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Abstract

The rapid expansion of cloud computing has transformed big
data analytics and machine learning, unlocking new levels
of scalability and innovation. However, this progress comes
with a significant environmental price—cloud data centres
now account for 1-2% of global electricity consumption [7],
a figure expected to rise as computational workloads grow.
The environmental toll of this energy demand and inefficien-
cies in operations highlight the urgent need for sustainable
strategies. This survey draws from cloud-based big data and
ML research to provide a detailed look at energy consump-
tion trends, assess optimization methods, and explore new
technologies to enhance energy efficiency, it also delves into
key areas like distributed storage systems, task scheduling,
model training, and hardware utilization, weighing the trade-
offs between performance and energy costs. One of the key
takeaways is that a multi-layered approach—combining algo-
rithmic improvements, infrastructure upgrades, and the inte-
gration of renewable energy—is crucial for balancing com-
putational needs with environmental responsibility. By exam-
ining current trends and future possibilities, this study em-
phasizes collaborative innovation’s importance in creating
energy-efficient cloud ecosystems that support global sustain-
ability goals.

1 Introduction

Cloud computing has become essential for many applications
due to its scalability, flexibility, and cost-effectiveness. Big
data and machine learning are two of the highly impactful
fields. Big data analytics, capable of processing and analyzing
vast amounts of data, and machine learning, which enables
systems to learn from data and make predictions, are reshap-
ing industries and driving innovation at an unprecedented
speed [64]. However, as these technologies continue to scale
and become more computationally intensive, they also in-
tensify concerns regarding energy consumption. Cloud data
centres, the backbone of these applications, consume an ever-
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increasing amount of energy. This ever-increasing energy
consumption of cloud data centres increases operational costs.
It has significant environmental implications, as the energy
demands of data centres account for a substantial portion of
global electricity consumption [51].

In recent years, cloud computing has experienced exponen-
tial growth. According to a report by MarketsandMarkets, the
global cloud computing market size is expected to reach a
particular value by a specific year, growing at a compound
annual growth rate (CAGR) of 15.1% [29]. The increasing
adoption of cloud-based services across various industries,
including finance, healthcare, and e-commerce, drives this
growth. In today’s economy, data has emerged as a resource
surpassing traditional commodities in value—often termed
"the new oil" or "digital gold"—with organizations leveraging
it to drive innovation, optimize operations, and gain compet-
itive advantages [16].Big data and machine learning have
become integral to unlocking this value, transforming raw
data into actionable insights. Big data analytics (BDA) is
often regarded as the intersection of machine learning (ML)
and cloud computing (CC) [59], enabling large-scale data
processing and enhancing analytical precision. For instance,
industries such as transportation and manufacturing now rely
on Al-driven data platforms to predict demand, reduce costs,
and improve sustainability, with sectors like smart transporta-
tion utilizing machine learning for real-time decision-making
and resource optimization [52]. Globally, the digital econ-
omy—fueled by data-centric technologies—has grown at an
annual rate of 16.6%, with core digital industries contributing
7.8% to China’s GDP alone [16]. Cloud computing provides
the necessary infrastructure for these applications to prosper,
offering scalable storage and high-performance computing
resources that democratize access to advanced analytics for
enterprises of all sizes.

In cloud environments, big data and machine learning fields
face several high energy consumption issues, which can be
broken down into several sub-problems: In big data analyt-
ics, data storage and transmission are energy-intensive. Dis-
tributed storage systems, although offering scalability and



fault tolerance, consume a significant amount of energy due
to data replication and complex I/O operations [1]. Data trans-
mission between users and cloud servers also incurs sub-
stantial energy costs, especially for remote data access and
applications with high-latency connections. In machine learn-
ing, model training is highly energy-consuming. Deep learn-
ing models, such as convolutional neural networks (CNNs)
and large-scale language models like GPT-3, require massive
computational resources for training, leading to high energy
demands [41]. Additionally, the inference phase has energy-
related challenges, with factors like batch size and model
architecture influencing energy consumption. At the system
level, resource scheduling and management in cloud data cen-
tres are crucial for energy efficiency. Traditional scheduling
algorithms may not be optimized for energy consumption, and
the dynamic nature of big data and machine learning work-
loads makes it challenging to allocate resources efficiently.
Moreover, integrating multiple optimization techniques in
cloud systems adds complexity to system management, im-
pacting energy efficiency.

Therefore, researchers have implemented optimization
strategies across various dimensions, such as algorithm ad-
justments, resource management, and hardware utilization, in
an attempt to address the energy consumption issues in big
data and machine learning applications within cloud environ-
ments. For example, adaptive query processing techniques
in big data analytics reduce data movement and energy con-
sumption during query execution [2]. In machine learning,
model compression techniques like pruning and knowledge
distillation are applied to reduce model size and energy con-
sumption. Leveraging specialized hardware, such as GPUs
and TPUs, which offer higher computational efficiency per
watt compared to traditional CPUs, and combining this with
software-based optimizations, like efficient workload distribu-
tion across multiple GPUs or TPUs, can significantly improve
energy efficiency [4]. Adopting energy-aware architectures
in cloud data centres, which involve integrating renewable
energy sources, implementing advanced cooling systems, and
using energy-monitoring tools to optimize system configura-
tions, is also crucial.

To gain a deeper understanding of the energy consumption
characteristics, optimization strategies, and recent develop-
ments in the fields of big data analysis and machine learning
within cloud environments, this article proposes the following
three research questions:

RQ1: What are the current energy consumption char-
acteristics of big data and machine learning applications
in cloud environments?

RQ2: What are the main optimization strategies cur-
rently employed in these two fields, and what are their
limitations?

RQ3: What are the future technologies and directions
for energy-efficient cloud computing in big data and ma-
chine learning?

This survey offers several valuable contributions. Chap-
ter 2 provides a detailed explanation of why big data and
machine learning are chosen as the focal points of this lit-
erature review, emphasizing their significance, widespread
application, and the urgent need for investigations into their
energy consumption. Chapter 3 outlines the overall structure
and research methodology of this paper. In chapter 4, it pro-
vides an in-depth analysis of the energy consumption patterns
in big data and machine learning applications within cloud
environments, covering multiple stages—such as data stor-
age, model training, inference, and data transmission—and
identifies the key factors driving energy usage at each step.
In chapter 5-9, it also reviews a broad spectrum of existing
optimization techniques, highlighting their strengths and lim-
itations. These strategies range from improving distributed
storage systems and data partitioning/replication to model
miniaturization and optimizing hardware utilization in ma-
chine learning systems. By understanding these approaches
and their constraints, researchers and practitioners are better
equipped to make informed decisions about energy-saving
initiatives.

Additionally, from chapter 10-11, the paper delves into
emerging technologies and future strategies for boosting en-
ergy efficiency. These include advancements in physical in-
frastructure, green energy integration, intelligent resource
management, data-centric optimizations, and cloud-native big
data analytics and machine learning architectures. These in-
sights guide future research and development toward more
sustainable cloud computing solutions.

2  Why Big Data and Machine Learning?

Optimizing energy consumption is a growing challenge as
cloud computing becomes a cornerstone of modern IT sys-
tems. Addressing this issue requires a thorough analysis of
energy usage patterns and the development of practical opti-
mization strategies. Big data and machine learning, as influen-
tial technologies within cloud computing, demand substantial
energy and offer opportunities to improve efficiency. Focus-
ing on these fields provides valuable insights into their energy
dynamics and potential solutions.

2.1 Big Data and Machine Learning Are Core
Application Domains in Cloud Computing

Cloud computing has become the backbone of modern IT
systems, enabling the scalable and elastic infrastructure re-
quired for critical technologies like big data analytics (BDA)
and machine learning (ML) [59]. Wu et al. emphasize that
integrating ML and BDA within cloud environments is trans-
formative; cloud computing provides ample resources for han-
dling large-scale data, like PB - EB datasets with Hadoop’s
technologies, accelerating processing as seen in some famous



cases [59]. ML uncovers insights into BDA, revolutionizing
business decision-making by predicting customer demands.
The cloud’s elasticity allows for resource adjustment and cut-
ting costs; for example, the on-demand instances provided
by Amazon Web Service (AWS) allow users to flexibly se-
lect computing resources based on actual needs, saving costs
while meeting business needs, breaking the limitations of re-
source allocation in traditional data processing environments.
Also, this integration has led to the development of innova-
tive platforms such as Spark and Flink. Spark is faster for
some workloads, and Flink can handle real-time data well,
promoting big-data field progress [59]. This synergy positions
ML and BDA as core drivers of innovation in cloud comput-
ing. A research shows that intense reinforcement learning
can determine dynamic resource allocation according to the
system’s current state [64]. This maximizes the utilization
efficiency of cloud resources and reduces user waiting time.
BDA can analyze vast amounts of cloud data to gain insights
for better resource management decisions. Their computa-
tional demands directly rely on the cloud’s ability to provide
on-demand resources. With the cloud’s support, ML and BDA
can process data more effectively, optimize resource schedul-
ing, and drive continuous innovation in cloud computing [64].

The interconnection between big data and machine learning
is clear when considering their shared technical requirements.
Big data applications rely on cloud-based distributed systems
to manage vast datasets [59], while machine learning mod-
els depend on cloud resources for both training and deploy-
ment [45]. As Soni and Kumar highlight, "Machine learning
techniques are essential for optimizing cloud resource uti-
lization and ensuring Quality of Service" [45]. This mutual
dependence underscores the importance of studying big data
analytics and machine learning within cloud environments.
Their co-evolution not only drives progress but is key to shap-
ing the future of energy-efficient and intelligent computing
systems.

Integrating ML, BDA, and cloud computing creates a feed-
back loop: cloud platforms enable advanced analytics, while
ML-driven optimization improves cloud efficiency. Histor-
ically, adopting ML on cloud infrastructure has proven to
be the most cost-effective approach for BDA [59], further
solidifying their combined significance.

Observation (O-1): Big data analytics (BDA) and machine
learning (ML) in cloud computing environments are interde-
pendent. BDA provides the foundational data for ML models,
while ML enhances the optimization and insights derived
from data analysis. This relationship fosters the simultaneous
advancement of both fields, particularly in resource utiliza-
tion, as cloud platforms offer scalable resources that drive
innovation and performance improvements in both domains.

2.2 Energy Optimization Is Especially Crucial
in Big Data and Machine Learning

However, as these technologies advance and scale, they also
introduce significant energy consumption challenges. The
immense computational power required for large-scale data
processing and model training translates to substantial energy
costs. Facebook processes over 500 terabytes of new data
daily, necessitating significant computational resources and
energy [14]. Similarly, the computational power needed for
machine learning and intense learning models presents unique
energy challenges.

As Garcia-Martin et al. note, "Machine learning researchers
have primarily focused on creating highly accurate models
without prioritizing energy consumption." [15] This empha-
sis on accuracy has led to the development of increasingly
complex models with high computational and memory de-
mands, often requiring processing power in the GigaFlops'
range. In machine learning, models with high computational
needs could perform many calculations, especially during
training [15].Moreover, these models typically involve mil-
lions of parameters—values the model learns during training.
For instance, the weights between neurons are considered pa-
rameters in a neural network. While many parameters give the
model more flexibility to fit complex patterns in the data, it
also means more significant memory usage and more compu-
tational power are needed to update them during training [35].

