the simulation seed.

3. The least idle time routing policy which also performs the filtering and then proceeds
to choose the available instance that has been idle for the least amount of time. This
strategy allows instances that were idle for long to be terminated and prioritizes
younger instances if possible.

We added this concept to the simulator to encourage research in the routing component of
FaaS. A possible research challenge could be about improving branch prediction behavior
of FaaS platforms. The issue is discussed in more detail by Shahrad et al. in Section 5.1
of [44].
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3.6 In-depth look at Computation

As part of the Computation component, we designed a simple model of execution con-
tainers. The Function Instance provides a small but functional API specifying methods
for invoking, sleeping, halting and updating. Figure 5 outlines the different states of the
function instance. Each state transition can only happen once per simulation cycle.

Once deployed by the function deployer, the instance enters the ”Idle” state. When in
this state, the instance is occupying a certain (configurable) amount of memory. From
here on, every simulation cycle, the system proceeds to increment the instance’s idle
time counter until it either (1) reaches the keep-alive time limit and is then queued for
termination (moves to ”Terminated” state) or (2) is invoked by either the function deployer
or router.

When invoked using the function deployer, the instance is set to sleep for a specified
delay period (cold start) and thus enters the sleeping state. In this state, the instance still
retains its provisioned resources. Moreover, the instance checks whether it has served its
sleep duration during its update every simulation cycle. If served, the instance transitions
to the running state and executes until a delayed end time. In the opposite case where
it has been invoked without a delay (through the function router), the instance simply
transitions into the ”Running” state.

Once in the ”Running” state, the instance is considered to be executing and can thus
only transition to the ”Idle” state if it has reached its execution end time or has been
halted by either the resource manager or scheduler.

The last service we detail in this subsection is the Function Deployer: an interface
for instance deployment. To model startup delays, the deployer refers to the delay model,
a configurable composition of statistical distributions (distribution parameters extracted
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from Table 7 of [52]).
We went a step further as to model the cold start variations for different amounts

of provisioned memory (trends extracted from this AWS Lambda experiment by Yan
Cui [14]). We designed this interface with the future goal of fully modelling the various
flavors of Runtime delays (Builds, loading libraries etc..), metadata and code lookup and
networking delays of different platforms.

3.7 In-depth look at Resource Management and Scheduling

In this subsection we will detail the design of the Resource Manager, Resource Sched-
uler and Instance Hypervisor. But first, to understand the relevance of each compo-
nent, we present an overview of their interactions with different parts of the system in
Figure 6.

The resource manager embodies key operational logic such as relaying time updates
to its sub-components, and furthermore exposes a complete API to access and manage
virtual machines (VM), instance hypervisors and function instances. It is therefore used
by every component in the system.

The instance hypervisor models the software that runs on top of traditional VMs in
order to accommodate FaaS workloads. This concept is inspired from AWS Lambda’s
use of the Firecracker Virtual Machine Monitor [23]. Similar to the original concept, the
instance hypervisor provides an interface for provisioning and managing large numbers of
function instances. It therefore organically ties to other parts of the system such as the
function deployer or the resource scheduler.
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The resource scheduler operates two major operational parameters of the simulations.
First, the Allocation Policy specifies a customizable set of rules for selecting an appro-
priate instance hypervisor for a function instance deployment. Identical to the routing
policy, it provides a constraint-less API, leaving the user ample freedom to implement
virtually any set of rules. Allocation policies start by filtering the set of instance hyper-
visors to only obtain ones with enough resources to accommodate the deployment, then,
the policy branches to its custom behavior. Examples of allocation policies include: a
sequential allocation policy which chooses the first instance hypervisor from the filtered
set and the random allocation policy which instead, chooses a random instance hypervisor
from the filtered set.

The second major parameter is the Resource Management Policy: an interface for
managing the lifetimes of function instances. This concept is adapted from Microsoft Azure
Functions [45]. The resource management policy specifies a set of rules for determining
the following two parameters:

1. Pre-warming time: the duration spent before warming up new instances of the func-
tion. At the end of every execution, if the pre-warming time is not set to 0, the
scheduler starts a timer with the pre-warming duration as a limit. Once the timer
expires, the scheduler launches one function instance.

2. Keep-alive time: the duration an instance is kept alive either after it’s been de-
ployed, or after an execution (a slight difference with the original definition is that
the keep-alive countdown starts after an execution and not when an execution hap-
pens). Furthermore, the scheduler enforces keep-alive during every simulation cycle
by checking each function instance’s idle duration counter.

The resource management policy interface however, provides a slightly more constraining
API than the other policies in the system. To explain why, we first have to define the
notion of idle time (IT): time duration between two successive invocation requests of the
same function. Since we deem that most resource management policies will require to keep
track of each function’s IT, we added an update operation to the API which can be used
to relay idle times to the management logic. The update operation is of course optional
or useless to the functioning of certain policies (e.g. Fixed Keep Alive policy which sets
the keep-alive parameter to be fixed). Therefore it does not affect any vital part of the
simulation and can thus safely be omitted if needed.

One example of a popular resource management policy is the Fixed-Keep-Alive policy.
It sets the pre-warming time to 0 (signalling the system to not perform any pre-warming of
instances) and the keep-alive parameter to a fixed duration specified in the configuration
file.

Another simple example of a resource management policy is the No-Termination (also
named No-Unloading) policy. It sets both the pre-warm and keep-alive times to 0 and
thus, does not terminate or pre-warm any instances.
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3.8 In-depth look at Monitoring

To track every function’s individual metrics, the Usage Monitor operates on a map
of Function Profiles. Each profile contains a number of metrics, data structures and
other characteristic elements. Some metrics are tracked per every simulation cycle (e.g.
invocations per cycle) and thus written to the output file report at the end of every cycle,
while others are tracked for the whole duration of the simulation (e.g. sum of invocations)
and only displayed on the console at the end of the simulation.

Furthermore, to obtain the cost of the simulated computations, the usage monitor relays
execution times to the Cost Monitor which then determines the cost using a configurable
pricing model.

The report can contain various metrics per cycle such as invocations, cold starts, median
delay duration, number of terminated instances, memory and CPU usage, etc... In total,
the file output report ends up containing a row per function for every simulation cycle
calculated in the following manner: Report length (in rows) = Number of functions×
Trace duration
T ime interval .

