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ABSTRACT
The JavaScript Object Notation (JSON) format is ubiquitous, and
countless applications depend on it to store and exchange high
volumes of data. Despite its great popularity, JSON is nevertheless
a very inefficient data format: decoding and querying JSON data is
often a major bottleneck for many data-intensive applications.

In this paper, we explore how Graphics Processing Units (GPUs)
can be used to parallelize both JSON de-serialization and query-
ing. We show how JSON parsing can be implemented on GPUs by
means of parallel structural index construction, and we describe
how JSON data can then be queried in situ using a lightweight
query engine designed to run on GPUs. We present the design and
implementation of GpJSON, a GPU-based JSON data processing
library. The library can be used from high-level languages such as
JavaScript or Python, and features bindings for the GraalVM lan-
guage runtime. Our evaluation on real-world datasets shows that,
on a single NVIDIA Ampere A100, GpJSON achieves at least 2.9×
speedup on end-to-end performance (de-serialization plus query-
ing) over state-of-the-art parallel JSON parsers and query engines,
and 6-8× over NVIDIA RAPIDS.
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1 INTRODUCTION
Motivation. JSON [5] is arguably the most popular textual data
format on the planet, and the amount of data directly available in
JSON is enormous [47]. All major Web platforms and services (e.g.,
Twitter/X, Facebook or Amazon), continuously produce massive
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amounts of JSON data through their open APIs [6, 23, 50], and
JSON is natively supported by many database systems such as Or-
acle, MySQL, or PostgreSQL [35, 41]. Unfortunately, analyzing and
processing large amounts of JSON data is an expensive task. In
particular, studies have shown that JSON parsing alone can take
up to 80% of the total time needed to process a single file [38].
Moreover, after de-serialization, data is typically analysed using a
query language or hand-written code, which can introduce addi-
tional bottlenecks. In this context, new techniques are required to
accelerate parsing and querying of JSON documents.

Existing approaches. High-performance JSON parsing and
querying is non-trivial [40], as it requires contextual information
about the data being parsed (e.g., to escape special characters and
identify nested values). Parallel data processing is a viable solution
to optimize JSON data access. State-of-the-art high-performance
solutions leverage SIMDparallelism [24, 30, 31] ormulti-threading [24]
to speed up sequential parsing and querying.

The increasing availability of massively parallel GPU architec-
tures on commodity hardware offers even more opportunities than
SIMD or multi-threading to achieve high performance. However,
leveraging GPUs for parallel data processing is challenging, espe-
cially with formats like JSON that were designed for sequential
data access. Previous research has shown the benefits of leveraging
GPUs to speed up general-purpose databases [3, 20, 44], and several
commercial GPU-optimized databases have been proposed over the
last years, such as HeavyDB [21] and SQreamDB [45]. Such systems
do not allow querying data in textual JSON format, and typically
use built-in storage or binary formats like Apache Parquet [14]
or Apache Arrow [12]. GPUs have already been used to speed up
processing of large XML and CSV files [29, 43, 46]. However, to the
best of our knowledge, GPU-based solutions for both JSON parsing
and query processing have not been proposed before.

Contributions.We propose GpJSON, a library for processing
JSON data on GPUs. GpJSON uses structural indexes and a light-
weight query engine to execute JSONPath queries over LD-JSON
documents. The main contributions of this paper are:
• We design and show how structural indexes [31] can be
constructed on the GPU (Section 3.1). Structural indexes are
auxiliary data structures commonly used by SIMD-based
JSON parsers to parallelize data de-serialization, and have
never been used in GPU-based data processing systems, to
the best of our knowledge.
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• We design a new technique to execute queries expressed
using the JSONPath [16] query language on the GPU (Sec-
tion 3.2). Our technique relies on a lightweight query engine
designed to operate entirely on the GPU. In our approach,
JSONPath queries are compiled to a custom bytecode format
and executed on the GPU by means of a bytecode interpreter.
To the best of our knowledge, our work is the first to show
query compilation targeting a bytecode interpreter operating
on a GPU.
• We implement our new techniques in a library called GpJSON
(Section 3.2.2). The library uses CUDA and has bindings
to dynamic languages such as Python and JavaScript via
the GraalVM [10, 52] runtime. In this paper, we use JavaS-
cript as the main language to interact with the library, but
GpJSON can also be used standalone or by any other pro-
gramming language using conventional foreign-function
interfaces. GpJSON is open source and is available on Git-
Hub 1

Evaluation. We conduct an extensive performance evaluation
using different GPU architectures. We compare GpJSON against
state-of-the-art SIMD-based parsing libraries, popular frameworks
for languages such as JavaScript, and the GPU data-processing lib-
rary RAPIDS cuDF (Section 4). We evaluate the performance of our
library using JSON datasets, and compare our performance against
alternative solutions on a selection of JSONPath queries. Overall,
our implementation outperforms CPU SIMD/multithreading-based
and other GPU-based solutions.

2 BACKGROUND
This section introduces JSON and the JSONPath query language.
Then, we introduce structural indexes, discussing how existing
techniques differ from our GPU-based solution.