These energy demands do not stop once training is com-
plete. The inference phase, where the model is deployed to
make predictions or decisions, also requires significant com-
putational power. As Garcia-Martin et al. further observes,
these models may be repeatedly deployed during inference,
exacerbating the need for energy-efficient solutions, particu-
larly in real-world applications like real-time data processing
and mobile platforms [15].

The trend toward more energy-intensive models is particu-
larly evident in Al applications. The energy requirements for
Al training have surged in recent years. For example, training
GPT-3, a large-scale language model, consumed an estimated
1287 megawatt hours, equivalent to the annual energy usage
of 120 US households [41]. This highlights the immense
energy footprint of modern Al models, underscoring the ur-
gency of developing more energy-efficient algorithms and
infrastructures.

This energy-intensive trajectory is compounded by the role
of cloud computing data centres, which often host these ma-
chine learning workloads. Such centres account for a signifi-
cant share of global energy consumption, estimated at 1-2% of
total electricity use, with projections indicating further growth
in the coming years [51]. The need for effective energy opti-
mization in cloud data centres is thus especially pronounced
when dealing with the computational demands of big data and

IBillions of floating-point operations per second, to measure a computer’s
ability to process data



machine learning applications.

2.3 The Optimization Strategies in Both Do-
mains Are Broad and Representative

The optimization techniques in big data and machine learning
are broad and highly adaptable, designed to tackle various
industry challenges. These approaches are as diverse as they
are effective, keeping pace with rapid technological advance-
ments and the increasing complexity of data processing and
model training.

Data optimization, particularly in big data, requires diverse
strategies tailored to the unique characteristics of different
data types and problem domains [65]. Zhou et al. highlight
that big data allows for parallel learning from multiple per-
spectives and granularities, which leads to the development of
optimization techniques suited to various analytical tasks [65].
These strategies include distributed feature selection, adap-
tive scaling for high-dimensional datasets, and frameworks
based on spectral graph theory for supervised and unsuper-
vised learning. The versatility of these methods across dif-
ferent data contexts underscores the widespread applicability
of optimization, proving its ability to handle not just tradi-
tional data processing but also more specialized analytical
challenges [65].

Similarly, optimization strategies in machine learning are
vast and varied, reflecting the complexity of the problems
they aim to solve—for example, profound learning benefits
from various techniques designed to enhance training pro-
cesses and improve model performance [65]. Zhou et al. point
out that deep learning can recognize a wider array of cat-
egories, surpassing traditional neural networks by multiple
orders of magnitude [65]. Techniques like stochastic gradi-
ent descent, adaptive learning rates, and regularization are
critical in improving accuracy while reducing computational
demands, these optimization methods are key to making ma-
chine learning models more energy-efficient, showcasing their
essential role in improving both the scalability and efficiency
of machine learning applications [65].

These optimization efforts extend beyond the algorithmic
level to the infrastructure of cloud environments. In cloud
systems, where the demand for computational resources is
exceptionally high, the scope of optimization strategies be-
comes even more significant. The Energy-Efficient Hybrid
(EEH) framework, introduced by Abd El-Samie et al., com-
bines software-level scheduling with hardware consolidation
to reduce energy consumption in cloud data centres [3]. By
optimizing the hardware and software layers, the EEH frame-
work demonstrates how these strategies can effectively man-
age the energy needs of large-scale cloud systems without
compromising performance.

Additionally, the optimization techniques used in big data
and machine learning are not confined to their respective

domains. Both fields benefit from the cross-pollination of
parallel and distributed computing strategies [65]. These ap-
proaches, which enable the efficient processing of massive
datasets and parallel model training, are crucial for the energy-
efficient operation of big data analytics and machine learn-
ing systems. Zhou et al. emphasize that big data provides
valuable opportunities for causal inference, which aids in
decision-making [65]. In parallel, machine learning takes
advantage of data and model parallelism to efficiently train
models across distributed systems, reinforcing the case for
optimization strategies that bridge these two fields.

This cross-domain synergy is also evident in the expand-
ing application of big data optimization techniques outside
traditional data analytics. Methods like dimensionality reduc-
tion and efficient sampling are now applied in bioinformat-
ics, social network analysis, and other data-heavy fields [65].
Likewise, machine learning optimization techniques, includ-
ing gradient-based optimization and hyperparameter tuning,
are finding applications across disciplines like engineering,
physics, and scientific computing, demonstrating their broad
and representative impact [65].

3 Research Methodology

To systematically identify the energy consumption character-
istics of big data and machine learning applications in cloud
environments, this chapter adopts a structured literature re-
view approach. The methodology consists of the following
steps:

Literature Search: We conducted a comprehensive search
on Google Scholar, IEEE Xplore, and ACM Digital Library
using keyword combinations such as "energy consumption
big data cloud,” "machine learning energy optimization,"
and "cloud storage energy dynamics." The search focused on
publications from recent years to ensure relevance to current
trends.

Inclusion Criteria: Studies were included if they (1) ex-
plicitly discussed quantitative metrics for energy consumption,
(2) focused on cloud computing, big data, or machine learn-
ing, and (3) proposed optimization strategies. Non-empirical
studies and non-English publications were excluded.

Data Extraction: From the final set of 67 selected papers,
we extracted the following information:

Key energy consumption phases (e.g., data storage, model
training).

Optimization strategies and limitations (e.g., data Partition-
ing and replication, model miniaturization).

Future directions (e.g., Al-driven energy management,
green energy integration).



3.1 C(lassification Framework

In this chapter, we introduce a comprehensive classification
framework designed to analyze energy consumption patterns
and optimization strategies within big data analytics (BDA)
and machine learning (ML). The framework is built around
several key dimensions directly impacting energy efficiency in
both fields: data storage, network transmission, task schedul-
ing, model training, inference, and data pipelines.

The classification framework draws on insights from cur-
rent research, identifying the critical factors that influence en-
ergy consumption at each process stage. It starts with big data
analytics, exploring energy consumption across distributed
storage systems, network transmission, and task scheduling.
We also highlight emerging strategies for optimizing data stor-
age, minimizing unnecessary data transfers, and improving
task scheduling to promote more efficient energy usage.

For machine learning, the framework examines the energy
implications of model training, inference, and the data pro-
cessing pipeline. It delves into key optimization techniques
such as model miniaturization, efficient GPU/TPU utilization,
and data pipeline optimizations that help minimize compu-
tational and memory overhead. This holistic view illustrates
how these strategies interact within cloud infrastructure to
lower energy consumption while maintaining system perfor-
mance.

By categorizing the energy consumption characteristics
and optimization techniques within these two domains, we
provide a structured approach to understanding how energy
efficiency can be enhanced throughout the entire lifecycle
of big data analytics and machine learning. This framework
sets the stage for the following chapters, where specific opti-
mization strategies and their limitations will be discussed in
greater detail.

3.1.1 Taxonomy of Energy Consumption Characteristics

Chapter 4 focuses on the energy consumption characteristics
of data storage, network transmission, and task scheduling in
big data analysis, as well as model training, inference, and
data pipelines in machine learning.

For big data analysis, it is essential to understand how dif-
ferent layers of cloud computing architecture influence energy
efficiency. Given the complexity and energy demands of big
data analytics, the characteristics should encompass multiple
aspects, from data storage to computational resource schedul-
ing. Therefore, this study adopts a framework based on three
key dimensions: data storage, network transmission, and task
scheduling and computation (Figure 1°).

As a critical component of big data analytics, data storage
influences data persistence and access speed. In distributed

2Influencing factors: The factors that mainly affect energy consumption
at the current stage (including algorithm factors, technical factors, environ-
mental factors, etc.)

cloud storage architectures, data redundancy replication and
distribution significantly impact energy consumption [23]. For
example, while multi-replica storage improves fault tolerance,
it increases the energy consumption of storage devices [20].
Therefore, understanding the energy consumption character-
istics of storage architectures and exploring how to reduce
energy usage by optimizing resource management and storage
structures has become a key area of research. Additionally, the
scalability and dynamic adjustment of resources in the cloud
environment also affects energy consumption, necessitating
further analysis at this level [20].

Next, network transmission is another important factor in-
fluencing energy efficiency in big data analytics. Data typi-
cally needs to be transferred from remote servers to compu-
tation nodes during big data analysis. In distributed environ-
ments, the transmission cost increases exponentially with the
volume of data [55]. Optimizing data transmission in cloud
environments, significantly reducing the need for remote data
transfers, has become a research focus. In this chapter, we ex-
plore applying local caching techniques, which can effectively
reduce cross-region data transmission and thus lower energy
consumption. We conclude by comparing these techniques
with remote transmission, providing theoretical support for
subsequent research model selection.

Finally, task scheduling and computation, as core mech-
anisms affecting energy efficiency, directly determine re-
source utilization efficiency and load distribution. Efficient
task scheduling can prevent resource idling and reduce en-
ergy consumption during computation. Furthermore, appro-
priate resource integration and load balancing strategies in
task scheduling can achieve a more balanced distribution
of energy efficiency, preventing local overload or resource
waste [19]. Therefore, we treat this as the final research focus
in big data analytics, investigating how intelligent schedul-
ing, resource integration, and real-time energy monitoring can
further optimize cloud computing energy efficiency.

For machine learning, we have chosen three key dimen-
sions: model training, inference phase, and data pipeline.
These three processes typically significantly impact energy
efficiency throughout the machine learning lifecycle (Figure
2).

First, the model training process in machine learning gener-
ally involves a substantial amount of computation, especially
for deep learning models, which require intensive matrix op-
erations and data processing, placing high demands on energy
consumption [58]. Therefore, optimizing the computational
complexity, memory access, and data transmission during the
training process is a primary focus of this study. By exploring
optimization strategies for these aspects, energy consumption
during training can be significantly reduced. Additionally, the
efficient use of hardware and parallel processing configura-
tions can accelerate the training process and further improve
energy efficiency [28].

The inference phase is another critical step in machine



learning systems, especially large-scale deployments. Effi-
cient hardware resource utilization and choosing an appro-
priate batch size directly impact energy efficiency during
inference [22]. The efficiency of hardware usage, such as the
adaptation of GPUs and TPUs, is also a key factor affecting
energy efficiency [42]. Therefore, this phase discusses batch
size, hardware usage efficiency, and architectural differences
as key aspects.

The data pipeline, which serves as the pathway for data
in machine learning, plays a central role throughout the pro-
cess. Data collection, cleaning, and transformation are of-
ten the most time-consuming and energy-intensive parts of
a machine learning project [26]. How efficiently data inges-
tion, preprocessing, and feature transformation are performed
significantly influences the overall energy efficiency of the
machine learning process. This is particularly critical when
handling large-scale datasets, which introduces challenges
such as optimizing the data pipeline’s scalability and real-
time processing capabilities. For real-time processing, the
challenge becomes how to reduce unnecessary data trans-
mission and processing overhead while maintaining model
performance. These issues are identified as key problems [26],
which are thoroughly examined in the relevant literature, with
corresponding solutions provided in this chapter.

The selection of these three dimensions is not only based
on the practical energy consumption needs of each stage of
machine learning but also considers their interconnections
within the cloud computing architecture. Optimizing compu-
tation and memory usage during model training, optimizing
hardware resource usage during the inference phase, and opti-
mizing data processing efficiency in the data pipeline—these
processes work together to influence the overall energy effi-
ciency of the machine learning system. By thoroughly investi-
gating these three areas, this study provides a comprehensive
understanding of energy consumption characteristics in ma-
chine learning within cloud environments. It offers specific
theoretical support and practical strategies for optimization.

