
An I/O Characterizing Study of Offloading LLM
Models and KV Caches to NVMe SSD

Zebin Ren1, Krijn Doekemeijer1, Tiziano De Matteis1,
Christian Pinto2, Radu Stoica3, Animesh Trivedi3

1VU Amsterdam
 2IBM Research, Dublin, Ireland

 3IBM Research, Zurich, Switzerland

https://atlarge-research.com/
1

https://atlarge-research.com/

Background

2

LLM-based applications are
becoming widely used.

Model Model Size
(FP8)

Mistral-Large 123 GiB

GPT3-175B 175 GiB

OPT-175B 175 GiB

Llama3-405B 405 GiB

Modern LLMs fail to fit into a single GPU memory.
Solution:
● Parallelism with multiple GPU.
● Quantization and sparsity.
● Compression.
● Model offloading.
● …

This work: Offloading the GPU usage to
SSD during LLM inference.

High memory
cost

Offloading During LLM Inference

3
Input Embedding

Transformer
Block 1

Linear & Softmax

Transformer
Block 2

Transformer
Block n

Output token

…

Autoregressive generation

LLM

I like

storage

LLM

I like
storage

systems

LLM

I like
storage
systems

EOS

Offloading During LLM Inference

4Input Embedding

Transformer
Block 1

Linear & Softmax

Transformer
Block 2

Transformer
Block n

Output token

…

Model offloading

SSD

Fetch Weights

Fetch Weights

Fetch Weights

Inference

GPU

Offloading During LLM Inference

5
Input Embedding

Transformer
Block 1

Linear & Softmax

Transformer
Block 2

Transformer
Block n

Output token

… KV cache

Offloading During LLM Inference

6
Input Embedding

Transformer
Block 1

Linear & Softmax

Transformer
Block 2

Transformer
Block n

Output token

…

KV cache offloading

SSDInference

Fetch old KV cache

Write new KV cache

Write new KV cache

Fetch old KV cache

Fetch old KV cache

Write new KV cache

Offloading During LLM Inference

7
Input Embedding

Transformer
Block 1

Linear & Softmax

Transformer
Block 2

Transformer
Block n

Output token

…

SSD

I/O pattern?

Research Questions

Q1: What is the tensor (model weights and KV cache) transferring
bandwidth between the CPU/GPU memory and the SSDs?

Q2: What are the I/O access patterns of model offloading?

Q3: What are the I/O access patterns of KV cache offloading?

● DeepNVMe — An I/O library for deep learning.
● Two interfaces: POSIX and libaio.

● DeepSpeed and FlexGen.
● Offload the model to NVMe disk and keep all other data in GPU.

● FlexGen.
● Offload the KV cache to NVMe disk and keep all other data in GPU.

8

Experiment Setup

9

CPU
32 cores

NVIDIA L4
24 GiB memory

Main
Memory
128 GiB

PCIe Gen 4 x 16

NVMeVirt
SSD

Hardware Software

NVMeVirt (SSD emulator)
● 4 CPU cores
● 5.3 GiB/s@512KiB with 1 thread
● 16.9 GiB/s@512KiB with 4 threads

LLM framework:
● DeepSpeed Inference
● FlexGen

LLM I/O library:

● DeepNVMe

LLM models:
● OPT 6.7B, 13B and 30B with

FP16 quantization

10

Q1: Tensor transferring bandwidth between
the CPU/GPU memory and the SSDs.

Transferring Tensors with DeepNVMe
Read tensor to CPU Write tensor from CPU

11

libaio delivers up to 2.9×, 3.3× higher bandwidth than POSIX for reading
tensors to CPU, writing tensors from CPU.

2.9x higher 3.3x higher

Neither POSIX or libaio can reach the single-thread bandwidth of the
NVMe SSD (5.3 GiB/s).

Transferring Tensors with DeepNVMe
Read tensor to GPU Write tensor from GPU

12

2.8x higher 5.5x higher

libaio delivers up to 2.8×, 5.5× higher bandwidth than POSIX for reading
tensors to GPU, writing tensors from GPU.

Transferring tenser between GPU and SSD achieves lower bandwidth than
transferring tenser between CPU and SSD.

13

Q2: I/O access patterns of model offloading.

Model offloading with DeepSpeed (OPT-13B)
Batch Size = 1 Batch Size = 16

14

The model is offloaded once and then read-only.

The block-level I/O is dominated by 128 KiB reads and writes.

The SSD’s sectors are uniformly accessed, indicating there is no hot spots.

The batch size does not lead to increased I/O traffic.

Model offloading with FlexGen (OPT-30B)
Batch Size = 1 Batch Size = 16

15

Similar I/O pattern between frameworks (DeepSpeed and FlexGen).

Neither DeepSpeed nor FlexGen can saturate the NVMeVirt SSD.