2.1 JSON and the JSONPath Query Language

JSON [5] is specified by ECMA-404 and is a relatively simple,
text-based data-interchange format. JSON has four primitive types
(strings, numbers, boolean and null) that can be combined with
composed types (arrays and objects). JSON strings are sequences of
characters enclosed by double quotes with some escape sequences
(e.g. "\n" for a newline character). Given the vast amount of avail-
able JSON data, JSON objects are very often stored in a single file,
where each line corresponds to a distinct value. Such files are called
Line Delimited JSON documents (LD-JSON), and are the main data
format supported by GpJSON (as well as by many popular systems,
e.g. [13]). Querying JSON objects often involves selecting and filter-
ing data from LD-JSON documents. One of the most common ways
to query such documents is by using JSONPath [16]. JSONpath is an
expression language used to filter and transform JSON documents
inspired by the XPath language for the XML format. The following
is an example query:

$.users[?(@.lang == "en")]
which selects all users in a LD-JSON document whose language is
"en". JSONPath is supported in many domains and applications
(e.g., Kubernetes [28], Oracle RDBMS [9]), and it is often employed
1https://github.com/gpjson-vldb/gpjson

in Extract-Transform-Load (ETL) workloads, where it is typically
used to extract data from large JSON documents. GpJSON uses
JSONPath as its query language.

2.2 Structural Indexes for JSON Analytics

Broadly speaking, structural indexes are data structures used to
accelerate data lookups based on some metadata. In the context of
JSON analytics, they are often used to track the location of certain
symbols (e.g., all "{" characters). Structural indexes can also be used
to represent more complex structures, and they can be extended to
encompass data onmultiple levels. So-calledmulti-leveled structural
indexes can be used to store data about nested data structures, such
as tree-like objects, or nested JSON objects and arrays.

Popular JSON processing libraries often store structural indexes
in bitmap indexes, using only one bit to represent one byte of the
input data, allowing a compression ratio of 8 to be achieved without
efforts. One of the advantages of such (bitmap) structural indexes is
that they facilitate SIMD processing in several ways. For example,
depending on the supported instruction set, SIMD instructions
can execute AND operations on 128, 256, or 512 bits at once, in
comparison to the usual 8, 16, 32, or 64 bits of a single instruction
on a single integer type.

In the context of JSON analytics, Mison [31] was one of the first
systems to use SIMD to process JSON data. It functions by scanning
a document several times, discovering different structural elements
(such as "{" and "," at every scan). Using these structural elements,
it can then quickly locate values in large documents. Mison util-
izes multiple structural indexes that encode the usage of specific
structural characters. This approach would be simple if these char-
acters appeared solely as structural elements. However, they can
also be found within string literals. It is therefore necessary to first
determine whether a particular character is part of a string. Since
characters can also be escaped within strings, this is not trivial. For
example, the string literal \"foo\"bar" only ends at the last quote
character, so it is crucial to determine which quote characters are
escaped. It is impossible to do this by only looking at the previous
character of a quote character since the escape backslash can also
be escaped itself, so it is necessary to fully understand the context in
which the quote character is used. To this end, systems like Mison
use multiple bitmap indexes and bit-parallel bitmap SIMD instruc-
tions to create a structural index that contains for every character
whether it is contained within a string. Here is an example of such
an index:

{"foo": { "object": "bar" }}
0011110000011111110001111000

This bitmap can be used to construct a leveled-colon bitmap,
which contains whether a specific colon character denotes a comma
within the level. A level is defined as the depth within a JSON record,
and as such, the root object is defined as level 0 (L0), an object
contained within the root object as level 1 (L1), etc.. Here is an
example of the final structural index used by Mison to query data:

  {"foo": { "object": "bar" }}
L0 0000001000000000000000000000
L1 0000000000000000001000000000

Structural indexes similar to the ones used by Mison are em-
ployed by other systems with similar goals (e.g., simdjson [30]



and Pison [24]). Our implementation of a GPU-based JSON parsing
library also relies on similar structural indexes. Unlike existing
approaches, however, all indexes used by GpJSON are stored in
the GPU memory, and are constructed and manipulated from GPU
kernels. As we will discuss, creating and accessing such indexes
from GPUs presents unique challenges (and opportunities) that
makes it impossible to simply port existing SIMD-based approaches
to the GPU.

3 GPJSON DESIGN AND IMPLEMENTATION
Executing JSONPath queries on a GPU is attractive because CPU-
based approaches struggle with latency and throughput when pro-
cessing large amounts of JSON data. Existing JSONPath libraries
often rely on tree-walking interpreters or recursive-descent parsers,
which are inherently sequential and suffer from cache inefficien-
cies due to JSON’s irregular structure. In contrast, a GPU-based
approach can exploit massive parallelism to evaluate multiple JSON
objects simultaneously. Furthermore, GPUs offer high memory
bandwidth, making them well-suited for workloads involving large
JSON datasets. However, the challenge lies in the heterogeneous
and hierarchical nature of JSON, which introduces memory diver-
gence, irregular control flow, and varying object sizes, requiring
efficient utilization of GPU resources. GpJSON’s design addresses
these challenges in two main ways. First, the library adopts a data
partitioning approach that allows it to process multiple JSON ob-
jects at the same time, thus maximizing parallelism utilization (Sec-
tion 3.1.1), while reducing the need to perform dynamic memory
allocations on the GPU. Second, it performs both JSON parsing and
JSONPath query execution on the GPU, thereby avoiding additional
memory transfers from DRAM to GPU memory. This is done with
multiple GPU kernels, which first construct structural indexes in
GPU memory (Section 3.1) and then use them to perform query
execution (Section 3.2).