3.1.2 Taxonomy of Optimization Strategies and Limita-

tions

Chapters 5 and 6 focus on the optimisation strategies and
limitations related to energy consumption in big data analytics
and machine learning.

When investigating optimisation strategies and their limita-
tions in big data analytics and machine learning, the primary
consideration is minimising energy consumption while en-
suring system performance. Based on the understanding of
energy consumption characteristics in each domain presented
in Chapter 4, we have designed an optimisation plan (Figure
4) grounded in an in-depth analysis of energy consumption
features and potential bottlenecks in the optimisation process.

For big data analytics, the primary focus is on the energy
consumption issues related to distributed storage systems. In

big data applications, data storage is the most fundamental and
core component, often requiring processing large volumes of
data while ensuring data availability and reliability. Through
extensive literature research, we identified the key optimisa-
tion strategies in distributed storage systems, which include
improving fault tolerance and system reliability. Among these
are data replication and erasure coding, which ensure data
security and increase storage redundancy and computational
overhead [59]. Thus, it is essential to evaluate their impact
on energy consumption carefully [59]. Meanwhile, emerg-
ing green storage solutions such as GreenHDFS, which re-
duce unnecessary energy consumption through intelligent
resource scheduling and dynamic power management, are
incorporated as a key research area [21]. Additionally, we
found that in distributed storage data consistency management
and energy balancing, reducing unnecessary energy consump-
tion—especially during data consistency and synchronisation
processes—remains a technical challenge [43]. However, it is
a necessary step toward optimising energy efficiency in big
data systems. Therefore, relevant optimisation strategies are
discussed in the corresponding section.

Furthermore, reasonable data partitioning and replication
strategies are often required to enhance data processing effi-
ciency and the system’s fault tolerance. However, excessive
partitioning and replication can lead to significant storage
and network overhead, a trade-off widely discussed by re-
searchers [2, 10]. Therefore, using this strategy to improve
efficiency while reducing energy consumption is another key
focus of this paper. The two strategies mentioned above form
the foundation of optimising big data storage systems to en-
sure an efficient and energy-controllable data management
approach.

In machine learning, deep learning models require substan-
tial computational resources during training, and the infer-
ence process often faces challenges in optimizing hardware
resources [56, 60]. To address these challenges, model minia-
turization (knowledge distillation and pruning) has become
one of the most mainstream optimization strategies [2]. Model
miniaturization reduces models’ scale and computational com-
plexity, thereby lowering energy consumption [56]. This strat-
egy reduces the demand for computational resources and sig-
nificantly improves energy efficiency while maintaining per-
formance. Pruning, as a method for reducing the complexity
of neural networks, removes redundant neurons, further op-
timizing the model structure and improving computational
efficiency [35].

Next, through extensive literature review, we observed that
during deep learning training and inference phases, hardware
resources such as GPUs and TPUs are often not fully uti-
lized [60]. This observation led us to research the hardware
utilization efficiency in the machine learning domain. As a
result, GPU resource optimization was chosen as the second
key optimization strategy. Many studies have found that ade-
quately scheduling hardware resources can accelerate com-



putation and improve overall performance without increasing
additional power consumption. This is because optimizing
hardware utilization can reduce idle times and lower energy
consumption, particularly in cloud environments, where re-
source sharing and scheduling are crucial for energy effi-
ciency [50].

Lastly, as mentioned in Chapter 4, the data pipeline in ma-
chine learning, with its rich energy consumption character-
istics, becomes a central area of our research on energy op-
timization strategies. We found that during large-scale data
processing and feature transformation, energy consumption
increases exponentially [24]. However, fine-tuned batch pro-
cessing, data loading strategies, and data augmentation tech-
niques can significantly reduce processing time and resource
consumption [25,32]. These strategies aim to optimize data
flow and processing efficiency, thereby minimizing unneces-
sary computational and storage overhead.

In summary, the storage optimization, data partitioning,
and replication strategies in big data analytics, as well as
the model miniaturization, hardware optimization, and data
pipeline management in machine learning, are all designed to
reduce energy consumption and improve performance. Fur-
thermore, these strategies complement each other to collec-
tively enhance overall energy efficiency. We can provide more
comprehensive and detailed theoretical support for future en-
ergy efficiency optimization by thoroughly examining these
strategies and their limitations.

3.1.3 Future Directions of BDA and ML

Chapters 7 and 8 present a hierarchical framework (see Ta-
ble 3), beginning with physical infrastructure, progressing
through green energy adoption, and ultimately exploring in-
telligent resource management. This approach discusses the
future directions for optimizing energy consumption in cloud
computing. First, advancements in physical infrastructure, in-
cluding technologies like liquid cooling, waste heat recovery,
and specialized accelerators (e.g., TPUs and FPGAs), focus
on reducing power consumption at the hardware level.

Next, integrating renewable energy is possible through Al-
driven demand forecasting and multi-region load balancing,
which help align computational workloads with sustainable
power sources. The third area of focus involves Al-powered
dynamic scheduling and cloud-native architectures, which
optimize resource allocation using techniques like predictive
analytics, Dynamic Voltage and Frequency Scaling (DVES),
and adaptive workload splitting.

Finally, model-centric strategies—such as pruning, quan-
tization, and split computing—help to reduce computational
overhead, akin to the data-centric optimizations found in big
data analytics (e.g., distributed storage and in-memory pro-
cessing). Together, these strategies highlight the importance of
cross-layer collaboration, where innovations in hardware, en-
ergy systems, and algorithmic efficiency converge to address

scalability and sustainability challenges. The overlap between
BDA and ML emphasizes shared principles like workload
distribution, adaptive resource management, and green-aware
infrastructure, forming a roadmap for energy-conscious cloud
computing.

The chapters provide full answers to the questions raised in
RQ3 by conducting a comprehensive review of the literature
and analyzing current trends.

4 Energy Consumption Characteristics

The rapid growth of cloud computing has significantly in-
fluenced the landscape of big data and machine learning,
positioning them as critical components in contemporary
data analysis and decision-making processes. However, as
these systems scale, their energy demands have increasingly
become a focus of discussion — especially in cloud envi-
ronments where resource utilization is often associated with
operational costs and environmental impact. This chapter ex-
amines the energy consumption characteristics of big data and
machine learning applications in the cloud through key opera-
tional dimensions, including data storage, query optimization,
transmission, task scheduling, and computational frameworks.
Existing studies suggest these domains may present distinct
challenges and opportunities for improving energy efficiency
while requiring careful consideration of system performance
and reliability constraints.

4.1 Data Storage in Big Data Analytics

The rapid growth of big data analytics has highlighted chal-
lenges in traditional centralized storage systems, including
performance bottlenecks and single points of failure [23]. Dis-
tributed storage systems (DSS) have emerged as a widely
adopted alternative, designed to provide scalability, fault tol-
erance, and high availability. By distributing data across mul-
tiple nodes, DSS can reduce access latencies and improve
resource utilization, addressing the challenges of modern data
workloads [23].

However, these advantages are often accompanied by in-
creased energy consumption, particularly in large-scale cloud
environments [23]. As a result, improving the energy effi-
ciency of DSS has become a key priority for researchers
aiming to balance performance with sustainability.

Observation (0O-2): Energy consumption in big data
analytics is primarily influenced by factors such as dis-
tributed storage systems, data transmission, and task schedul-
ing. Specifically, the energy costs associated with data redun-
dancy in distributed storage and data transmission across long
distances contribute significantly to the overall energy usage.
Optimizing storage architectures, minimizing data movement,
and improving task scheduling strategies can substantially
reduce energy consumption within big data systems.



4.1.1 Energy Consumption Trade-Offs in Distributed
Storage Architectures

Distributed storage systems (DSS) support big data analytics
in cloud environments. GlusterFS and Compuverde are often
recognized for their scalability and fault tolerance, typically
achieved through data replication. However, these benefits
are generally accompanied by increased energy consumption
[23]. For instance, Amazon Web Services (AWS) manages
petabytes of data for many customers. Some of their large-
scale data storage setups use GlusterFS for specific data types,
such as log files and static content. According to data from
2023, in a particular AWS region where over 10 petabytes
of data are stored using GlusterFS, the energy consumption
due to data replication for redundancy purposes accounts for
about 25% of the total storage-related energy usage [1].

When compared to Compuverde, in a similar data-intensive
environment, a financial institution that tested both systems
found that while Compuverde offers enhanced data redun-
dancy through advanced erasure coding techniques, it tends to
consume about 50% more energy than GlusterFS [23]. This
is because the erasure coding and decoding processes in Com-
puverde are computationally intensive, requiring more CPU
cycles and, therefore, more power. For example, when stor-
ing a dataset of 1 petabyte with a replication factor of 3 in
GlusterFS, the annual energy consumption was measured at
around 100,000 kWh. In contrast, using Compuverde with
the same dataset and a comparable level of data protection
through erasure coding, the annual energy consumption rose
to approximately 150,000 kWh [23]. This highlights the po-
tential trade-offs between advanced functionality and energy
efficiency, emphasizing the need for architectures that balance
these competing demands.

Replication strategies in distributed frameworks like
Hadoop add another layer of complexity. While replication
ensures data availability, it also increases energy consumption,
particularly when redundant copies of infrequently accessed
data remain idle. Optimizing replication frequency and data
placement is crucial to minimizing energy overhead while
maintaining system reliability [7].

Observation (0O-3): Distributed storage systems like Glus-
terFS and Compuverde exhibit significant trade-offs between
fault tolerance and energy efficiency. While erasure coding
in Compuverde improves redundancy, its computational com-
plexity increases energy consumption by 50% compared to
replication-based systems like GlusterFS.

4.1.2 Replication and Resource Scaling in Data Centres

Data replication is an important strategy for improving data
access efficiency and reducing network latency in data centers.
In the context of cloud computing data centers, communi-
cation resources can often become a bottleneck for service
provisioning in cloud applications, and data replication can

help bring data closer to consumers, potentially minimizing
network delays and bandwidth usage [7]. Dejene Boru et al.
proposed a data replication technique that aims to jointly op-
timize energy consumption and bandwidth capacity [7]; their
approach considered both energy efficiency and bandwidth
consumption, along with improving Quality of Service (QoS)
through reduced communication delays. They developed a
replica manager at the central database, which periodically
analyzes data access statistics to identify suitable data items
for replication and their optimal sites. This approach sought
to minimize data center energy consumption while attempting
to maximize the available bandwidth in uplink and downlink
transmissions [7].

Similarly, in distributed big data systems, data replication
can help reduce long-distance data transfers by making fre-
quently accessed data available locally [2]. Strategic repli-
cation across nodes can assist in avoiding excessive energy
consumption related to data movement across the network [2].
For instance, in systems like Apache Hadoop and Spark, data
replication techniques are often used to enhance data access
speed and reduce energy consumption during query process-
ing [2].

Resource scaling is another crucial aspect of data center
management. Akhtar highlighted the concept of resource elas-
ticity, where resources are allocated based on workload de-
mand. Cloud platforms such as AWS, Google Cloud, and
Azure typically support resource elasticity through autoscal-
ing features, which allow for the deallocation of idle resources
during low-demand periods to help save energy. This ap-
proach ensures that only the necessary resources are utilized,
potentially optimizing energy consumption [2].

