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Background
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LLM-based applications are 
becoming widely used.

Model Model Size
(FP8)

Mistral-Large 123 GiB

GPT3-175B 175 GiB

OPT-175B 175 GiB

Llama3-405B 405 GiB

Modern LLMs fail to fit into a single GPU memory.
Solution:
● Parallelism with multiple GPU.
● Quantization and sparsity.
● Compression.
● Model offloading.
● …

This work: Offloading the GPU usage to 
SSD during LLM inference.

High memory 
cost



Offloading During LLM Inference
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Offloading During LLM Inference
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Offloading During LLM Inference
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Offloading During LLM Inference
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Offloading During LLM Inference
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Research Questions

Q1: What is the tensor (model weights and KV cache) transferring 
bandwidth between the CPU/GPU memory and the SSDs?

Q2: What are the I/O access patterns of model offloading?

Q3: What are the I/O access patterns of KV cache offloading?

● DeepNVMe — An I/O library for deep learning.
● Two interfaces: POSIX and libaio.

● DeepSpeed and FlexGen.
● Offload the model to NVMe disk and keep all other data in GPU.

● FlexGen.
● Offload the KV cache to NVMe disk and keep all other data in GPU.
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Experiment Setup
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CPU
32 cores

 

NVIDIA L4
24 GiB memory

Main 
Memory
128 GiB

PCIe Gen 4 x 16

NVMeVirt 
SSD

Hardware Software

NVMeVirt  (SSD emulator)
● 4 CPU cores
● 5.3 GiB/s@512KiB with 1 thread
● 16.9 GiB/s@512KiB with 4 threads 

LLM framework: 
● DeepSpeed Inference
● FlexGen

LLM I/O library: 

● DeepNVMe

LLM models: 
● OPT 6.7B, 13B and 30B with  

FP16 quantization
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Q1: Tensor transferring bandwidth between 
the CPU/GPU memory and the SSDs.



Transferring Tensors with DeepNVMe
Read tensor to CPU Write tensor from CPU
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libaio delivers up to 2.9×, 3.3× higher bandwidth than POSIX for reading 
tensors to CPU, writing tensors from CPU. 

2.9x higher 3.3x higher

Neither POSIX or libaio can reach the single-thread bandwidth of the 
NVMe SSD (5.3 GiB/s). 



Transferring Tensors with DeepNVMe
Read tensor to GPU Write tensor from GPU
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2.8x higher 5.5x higher

libaio delivers up to 2.8×, 5.5× higher bandwidth than POSIX for reading 
tensors to GPU, writing tensors from GPU. 

Transferring tenser between GPU and SSD achieves lower bandwidth than 
transferring tenser between CPU and SSD. 
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Q2: I/O access patterns of model offloading.



Model offloading with DeepSpeed (OPT-13B)
Batch Size = 1 Batch Size = 16
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The model is offloaded once and then read-only.

The block-level I/O is dominated by 128 KiB reads and writes.

The SSD’s sectors are uniformly accessed, indicating there is no hot spots.

The batch size does not lead to increased I/O traffic.



Model offloading with FlexGen (OPT-30B)
Batch Size = 1 Batch Size = 16
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Similar I/O pattern between frameworks (DeepSpeed and FlexGen).

Neither DeepSpeed nor FlexGen can saturate the NVMeVirt SSD.
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Q3:  I/O access patterns of KV cache offloading.



KV Cache Offloading with FlexGen (OPT-6.7B, Batch Size 64)
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The read bandwidth of the KV cache is significantly higher than the write bandwidth. 

The block-level I/O is dominated by 128 KiB reads and writes.

Average: 2.0 GiB/s. 

Average: 11.0 MiB/s. 



KV Cache Offloading with FlexGen (OPT-6.7B, Batch Size 64)
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The sectors in KV cache offloading are accessed non-uniformly.

Prefill tokens

Output tokens

The earlier the KV cache is generated, the more times it is accessed.



Take-home Messages
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1. Use libaio with tensor transferring for higher bandwidth.