3.1 On-GPU Structural Indexes Construction
GpJSON relies on the construction of several structural indexes
to parse and query JSON data. All indexes are allocated on the
GPU memory, and are constructed in parallel using dedicated GPU
kernels. Each kernel processes one or more indexes and stores
its results in GPU memory. An overview of the kernels used by
GpJSON as well as of the data exchanges between them is shown
in Figure 1. Data is never copied between GPU kernels, but rather
passed by reference, making the entire index construction process
zero-copy.

As discussed in Section 2.2, there are multiple variations of struc-
tural indexes. simdjson [30] constructs a Tape, while Mison [31]
(and Pison [24]) use a Structured Leveled bitmaps index. GpJSON
uses a variation of such Leveled bitmaps index, optimized for GPU
construction and storage. The following figure provides an example
of the index:

  {"foo": ["alpha", "beta"], "gamma": {"lambda": "kappa"}}
L0 10000010000000000000000001000000001000000000000000000001
L1 00000000100000001000000010000000000010000000010000000010

As can be seen in Figure 1, GpJSON performs several interme-
diate steps before constructing the Leveled bitmap index. Once

Figure 1: GPU Kernels and indexes in GpJSON. Each index
is created by a dedicated kernel. Arrows correspond to data
dependencies between kernels.

created, the index is then used by GpJSON to execute JSONPath
queries. GpJSON’s Leveled bitmaps index differs from those used
in Mison (and Pison [24]) in several ways. First, we do not build
different bitmaps for different characters initially. This reduces the
amount of memory required (by approximately 20% in the best
case). Memory is usually more constrained on a GPU device than
on a host device due to less expandability and a fixed amount of
memory for a specific device model, so this brings tangible benefits.
Second, our final Leveled index contains all structural characters,
including characters that start or end a level ("{", "[", "}", and
"]"). Other approaches [31] only save the positions of colons and,
in the case array indexes are part of a query, commas. By also saving
the position of other structural characters, we can only use one
index (instead of two indexes used in [31]), which again reduces the
amount of memory (in this case by approximately 10% in the best
case compared to storing two different indexes). This also allows us
to determine the end of a level more quickly since it is unnecessary
to iterate over two indexes to find it. Other frameworks (e.g. [24])
build on the structural Leveled colons bitmap index proposed by
Mison, and use SIMD instructions to speed up their construction.
Such SIMD techniques are not applicable in the GPU-based SIMT
model, since CUDA does not have SIMD instructions that operate



Figure 2: Pipelining of data access, index creation and query
execution for different data partitions.

on vectors more than 64 bits, while Pison uses 256-bit SIMD in-
structions and uses operations that are unavailable for CUDA (such
as, e.g., pclmulqdq carry-less multiplication).

3.1.1 Data Loading and GPU Memory Management.
Another notable difference between SIMD-based techniques and

GpJSON is about data loading and memory management. GPU
memory is typically smaller than DRAM, and storing a full file in it
may not always be possible. GpJSON addresses this limitation by
splitting the input file into equally-sized partitions and processing
them concurrently with multiple GPU streams [36]. The partition
size is adjustable based on the GPU memory size.

Input data partitioning brings two main advantages. First, it al-
lows handling files bigger than the GPUmemory by letting GpJSON
pipeline data loading, index construction, and query execution, thus
enhancing efficiency as shown in Figure 2. A second key benefit of
splitting the input data into uniformly-sized partitions is that most
structural indices for JSON parsing can maintain a constant size
(relative to the partition size) and be pre-allocated on GPU memory.
Consider the example indexes in Figure 1. Knowing the partition
size enables pre-allocation of the Escape, String, and Quote indexes,
each needing 1/8th of the partition (one bit per byte). Similarly, the
Leveled bitmap index can be pre-allocated, as its size is proportional
to the JSONPath query’s maximum depth and partition size. Indexes
like the Newline index must be dynamically allocated since the GPU
needs to first identify the number of new lines in a partition before
storing their offsets. However, as most indexes are of fixed size and
pre-allocated, the effect of dynamic memory allocation during JSON
parsing is negligible, as evaluated in Section 4.4. After executing a
query on a partition and collecting the results, a new partition can
be loaded, and its indexes can be built using the same pre-allocated
data structures already available in GPU memory.

3.1.2 Newline index. Before GpJSON can build (and query) leveled
bitmaps indexes, it first needs to identify all single JSON objects
in a LD-JSON file (i.e., identify all new lines). To this end, GpJSON
builds a first index containing the offsets for each new line character
("\n") in a file. Each entry in such Newline index will then have a
corresponding Leveled bitmaps index.

Building a parallel Newline index is non-trivial on a GPU, since
the number of newlines within a file is variable and highly depend-
ent on the input data. Therefore, it is unknown how many newlines
there are in the file, and as such, it is unknown how much memory
is required to store the complete newline index. One of the chal-
lenges of the GPU is that it is not possible to allocate large amounts
of memory within a kernel dynamically. Therefore, the host device
needs to allocate the memory beforehand to make sure there is a
contiguous block of memory that can be used in later steps. This

limitation has been solved through the use of two separate (but
dependent) kernels.