However, implementing replication and resource scaling
strategies in data centers also presents challenges, including
the complexity of implementation, which may require sig-
nificant changes to existing systems and processes, resulting
in high resource investment and initial costs [2]. Data center
infrastructure variability can also influence the implementa-
tion of these strategies, and scalability issues might arise due
to limitations in network bandwidth, storage capacity, and
computational power [2].

4.2 Network Transmission Energy Character-
istics in Big Data Analytics

Efficient network transmission is a critical aspect of energy
consumption in big data analytics within cloud environments.
In this section, we explore the trade-offs between remote data
transmission and local caching strategies and analyze their
impacts on energy efficiency in big data applications.



Distributed Storage Architectures > Influencing factors

Query Optimization

Replication and Resource Scaling > Optimization directions

__ Chapter 4.1:
Data storage

Energy-Aware Architectures

Chapter 4.2: Remote Transmission
Energy consumption characteristics —— BDA —— apter 8.2: Influencing factors
Network transmission

Local Caching

Algorithmic complexity

Dynamic scheduling or static scheduling > Influencing factors

| Chapter 4.3:

Task scheduling and Computation Computational frameworks

Resource Consolidation and Load Balancing

Energy Profiling and Monitoring

> Optimization directions

Figure 1: Energy consumption characteristics of BDA

Computational Complexity > Influencing factors

— Chapter 4.4: Optimizing Memory Access and Data Transfer

Model training

Hardware Utiliza- [ Optimization directions ]

tion and Parallel Processing

Batch size

| Chapter 4.5:

Architectures
Inference phase

Energy consumption characteristics —— ML =

> Influencing factors

Hardware configuration

Pipeline frameworks and data formats

| Chapter 4.6:

o Feature transformation methods
Data pipelines

Scalability and Real-Time Processing

> Influencing factors

Figure 2: Energy consumption characteristics of ML

4.2.1 Energy Costs of Remote Data Transmission led to a tenfold increase in energy consumption compared to
local execution [37].
Remote data transmission incurs substantial energy costs due

to the involvement of multiple network components. Data

transferred between users and cloud servers traverses access
networks, core routers, and data centre switches, each con-
tributing to the overall energy cost [55]. The energy consump-
tion per bit for these components depends on their utilization
rates. Underutilized components tend to exhibit higher energy
usage per bit due to idle power requirements [55].

Packet latency and data volume are key factors influencing
the energy efficiency of remote transmission. High-latency
connections, such as those spanning wide-area networks
(WAN5), substantially increase energy costs compared to lo-
cal processing. For instance, offloading database workloads to
remote high-performance servers over high-latency networks

4.2.2 Local Caching

Local caching mitigates the need for frequent remote data
transmission by storing frequently accessed data near com-
putation nodes, this reduces network energy overhead and
improves data retrieval times [37]. Experiments with database
systems like MongoDB and Redis demonstrate that local
caching significantly enhances energy efficiency for read-
intensive workloads [37]. For example, repeated access to
the same data blocks under low-latency conditions improved
energy efficiency by up to 1.9 times in MongoDB scenar-
ios [37].

Observation (0-4): Local caching reduces energy con-



sumption by up to 1.9x for read-intensive workloads in
database systems, demonstrating its critical role in minimiz-
ing network transmission overhead in cloud-based big data
analytics.

4.2.3 Comparative Analysis of Transmission Modes

The energy efficiency of local versus remote data access is
influenced by workload characteristics and network configura-
tions. Data-intensive tasks with minimal updates may be more
suited to local caching, as the energy cost of transferring large
datasets could outweigh the benefits of centralized processing.
On the other hand, compute-intensive tasks, such as real-time
data processing or large-scale analytics, may benefit from
remote execution on high-performance servers, particularly
when network latency is low [37,55].

A key consideration in remote data transmission is encryp-
tion. Secure protocols like HTTPS can introduce additional
energy costs due to encryption overhead, especially in appli-
cations that require frequent synchronization, such as collab-
orative cloud-based tools [55].

The trade-offs between remote transmission and local
caching underscore the importance of aligning data access
strategies with workload demands and network conditions.
Striking a balance between these approaches could help opti-
mize energy efficiency in cloud-based big data analytics [55].

4.3 Task Scheduling and Computation Energy
Characteristics in Big Data Analytics

Efficient task scheduling and computational strategies aim to
reduce the energy footprint while maintaining computational
performance. This section explores how various task schedul-
ing methodologies, computational frameworks, and resource
utilization techniques contribute to energy efficiency.

4.3.1 Energy Implications of Task Scheduling

Task scheduling can have a significant impact on energy con-
sumption by influencing how computational resources are
allocated [36]. Heuristic and meta-heuristic algorithms, such
as genetic algorithms and particle swarm optimization, have
been identified as useful tools for balancing energy efficiency
with performance metrics like makespan and resource uti-
lization [36]. These algorithms adjust resource allocation dy-
namically based on real-time workload demands, potentially
reducing energy waste while maintaining computational per-
formance. By optimizing task distribution across resources,
they may help minimize idle resource overhead and adapt to
fluctuating system conditions [53].

In cloud computing environments, where workloads and
resource availability are inherently dynamic, static scheduling
strategies may not be sufficient [53]. Dynamic scheduling
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techniques are designed to address this challenge by continu-
ously monitoring the status of virtual machines (VMs). When
workloads become imbalanced, these systems can redistribute
tasks from overloaded VMs to underutilized ones, helping to
prevent energy waste caused by resource idling [2]. Addition-
ally, preemptive scheduling could enhance energy efficiency
during peak demand periods by allowing high-priority tasks to
interrupt and reallocate lower-priority processes. This flexibil-
ity may enable systems to respond to sudden workload spikes
while maintaining energy-efficient resource utilization [53].

Studies suggest that adaptive scheduling frameworks,
which combine heuristic approaches with real-time moni-
toring, might reduce energy consumption by up to 35% com-
pared to static methods in large-scale cloud environments [53].
Such advancements point to the potential benefits of intel-
ligent, context-aware scheduling in promoting sustainable
computing practices.

Observation (O-5): Adaptive scheduling frameworks com-
bining heuristic algorithms and real-time monitoring reduce
energy consumption by up to 35% compared to static methods,
highlighting the importance of dynamic resource allocation
in cloud environments.

4.3.2 Computational Energy Costs in Big Data Frame-
works

The choice of computational frameworks can influence en-
ergy efficiency [36]. For example, Apache Hadoop, which is
based on disk-based processing, is generally considered to
consume more energy compared to Apache Spark, which uses
an in-memory processing approach. Apache Spark has been
reported to achieve energy savings of up to 40% for iterative
workloads [36]. This improvement is often attributed to its
reduced I/O operations and faster data processing capabilities,
which may contribute to a more efficient system overall [36].

Additionally, task granularity can impact energy consump-
tion. Fine-grained tasks, which require frequent communi-
cation between tasks, are typically associated with higher
network energy usage compared to coarse-grained tasks [53].
This suggests that selecting an appropriate level of task granu-
larity could play a role in optimizing energy efficiency. Specif-
ically, aligning workload characteristics with the most suitable
computational framework may help minimize energy expen-
diture [53].

Beyond choosing the right computational framework, other
strategies, such as resource consolidation and load balanc-
ing, may also play a significant role in enhancing energy
efficiency within cloud environments. Ensuring that computa-
tional resources are allocated effectively and balanced across
the system can help reduce overall energy consumption while
maintaining optimal performance.



4.3.3 Resource Consolidation and Load Balancing

Resource consolidation techniques, such as virtual machine
(VM) migration, can be effective in reducing energy consump-
tion within big data analytics environments. Organizations
may potentially shrink their energy footprint by concentrat-
ing workloads on fewer active VMs and deactivating idle re-
sources. Research suggests that well-executed workload con-
solidation in distributed systems could lead to energy savings
of up to 25% through more efficient resource allocation [2].
While VM migration can incur an initial energy overhead, the
long-term reductions in redundant resource usage may offset
this cost.

Load balancing works in conjunction with resource con-
solidation by distributing tasks more evenly across available
resources, helping to avoid situations where a VM becomes
underutilized or overloaded. Modern load balancing algo-
rithms have shown the potential to improve energy efficiency
by 15-20% through real-time task redistribution [53]. For
instance, comparisons between Apache Spark and Hadoop
clusters suggest that effective load balancing can enhance
system performance and potentially reduce energy use, par-
ticularly under high computational demand [36].

Integrating resource consolidation with energy profiling
tools and adaptive algorithms may further improve energy
efficiency. These tools enable dynamic workload adjustments,
which help ensure that energy-saving measures evolve in
response to changing conditions [2].

4.3.4 Energy Profiling and Monitoring

Energy-aware scheduling frameworks enable real-time track-
ing of energy metrics, which can facilitate timely adjustments
to minimize energy wastage. These frameworks often lever-
age tools such as Intel’s Power Gadget and customized moni-
toring solutions to analyze power consumption at the query,
node, and cluster levels [2].

Potential energy savings can be realized by integrating en-
ergy profiling with advanced scheduling strategies; dynamic
resource scheduling may allow for the deallocation of idle
resources during low-demand periods, potentially leading to
overall reductions in energy consumption [53]. In cloud en-
vironments, adopting energy-aware load balancing could re-
sult in energy savings of up to 15% by prioritizing efficient
nodes and reducing cross-node data transfers [53]. Similarly,
feedback loops informed by real-time monitoring may help
systems refine energy-saving strategies, contributing to con-
tinuous optimization.

4.4 Model Training in Machine Learning

Model training is one of the most energy-intensive stages
in machine learning, requiring substantial computational re-
sources in cloud environments. This section explores the en-

11

ergy implications of training processes, focusing on computa-
tional complexity, memory dynamics, and hardware utiliza-
tion.

4.4.1 Computational Complexity and Its Impact on En-
ergy Consumption

Training deep learning models involves iterative processes
such as forward passes, backwards passes, and parameter
updates. These operations require many floating-point opera-
tions (FLOPs), contributing to the high energy demands [67].
Convolutional neural networks (CNNs) rely heavily on ma-
trix multiplications during backpropagation, with Multiply-
Accumulate (MAC) operations accounting for nearly 30% of
their total energy consumption [67].

The energy cost per FLOP can vary depending on hard-
ware specifications and the arithmetic precision used. Train-
ing frameworks optimized for half-precision (FP16) arith-
metic can achieve up to a 50% reduction in energy consump-
tion compared to single-precision (FP32) operations while
maintaining comparable model accuracy [4]. This reduction
highlights the importance of optimizing computational re-
sources to reduce energy consumption without sacrificing
performance.

Observation (0-6): Training frameworks using half-
precision (FP16) arithmetic achieve up to 50% energy savings
compared to single-precision (FP32) operations, underscoring
the need for hardware-aware algorithmic optimization in ML
training.

4.4.2 Optimizing Memory Access and Data Transfer to
Reduce Energy Costs

Memory access and data transfer are significant contributors
to training energy costs. In CNN training, data movement
between DRAM and processing units can account for as much
as 70% of total energy consumption [67]. To address these
costs, researchers have developed various techniques.