When implementing the system, we use algorithms from [53] and [38] to minimize value
storing and reduce the number of computation steps required to obtain certain values.
Moreover, on an important note: attributes of function profiles are not limited to recorded
metrics, they can also contain other function specific variables used by the system. We
chose this centralized approach to to avoid having scattered value trackers (maps/ lists/
objects) across the system, thus improving the simulator’s memory consumption model.
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4 Experimental Setup

To appropriately showcase the real-world performance of the simulator, we incorporate
real Function-as-a-Service (FaaS) platforms in our experiments. The first experiment we
present in this section is a reproduction of Azure’s Hybrid Histogram experiments from
Shahrad et al.’s recent study on characterizing and optimizing real FaaS workloads in [45].
Throughout this first experiment, we show how we implemented a version of the Azure
Hybrid Histogram resource management policy in Section 4.1. Then, we present our
reproduction of the original experiment setup in the simulator in Section 4.2 followed by
the results in Section 5.1.

The second experiment we present in this section will be a simulation of cold starts in
AWS Lambda. Throughout this second experiment, we will record cold start occurrences
during a real-world 24hour experiment in AWS Lambda with various different workloads
(detailed setup in 4.3). We then record the same metric in simulations of the same work-
loads and compare them in Section 5.2.

4.1 Azure’s Hybrid Histogram resource management policy

With their recent characterization study of a real-world Azure Functions workload, re-
searchers from Microsoft have detailed in section 4.2 of [45] how they designed and im-
plemented an adaptive resource management policy geared towards minimizing memory
waste and cold starts. The policy’s design is focused on overcoming the challenges caused
by the strong heterogeneity of FaaS workloads. Throughout this subsection, we will detail
how we implemented a version of Azure’s Hybrid Histogram policy in the simulator. We
will also mention the changes and assumptions we made to the implementation in addition
to the challenges and difficulties we encountered along the way.

We build the policy using the resource management policy interface (detailed in Sec-
tion 3.7). Therefore, we implement the update method to feed idle times (IT)1 to the
different components used in the Hybrid Histogram policy. Furthermore, the only ele-
ments exposed to the rest of system are the pre-warming and keep-alive times. From here
on, this subsection is split into three parts each presenting the solution one of of three
important challenges.

Heterogeneous invocation patterns. The researches describe a compact histogram
structure that keeps track of, in their case, an application’s2 IT. Since the concept of
applications does not exist within OpenDC Serverless, we set the histogram to track ITs
per function instead of applications. The histogram earns its compactness property from
limiting the range of times it accepts, therefore any IT larger than the histogram’s limit
is not recorded and counts as Out-Of-Bounds (OOB).

The policy then respectively designates the pre-warming and keep-alive times as the
5th and 99th percentiles of the IT distribution. In accordance with the original design,
we incorporate a ”margin” to give the policy room for error which we subtract from pre-
warming times and add to keep-alive times. Furthermore, we implement this structure in
OpenDC Serverless using the Frequency 3 class from Apache Commons math3.stat library

1Idle time: time between two successive invocations of a function
2Application: container that hosts the execution of individual functions in Azure [5]
3https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/stat/Frequency.html
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for Java.
Confusing or incomplete invocation patterns. To avoid blatant mispredictions,

the Hybrid Histogram policy incorporates a check on whether the histogram is representa-
tive of its function’s invocation pattern. The researchers have specified that they compute
the coefficient of variation of the bin counts and then verify whether it lies within a specific
threshold. If not, the policy resorts to using the histogram’s limit as a fixed keep-alive
duration until the histogram learns the function’s invocation pattern. Our implementation
mimics this approach.

On an efficiency note, while the current version of the simulator does not model the pol-
icy’s value tracking overhead, we still opted for the researchers solution of using Welford’s
online algorithm for computing corrected sums of squares [53] to efficiently track the CV.

Infrequent invocation patterns. To solve this last issue, the Hybrid Histogram
policy incorporates a time-series forecast component. The researchers describe its usage
as needed for workloads with very infrequent invocations, which often exhibit a large
amount of OOB (Out-of-Bounds) idle times. Similar to the original implementation, we
use the ARIMA time-series forecast model [26].

While the researchers use the pmdarima4 package for python, we use the auto.arima5

method from R’s forecast package for automatic estimation of model parameters (p, d, q)
that produce the best fit (both of these methods are equivalent).

We found in some informal experiments that these methods struggle with seasonal differ-
encing. Considering the functions for which ARIMA usage is appropriate usually present
very infrequent complex invocation patterns with multiple seasonality and small amounts
of ITs to work with, we found that the seasonality tests used by these ARIMA solutions
can struggle to produce correct forecasts. Therefore similar to the researchers approach,
we designed the time-series forecast component to be easily swap-able with other more
effective models [41].

Lastly, the researchers specify an interesting albeit slightly confusing approach to com-
puting the pre-warming and keep-alive times. Again, an error margin is used but in
a different manner, to quote from [45] ”if the predicted IT is 5 hours, we set the pre-
warming window to 4.25 hours (5 hours minus 15%) and the keep-alive window to 1.5
hours (15% of 5 hours in each side of the IT prediction).”

4https://pypi.org/project/pmdarima/
5https://www.rdocumentation.org/packages/forecast/versions/8.12/topics/auto.arima
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Fixed Keep Alive Hybrid Histogram No-Unloading

5 min keep-alive 1 hour histogram limit, 60,000ms
bin width, 50% OOB threshold,
10% histogram error margin, 15%
forecast error margin

No instance termination
10 min keep-alive
20 min keep-alive
30 min keep-alive
45 min keep-alive 2 hours histogram limit, same parameters
90 min keep-alive 3 hours histogram limit, same parameters
120 min keep-alive 4 hours histogram limit, same parameters

Table 2: Resource management policy parameters for each experiment.

4.2 Serverless in the Wild reproduced: reproducing the Hybrid His-
togram real-world experiment from the Serverless in the Wild [45]
study in OpenDC Serverless

4.2.1 Experiment setup

In this subsection, we present our reproduction of the real-world experiment setup in
Apache OpenWhisk from [45]. Similar to the source, we outline the comparison between
Azure’s Hybrid Resource Management policy and the Fixed keep-alive policy with variable
parameters using real-world Azure Functions traces. Furthermore, we also detail each of
the changes we made to the original procedure.