The first kernel scans the number of newlines in each thread and
stores that information in a block of memory that is dependent on
the number of threads running the kernel rather than on the size of
the input data. The number of kernels is constant, so the required
memory can be pre-allocated. The detected newlines will then be
used to compute the total amount of memory required to store the
Newline index. This amount can be computed by simply summing
all of the values and multiplying it by the amount of memory
required for every position. Since only the numerical position is
stored, this would usually be an 8-byte number. Thus, the amount
of memory required to store the Newline index can be computed
as in eq. (1). Once the required amount of memory is known, this
amount should be allocated on the GPU, such that it can be used to
store the index.

newline index size = 8 ·
thread count∑︂

𝑖=1
counts[𝑖] (1)

The second kernel will store the actual positions of all newlines
in the Newline index. One of the most important aspects is ensuring
that the newlines are in non-overlapping places in the index. One of
the other aspects is making sure they are in ascending order. While
the order is mostly irrelevant to querying the values, it is important
to ensure results can be correlated back to lines. To ensure that
every GPU thread can place their discovered newlines in the correct
position in the Newline index, the previously discovered count of
newlines is used. This is used to create an array of offsets, which
will determine where each thread can start writing its discovered
newline positions. For example, if there are 4 threads and the result
is count = {1, 6, 3, 1}, then the offsets would be offsets = {0, 1, 7, 10}.
In this case, the size of the Newline index would be 11 elements,
resulting in a memory size of 88 bytes.

3.1.3 String index. After all new lines in a LD-JSON document
have been identified, GpJSON analyzes each JSON object. The goal
is to ensure that all structural characters (such as, e.g., "{" or "]")
are ignored if and when they appear within a string. To this end,
a second index called the String index is used. For every character
of a JSON object, the index will indicate whether it is part of a
string literal. It will do so using a bitmap index, and as such, it is
only an eighth of the size of the input data. The construction of the
String index cannot be performed in a single pass, because the GPU
needs contextual data about text fragments being processed in other
parallel threads. GpJSON therefore relies on other intermediate
(temporary) indexes to facilitate the construction of the index. Such
indexes are, namely: an Escape carry index, an Escape index, a
Quote index, and finally the String index, as shown in Figure 1.

First, the Escape carry index needs to be built. This index is sim-
ilar to the first step of the Newline index, although in this case, it is
used to resolve dependencies between kernels. This index essen-
tially computes whether there is a “carry" of the escape, i.e., whether
the first character of the next GPU thread needs to be escaped. This
only works when we assume that there are no runs of escapes that
run for the kernel duration since that would introduce dependen-
cies between these kernels. However, the input data of one kernel is
always at least 64 bytes, and as such, it would already be improbable



that all 64 bytes are escape characters. If this does happen, this can
easily be detected by counting the number of escapes compared
to the total number of bytes processed by the kernel. To compute
the Carry index, it is enough to start with an initial carry of False,
then looping over all the characters processed by the kernel once
again. When the character is a backslash character ("\"), the carry
needs to be XOR’ed with True. If it is not a backslash character,
the carry is reset to False. All such computations are implemented
in GpJSON within GPU kernels, without ever involving the CPU.

Once the Escape carry index has been built, the Escape index
can be computed. The Escape index is similar to the final String
index, in that it encodes using a bitmap for each character whether
it is escaped or not. Here is an example Escape index:

"an e\nsca\nped string\""
0000001000010000000000010

Next, the Quote index is created. It is again a bitmap index,
this time storing the position of quotes within the file. Here is an
example for such index:

"an e\nsca\nped string\""
1000000000000000000000001

Finally, the String index is constructed from the Quote index and
the Quote carry index. The Quote carry index determines whether
the final result needs to be inverted, using the value of the 𝑛 − 1th
kernel. The Quote index is used to compute a prefix-XOR sum, of
which the result tells which bytes are in a string literal and which
bytes are outside of it. For example, given a value 𝑥 = 01001000, it
computes the result 01111000. The value of a specific bit within the
result can be computed as in eq. (2). In other words, the prefix-XOR
value of a bit 𝑖 in the result is the XOR of all bits up to and including
bit 𝑖 in input 𝑥 . Simdjson [30] uses the specialized CPU instruction
pclmulqdq to accelerate this operation. While there are ways to
accelerate the normal computation of this value using GPUs [4],
CUDA does not have an instruction to calculate the value instantly
and, as such, it is manually implemented in GpJSON’s GPU kernels.

PrefixXORSum(𝑥, 𝑖) =
𝑖⨁︂

𝑘=0
𝑥 [𝑘] (2)

It is then XOR’ed with a bitstring of all 1’s when the previous
string ended in an escape, or not changed if the previous string did
not end in a string. This bitstring is then computed for the following
string, such that it can be used for the next iteration. Each iteration
loops over one 8-byte value, and as such, it processes 64 bytes at
once. This kernel does not access the original input data and only
requires memory access to the quote index. Here is an example of
the final String index as computed after all required steps:

{"foo": { "object": "bar" }}
0111100000111111100011110000

The pseudocode for the kernel that computes the final String
index is shown in Algorithm 1. From all of the created indexes,
only the String index is kept in memory to create the final leveled
bitmaps index. All other indexes can be discarded since those are
only used for the construction of the String index.

3.1.4 Leveled bitmaps index. Once the String index has been de-
termined, the Leveled bitmaps index can be finally computed. The
Leveled bitmaps index is a bitmap index once again, but this time

Algorithm 1: String index kernel

Input: The index 𝑡 of the thread
Input: The starting position 𝑝𝑠 of the kernel
Input: The ending position 𝑝𝑒 of the kernel
Input: The quote index 𝑞 of kernel 3
Input: The quote index carry 𝑐 of kernel 3 for this thread
Input: The result quote index 𝑟
1: prev← 0
2: if 𝑐 == 1 then
3: prev← SetAllBits(prev)
4: for 𝑝 ← 𝑝𝑠 to 𝑝𝑒 do
5: 𝑟 [𝑝] ← PrefixXORSum(𝑞, 𝑝) XOR prev
6: 𝑝𝑟𝑒𝑣 ← 𝑟 [𝑝] >> 63

it stores at which positions structural characters (such as "{" , "[",
"}", "]", ":" and ",") are located, together with the depth level
in the JSON object. For the construction, similarly to the previous
indexes, there are two steps; the first step creates a carry index to re-
solve dependencies between kernels and the second step creates the
actual index. An example of a Leveled bitmaps index was presented
in Section 2.2, and is also available at the bottom of Figure 1.