One promising strategy involves caching frequently ac-
cessed parameters in high-speed buffers, which reduces the
need for repeated data transfers between memory and proces-
sors [4]. Another notable approach is gradient checkpointing,
where intermediate states are recomputed during backpropa-
gation to minimize memory overhead, thereby reducing mem-
ory and energy consumption during large-scale training [4].

4.4.3 Enhancing Energy Efficiency Through Hardware
Utilization and Parallel Processing

The energy efficiency of training largely depends on the hard-
ware used and its capacity for parallel computations. GPUs
and TPUs, designed for high-throughput operations, are re-
ported to achieve 10-15 TFLOPs per watt, compared to the



1-2 TFLOPs per watt typically delivered by CPUs [4]. This
suggests that substantial energy savings can be achieved by
using specialized hardware for training.

Effective workload distribution across multiple GPUs is
also important for maximizing resource utilization and min-
imizing idle power consumption. Two common strategies
for parallelism are data parallelism, where the training data
is distributed across devices, and model parallelism, where
the model parameters are split across devices. These strate-
gies can significantly improve energy efficiency in large-scale
training [44]. Local caching may also play a crucial role in
enhancing energy efficiency during data access. Netflix, for
instance, is a leading streaming service that utilizes edge
caches deployed across regions like North America to re-
duce energy-intensive long-distance data transfers. When a
user watches a S00MB episode of a popular TV series like
"Stranger Things," tests suggest that energy consumption for
data transmission from the primary data centre is around 100
joules [17]. With local caching, the same episode retrieved
from the nearest edge server can reduce this consumption to
just 20 joules [17]. Beyond the energy savings, local caching
can also enhance streaming speed, potentially improving the
overall user experience.

The above approaches, from optimized hardware utilization
to efficient data access mechanisms, highlight the potential
benefits of integrating specialized strategies to promote sus-
tainable energy usage in computational systems.

4.5 Inference Phase in Machine Learning

Unlike training, which is highly computationally demanding,
inference prioritizes efficient response times and low energy
consumption. This section delves into the energy dynamics
during inference, focusing on factors such as batch size, model
architecture, and hardware utilization.

4.5.1 Energy Impact of Batch Size

Batch size influences the balance between energy efficiency
and response latency during inference. Larger batch sizes
tend to enhance hardware utilization, potentially reducing the
energy cost per instance processed [39]. For example, when
the batch size of models like AlexNet and ConvNext increases
from 1-2 to 128, power consumption rises significantly, from
65 W to 87 W for AlexNet and from 93 W to 166 W for
ConvNext (Table 1) [62]. While this scaling can improve
hardware efficiency, it may introduce latency, particularly for
workloads with low-frequency requests, suggesting a trade-off
between energy efficiency and response time [39].

However, not all models show the same energy consump-
tion trends as batch sizes change. ShuffleNetV2, for instance,
appears to maintain consistent energy consumption across a
wide range of batch sizes, whereas DenseNet seems to achieve
optimal efficiency at smaller batch sizes, typically around 16
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Model Batch size 1-2 (W) | Batch size 128 (W) | Difference (%)
AlexNet +65.0 87.3 +34.3
DenseNet 72.5 163.1 124.9
ShuffleNetV2 +65.0 87.1 +33.9
VisionTransformer 76.2 185.8 144.0
ConvNext 93.1 166.4 78.6

Table 1: GPU peak power in Watts (W) differences for small
and large batch sizes [62].

or fewer [62]. This indicates that model-specific characteris-
tics can play a key role in determining the optimal batch size
for energy efficiency during inference.

Observation (O-7): Batch size significantly impacts infer-
ence energy efficiency, with larger batches improving hard-
ware utilization but introducing latency trade-offs. Model-
specific characteristics (e.g., ShuffleNetV2 vs. DenseNet) fur-
ther dictate optimal batch configurations.

4.5.2 Hardware Utilization During Inference

The hardware configuration used during inference can signifi-
cantly influence the overall energy consumption of a model.
Different GPUs tend to exhibit varying levels of energy ef-
ficiency depending on workload distribution. For example,
inference of the LLaMA 65B model across 8 V100 GPUs
showed a noticeable range in power consumption, from 300
W to 1000 W, depending on both the number of shards and
the batch size (Figure 3) [39]. While increasing the num-
ber of shards can improve throughput, it may also result in
higher energy consumption per decoded token and response,
particularly for larger batch sizes [39].

More granular adjustments in hardware configuration may
lead to improvements in energy efficiency [39], suggesting the
potential of customizing hardware resources to suit specific
inference tasks.

Observation (0-8): Optimizing hardware utilization, par-
ticularly with GPUs and TPUs, is crucial for improving energy
efficiency in machine learning applications. Techniques such
as kernel-level scheduling, pipeline parallelism, and dynamic
container orchestration help ensure that resources are used
effectively, reducing idle power consumption. These methods
are key to making machine learning processes more energy-
efficient, particularly in cloud-based environments where re-
source allocation is often dynamic.

4.5.3 Architectural Differences and Their Impact on En-
ergy Efficiency

Neural network architectures can present diverse energy pro-
files during inference. Transformer-based models like Vision-
Transformer may tend to show more energy-efficient behav-
iors as batch size increases. This is likely due to the paralleliz-
able nature of transformers, which allows for better scalability,
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Varying Batch Sizes and Shard Numbers [39]

potentially reducing the energy cost per instance while main-
taining faster inference speeds [62].

In contrast, convolutional neural networks (CNNs) like
AlexNet and DenseNet often show a different energy con-
sumption profile. These models might be more energy-
efficient when smaller batch sizes are used, likely due to the
less parallelizable nature of convolution operations and the
high memory access costs involved [62]. Architectural design
therefore needs to be considered when selecting batch sizes
to optimize energy efficiency.

Moreover, the complexity of the model can further influ-
ence these architectural effects. Larger models, such as the
LLaMA variants (7B, 13B, and 65B), appear to exhibit an
exponential increase in energy consumption per second as
both the GPU shard count and batch sizes scale up [39]. As
models become more complex, the demand for optimizing
energy-efficient architectures may continue to increase.

4.6 Data Pipelines in Machine Learning

Data pipelines facilitating the movement and transformation
of data from raw inputs to model-ready formats. This section
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explores the energy dynamics involved in the key stages of
data pipelines.

Observation (0-9): Optimizing the data pipeline is essen-
tial for reducing energy consumption during machine learn-
ing tasks. Efficient data ingestion, preprocessing, and feature
transformation can lower computational and storage overhead
significantly. These improvements are particularly critical
when dealing with large-scale datasets, as they help minimize
energy costs while maintaining model performance, especially
for real-time processing tasks.

4.6.1 Energy Costs of Data Ingestion and Transforma-
tion

The energy consumption associated with data ingestion and
transformation processes highly depends on the choice of
pipeline frameworks and data formats [18]. Tools like Apache
Kafka and Telegraf, commonly used for real-time data pro-
cessing, exhibit notable energy efficiency variations based
on how they are configured. When used for time-series data,
they process 10,000 records in an average of 0.39 seconds,
increasing to 1.26 seconds for 100,000 records. This perfor-
mance boost translates into a substantial reduction in energy
consumption, outperforming traditional Python-based imple-
mentations by up to 90 times in speed and corresponding
energy savings [18].

Another key factor influencing energy usage is the data for-
mat itself [40]. While JSON and CSV formats are widely used
for their human readability, formats such as HDF5, designed
for hierarchical data storage, offer superior energy efficiency
when handling large-scale datasets. This is mainly due to
their reduced input/output (I/O) overhead, making them more
suitable for big data applications. As shown in Table 2, HDF5
format significantly reduces energy consumption compared
to JSON, with Pandas (PKG) consuming 82.2% less (565
vs. 3178.7), Dask (PKG) consuming 85.5% less (502.7 vs.
3471.9), and Vaex (PKG) consuming 8.6% less (3379.2 vs.
3697.8), making it a more efficient choice for dataframe in-
put [40].

4.6.2 Preprocessing and Feature Transformation

Energy consumption during preprocessing operations, such
as data cleaning, handling missing values, and performing
feature transformations, can vary across different frameworks.
Libraries like Vaex, known for their memory-mapped process-
ing and lazy evaluation approach, are reported to consume up
to 202 times less energy than Pandas when processing large
datasets [40]. This significant difference is often attributed
to Vaex’s ability to process data without loading everything
into memory simultaneously, which may help reduce energy
demand.

On the other hand, though popular for their ease of use,
Pandas tend to exhibit higher energy costs, particularly for



File format Adult Dataset Drugs Review Dataset

Pandas (PKG) | Vaex (PKG) | Dask (PKG) | Pandas (PKG) | Vaex (PKG) | Dask (PKG)
CSv 551.2 1030.4 62.6 9696.6 13042.2 65.1
JSON 3178.7 3697.8 3471.9 156434.5 160102.2 154388.9
HDF5 565 3379.2 502.7 5568.2 4272.1 NA

Table 2: Mean values for energy consumption for dataframe input in different formats [40].

tasks that require iterative data manipulation [40]. In these
cases, energy consumption may increase as the dataset grows,
suggesting the importance of selecting appropriate tools for
preprocessing tasks [40].

In addition to these general optimizations, feature transfor-
mation methods like normalization and one-hot encoding can
also influence energy efficiency [36]. Apache Spark, which
utilizes in-memory computation and parallel processing, has
been found to significantly reduce processing time and energy
costs compared to traditional, single-threaded approaches.
This efficiency gain is often more pronounced when process-
ing large, distributed datasets [36].

4.6.3 Scalability and Real-Time Processing

Well-designed distributed processing systems allow pipelines
to scale with minimal additional energy cost [18]. Doubling
the input data size in a highly optimized pipeline typically
results in an energy increase of less than 10%, whereas less
optimized systems can experience energy consumption rises
exceeding 30% [18].

Real-time data processing introduces another layer of com-
plexity. Systems incorporating tools like Kafka and InfluxDB
can balance low latency and high throughput. However, these
systems face significant challenges when dealing with fluc-
tuating traffic patterns [66]. Under steady workloads, they
operate efficiently with minimal energy consumption. In con-
trast, spikes in data flow or unpredictable workloads can lead
to disproportionately higher energy usage, as the system must
adapt to varying demand levels [18, 66].

5 Optimization Strategies in Big Data Analyt-
ics

Big data analytics demands effective strategies to manage
large-scale data processing, storage, and management com-
plexities. As data volume, variety, and velocity continue to
grow, optimization strategies become essential to ensure that
big data systems can scale efficiently, all while maintaining
performance, reliability, and energy efficiency.

This chapter covers strategies for enhancing different as-
pects of distributed big data systems, such as fault tolerance,
energy efficiency, data partitioning, replication, and consis-
tency management. Energy-efficient techniques, like zoning
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architectures and dynamic data placement, refine energy con-
sumption by adapting to access patterns and minimizing re-
source usage.

Overall, these optimization strategies balance big data sys-
tems’ performance, energy efficiency, and fault tolerance.
However, they also come with trade-offs and limitations, in-
cluding increased complexity, potential performance degrada-
tion under heavy workloads, and the need for dynamic adjust-
ments to accommodate evolving data access patterns. There-
fore, carefully considering these factors is necessary when
designing and implementing optimization strategies for big
data analytics.