Simulator setup. We can only reproduce the experiment setting to the extent of how
many common parameters are available between Apache OpenWhisk (real-world setting)
and OpenDC Serverless (simulator). Nonetheless, we still manage to mimic a respectable
number of important parameters presented in the list below. Furthermore, we use default
values for the unspecified parameters.

1. The allocation policy is set to the default random policy (policy definition in Sec-
tion 3.7)

2. The routing policy is set to the default random policy (policy definition in Sec-
tion 3.5)

3. The resource management policies used in the experiment are Hybrid Histogram
(policy definition in Section 4.1), Fixed-Keep-Alive (policy definition in Section 3.7)
and the no-termination (no-unloading) policy (policy definition in Section 3.7).

4. The idle instance’s memory usage is set to vary according to how much memory was
consumed in the last execution of an idle instance. We set the factor to the default
value of 20% (e.g. if an instance used 25 mb when last running, its idle memory
usage would be 5mb)

5. Virtual Machines and their capacity : 18 VM’s with 2 cores and 4GB of memory
each

In addition to the above general parameters, each resource management policy has its own
specific parameter(s) as shown in Table 2.
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In total, we simulate 13 scenarios, of which, 8 are variants of the Fixed Keep Alive
policy with varying timeout parameters, 4 are variants of the Hybrid Histogram policy
with varying histogram limit parameters and one last scenario where we simulate the no-
unloading policy (policy that does not terminate instances, detailed in Section 3.7). For
each of these experiments, we ran three iterations with different seeds and plotted the
error intervals to showcase the controllable and repeatable aspect of the simulator.

Physical setup. Our simulations ran on a 4 core Intel(R) Core(TM) i7-7700HQ CPU
at 2.80GHz with 8GB of memory.

Workload. Similar to the real-world experiment, we selected 68 applications from the
Azure Functions trace. The researchers specify that they sampled ”mid-range popularity”
applications. While the term ”popularity” is loosely used with no explicit criteria in the
paper, the description of Figure 5 from [45] points to application popularity as being the
sum of invocations over all of its functions.

We therefore compute popularity for all of the 17,000+ applications in the trace, sort the
list and set the median popularity as the central value of our sampling range . For example,
if the median popularity is equivalent to 2000 invocations, we set the sampling bounds
using a margin of 25% which lands us between 1,500 popularity and 2,500 popularity.

Overall, we drew a sample with a total popularity of 98,328 invocations. Contrary to
the original experiment, we are not limiting the execution time to 8 hours, instead we are
simulating the entirety of the sample duration, hence why the number of invocations are
8 times larger than the 12,383 invocations of the original experiment.

Furthermore, we detail how we converted the Azure traces to the OpenDC Serverless
format in Section 4.2.2 and provide a small segment detailing how representative of the
dataset the experiment sample is in Section 4.2.3.

Recorded Metrics. The researchers present their results using two main metrics,
wasted memory time, or i.e. the total time an idle instance spends in memory and the
percentage of cold starts. We thus set the simulator to record total invocations, total cold
starts and wasted memory time for every function. Furthermore, in accordance with the
real-world experiment, we normalize the wasted memory time of every policy to the 10
minute Fixed Keep Alive policy.

We can already preview a possible threat to the validity of the experiment: the real-
world experiment’s metrics were recorded per application, while our simulator records
metrics per function. Since Azure loads entire applications into memory and not single
functions, the wasted memory time of multiple functions is recorded as one. The simulator
instead loads every function by itself and thus records wasted memory time values for each
function of an application and aggregates them (possibly amounting to a larger value than
if computed per application). This difference in metric granularity can produce strong
variations as seen later in the results. Regardless, we chose to report this metric and
furthermore included both per function and per application versions of the cold start
percentage distributions.
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4.2.2 Generating realistic OpenDC Serverless traces from the Azure Func-
tions trace

On June 17th 2020, Shahrad et al. publicly released the first official real-world FaaS
workload trace from Microsoft Azure Functions on Github [11]. Along with the released
dataset, they provide a characterization and optimisation study of said dataset in [45].
In this subsection, we present our procedure for generating realistic OpenDC Serverless
traces from the Azure dataset. (code available as Jupyter notebook in [21]).

The Azure trace comes in 14 sets of three files representing 14 days of execution history.
The three files are detailed in the list below.

1. The first of the three files is a history of invocations per function. Since the invoca-
tions were binned at 1 min intervals, this file contains 1440 columns (1440 minutes,
24 hours) per function, each containing the precise number of invocations in that
specific minute.

2. The second file contains distributions of execution time per function. The researchers
report, for each function, the number of invocations, the minimum, average, and
maximum execution times over the number of invocations across 24-hours.

3. The third and last file contains distributions of allocated memory per application
(A function app is the container that hosts the execution of individual functions in
Azure [5]). For this metric, the researchers sampled each application’s memory every
5 seconds, which they then proceed to average every minute. The researchers report
both the 1 minute average over these 5-second sample and the sample count. More-
over, they also provide percentiles of the distribution of average allocated memory.

Furthermore in each of the three files, each function has three anonymized identifications
columns: a hash of the owner’s id, a hash of the function’s id and a hash of the application
id. By matching these fields across all three files, we compile one CSV file for each day
of the trace where each function is followed by all the columns describing its invocations,
execution time and allocated memory. From here on the generation procedure is split onto
three parts.

Generating invocations. Since we have the exact number of invocations per minute
for every function, we simply compute the empirical cumulative density function (ECDF)
of the invocation bins using the ECDF module from the statsmodels python library. We
then use the ECDF to generate invocations for the OpenDC Serverless trace.

Generating execution times and allocated memory. Considering we do not have
access to the actual sampled values for both of these metrics, we need to use the provided
average, min, max and size (sample size for execution times and sample count for allocated
memory) values to estimate distribution parameters. Since execution times and allocated
memory are both strictly positive values, we decided to use a log normal distribution to
generate execution time and allocated memory values.