The carry index for the leveled bitmaps index contains the level
at which the parallel traversal of the file starts, with one value for
each traversal performed by a dedicated kernel. To calculate at
which level each kernel starts, it is sufficient to count the number
of structural open/close characters. The final value of each carry
kernel is essentially the number of opening structural characters
minus the closing structural characters. Using this, it is possible
to calculate the starting level of each kernel for the following step.
One important consideration here is that the structural characters
could also be located inside strings, so the string index needs to be
used to filter out any such character inside strings.

Once the Carry index has been constructed, a process very sim-
ilar to the offsets calculation of the Newline index is used (sec-
tion 3.1.2). The previously calculated values are summed, and each
intermediate sum is stored in the index. After this index has been
constructed, the actual leveled bitmaps index can be created.

The Leveled bitmaps index goes over each character and uses
a similar process to the Carry index creation. Characters inside
strings are skipped, and structural characters are used to create the
actual Leveled bitmaps index.When an opening structural character
is discovered, the current level is incremented, while when a closing
structural character is discovered, the current level is decremented.
When another structural character (":" and ",") is discovered, it
is stored at the current level, which also happens for the opening
and closing structural characters. Storage is again a bitmap for
every character, except that there are multiple levels, so the storage
is not just 1/8th the size of the input data but rather depends on
the number of levels required for a given query. The maximum
number of required levels is computed by GpJSON by (statically)
analyzing the JSONPath query before executing it. Any structural
characters which are deeper inside the JSON tree structure than
what is required for the JSONPath query to be executed are not
stored to limit memory usage. The pseudocode for the kernel that
computes the final Leveled bitmaps index is shown in Algorithm 2.



Figure 3: Index traversals during query execution and generated bytecode for the query $.user[?(@.lang == "en")]

Algorithm 2 Leveled bitmaps index kernel
Input: The index 𝑡 of the thread
Input: The starting position 𝑝𝑠 of the kernel
Input: The ending position 𝑝𝑒 of the kernel
Input: The string index 𝑠 of kernel 4
Input: The leveled bitmaps carry index 𝑐
Input: The result index 𝑟
Input: The size of a level 𝑛
1: level← 𝑐 [𝑡]
2: for 𝑝 ← 𝑝𝑠 to 𝑝𝑒 do
3: if not InString(s, p) then
4: if IsStructureOpen(p) then
5: level← level + 1
6: SetBit(𝑟, 𝑛 · level + 𝑝/64, 𝑝 mod 64) ⊲ Set the bit

𝑝 mod 64 in 𝑟 [𝑛 · level + 𝑝/64] to 1
7: else if IsStructureClose(p) then
8: level← level − 1
9: SetBit(𝑟, 𝑛 · level + 𝑝/64, 𝑝 mod 64)
10: else if IsColonOrComma(p) then
11: SetBit(𝑟, 𝑛 · level + 𝑝/64, 𝑝 mod 64)

3.2 Querying
Once the Leveled bitmaps index for a JSON object is computed,
it can be used to execute a JSONPath query. Query execution is
performed in two steps. First, the JSONPath query is compiled into
a bytecode-like set of instructions that encapsulates the operations
to be performed on the input data and on its corresponding leveled
bitmaps index. Then, the bytecode instructions are executed on
the GPU to obtain the query results. Compilation of a JSONPath
expression to bytecode is achieved following conventional parsing
and code generation techniques: the expression is first converted
into tokens by means of a lexer that can recognize the JSONPath
grammar, then each token is analyzed to create an Abstract Syntax
Tree (AST) of the query, which is then traversed to emit bytecode
instructions. When the bytecode for a specific query is generated,
it can be executed. To this end, GpJSON operates a dedicated GPU
kernel that implements an interpreter for the bytecode. Crucially,
bytecode instructions correspond to operations to be performed on
the leveled bitmap index: some instructions traverse the index to
reach a specific position in the input data, while other instructions
match values in the data searching for specific tokens. When a
match cannot be found, the interpreter terminates, and no results
are saved for the given object. When all instructions are executed,
a result for the query is found. Figure 3 shows an example of the
bytecode instructions generated for the query $.users[?(@.lang

== "en")]. After a query is compiled to bytecode, it can be ex-
ecuted on the GPU. To this end, each GPU thread receives a subset
of all lines to be processed (computed using the Newline index). For
each line, a bytecode interpreter executes each instruction on all
its assigned lines. First, the beginning of a JSON object is identified
using the Newlines index (Figure 3, step 1). Then, the execution
of MOVE_TO_KEY "user" causes a scan of the Leveled bitmap in-
dex to identify the first occurrence of user (Figure 3, step 2). If
found, GpJSON will then execute MOVE_DOWN, which results in the
traversal of the index down to level 1 (L1 in Figure 3, step 3). Then,
the execution of MOVE_TO_KEY "lang" will again trigger a string
search until the token can be found (Figure 3, step 4). Finally, ex-
ecuting EXPRESSION_STRING_EQUALS "en" will result in a string
comparison. Query results are then saved per each line after the
bytecode is interpreted on each JSON record.