2. LLM model offloading is dominated by large reads.
● Neither DeepSpeed nor FlexGen can reaches the maximum speed of the SSD.
● The I/O workload is dominated by 128 KiB reads.
● The sectors are accessed uniformly.

● Use an I/O library optimized for deep learning for higher tensor transfer bandwidth.
● Use asynchronous I/O (such as libaio) than synchronous I/O interface.

3. LLM KV cache offloading has higher read than write bandwidth.

Paper: https://atlarge-research.com/pdfs/2025-cheops-llm.pdf 
Source code: 
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model
-kv-cache-offloading-nvme 

● Read 2.0 GiB/s vs. write 11.0 MiB/s.
● Non-uniform I/O access.

https://atlarge-research.com/pdfs/2025-cheops-llm.pdf
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme


Future Work
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1. Effect of different hardware on the performance of SSD offloading 
during LLM inference.

2. LLM model-aware optimizations.

● Different models and numbers of GPUs.
● Different models and numbers of SSDs.

● Sparsity of activations.
● Different contributions of each tokens to the result.

3. Real-world LLM serving workloads.

● Multi-round conversations.



21

Resources

References

[1] DeepNVMe https://www.deepspeed.ai/tutorials/deepnvme/ 
[2] DeepSpeed https://github.com/deepspeedai/DeepSpeed
[3] FlexGen https://github.com/FMInference/FlexLLMGen
[4] HuggingFace: OPT model. https://huggingface.co/docs/transformers/en/model_doc/opt 
[5] ZeRO-Inference: 20X Faster Inference Through Weight Quantization and KV Cache Offloading. 
https://github.com/microsoft/DeepSpeedExamples/blob/master/inference/huggingface/zero_inference/README.md 
[6] Aminabadi et.al. DeepSpeed-Inference: Enabling Efficient Inference of Transformer Models at Unprecedented
Scale. In SC22. https://doi.org/10.1109/SC41404.2022.00051 
[7] Sheng et.al. FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU. In ICML’23 
https://proceedings.mlr.press/v202/sheng23a.html 
[8] Kim et.al. NVMeVirt: A Versatile Software-defined Virtual NVMe Device. In FAST’23.

Further Reading

[1] Chitty-Venkata et.al. A Survey of Techniques for Optimizing Transformer Inference. J. Syst. Archit. 144 (2023), 102990.
https://doi.org/10.1016/J.SYSARC.2023.102990 
[2] Gao et.al. Cost-efficient Large Language Model Serving for Multi-turn Conversations with CachedAttention. In ATC’24.
[3] Lee et.al. InfiniGen: Efficient Generative Inference of Large Language Models with Dynamic KV Cache Management. In OSDI’24

https://www.deepspeed.ai/tutorials/deepnvme/
https://github.com/deepspeedai/DeepSpeed
https://github.com/FMInference/FlexLLMGen
https://huggingface.co/docs/transformers/en/model_doc/opt
https://github.com/microsoft/DeepSpeedExamples/blob/master/inference/huggingface/zero_inference/README.md
https://doi.org/10.1109/SC41404.2022.00051
https://proceedings.mlr.press/v202/sheng23a.html
https://doi.org/10.1016/J.SYSARC.2023.102990


Thank you!
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Questions?
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Paper: https://atlarge-research.com/pdfs/2025-cheops-llm.pdf 
Source code: 
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model
-kv-cache-offloading-nvme 

https://atlarge-research.com/pdfs/2025-cheops-llm.pdf
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme
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Model Model Size
(FP8)

L40S 
(48 GiB)

A100 
(80 GiB)

H200 
(141 GiB)

Mistral-Large 123 GiB ❌ ❌ ✅
GPT3-175B 175 GiB ❌ ❌ ❌
OPT-175B 175 GiB ❌ ❌ ❌
Llama3-405B 405 GiB ❌ ❌ ❌
Modern LLMs fail to fit into a single GPU memory.
Solution:
● Parallelism with multiple GPU.
● Quantization and sparsity.
● Compression.
● Model offloading.
● …

This work: LLM offloading to 
SSD during inference.