To estimate the mean and standard deviation of the distribution, we wrote an R script
that estimates the maximum log likelihood for different values of µ (mean) and σ (standard
deviation) using the min, max, average and size parameters provided in the trace (code
available in [20]). We then use the log normal distribution to generate realistic execution
time and allocated memory values for the OpenDC Serverless trace.
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Figure 7: Distribution of invocations per function of both the sample and day 1 of the
Azure Functions Trace. (The horizontal axis is logscale.)

4.2.3 Representativeness of the experiment sample

In this subsection, we aim to show that the experiment sample drawn in Section 4.2 is
representative of the first day of the Azure Functions trace. To achieve so, we visualize and
compare both the sample’s and the first day’s distributions of execution times per function
and allocated memory per application (code available as Jupyter notebook in [21]).

Comparing distributions. Figure 7 shows the cumulative density function (CDF) of
invocations per function of both the experiment sample and the first day of the Azure
Functions trace. Since we are only using day 1 of the trace as a reference, we point out the
similarity between the first day of the trace and the entire 14 days of the trace presented
in Figure 5a from the characterization study by Shahrad et al. in [45]. This observation
makes day 1 of the dataset a viable reference to measure how representative of the trace
the sample is.

Moreover, we see that the sample’s distribution follows relatively close trends to those
of the first day of the trace. The cutoff around 800 invocations is due to the functions
belonging to mid-range popularity applications.
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Figure 8: Distribution of execution time per function of both the sample and day 1 of the
Azure Functions Trace. (The horizontal axis is logscale.)
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Figure 9: Distribution of allocated memory per application of both the sample and day 1
of the Azure Functions Trace. (The horizontal axis is logscale.)

Furthermore, Figure 8 shows the distributions of execution time, here, the sample ex-
cludes extreme outliers (> 5 min). Finally, Figure 9 also excludes outliers (> 200MB) for
the distribution of allocated memory per application.
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4.3 Cold Lambda: Simulating cold starts in AWS Lambda

In this subsection, we present a validation experiment to assess the simulator’s capabilities
of reproducing real-world Function-as-a-Service (FaaS) platforms behavior in the context
of resource management. We achieve this by running multiple workloads with various
invocation patterns in both the simulator and a real-world FaaS platform for the duration
of 24 hours.

We picked AWS Lambda as our target platform for this experiment. The motives behind
picking Lambda over Azure, the obvious contender in the context of this work, are mostly
backed by the operational similarities and differences between the simulator and the two
platforms. We list the three most important reasons below:

1. Contrary to Azure, AWS Lambda serves one request per function instance in par-
allel as illustrated in Figure 2 of [52] and mentioned in the lambda concurrency
documentation [16]. This also concurs with the simulator’s design.

2. The simulator’s Instance Hypervisor component is similar in concept to the Fire-
cracker Virtual Machine Monitor used in AWS Lambda [23].

3. Contrary to Azure, AWS Lambda provisions resources per function and not per
application as explained in the fifth research question of [37]. This happens to
concur with the simulator’s design.

4. Lambda’s CloudWatch Insights interface allows for easy querying of logs [1], this
helps us extract the necessary information in a convenient manner

4.3.1 Experiment setup

Simulator setup. Later on while performing the experiments, we found that AWS
Lambda dynamically tweaks the lifetime of its function instances. Since we do not have
access to the specifics of this policy, we manually tweaked the keep-alive parameter for
each workload in order to obtain comparable amounts of cold starts.

Physical setup. Our simulations ran on a 4 core Intel(R) Core(TM) i7-7700HQ CPU
at 2.80GHz with 8GB of memory.

Lambda setup. To simulate arbitrary execution times, we wrote a simple Lambda
function that sleeps for the provided duration. We moreover duplicated the function for
us to be able to run and log each workload independently in parallel. Then, we set all the
functions to be triggered through a REST API using Amazon’s API Gateway service.

Since we are planning to use workloads from the Azure Functions dataset, we set up
a python script to perform invocations according to their timestamps in the trace. We
furthermore incorporated a delay of 1 second between concurrent invocations of the same
function to later obtain a log entry for every individual invocation (binned every second).

Metrics. For this purpose, we use the query interface of AWS CloudWatch insights
to extract the exact date and time, execution time and initialization time (cold start) of
every invocation. Furthermore, we set the simulator to record the same metrics.

Workload. Evaluating resource management behavior requires realistic workloads with
a broad range of invocation patterns. Therefore, we randomly sampled 4 different work-
loads from the first day of the Azure dataset. For every sample, we tweaked the criteria
to obtain the following invocation patterns:
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1. Timer invocation pattern: less than 10 minute interval, around 300 invocations

2. Frequent invocation pattern: invocations every few minutes, around 500 total invo-
cations

3. Infrequent invocation pattern: infrequent bursts of invocations, around 200 total
invocations

4. Very infrequent invocation pattern: very infrequent invocations, around 25 total
invocations

Furthermore, we define two versions of every workload, with and without concurrent in-
vocations. With this distinction, we aim to assess the cold start patterns caused by bursts
of concurrent invocations separately.
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5 Experiment Results and Analysis

Throughout this section, any words highlighted in italics are considered to be key findings
from the results.

5.1 Serverless in the Wild Reproduced

In the original experiment [45], the researchers present both a simulation experiment using
the first week of the trace, and a real-world experiment in Apache Open Whisk using a
sample. Since we showed in Section 4.2.3 that our sample is, to an extent, representative
of day 1 of the dataset. We reproduce all the relevant data visualisations from the paper
regardless of whether they were performed in simulation or reality.

5.1.1 Results

In accordance with the order of the original experiment, We start by evaluating the fixed
keep alive policy, we examine how the length of the timeout parameter affects the percent-
age of cold starts per function and per application6. We can already observe in Figure 10
that our simulation results closely follow the trends from Figure 14 of [45].

We look at Figure 10a first and observe that the the no-unloading policy performs best
since it does not terminate any instances. Yet even the No-Unloading policy can still
register instances of 100% cold starts, an effect that is due to some functions containing
only one invocation in the whole week. The fixed policies show, as expected, a downward
trend from the highest to the lowest keep-alive. Naturally, longer timeout policies produce
less cold starts but remain more expensive to operate.