3.2.1 Bytecode instructions overview. The set of instructions sup-
ported by the GpJSON bytecode interpreter can be summarized in
the following three categories:
1) Index navigation operations are tree traversal operations that are
performed on a structural index to identify relevant values in a
given object. They include:
MOVE_UP: goes up one level in the Leveled bitmaps index
MOVE_DOWN: goes down one level in the bitmaps index
MOVE_TO_KEY: moves to a specific key inside an object
MOVE_TO_INDEX: moves to a specific index in an array
2) Query execution and control flow operations are operations that
drive the state of query execution. They include:
END: ends the execution on the current line
STORE_RESULT: stores the current result
3) Expression execution operations: are bytecode instructions that
can perform computations on the input data. They typically cor-
respond to simple expressions required by the JSONPath language.
For example, the EXPRESSION_STRING_EQUALS bytecode instruc-
tion compares an input string with a constant value.

3.2.2 Implementation and Current Limitations. GpJSON is im-
plemented in CUDA (using GrCUDA [34] ) which allows CUDA
libraries to be exposed to language runtimes in GraalVM [37]. Us-
ing CUDA and GraalVM, GpJSON can be exposed to a variety of
different programming languages (from JavaScript to Java and Py-
thon) in a straightforward way, but nothing of the GpJSON design
is specific to GraalVM. Besides the way GpJSON is exposed to
language runtimes, there are two aspects of its implementation
that are worth mentioning, namely how GpJSON handles batch
processing and how it overlaps computations. In the current im-
plementation, GpJSON supports JSONPath queries for which the



maximum number of results can be known ahead of time. This
includes the large majority of queries, with some notable excep-
tions. Specifically, recursive descent operations like $..author, or
dynamic array elements queries like $.user[2:] (from element 2
until the end of the array) are not supported. GpJSON also lacks
support for expressions that allow a user to make assertions on
queried values: supporting all such expressions in our implementa-
tion would simply mean extending our bytecode instructions set
with new instructions mapping to each new language feature, and
would not affect the overall design of the system. Finally, the cur-
rent implementation of GpJSON assumes the input JSON-LD files to
be well-formed. This is analogous to existing SIMD-based systems
such as Mison [31] or Pison [24], as they all assume the data to be
stored in a trusted source (e.g., stored in a Data lake with validation
at data ingestion time). Validation could be added to GpJSON by
performing a runtime analysis of the indexes discussed in Section 3,
analogous to [40].

4 EXPERIMENTAL EVALUATION
In this section, we evaluate our implementation of GpJSON on

multiple datasets and queries. We compare GpJSON against several
other state-of-the-art JSON parsers and query processing systems.

4.1 Methodology
GpJSON can be accessed from a variety of languages. In this work
we focus on the JavaScript language bindings and on the Node.js
framework, which feature rich support for JSONPath, as JSON was
originally designed for JavaScript. Given that other popular JSON
processing libraries are implemented in languages such as C++ or
Java, we also compare the performance of GpJSON against such
libraries. In all experiments, execution time is largely dominated
by JSON data de-serialization and query execution. Therefore, the
language runtime is only marginally involved in the total execution
time, making it still possible to perform an end-to-end comparison
between different approaches. For all the experiments in this section
we always measure the total, end-to-end execution time, which
includes index construction, query execution, and copying results
to the CPU for GpJSON. To shed light on the performance of the
main individual index construction steps, we also performed a
dedicated set of experiments in Section 4.4.

Another important aspect of the performance evaluation is query
execution. While many libraries for JSONPath exist (mostly for
JavaScript and Java), the JSONPath language is not directly suppor-
ted by popular libraries such as simdjson. Given this limitation –
and with the goal of still performing a fair comparison – we have
implemented the equivalent JSONPath query execution using the
library language where appropriate.

We evaluate GpJSON against several libraries, namely: the offi-
cial simdjson [30] C++ library; Pison [24], which supports parallel
SIMD-based JSONPath queries; RapidJSON, a widely used parser
by Tencent [48]; Java JSONPath [1], which natively supports JSON-
Path and employs Java Streams for parallel (multi-threaded) query
execution; the Node.js-based implementations Node jsonpath [7]
and jsonpath-plus [2], both using the built-in JSON.parse func-
tion for JSONPath queries; a manual extraction approach in
Node.js that bypasses library overhead by directly parsing and

Table 1: Selected queries

Dataset Queries Number of results

TT $.user.lang 150135
TT $.user.lang, $.lang 300270
TT $.user.lang[?(@ == "nl")] 405
TT $.user.lang[?(@ == "en")] 137559
WM $.bestMarketplacePrice.price, $.name 288391
BB $.categoryPath[1:3].id 459332