5.1 Reliable Distributed Storage Systems

Distributed storage systems are fundamental to the scalability
and reliability of big data analytics, enabling efficient storage
and processing of large-scale datasets. Distributed storage
systems, such as HDFS, Cassandra, and GlusterFS, employ
various optimization strategies to address fault tolerance, scal-
ability, and energy efficiency.

5.1.1 Fault Tolerance and Reliability

Distributed storage systems employ replication and erasure
coding to ensure reliability and fault tolerance. HDFS and Cas-
sandra use replication, storing multiple copies of data across
nodes to minimize the risk of data loss caused by hardware
failures [9]. In contrast, systems like Ceph and GlusterFS
rely on erasure coding, which splits data into fragments and
adds parity bits, offering fault tolerance with reduced storage
overhead compared to replication [23].

5.1.2 Energy-Efficiency Strategies

GreenHDFS enhances energy efficiency by introducing a
zoned architecture that categorizes data into "hot" and "cold"
zones based on access frequency. Hot data, accessed fre-
quently, is placed on active servers for faster retrieval, while
cold data is stored on idle servers that operate in power-saving
modes. A simulation of Yahoo’s Hadoop clusters demon-
strated a 26% reduction in energy consumption for the cold
zones [21].

Another advanced strategy involves dynamic data place-
ment. Instead of using fixed classifications, this approach con-
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tinuously analyzes access patterns and adjusts real-time data
placement. For instance, if a piece of data initially classified
as cold starts to receive more requests, it can be dynamically
moved to a more active and power-efficient node. This helps
conserve energy and optimizes the response time by ensuring
that frequently accessed data is always close to where it is
needed most [43].

5.1.3 Consistency Management and Energy Balancing

Cassandra introduces tunable consistency levels, which al-
low for a trade-off between energy usage and data consis-
tency. Eventual consistency reduces energy consumption by
propagating updates asynchronously, although this can result
in serving stale data. On the other hand, strong consistency
ensures real-time synchronization but increases energy con-
sumption [9].

Some systems use hybrid consistency models to address the
limitations of eventual consistency [43]. These models allow
for flexibility by adjusting the level of consistency based on
specific use cases or data requirements. Critical data might re-
quire strong consistency to ensure all nodes are synchronized
in real-time, while less critical data can remain inconsistently
synchronized to save energy.

5.1.4 Limitations

Despite these advancements, distributed storage systems face
several limitations.

Replication, while ensuring high fault tolerance, substan-
tially increases storage overhead and energy consumption,
particularly in systems dealing with large datasets. Although
erasure coding offers a more storage-efficient alternative, it
incurs computational complexity during the encoding and
decoding processes, which leads to higher CPU usage and
latency [23,43].
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Energy-efficient zoning, such as the one used in Green-
HDFS, depends heavily on the accuracy of predictions regard-
ing data access patterns. Inaccurate classification of frequently
accessed data as cold can lead to significant performance
degradation, as retrieving such data from cold zones results in
higher latencies [21]. Moreover, systems need sophisticated
mechanisms to predict and adapt to changing access patterns
in real-time, which is not always feasible.

In systems like Cassandra, the trade-off between consis-
tency and energy consumption is not always straightforward.
Strong consistency guarantees up-to-date data but increases la-
tency and energy use due to synchronous operations. Eventual
consistency, on the other hand, reduces energy consumption
but risks delivering outdated or inconsistent data to users [9].

Finally, the integration of multiple optimization techniques
adds complexity to system management. Balancing energy
efficiency, fault tolerance, and performance requires careful
configuration, frequent monitoring, and constant adjustments,
all of which increase operational costs and maintenance ef-
forts.

Observation (O-10): Distributed storage systems face a
trilemma between energy efficiency, fault tolerance, and per-
formance. Techniques like erasure coding and dynamic zon-
ing reduce energy costs but introduce computational overhead
and management complexity, requiring context-aware config-
urations.

5.2 Data Partitioning and Replication

Data partitioning and replication are key techniques in dis-
tributed big data systems. They aim to optimize data locality,
reduce network overhead, and improve energy efficiency, es-
pecially in cloud environments.



5.2.1 Partitioning

Partitioning divides large datasets into fixed-size blocks that
are distributed across nodes in a cluster. This method enables
parallel processing, reducing processing latency and network
communication by localizing data access [2]. Improves sys-
tem performance by redistributing data according to real-time
access patterns. This helps address issues like data hotspots
and load imbalances, ensuring resources are used more effi-
ciently. In real-time stream processing environments, such
as Storm, dynamic partitioning adjusts the distribution of
workloads across nodes to prevent bottlenecks and optimize
resource utilization [10].

5.2.2 Replication

Replication works alongside partitioning to ensure fault toler-
ance and quick data retrieval. In systems like Apache Cassan-
dra, tunable consistency levels allow users to balance energy
efficiency with the desired level of data accuracy. For applica-
tions with less stringent requirements, eventual consistency
can reduce the need for redundant updates, thereby lowering
energy costs during write operations [2]. Adaptive replica-
tion strategies take it a step further, adjusting the replication
factor dynamically based on workload intensity and node
availability. This flexibility improves energy efficiency and
resource utilization, especially in systems with fluctuating
demand [49].

5.2.3 Limitations

While enabling efficient data localization, partitioning can
lead to data skew and uneven workload distribution across
nodes. This imbalance results in specific nodes becoming
overburdened while others remain underutilized, adversely af-
fecting the overall system efficiency and energy consumption
[47]. Moreover, achieving optimal partitioning requires de-
tailed knowledge of the workload and access patterns, which
are often dynamic and challenging to predict in real-world
applications [10]. As systems scale, the complexity of parti-
tion management increases, further complicating the task of
maintaining balance across the nodes.

Replication enhances fault tolerance and availability by
storing multiple copies of data across nodes. However, ex-
cessive replication introduces high storage costs and over-
head, particularly in energy-constrained environments like
edge computing or [oT scenarios [2]. Maintaining consistency
among replicas in highly dynamic systems can also lead to
significant synchronization overhead, increasing latency and
energy consumption [138]. For example, maintaining strong
consistency in distributed systems often involves complex pro-
tocols such as Paxos or Raft, which can degrade performance
under heavy workloads [46].
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Another limitation arises from the interdependency of parti-
tioning and replication. In systems using both strategies, cross-
node communication can become a bottleneck. Replicating
frequently accessed partitions on multiple nodes reduces com-
munication latency but increases storage and synchronization
costs. Conversely, limiting replication to reduce costs can lead
to more extended data retrieval when non-local data access is
required, undermining the advantages of partitioning [2].

Finally, both strategies often fail to account for the dynamic
nature of modern workloads. As data volume and access pat-
terns evolve, static partitioning and replication configurations
become less effective. While addressing these issues, dynamic
reconfiguration mechanisms introduce additional complexity
and runtime overhead, which can negatively impact system
performance and scalability [2,47].

Observation (0O-11): While data replication is an impor-
tant strategy for ensuring data availability and fault tolerance,
it also introduces significant energy and storage costs, es-
pecially in dynamic workloads. The key challenge lies in
optimizing replication strategies to balance energy consump-
tion with data reliability. Dynamic adjustment of replication
factors based on workload fluctuations can help reduce un-
necessary energy expenditure while maintaining system ro-
bustness.

6 Optimization Strategies in Machine Learn-
ing

Optimizing machine learning systems within cloud environ-
ments requires a comprehensive strategy that balances com-
putational efficiency, resource use, and sustainability. This
chapter delves into three core pillars of optimization: model
compression, hardware utilization, and data pipeline manage-
ment. These approaches respond to the increasing demand
for scalable, energy-efficient machine learning in resource-
limited cloud infrastructures. However, implementing these
strategies involves inherent trade-offs, such as potential per-
formance loss, synchronization costs, and heightened com-
putational complexity. This chapter outlines ways to balance
efficiency improvements with environmental and operational
sustainability in modern cloud-based ML deployments by
critically examining these methods.

6.1 Model Miniaturization

Miniaturizing machine learning models has become a key
strategy for optimizing performance while managing resource
constraints in cloud computing environments. Knowledge
distillation (KD) and pruning are two primary techniques
that effectively reduce model size, latency, and energy con-
sumption [57,63]. When combined, these methods offer even
more significant resource optimization. However, a deeper



exploration of their impact on energy savings is required to
understand their potential fully.

Observation (0-12): Techniques such as knowledge distil-
lation and pruning effectively reduce the energy consumption
of machine learning models, particularly during the infer-
ence phase. By decreasing model size and computational
complexity, these strategies lower energy requirements while
maintaining accuracy. However, aggressive pruning can lead
to performance degradation, particularly in tasks requiring
highly complex models, which underscores the need to bal-
ance energy efficiency with model effectiveness.

6.1.1 Knowledge Distillation

Knowledge distillation (KD) compresses complex models by
transferring the knowledge of a high-capacity teacher model
to a smaller student model. This process typically involves
aligning key aspects such as logits, attention maps, and hidden
states. In the EfficientVLM model, KD reduced energy con-
sumption during inference by 37% while preserving 98.4%
of the teacher model’s performance, demonstrating its sub-
stantial efficiency gains [56]. Similarly, KDGAN utilized ad-
versarial training to accelerate inference speeds, resulting in
a 20% reduction in computation costs [57,63].

6.1.2 Pruning

Pruning is another complementary technique that enhances
energy efficiency by removing redundant model parameters.
Structured pruning, which targets components like attention
heads and feedforward layers in transformer architectures, has
proven especially effective in reducing energy consumption.
Adaptive pruning in BERT led to a 25% reduction in energy
use per inference task without sacrificing accuracy [12]. Simi-
larly, modal-adaptive pruning in EfficientVLM achieved even
greater improvements, doubling the inference speed while
cutting down power consumption [56].

When combined, KD and pruning produce compounded
benefits. In the "distil-then-prune" approach, the teacher
model is first distilled to retain essential information, after
which pruning eliminates redundancies, resulting in energy
savings of up to 30% across language and vision tasks [12].
Alternatively, the "prune-then-distill" strategy simplifies the
teacher model first, yielding a student model that consumes
40% less energy per inference than those derived from un-
pruned teachers [35]. By combining these two techniques,
models become smaller and more energy-efficient, ensuring
that cloud resources are utilized optimally.

6.1.3 Limitations

There is still much room for optimization in the application
of KD and pruning. Knowledge distillation, while reducing
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model size and improving inference efficiency, demands ad-
ditional computational resources during the distillation phase.
Some studies on large-scale transformer models like BERT
show that distillation can require up to 20% more energy dur-
ing the transfer process compared to training a smaller model
from scratch, which partially offsets the energy savings gained
during inference [12].

Pruning also has its drawbacks. Aggressive pruning may
result in performance degradation, particularly in tasks requir-
ing high model complexity. Unstructured pruning, which se-
lectively removes individual parameters, can lead to irregular
memory access patterns that are not well-suited for hardware
optimized for uniform data flows, thus increasing power con-
sumption [12,35]. Structured pruning may alleviate some of
these issues in some specific model components. However,
it can still cause accuracy drops in tasks such as semantic
understanding, even with energy savings of up to 25% [12].

Integrating KD and pruning adds further complexity. The
"distil-then-prune" approach might be hindered by redundan-
cies introduced during the distillation phase, which could limit
the potential energy savings. On the other hand, the "prune-
then-distil" approach risks suboptimal knowledge transfer
if the pruned teacher model lacks sufficient representational
power. Experiments with ResNet models highlight this trade-
off, where a 35% reduction in energy consumption was
achieved at the cost of a 5% loss in accuracy [35].