Upon taking a closer look at the 90th percentile in Figure 10b, we see that the 99th per-
centile application cold start decreases from 100% to around 55% between the 10min and
120min keep-alive variants.While this downwards trend might seem rather drastic compared
to that of Figure 14 from [45], we attribute this to our sample not containing applications
with less than median popularity7. We chose not to model the latter since the cold start
pattern of extremely low popularity applications with infrequent invocation patterns does
not improve significantly with longer keep-alive parameters.

6Application: container that hosts the execution of individual functions in Azure [5]
7popularity: total number of invocations.
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Figure 10: Cold start distribution of the fixed keep-alive policy, as a function of the
keep-alive length.
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Figure 11: Cold start distribution of the hybrid and fixed keep-alive policies per Applica-
tion.

We then move on to evaluating the impact of the hybrid histogram policy. We first
present an overview visualization of all the different policies used in the experiment in
Figure 11.
In this comparison, we see a significant reduction of 20% in the 99th percentile cold
start going from the best case fixed variant (120mins) to the best case hybrid variant
(4 hours). This observation further reinforces Shahrad et al.’s claim that the Hybrid His-
togram resource management policy is particularly effective for applications with infrequent
invocation patterns, which usually reside within the 4th quartile of the distribution.

For the real-world experiment in Apache Open Whisk the researchers chose to only
report the best case hybrid variant alongside the 10 minute fixed policy. Figure 12 shows
the equivalent of Figure 20 from [45]. Again, our results follow similar trends.
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Figure 12: Cold start distribution of fixed keep-alive and hybrid policies in OpenDC
Serverless.

While our cold start percentage results were fairly inline with those of the original
experiment, the same cannot be said about the trade off between cold starts and wasted
memory time. Unfortunately, we have not been able to reproduce the positive memory
waste values from Figure 15 of [45] as shown by our simulation results in Figure 13.
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policy and the Hybrid Histogram policy per Application
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Before we discuss these trade-off results, it is important to note that the researchers
originally used the 75th percentile to report cold starts. The motivation behind their
choice was to highlight fluctuations in the cold starts of applications that benefit the
most from Hybrid Histogram, notably the ones with infrequent invocation patterns. By
applying that same reasoning to our sample, we found the 95th percentile to be a better
fit.

In terms of cold starts, our results are mostly inline with those presented in the paper,
the 1/2/3 and 4 hour hybrid variants respectively map to the 45/60/90 and 120 min
fixed variants. Moreover, due to the sample being mostly composed of median popularity
applications8, the rest of the fixed variants perform rather poorly.

In terms of memory waste, we observe the complete opposite of what the original ex-
periment’s results portray. The hybrid variants waste on average, 2.5x more memory time
than the fixed variants. We present below a list of the possible reasons behind this strong
difference in results.

1. As mentioned in the recorded metrics paragraph of Section 4.2.1. Azure records
memory time per application, while our simulator records memory time per function
and aggregates the values. This can cause exponential variations in wasted memory
time.

2. Since the OOB threshold parameter is not specified in the original experiment, we
arbitrarily set it to a default value of 50%. This is particularly important because the
policy spends an arbitrary amount of time accepting OOB values and reverting back
to using a wasteful Fixed Keep Alive strategy. With a lower threshold, the policy
could switch to using the time-series forecast component quicker. This approach
however, could hinder the performance in terms of cold starts.

3. Outliers in the idle time distribution can heavily affect the value of the prediction.
Despite that we use the 5th and 99th percentiles to set the pre-warming and keep-
alive times, we see in a facet grid of all the functions presented in our experiment
analysis notebook [19], that only a small number of functions from the sample heavily
waste memory time.

4. The original version of the Hybrid Histogram policy tracks both pre-warming and
keep-alive times per application. Naturally, the tracking granularity has been lowered
to functions in OpenDC Serverless. This can cause a number of significant variations
in the results, for instance, generalizing the behavior of a single function to multiple
function can reduce effects caused by outlier Idle times in the histogram or time
series components, and thus generally produce more grounded predictions. While
this approach would likely affect the cold start performance it would also likely have
a positive effect on wasted memory time. A possible solution to this issue in the
future is to average the two parameters between functions of the same application.

8Median popularity application: applications with around 1500 to 2500 invocations per week in the
context of the Azure Functions trace.
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5.1.2 Advantage of using simulation.

Shahrad et al. ran two 8 hour executions in Apache OpenWhisk, one for the 4-hour
hybrid policy and one for the 10 minute fixed policy, each respectively consisting of 12,383
invocations. Both of the executions were performed using a total of 19 VM’s, one VM
with 8 CPU cores and 8GB of memory for the OpenWhisk services and 18 other VM’s
with 2 CPU cores and 4GB of memory each. In contrast, our simulations ran on a 4 core
Intel(R) Core(TM) i7-7700HQ CPU at 2.80GHz and 8GB of memory.

Knowing the total execution time and the physical resources used for both the real-
world experiment and the simulated reproduction, we compute the speedup achieved from
running both experiments in simulations:

Experiment in simulation: 57s× 4 cores ≡ 0, 0158333h× 4 cores (1)

≈ 0.0633332 core-hours (2)

Experiment in reality: 16h× [8 + (2× 18)] cores = 704 core-hours (3)

Accordingly with the results of equations 1 and 3, we obtain a substantial speed up
of ≈ 11,116 core-hours (≈ 1 core-year and 3 core-months savings) when conducting the
experiments in simulation.

We went a step further as to also estimate the costs of the simulation and real-world
experiment assuming the researchers were using Azure VMs. We use the Azure pricing
calculator to calculate the price. Furthermore, we include the name of the instances for
reproducibility reasons.

Experiment in simulation: 1 A3 (4 cores, 8 GB RAM) x 1 Hours × (4)

0, 0158333 h ≡ 0.24 $× 0, 0158333 = 0.0038 $ (5)

Experiment in reality: 1 A4 (8 cores, 16 GB RAM) x 16 Hours + (6)

18 A2 (2 cores, 4 GB RAM) x 16 Hours = 42.14$ (7)

As expected, equations 4 and 6 reveal a substantial cost reduction of ≈ 11089 times
when conducting the experiments in simulation (≈ 42.13$ savings, relatively to the cost of
running in the cloud). Furthermore, we did not account for experiment repeats (3 in our
simulation, none in the real-world experiment) and the difference in our workload sizes
(ours being 8 times larger).
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5.1.3 Summary

The results presented in this section show that the simulator is capable, to an extent, of
reproducing the results from the original experiment [45]. At first we presented reproduced
simulations of the original simulation experiments from the paper, then we presented a
simulation of the original real-world experiment experiment.