querying JSON objects; theNode.js simdjson bindings for the C++
simdjson library, enabling lazy parsing and efficient JSON access us-
ing a dedicated query language. Unfortunately, it is not possible to
compare GpJSON directly against Mison [31], given that the system
is not publicly available. The implementations that support JSON-
Path are Java JSONPath, Node jsonpath, Node jsonpath-plus, and
GpJSON. We evaluate GpJSON on three different datasets, similar
to what was used to evaluate Pison [24]. The datasets are LD-JSON
documents containing real-world JSON data. In detail, we used a
Best Buy (BB) product dataset, a stream of tweets from the Twitter/X
(TT) developer API, and a Walmart (WM) product dataset. Each
original dataset is approximately the same size, about 1GB, and –
depending on the experiment – we replicate the dataset multiple
times to measure GpJSON’s performance on multiple data scale
factors and larger inputs. We evaluate GpJSON using 6 different
JSONPath queries, listed in Table 1. All experiments were conduc-
ted on the Oracle Cloud Infrastructure (OCI) on four different types
of machines, to evaluate different NVIDIA GPU generations. In
detail, the four shapes we used in our tests are:
• VM.GPU2.1: NVIDIA Tesla P100 16GB, 24 cores, Intel Xeon
Platinum 8167M (2.0GHz, max frequency 2.4Ghz), 72GB RAM.
• VM.GPU3.1: NVIDIA Tesla V100 16GB, 12 cores, Intel Xeon
Platinum 8167M (2.0GHz, max frequency 2.4Ghz), 80GB RAM.
• BM.GPU4.8: NVIDIA Tesla A100 40GB, AMD EPYC 7J13 (2.55
GHz, max frequency 3.7 GHz), 2048GB RAM.
• Optimized3 HPC: 12 cores, Intel Xeon 6354 (3.0GHz, max fre-
quency 3.6GHz), 84GB RAM.

All C++ programs are compiled with the “-O3" optimization flag and
required instruction set flags (e.g. -mpclmul or -msse4). The timing
results are the average of 10 runs, after 5 warmup runs. By recording
the times in the same process in charge of executing the benchmark,
errors caused by kernel pauses during communication between
processes were reduced. Also, we keep track of the number of
results to ensure correctness. All servers run on Ubuntu Server 20.04
and are installed with GraalVM 22.1.0, GrCUDA 0.4.0, G++ 9.4.0,
Node.js 18.14.1 (which ships with the V8 JavaScript engine). The
GpJSON runtime runs on the GraalVM implementation, while all
the other Node.js scripts run on the official Node.js implementation.
The Intel CPUs support Intel® SSE4.2, Intel® AVX, Intel® AVX2,
and Intel® AVX-512 covering all the instruction sets required by
Pison, RapidJSON, and simdjson.

We use GpJSON as the baseline for benchmarking, to highlight
any performance differences compared to other JSON parsing and
querying implementations. Given that no approaches exist that can
process JSONPath queries on a GPU, we first compare GpJSON
against existing, non-GPU state-of-the-art techniques. Simdjson is
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currently the most cutting-edge JSON parsing library, so we will
be evaluating it against GpJSON in many of our tests. The usability
of GpJSON and simdjson differs significantly because GpJSON is
available from a wide range of high-level scripting languages and
supports JSONPath, while simdjson is available from C++ through
its own API and does not support any high-level query language.
Besides SIMD-based JSON processing, we also compare GpJSON
against multi-threaded approaches such as Java JSONPath. Since
the smallest core count is 12, we have set a fixed thread count for
the Java JSONPath experiments on all three machines to ensure a
fair comparison. By default, Java streams use n-1 threads, where n
is the number of available cores.

4.2 Experimental Results Vs. CPU SIMD
Figure 4 reports the end-to-end time required to query the chosen
datasets with the chosen queries. We can see that GpJSON beats all

other libraries. First, we can notice that all Node.js implementations
take much longer to execute. The performance of our implementa-
tion far outperforms that of any Node.js implementation. Node.js
manual extraction is the fastest implementation, however, it does
not support JSONPath and is manually written to extract the correct
values. Due to the overhead of using the library and processing
JSONPath, the JSONPath-compatible implementations are much
slower. Comparing the plain Node.js implementation (manual) with
Node jsonpath and Node jsonpath-plus, it is evident that querying
overheads are relatively small, given that the performance is bound
by JSON parsing. The Java JSONPath and the C++ implementations
are the ones that are closer to GpJSON, with Pison and RapidJSON
obtaining very similar results. On the server equipped with the
most advanced NVIDIA architecture we have tested, Ampere, we
are 3.2× to 4.5× times faster w.r.t. simdjson and 3.2× to 6× times
faster w.r.t. Java JSONPath, the two closest implementations to
GpJSON in terms of speed. All Node.js libraries struggle to keep up
with the other implementations using the Best Buy (BB) dataset,
due to the large number of records.

Figure 5 reports a comparison between GpJSON running on GPU
shapes and the other libraries running on the HPC shape. The trend
is the same, with Node.js solutions slower than the GpJSON and
C++ implementations. Our solution (running on an NVIDIA A100)
is 3.1× to 4× faster than simdjson and 4.6× to 9.4× faster than
Java JSONPath. GpJSON is about 1.8× times faster running on the
Ampere generation w.r.t. the Volta one. We don’t see the same delta
when comparing the Volta GPU with the Pascal one, gaining only
about 20% speedup. Note that, regarding CPU libraries, the HPC
shape performs about the same as the GPU4.8 one. Thus, from now
on, we will mostly compare CPU libraries on these two machines.
The performance of Node simdjson shows that there is significant
overhead when using simdjson in Node.js due to implementation
differences and fewer possible optimizations. Our implementation
is at least 15× times faster than Node simdjson, while using the
same high-level scripting language.
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Figure 6: Comparison between GpJSON running on A100 (GPU4.8) and libraries running on the HPC shape. The dataset has
been edited in different ways to change the number of matches during query execution. Lower is better.