Observation (0-13): While model miniaturization tech-
niques like knowledge distillation and pruning reduce infer-
ence energy by up to 40%, their training-phase overhead (e.g.,
20% extra energy for distillation) and accuracy trade-offs
necessitate careful cost-benefit analysis.

6.1.4 Energy Savings Through Miniaturization

Empirical research underscores the energy-saving potential of
combining KD and pruning. In transformer-based models, the
integration of these techniques has led to a reduction in infer-
ence energy consumption by up to 40%, while training energy
costs decreased by 20% compared to baseline models. Effi-
cientVLM applied both distillation and pruning sequentially,
reduced model size by 44.3% and cut power usage during
inference by 37% [12,56]. These findings demonstrate that
model miniaturization strategies reduce the computational
burden and help minimize the environmental impact of ma-
chine learning operations, making them highly suitable for
cloud-based environments with stringent resource limitations.

6.2 Hardware Utilization Efficiency

Optimizing hardware utilization in machine learning systems
focuses on improving the allocation of GPU and TPU re-
sources using advanced scheduling and orchestration tech-
niques. Techniques like kernel-level scheduling, pipeline par-
allelism, and dynamic container orchestration have proven



highly effective in boosting computational efficiency while
helping to reduce energy usage [48, 60].

6.2.1 GPU Resource Optimization

Kernel-level scheduling frameworks, like FIKIT, boost re-
source efficiency by exploiting inter-kernel idle times to run
auxiliary tasks. This approach has led to a 30% improve-
ment in energy efficiency in real-time GPU multitasking
scenarios [60]. Similarly, pipeline parallelism on TPUs al-
lows for the simultaneous processing of different model seg-
ments, achieving up to a 12x speedup for complex models like
ResNet-152 while lowering energy consumption per inference
frame [48].

Dynamic container orchestration, exemplified by platforms
such as Kube-Knots, mitigates resource fragmentation by
dynamically resizing containers based on workload demands.
This technique effectively taps into idle GPU cycles, reducing
total cluster energy consumption by 33% without sacrificing
performance [50].

Empirical data supports the energy-saving potential of these
strategies. For instance, pipeline parallelism on TPUs reduced
energy usage per inference frame by as much as 40% com-
pared to single-TPU setups [48]. Kernel-level scheduling re-
sulted in a 25% decrease in GPU idle times, providing sig-
nificant energy savings for GPU-intensive machine learning
tasks [60]. Additionally, dynamic container orchestration has
been shown to cut overall energy consumption by 33% in
GPU-powered data centres [50].

6.2.2 Challenges and Limitations

Kernel-level scheduling, such as the one used by FIKIT, faces
challenges in determining optimal execution patterns, mainly
due to the proprietary nature of GPU drivers. This limitation
reduces its flexibility when adapting to various hardware
configurations [60].

While pipeline parallelism speeds up model training and
inference, it introduces significant overhead from model seg-
mentation and parameter synchronization. This overhead can
diminish the energy savings in multi-TPU setups, where the
cost of synchronization might surpass the advantages of par-
allel processing [48].

Dynamic container orchestration also presents hurdles in
maintaining Quality of Service (QoS) for latency-sensitive ap-
plications. Resource fragmentation and potential interference
between shared GPU environments can lead to inconsistent
performance, particularly when containers are dynamically
resized to meet workload demands [50].

6.3 Efficient Data Pipeline Management

Properly managing data pipelines in machine learning sup-
ports both performance and scalability [25]. Strategies such
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as batch processing, loading, and data augmentation, along
with their limitations, are discussed below, as highlighted in
recent literature.

6.3.1 Batch Processing and Loading

Batch processing helps address the computational demands
of machine learning workflows, reducing training times and
alleviating resource bottlenecks. The Plumber framework,
for example, achieved up to 47x speedups in misconfigured
pipelines, delivering end-to-end improvements exceeding
50% compared to traditional tuning methods [24]. Analyzing
over two million ML jobs, Plumber identified software ineffi-
ciencies, rather than hardware constraints, as the leading cause
of underperformance, highlighting the importance of well-
tuned configurations to maximize resource efficiency [24].

Managing batch sizes is another effective strategy for im-
proving energy efficiency. In edge computing scenarios, in-
creasing batch sizes boosts GPU utilization and reduces idle
time. Some recent video analysis experiments on edge devices
demonstrated a 25% reduction in idle energy consumption
with larger batch sizes compared to smaller ones [25].

However, when dealing with heterogeneous datasets of
varying sizes, traditional batch processing can lead to under-
utilization of hardware accelerators like GPUs [25]. In dis-
tributed systems, while data partitioning improves throughput,
it often incurs significant communication overheads, limiting
scalability [5].

6.3.2 Data Augmentation Strategies

Data augmentation is a technique used to artificially enlarge
training datasets, which is especially useful when dealing
with limited data. The main aim of data augmentation is to
enhance the robustness and generalization of machine learn-
ing models by introducing variations in the training data. This
helps the model learn a broader range of features, ultimately
reducing the risk of overfitting. Standard data augmentation
methods include geometric transformations like rotation, scal-
ing, cropping, and flipping, as well as neural rendering and
synthetic data generation using approaches such as Generative
Adversarial Networks (GANSs). Techniques like geometric
transformations, neural rendering, and GAN-based synthesis
diversify datasets, helping to reduce overfitting [27, 32]. For
example, 3D modelling-based augmentation boosts general-
ization in vision tasks by adding realistic variability to the
training data [32].

There are inevitable trade-offs that come with data augmen-
tation technology. While effective at generating realistic data
samples, GAN-based augmentation is computationally heavy
and requires precise tuning of the network’s parameters to
strike a balance between fidelity and diversity [32]. The added
computational load from these advanced techniques can sig-
nificantly increase energy consumption, which is particularly



important in resource-constrained deployment environments.
Furthermore, since augmented data may not perfectly capture
real-world variations, excessive use of augmentation could
lead to datasets that stray too far from actual distributions,
potentially degrading model performance on rare or outlier
cases.

Additionally, over-aggressive transformations can distort
the original data distribution, resulting in biased models that
perform poorly on edge cases or unusual data points [27]. On
top of that, advanced data augmentation methods can create
higher storage demands, as larger datasets need to be stored.
This can be problematic for systems with limited storage, such
as edge devices or mobile platforms.

6.3.3 Reflection

Combining optimized batch processing with advanced aug-
mentation techniques can effectively address many perfor-
mance bottlenecks. For example, adaptive adjustments to
batch sizes help maximize resource utilization while min-
imizing delays, as demonstrated in edge computing applica-
tions [25]. However, striking the right balance between these
optimizations and the complexity of modern datasets and
distributed environments remains a significant challenge.

While these strategies offer notable improvements, their
implementation requires careful orchestration to overcome
limitations and ensure scalability.

7 Advancements in Energy-Efficient Big Data
Analytics

Future data centre designs and analytics frameworks should
carefully navigate the growing demand for computational
power alongside pressing environmental objectives [31, 38].
This chapter adopts a layered perspective to show emerging
and anticipated advancements in energy-efficient big data an-
alytics, encompassing innovations in physical infrastructure,
green energy adoption, intelligent resource management, data-
driven optimization, and cloud-native architecture. Each layer
holds the potential for significant research and breakthroughs
in the coming years.

7.1 Physical Infrastructure and Hardware
Strategies

Significant energy savings can often be achieved at the physi-
cal layer, where advanced cooling technologies and optimized
data centre layouts are critical in reducing operational ex-
penses and carbon emissions [31]. Future data centres are
expected to integrate breakthroughs in thermal management,
waste heat recovery, and intelligent facility design to address
the demands of escalating computational workloads [31].
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7.1.1 Enhanced Cooling Mechanisms and Data Centre
Design

Enhancing cooling systems is a critical aspect of improving
energy efficiency, and as demands grow, future data centres
are expected to refine existing methods while adopting in-
novative approaches. For instance, free cooling—harnessing
natural climatic conditions—has already demonstrated its
ability to reduce energy consumption by up to 30% in colder
regions [31]. Emerging designs will likely feature intelligent
systems that monitor external temperatures and airflow pat-
terns, allowing data centres to alternate between mechanical
and natural cooling modes in real-time dynamically.

In Sweden, Ericsson-operated data centres have success-
fully implemented waste heat recovery systems, achieving a
15% reduction in cooling energy requirements by repurpos-
ing server-generated heat as usable energy for facility heat-
ing [31,38]. Future developments will likely focus on more
advanced heat exchange technologies, pushing the boundaries
of thermal energy reuse to improve energy efficiency further.

Meanwhile, liquid cooling systems are positioned to gain
traction as hardware densities continue to rise. By circulat-
ing specialized coolants directly over high-heat components,
these systems can lower server temperatures by approximately
30% [31]. This approach significantly reduces the need for
air conditioning, making it a promising solution for next-
generation, high-density data centres. When combined with
optimal layout designs, such as hot/cold aisle containment,
these advancements are expected to drive operational effi-
ciency even further in the years ahead.

7.2 Green Energy Integration

With sustainability and corporate responsibility becoming top
priorities, adopting renewable energy and intelligent resource
scheduling will take on an even greater role in future data
centres, which can seamlessly adapt to the variability of green
power sources like wind and solar [8, 38].

7.2.1 Transition to Renewable Energy Sources

Leading cloud providers such as Microsoft and Google are
increasingly shifting toward renewable energy, a trend poised
to accelerate as solar and wind technologies become more
affordable. According to research by Buyya and Gill [8], inte-
grating renewable energy sources can cut carbon emissions
by as much as 50%. In the future, dynamic energy manage-
ment systems are expected to evolve, enabling seamless real-
time coordination between renewable and traditional energy
sources [8, 38].

These advancements will also drive the development of
more intelligent energy storage solutions, including cutting-
edge battery systems, supercapacitors, and hydrogen-based
storage technologies [8]. Such innovations will mitigate the



intermittency of solar and wind power, ensuring steady and
efficient operation even during periods of low energy genera-
tion. Additionally, geographical load balancing—redirecting
workloads to regions with the most favourable renewable en-
ergy conditions—will empower data centres to scale their
reliance on green energy with greater efficiency [8].

Observation (0-14): Integrating renewable energy with
Al-driven demand forecasting reduces data center carbon
emissions by up to 50%, but geographic load balancing and
advanced storage systems are critical to mitigating intermit-
tency challenges.

7.3 Intelligent Resource Management

As workloads become more dynamic and complex, Al-driven
solutions are trending toward proactively monitoring, predict-
ing, and optimizing resource allocation [31]. In the coming
years, machine learning algorithms are expected to advance
to process larger data streams and respond to unpredictable
usage patterns with almost real-time accuracy [31].

7.3.1 Adoption of AI-Driven Energy Management

Al-powered frameworks hold tremendous potential for revo-
lutionizing energy management in data centres. Mili¢ demon-
strated the use of the OODA (Observation, Orientation, Deci-
sion, and Action) loop in conjunction with K-means clustering
to optimize cooling systems based on data from over 90,000
monitoring points, achieving a 20% improvement in cooling
energy efficiency [31]. Looking ahead, emerging systems are
expected to leverage deeper neural networks and advanced
anomaly detection, further automating facility controls and
driving efficiency gains.