We started by exploring the cold start distributions of our workload using different vari-
ants of the fixed keep alive and the Hybrid Histogram policy which we found to mostly
be aligned with the original results. To be more precise, our simulations showed the fixed
policies to be more effective than in the original experiments. We attributed the latter to
our sample not having less than median popularity applications9 which are usually appli-
cations with infrequent invocation patterns (unfavorable for Fixed Keep Alive policies).

Moreover we added a visualization of our own that includes all the different policies
in one graph. The latter showed that the hybrid policies are particularly effective for
applications with infrequent invocation patterns.

We followed with a visualization of the trade-off between wasted memory time and cold
start performance which we unfortunately found not to be aligned with the original results
in terms of wasted memory time. Nevertheless, we presented a list of possible reasons for
the strong variations found in our experiment.

Lastly, we showed that our simulations reduced both temporal and material cost by a
factor of ≈ 11000 times compared to the real experiments.

For reproduction purposes, the complete input, results analysis and plotting script of
this experiment is publicly available in [19].

9Median popularity application: applications with around 1,500 to 2,500 invocations per week in the
context of the Azure Functions trace.
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Figure 14: Comparison of cold start events over time between AWS Lambda and OpenDC
Serverless for the timer invocation pattern workload.

5.2 Cold Lambda

Throughout this subsection, we present the results of this experiment using comparative
event plots of the cold start occurrences in AWS Lambda and the simulator. As mentioned
before in the experiment setup, the simulator is set up differently for every workload,
therefore we will also mention how we set up the simulator for every workload.

5.2.1 Results

Timer invocation pattern. Naturally, for this workload, we set the keep-alive parameter
to the timer interval (5 min). Of course, this produces a single cold start in the entire
simulation. While we expected similar results from AWS Lambda, we were met with a
very different outcome.
It appears from the results shown in Figure 14 that AWS Lambda automatically terminates
the function instances around every 2h:30min. We can think of this periodic termination
of instances as a refresh procedure for function instances within AWS Lambda. Moreover,
this behavior can most likely be associated with our usage of the free tier since AWS
Lambda presents a paid solution to obtain predictable cold start times in [6].

There were no differences between the concurrency and no concurrency versions of this
workload, hence the reason we decided to only present the no-concurrency variant.
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(a) With concurrent invocations.
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(b) Without concurrent invocations.

Figure 15: Comparison of cold start events over time between AWS Lambda and OpenDC
Serverless for the frequent invocation pattern workload.

Frequent invocation pattern. For this workload, we set the keep-alive parameter to
14 minutes for the experiment with concurrent invocations and 5 minutes for the other.
In total, both the simulations and experiments produced around 18 cold starts each. We
can see in Figure 15 that most of the simulator’s cold start predictions are not precise for
this workload, more specifically, we observe that the simulator’s run shows bursts of cold
starts while Lambda’s run does not. Therefore, we deduce from the lack of burst cold
starts in AWS Lambda that the platform uses some sort of expected load prediction to pre
warm its instances. Agache et al. mentioned the use Little’s law (definition in [36]) in
section 4.1.2 of their recent publication about the Firecracker VM technology [23] used for
function instances in AWS Lambda.
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(a) With concurrent invocations.
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(b) Without concurrent invocations.
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(c) Without concurrent invocations using Azure’s Hybrid Histogram policy.

Figure 16: Comparison of cold start events over time between AWS Lambda and OpenDC
Serverless for the infrequent invocation pattern workload.
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Infrequent invocation pattern. For this pattern, we respectively set the keep-alive
parameter to 30 and 10 mins for the concurrency and no concurrency workloads. We start
to see a significant amount of cold starts. Precisely 37 cold starts for the no concurrency
workload and 53 for the other. Figure 16 shows the comparative cold start event plots of
this scenario.

Similar to OpenDC Serverless, AWS Lambda fires up multiple function instances when
it receives multiple concurrent requests. This can be seen in 16a in the form of bold bursts
of cold starts for both the platform and the simulator’s results. 16b shows a true-to-life
simulation of the no-concurrency scenario.

However, in both cases, AWS Lambda seems to struggle with setting an effective keep-
alive duration for this scenario. We deduce that the platform uses a conservative resource
management policy10, which most likely does not adapt quickly when dealing with infre-
quent invocation patterns (even when the pattern is relatively periodic like in 15b). To
demonstrate our deduction, we show in Figure 16c, a better performing run of the same
trace using the Hybrid Histogram resource management policy (defined in Section 4.1)
with the same parameters as the 4 hour variant in Table 2 in Section 4.2.1.

10conservative adaptive resource management policy: policy that is less susceptible to variations in a
function’s idle times and thus less inclined to adjust the pre-warming and keep-alive parameters
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(b) Without concurrent invocations.

Figure 17: Comparison of cold start events over time between AWS Lambda and OpenDC
Serverless for the very infrequent invocation pattern workload.

Very infrequent invocation pattern. Similar to all other FaaS platforms, AWS
Lambda struggles to minimize cold starts for workloads with a very infrequent invocation
pattern. The simulator easily reproduces this scenario in Figure 17. We found the results
of this last variant to be particularly not interesting due to the fact that very infrequent
invocations usually lead to a cold start.
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5.2.2 Summary

Considering we do not have access to AWS Lambda’s resource management policy, we have
previously stated that we manually tweak the keep-alive parameter for each workload in
order to obtain comparable amounts of cold starts. With the introduction of a human
factor in the experiments, we cannot issue a concrete judgement on the simulator’s ability
to effectively simulate an AWS Lambda execution pattern. Nevertheless, we were able to
extract key findings from the results.

Through the timer invocation pattern experiment, we discovered that AWS Lambda
automatically refreshes its function instances after a certain period (2h30min in this sce-
nario).