16

Q3: I/O access patterns of KV cache offloading.

KV Cache Offloading with FlexGen (OPT-6.7B, Batch Size 64)

17

The read bandwidth of the KV cache is significantly higher than the write bandwidth.

The block-level I/O is dominated by 128 KiB reads and writes.

Average: 2.0 GiB/s.

Average: 11.0 MiB/s.

KV Cache Offloading with FlexGen (OPT-6.7B, Batch Size 64)

18

The sectors in KV cache offloading are accessed non-uniformly.

Prefill tokens

Output tokens

The earlier the KV cache is generated, the more times it is accessed.

Take-home Messages

19

1. Use libaio with tensor transferring for higher bandwidth.

2. LLM model offloading is dominated by large reads.
● Neither DeepSpeed nor FlexGen can reaches the maximum speed of the SSD.
● The I/O workload is dominated by 128 KiB reads.
● The sectors are accessed uniformly.

● Use an I/O library optimized for deep learning for higher tensor transfer bandwidth.
● Use asynchronous I/O (such as libaio) than synchronous I/O interface.

3. LLM KV cache offloading has higher read than write bandwidth.

Paper: https://atlarge-research.com/pdfs/2025-cheops-llm.pdf
Source code:
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model
-kv-cache-offloading-nvme

● Read 2.0 GiB/s vs. write 11.0 MiB/s.
● Non-uniform I/O access.

https://atlarge-research.com/pdfs/2025-cheops-llm.pdf
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme

Future Work

20

1. Effect of different hardware on the performance of SSD offloading
during LLM inference.

2. LLM model-aware optimizations.

● Different models and numbers of GPUs.
● Different models and numbers of SSDs.

● Sparsity of activations.
● Different contributions of each tokens to the result.

3. Real-world LLM serving workloads.

● Multi-round conversations.

21

Resources

References

[1] DeepNVMe https://www.deepspeed.ai/tutorials/deepnvme/
[2] DeepSpeed https://github.com/deepspeedai/DeepSpeed
[3] FlexGen https://github.com/FMInference/FlexLLMGen
[4] HuggingFace: OPT model. https://huggingface.co/docs/transformers/en/model_doc/opt
[5] ZeRO-Inference: 20X Faster Inference Through Weight Quantization and KV Cache Offloading.
https://github.com/microsoft/DeepSpeedExamples/blob/master/inference/huggingface/zero_inference/README.md
[6] Aminabadi et.al. DeepSpeed-Inference: Enabling Efficient Inference of Transformer Models at Unprecedented
Scale. In SC22. https://doi.org/10.1109/SC41404.2022.00051
[7] Sheng et.al. FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU. In ICML’23
https://proceedings.mlr.press/v202/sheng23a.html
[8] Kim et.al. NVMeVirt: A Versatile Software-defined Virtual NVMe Device. In FAST’23.

Further Reading

[1] Chitty-Venkata et.al. A Survey of Techniques for Optimizing Transformer Inference. J. Syst. Archit. 144 (2023), 102990.
https://doi.org/10.1016/J.SYSARC.2023.102990
[2] Gao et.al. Cost-efficient Large Language Model Serving for Multi-turn Conversations with CachedAttention. In ATC’24.
[3] Lee et.al. InfiniGen: Efficient Generative Inference of Large Language Models with Dynamic KV Cache Management. In OSDI’24

https://www.deepspeed.ai/tutorials/deepnvme/
https://github.com/deepspeedai/DeepSpeed
https://github.com/FMInference/FlexLLMGen
https://huggingface.co/docs/transformers/en/model_doc/opt
https://github.com/microsoft/DeepSpeedExamples/blob/master/inference/huggingface/zero_inference/README.md
https://doi.org/10.1109/SC41404.2022.00051
https://proceedings.mlr.press/v202/sheng23a.html
https://doi.org/10.1016/J.SYSARC.2023.102990

Thank you!
&

Questions?

22

Paper: https://atlarge-research.com/pdfs/2025-cheops-llm.pdf
Source code:
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model
-kv-cache-offloading-nvme

https://atlarge-research.com/pdfs/2025-cheops-llm.pdf
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme

23

Backup Slides

Background

24

Model Model Size
(FP8)

L40S
(48 GiB)

A100
(80 GiB)

H200
(141 GiB)

Mistral-Large 123 GiB ❌ ❌ ✅
GPT3-175B 175 GiB ❌ ❌ ❌
OPT-175B 175 GiB ❌ ❌ ❌
Llama3-405B 405 GiB ❌ ❌ ❌
Modern LLMs fail to fit into a single GPU memory.
Solution:
● Parallelism with multiple GPU.
● Quantization and sparsity.
● Compression.
● Model offloading.
● …

This work: LLM offloading to
SSD during inference.