Next-generation Al is also poised to transform load balanc-
ing, dynamically allocating workloads to underutilized servers
and enabling Power Usage Effectiveness (PUE) ratings as low
as 1.2 in experimental scenarios [31]. Beyond cooling, predic-
tive analytics and machine learning will extend their influence
to predictive maintenance, allowing data centre operators to
schedule repairs proactively and minimize downtime [31].
Continuous learning capabilities will empower these algo-
rithms to adapt quickly, aligning energy consumption with
fluctuating computational demands and user behaviours [31].

7.4 Data-Centric Optimizations

To cope with the exponentially growing amount of data, more
sophisticated distributed storage systems and in-memory com-
puting framework technologies might be adopted to minimize
latency and resource usage.
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7.4.1 Data Storage and Processing Optimization

Technologies like the Hadoop Distributed File System
(HDES) already help reduce energy costs by distributing data
across multiple nodes to enable parallel processing [54]. This
method can lower storage-related energy consumption by
approximately 25% compared to older, centralized systems.
Future enhancements to HDFS may incorporate intelligent
block placement algorithms that account for real-time fac-
tors such as network congestion and node load, potentially
surpassing current efficiency benchmarks.

Similarly, Apache Spark’s in-memory computing frame-
work minimizes latency while reducing power consumption in
large-scale analytics workloads [38, 54]. Next-generation in-
memory technologies are expected to feature adaptive caching
and predictive data replication, improving how datasets are
duplicated and migrated [38]. Advancements in data local-
ity—optimizing the placement of computations near stored
data—could further lower overhead by leveraging tiered stor-
age systems that combine high-speed SSDs with lower-speed
disks. As these techniques evolve, they can reduce energy
costs and time-to-insight for data-driven operations [38].

7.5 Cloud-Native Architectures

Finally, as infrastructure increasingly shifts to cloud-native
models, organizations will explore new approaches to virtual-
ization, containerization, and microservices to gain flexible
resource allocation that scales seamlessly with demand, all
while curbing power consumption [38].

7.5.1 Integration of Cloud-Native Solutions

Cloud-native architectures are set to evolve alongside energy-
aware orchestration systems capable of dynamically migrat-
ing workloads to the most power-efficient nodes, by ab-
stracting hardware into virtualized or containerized layers,
providers can rapidly adjust deployments to real-time re-
source demands, significantly reducing power consumption
during peak usage periods [8]. Additionally, microservices
and serverless paradigms, which divide applications into mod-
ular, on-demand components, offer further optimization by
enabling each service to scale independently, avoiding the
inefficiencies associated with monolithic architectures [8].

Multi-cloud and hybrid strategies will enhance these ca-
pabilities even further by dynamically distributing services
across platforms or geographic regions in the future. This
approach could leverage green energy sources, mitigate high-
demand periods, and optimize energy usage on a global scale.
Such advancements highlight the growing agility and decen-
tralization of cloud computing, where resource management
evolves into an ongoing, Al-driven process rather than a static
architectural decision [54].



8 Future Strategies for Energy Efficiency in
Machine Learning

As mentioned in the previous chapter, balancing growing per-
formance demands with sustainability goals requires a com-
prehensive set of strategies, from physical infrastructure and
renewable energy integration to intelligent resource manage-
ment and data-centric optimizations. Below, we will introduce
how cutting-edge hardware accelerators, Al-driven schedul-
ing, model optimization, and sustainable infrastructure come
together in a layered manner to shape the future of energy-
conscious ML—reinforcing many of the innovations already
underway in big data analytics.

8.1 Physical Infrastructure and Hardware
Strategies

A strong foundation in data centre design and hardware ac-
celeration can markedly reduce power usage for machine
learning workloads. These physical-layer optimizations are
consistent with the approaches discussed in the previous chap-
ter, where efficient cooling and hardware placement contribute
to substantial operational gains.

8.1.1 Advanced Hardware Strategies for Machine Learn-
ing Acceleration

As machine learning workloads become increasingly com-
plex, specialized hardware accelerators are essential for
achieving high performance and low energy consumption.
GPUs, known for their unparalleled parallel processing ca-
pabilities, remain a cornerstone of cloud infrastructures but
are responsible for nearly 50% of ML-related energy con-
sumption in data centres [34]. To mitigate this, Tensor Pro-
cessing Units (TPUs)—designed specifically for matrix and
tensor computations—offer a more energy-efficient alterna-
tive. With approximately 30% lower energy consumption than
GPUs while delivering comparable or superior throughput,
TPUs have become a compelling choice for large-scale ML
tasks [30].

Field Programmable Gate Arrays (FPGAs) present another
avenue for reducing energy usage, particularly in ML infer-
ence, by leveraging targeted parallelism and reconfigurable
logic. FPGAs have demonstrated significant energy savings
over GPUs in practice [33]. However, their widespread adop-
tion in large-scale cloud infrastructures has been hindered by
the programming complexity and deployment overhead [33].
Future data centres may overcome these barriers by integrat-
ing toolchains and frameworks that simplify FPGA-based
development, similar to emerging trends in big data analyt-
ics where user-friendly platforms are lowering the barrier to
implementing specialized hardware solutions.
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8.1.2 Data Centre Innovations Supporting ML Effi-
ciency

Physical infrastructure improvements, such as liquid cooling
systems and waste heat recovery, have significantly reduced
power consumption, with waste heat reuse alone contributing
to a 15% reduction in operational costs at certain facilities [13,
34]. As accelerators like TPUs and FPGAs are increasingly
embedded in energy-optimized server racks, the power needed
for intensive ML tasks is minimized [33]. Efforts to further
refine cooling technologies—such as advanced liquid cooling
loops adapted for high-density inference nodes—are expected
to mirror the advancements seen in big data centres (e.g., free
cooling and hot/cold aisle containment), illustrating a shared
trajectory of infrastructure-level innovation that benefits both
ML and big data analytics.

8.2 Green Energy Integration for ML

Similar to big data analytics, which utilizes renewable energy
sources to minimize environmental impact, the shift toward
greener Al ecosystems relies on comparable techniques and
technologies, often powered by sophisticated Al-driven en-
ergy management algorithms.

8.2.1 Integrating Renewable Energy and Sustainable In-
frastructure

Adopting solar and wind power in ML-focused data centres
aligns with the industry-wide effort to lower carbon footprints.
NVIDIA reports that Al algorithms capable of predicting
energy demand and allocating workloads based on available
green power have achieved energy savings of up to 30%,
underscoring the synergy between operational efficiency and
environmental responsibility [6]. Similarly, Microsoft Cloud
employs Al-enabled energy forecasting to shut down unused
resources, reducing idle power consumption dynamically [11].
These emerging strategies echo the green energy integration
efforts in big data analytics, where intelligent load shifting
across multiple regions or availability zones capitalizes on
renewable generation. Over time, such integrated approaches
are expected to enhance power usage effectiveness (PUE) for
both ML-specific tasks and general data analytics pipelines,
unifying the sustainability narrative across cloud computing
domains [11].

8.3 Intelligent Resource Management

Moving beyond hardware and power sources, Al-powered
dynamic scheduling offers a powerful avenue for optimizing
resource use in machine learning.



8.3.1 Enhanced AI-Driven Dynamic Scheduling

Al-powered dynamic scheduling has become an essential tool
for energy-efficient resource management in cloud computing.
According to Ordonez et al., Dynamic Voltage and Frequency
Scaling (DVFS) optimizes energy consumption during peak
loads by dynamically adjusting CPU and GPU voltages in
real-time, delivering up to 15% energy savings while main-
taining system reliability [34]. When paired with machine
learning-based workload prediction, DVFS can make fine-
grained adjustments to prevent both under-provisioning and
over-provisioning of computational resources [34].

In addition to DVES, frameworks like Kubernetes are
increasingly integrating Al and deep learning models for
real-time task scheduling [50]. For example, reinforcement
learning-based schedulers can more accurately predict usage
patterns, enabling smarter resource allocation that reduces
latency and lowers energy consumption by maximizing the
utilization of available server nodes [61]. Solutions such as
DynaSplit further enhance efficiency by splitting computa-
tions across heterogeneous platforms, dynamically offloading
segments of neural network tasks to the most energy-efficient
hardware [30]. These advancements reflect the intelligent
orchestration strategies in big data analytics, where predic-
tive analytics and cluster-level scheduling are employed to
minimize resource waste and boost overall performance.

Observation (O-15): Al-driven dynamic scheduling (e.g.,
DVES and Kubernetes-based RL) reduces energy consump-
tion by 15-33% in ML workloads, mirroring optimization
strategies in big data analytics and emphasizing cross-domain

synergy.

8.4 Model-Centric Optimizations

Model compression technology and novel splitting strategies
simplify calculations and are a technology trend with great
potential for development. Their principles are similar to the
data partitioning and memory processing mentioned in chap-
ter 5.2.

8.4.1 AlI-Specific Model Optimization Techniques

Reducing the energy footprint of machine learning models
relies on several compression techniques, such as pruning,
quantization, and knowledge distillation. According to Or-
donez et al., these methods can lower inference-related en-
ergy consumption by up to 25%, especially for cloud-hosted
models [34]. Another promising innovation is split comput-
ing, which distributes neural network layers between edge
devices and cloud servers. This approach has demonstrated
energy savings of up to 72% for large-scale models like Vi-
sion Transformer (ViT) while preserving high accuracy [30].
Such strategies parallel data partitioning in big data systems,
reflecting the shared principle of distributing workloads to
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Layer

Innovations

Potential Impact

tructure

Physical Infras-

Liquid cooling, waste heat re-
covery, advanced layouts. For
instance, Ericsson’s waste heat
recovery system and liquid
cooling reducing server temper-
atures.

Reduces operational
costs, decreases cooling
energy, and improves
energy efficiency.

Green Energy
Integration

Solar and wind power, intelli-
gent energy storage systems.
Adoption of renewable energy,
geographical load balancing,
and advanced storage technolo-
gies.

Minimizes reliance on
non-renewable energy, re-
duces carbon emissions,
and ensures stable energy

supply.

ment

AI-Driven Re-
source Manage-

Dynamic workload balancing,
predictive maintenance. Al op-
timizes resource allocation and
equipment maintenance, e.g.,
OODA loop with K-means for

Improves resource ef-
ficiency, lowers PUE
ratings, reduces down-
time, and minimizes
energy waste.

cooling optimization.

Table 3: Future Advancements for Energy Efficiency

optimize resource utilization and minimize overall energy
demands.

9 Conclusion

Observation (0-16): A multi-layered approach—combining
hardware innovations, renewable energy integration, and
model-centric optimizations—is essential for reconciling the
growing computational demands of ML and big data with
global sustainability goals.

Big data and machine learning have become indispensable
to the success of cloud computing, yet their substantial en-
ergy requirements remain a pressing concern. This review has
explored the energy profiles of these applications, assessed
current optimization techniques, and charted potential paths
toward greater energy efficiency. Among the key insights is
the importance of adaptive, multi-faceted strategies combin-
ing advancements in algorithms, infrastructure enhancements,
and integrating renewable energy sources. Future research
should focus on converging intelligent resource management
and sustainable design principles to address the dual goals
of performance optimization and environmental stewardship.
By leveraging these insights, cloud ecosystems can better
meet the growing demands of data-intensive workloads while
minimizing their ecological footprint.
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