The simulation of the frequent invocation pattern showed that a regular run with a
simple fixed keep-alive parameter exhibits bursts of cold starts. The same workload in
AWS Lambda yielded a similar amount of cold starts, but did not exhibit the same bursty
behavior seen in the simulation. Therefore, we deduced that AWS Lambda was able to
somehow predict these cold start bursts, and was thus using pre-warmed pools of instances
to mitigate the issue.

The infrequent invocation pattern experiments showed the most successful simulations
thus far. Both the experiments with and without concurrent invocations were simulated
in a relatively true to life manner. The infrequent invocation pattern, albeit relatively
periodical, exhibited a large number of cold-starts in both the real and simulated runs,
likely due to the use of the Fixed Keep Alive policy on our side and a conservative adap-
tive resource management policy11 on AWS Lambda’s side. We therefore showcased the
improvements from using a policy such as Azure’s Hybrid Histogram policy (explained in
Section 4.1) on the same workload.

Lastly, we showcased a successful simulation of the very infrequent invocation pattern.
Although not very interesting, the results showed that very infrequent workloads suffer
from systematic cold starts in AWS Lambda. It is however important to note that the
latter statement is not conclusive since we could possibly expect different results from a
longer experiment for this workload specifically.

For reproduction purposes, the complete input, results analysis and plotting script of
this experiment are publicly available in [19].

11conservative adaptive resource management policy: policy that is less susceptible to variations in a
function’s idle times and thus less inclined to adjust the pre-warming and keep-alive parameters
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6 Analysis of Limitations and Future Improvements

Throughout this thesis, we mentioned a number of limitations regarding the simulator
and the conducted experiments. In the following subsections, we will explore the most
significant limitations with detail and discuss possible solutions and further improvements.
Furthermore, with this discussion, we aim to motivate the Function-as-a-Service (FaaS)
community to pursue research in the field of FaaS simulation.

6.1 Workload granularity and scalability

When designing our trace format for the simulator, we limited the granularity of the trace
by opting to include averaged execution times and allocated resources. This was done to
permit the usage of large trace files in the future, however, the lowered precision omits
data that could be considered important for some workloads (e.g. precise usage fluctuation
between concurrent executions).

Considering there is only one publicly available FaaS trace [11] which was recorded with
reduced precision (invocations are binned in intervals of 1 min) and that FaaS operates
on relatively low granularity workloads compared to IaaS (Infrastructure-as-a-Service)
platforms such as Amazon EC2 [7] that operate on VMs. Future function traces could be
recorded at a far higher precision (e.g. invocation per entry) producing extremely large
amounts of data.

Such traces would raise scalability issues with the current design of the routing compo-
nent (detailed in Section 3.5). Thus, future research could be conducted on a distributed
approach to request routing.

6.2 Absence of physical resource layer modelling

The OpenDC simulator provides some valuables features such as VM and physical machine
simulation. The current implemented version of OpenDC Serverless is not fully integrated
with the existing OpenDC simulator and thus omits modelling the physical resource layer
of FaaS platforms. We therefore built the Resource module to be integrable with the
existing components of the OpenDC simulator.

With a full future integration, the simulator could be capable of modelling hardware
heterogeneity, an issue which makes predicting function execution time relatively difficult
due to each request possibly being deployed on different types of hardware.

Previous work presents examples of hardware heterogeneity in FaaS platforms. Wang et
al. discuss AWS Lambda, Microsoft Azure Functions and Google Cloud Functions in [52]
while Figiela et al. discuss IBM Cloud Functions in Section 6.7 of [28]).

6.3 No auto-scaling support

By having the user specify a set amount of VMs, the simulator does not model an essential
aspect of FaaS platforms: auto-scaling based on the workload. Future improvements to
the design could include an interface for custom auto-scaling protocols which link to the
resource management component (detailed in 3.7).
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6.4 Limited cost modelling

Part of our requirements for the simulator was a cost modelling component. While we
did implement an interface to cost modelling, we only modelled the cost according to the
public pricing models of popular FaaS platforms and not the real cost of FaaS operations.

Contrary to VMs or physical servers where cost is determined by tracking up-time,
tracking cost in FaaS is not as straightforward. Each platform puts a relatively similar
price on execution time and provisioned memory, however, the actual under the hood
costs have never been made available to the public, likely because it can reveal the profit
margins of large cloud providers.

Moreover, as pointed out in the previous subsection, the simulator in its current state
does not support auto-scaling of VMs nor does it model physical machines. Therefore,
solutions such as determining the cost by tracking VM usage are not only inaccurate as
we show in the next paragraph, but also non-trivial to implement in the current state
of OpenDC Serverless since a complete cost model would require the implementation of
auto-scaling support for it to provide price variations for different simulation settings.

Furthermore, it is necessary to point out that in the search for a cost tracking solution,
we cannot simply estimate FaaS operation costs from CPU/RAM/VM/Physical machine
usage alone. This article [4] by Amiram Shachar for the medium reveals the slim portion
occupied by function execution costs in TimerCheck’s (a service built entirely on top of
AWS Lambda) bill. Instead the majority of costs relate to networking (API Gateway),
monitoring (AWS CloudWatch) and other serverless services offered by AWS Lambda.
Considering most functions execute for a small amount of time, this case could apply to
lots of other serverless users. This further diversifies the notion of FaaS costs and makes
modelling them accurately a far bigger challenge than originally suspected.

In conclusion, with the current publicly available information about FaaS pricing and
the current state of the simulator’s design, we place cost modelling at a lower priority
behind other future improvements such as auto-scaling support and network/IO modelling.
Nevertheless, we remain hopeful for the simulator’s ability to accurately model FaaS costs
in the future.

6.5 No custom workflow-scheduling support

One of the many software-engineering challenges of the FaaS model described by the SPEC
Cloud group in [49] is workflow composition.

Function compositions are necessary for modern applications with interdependent func-
tions which require a certain level of state-management. The current version of the simu-
lator only includes a sequential workflow-scheduler, namely the simulation core (described
briefly in Section 3.3). The simulation core is unfortunately not a completely customiz-
able workflow-scheduling interface, and thus does not allow for implementation of custom
workflow scheduling protocols.

The SPEC RG Cloud reference architecture for FaaS architectures (described closely
in Section 2) does however provide a specification for a complete workflow management
system which could be added in the future by adding the missing components next to
the simulation core. This would likely also require further modifications in the routing
component of the simulator (described in Section 3.5).
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6.6 Validity of the reproduction procedure in experiment A

We presented in 4.2 a small reproduction of the experiments by Shahrad et al. [45] in
OpenDC Serverless. While we tried to reproduce the original experiment setup to the
highest extent we could, there are some limitations to the validation of the experiment. In
this subsection, we will highlight and detail some of the apparent flaws with the reproduc-
tion procedure following a set of reproducibility recommendations summarized by Scheuner
et al. in Section 6.5 of their multi-vocal review of FaaS literature [43]. The recommen-
dations are summarized from the methodological principles for reproducible performance
evaluation in cloud computing described by Papadopoulos et al. in [42].

P1: Report the number of iterations. We reported 3 iterations for every resource
management policy we bench marked in the experiment setting paragraph of Section 4.2.1.

P2: Experiments should be conducted in different (possibly randomized)
configurations of relevant parameters to cover a representative sample of the
space of the controlled variables. We mentioned in the description of Figure 13 in
Section 5.1 that some variations between our results and the original results were possibly
solvable by using different configurations for our simulations. However, we did not follow
this principle due to a lack of time on the work’s timeline. Since we are making the code
and sample public, the improvements suggested could be implemented in a future iteration
of the experiment.

P3: Explicit experiment setup and P4: publish analysis and experiment code
We fully described our experiment setup in Section 4.2.1 and fully published the sample,
experiment configuration, simulator code and results analysis script in [20].

P5: Probabilistic result description of measured performance. Similar to the
original experiment, we use CDF’s with confidence intervals to report the majority of our
results, a possible future improvement would be to report statistical figures for the trade-off
between wasted memory time and cold start performance results shown in Figure 13

P6: Use appropriate statistical tests Unfortunately we were not able to perform
any statistical tests on the results due to a lack of time. This counts as a large limitation
of this experiment since we do not provide enough information for a robust statistical
analysis of the comparative measurements between the original and reproduced results.

P7: Include measurement units in all figures we include measurement units in all
of our reported figures.

P7: Report cost model We do not report a cost model since we are conducting a
the experiment in simulation, however we do report all the software and methods we used
in the experiment setup (Section 4). Therefore it is possible, to an extent, to construct a
cost model from this thesis.
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7 Conclusion

Serverless computing or Function-as-a-Service (FaaS) is a promising cloud paradigm in
its infancy. To fulfill serverless computing’s vision of simplifying the increasingly complex
state of cloud technologies, we need to enable and support the exploration of its archi-
tectural and operational concerns, simplify, stabilize and render accessible the process of
experimentation in FaaS and motivate the community to explore new and existing FaaS
workloads.

In this work, we proposed OpenDC Serverless. The first configurable, open-source trace-
based FaaS simulator. To answer RQ1, How can a FaaS simulator model the essential
elements of FaaS architectures?, we designed the system using state-of-the-art concepts
from the SPEC RG Cloud reference architecture for FaaS [48]. We identified and ex-
tracted the essential components of a FaaS platform from the reference architecture [48]
in Section 2.2.1, and implemented them in the simulator’s design. Lastly, we built an
easy-to-convert-to trace-format that captures the essential metrics recorded in a FaaS
workload. We later showed in the experiments that the trace-format easily maps to the
recently released Azure Functions dataset [17].

To answer RQ2, How can a configurable FaaS simulator allow for exploration and testing
of different or custom operational policies?, we adapted the function execution pattern
from the SPEC RG Cloud reference architecture for FaaS [48] in Section 2.2.2 and, designed
customizable interfaces for allocation, resource management and request-routing policies
that enable simulation of different configurations of this pattern.

We also designed an experiment framework coupled with a metric monitoring system
which we have proven to be capable of producing valid results through a reproduction
of the experiments from [45]. For the purpose of reproducing the latter experiments, we
implemented the Azure Hybrid Histogram custom resource management policy and re-
produced the real-experiments using real workloads from the Azure Function dataset [17].
The simulation results have shown similar trends to those of the real-world experiments.

To answer RQ3, Can FaaS simulation reduce the temporal and material costs of experi-
ments in the field?, we calculated the actual temporal and material savings from conduct-
ing the Azure Hybrid Histogram experiments in simulation instead of conducting them
in the cloud, and have obtained a speedup and savings factor of ≈ 11,000 times. This
indicates that FaaS simulation can enable low-cost experiments, therefore, improving the
accessibility of systems research in FaaS.

Lastly, to answer RQ4, How can simulation of FaaS platforms provide a controllable
environment for repeatable experiments, but maintain the accuracy of results provided by
real-world experiments?, we have implemented proper seeding and randomization control
in the simulator’s experiment framework. We then showcased the repeatable and con-
trollable aspect of the simulator in our experiments by conducting multiple repeats with
various different seeds. The results of our reproduction experiment showed accurate trends
with expected deviations. Furthermore, we have included the modelling of hardware het-
erogeneity as a future improvement to the system in our list of limitations.

Through OpenDC Serverless, we offer the research community an early extensible frame-
work for research and education in FaaS simulation, enabling accessible exploration of
different operational and architectural FaaS patterns in a low-cost, controllable and re-
peatable experimentation environment.
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We concluded this work with a list of limitations and future improvements in an appeal
to motivate FaaS stakeholders to pursue research on highly configurable, open-source FaaS
simulation in the future. In these limitations we set some future key directions for future
work in FaaS simulation.

We first raised a concern over the scalability of FaaS simulation with lower granularity
workloads since the sheer amount of trace data produced by FaaS platforms is prone to
increase exponentially with more precise recordings, thus, future work could focus on more
efficient approaches to FaaS simulation.

Furthermore, with more complex traces comes the need for function composition, a
concept with increasing support in the research community [47], [25]. We aim for FaaS
simulation to support workflow composition in the future.

We discussed the impact of infrastructure heterogeneity on the performance of FaaS
platforms and highlighted the need for modelling this concept in future FaaS simulations.

Lastly, we set the spotlight on the difficulties of accurately modelling the cost of op-
erating FaaS platforms, as thus, future studies could focus on economy-driven resource
provisioning.

The OpenDC Serverless software source code, and all different code and input used
throughout this study, are available in [20].
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