4.2.1 Varying the number of matches (Selectivity). Next, we analyze
the impact of selectivity, which we evaluated by keeping the same
dataset size but removing the $.user.lang value from a variable
number of records, until the required selectivity was reached. In
detail, the TT dataset was edited in three different ways:
• Altering $.user.lang to a value other than “en"
• Removing the $.user.key values
• Removing only $.user.lang key, keeping user.key

These edits impact the number of results of the $.user.lang[?(@
== "en")] query, as well as some of the internal query execution
paths for the libraries. In Figure 6, the results of this analysis are
shown. The selectivity of the datasets does not have a significant
effect on GpJSON. Node simdjson seems to run slower in the delete
cases. This demonstrates that our implementation is still faster than
all other implementations and that its performance is independent
of selectivity. This is understandable given that GPU-based index
construction is executed regardless of selectivity, and, most import-
antly, the query execution phase of GpJSON is a relatively small
part of overall runtime execution.

4.2.2 Varying the file size. Subsequently, we assess how the data-
set’s size affects the tested implementations’ performance. To do
this, we alter the size of the TT dataset to be between 0.125× and
16× of the original, resulting in a file size between 100MB and 13GB.
Again, we utilize it with the $.user.lang[?(@ == "en")] query.
Since we set a partition size of 1GB, any dataset bigger than that

runs in batch mode.We compare GpJSON running on the three dif-
ferent GPUs and Java JSONPath, Pison, RapidJSON, and simdjson
running on the HPC processor. The outcomes of this analysis are
shown in Figure 7. GpJSON needs at least 400MB (0.5×) to achieve
full performance from the A100, while V100 and P100 need at least
200MB (0.25×) to saturate our implementation. Increasing dataset
size does not compromise performance at all in any of the three
NVIDIA generations tested. The performance of C++ libraries is not
influenced by the different input file sizes. Instead, Java JSONPath
performance drops by about 30% for files larger than 2GB (2×).

The above results demonstrate that our implementation out-
performs existing low-level, manually tuned, cutting-edge JSON
querying frameworks. We demonstrate that the selectivity of a
query has no bearing on how quickly we can parse JSON data
compared to other state-of-the-art JSON parsers. GpJSON, however,
only performs well on relatively large datasets (bigger than 250MB);
compared to other libraries, small datasets show a substantial re-
gression. Our implementation shows a performance increase of over
15× over existing JSONPath query libraries available to high-level
scripting languages such as JavaScript with a comparable (even less
complex) API.

4.3 Experimental Results Vs. RAPIDS
No other libraries exist that can execute JSONPath queries on a
GPU. However, JSON parsing and data processing can be achieved
on GPUs using NVIDIA’s RAPIDS [27] library. RAPIDS does not
support running JSONpath queries and can operate only on JSON
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Figure 10: Performance ofGpJSONand
cuDF across different GPUs. File size
was fixed at 1,600MB.

objects with a given JSON schema. In contrast, GpJSON does not
require any schema and supports JSONPath natively. Despite the
significant differences, it is nevertheless interesting to compare
GpJSON against a state-of-the-art GPU-based data processing lib-
rary. In a new experiment, we analyzed RAPIDS’s JSON data pro-
cessing (using the cuDF library in Python), comparing them against
GpJSON. We used the Python interface, as it is the most commonly
used and the most mature interface to RAPIDS. cuDF differs from
GpJSON in that it is a larger data processing library that is not
focused on JSON only. Therefore, it converts JSON data to its own
internal in-memory format before processing it. This could result
in additional overhead for RAPIDS compared to GpJSON. To more
effectively evaluate the performance impact of JSON data conver-
sion in RAPIDS, we conducted specific experiments, as discussed in
Section 4.3.2. Overall, GpJSON consistently outperforms RAPIDS
in all our experiments.

4.3.1 Varying the file size. First, we investigate the absolute per-
formance difference and the weak scaling ability of the two libraries
by comparing their performance while querying files of different
sizes. We alter the size of the TT dataset to be between 0.125×
and 8× of the original, resulting in a file size between 100MB and
6.4GB. We utilize it with the $.user.lang[?(@ == "en")] query.
Figure 8 depicts the results of this experiment. At file size 100MB,
cuDF (405 ms) takes 8x longer to parse the file than GpJSON (50 ms).
At file size 1,600 MB, the difference decrease, with cuDF (2,500 ms)
taking only 6x longer than GpJSON (415 ms). The difference how-
ever is still substantial. Both GpJSON and cuDF consume significant

GPU memory. GpJSON streams data in and out of GPU memory
as needed to process files while require more than the available
GPU memory. cuDF crashes when processing files which require
more than the available GPU memory. On an NVIDIA RTX A4000
GPU with 16GB of memory, cuDF fails to parse files larger than
2 GB. When using larger cards such as A5000 (24 GB memory) and
A6000 (48 GB), cuDF still encounters memory errors even when free
memory is available. Some such errors are already reported [26] and
others have not yet been reported. These results demonstrate that
GpJSON is more performant and more reliable than the other cur-
rent available GPU JSON data-processing library. However, cuDF
offers more features than just JSON data parsing. Ideally, cuDF
should integrate GpJSON and the techniques it proposes into its
data parsing infrastructure.

4.3.2 Investigating memory usage. We investigate the memory con-
sumption of cuDF and GpJSON to identify why cuDF performs
worse. We record the memory usage of both libraries while they
process a 1,600 MB file on a NVIDIA RTX A6000 GPU. We use the
nvidia-smi tool to sample memory usage at 6 Hz, the maximum
supported by nvidia-smi. Figure 9 depicts the exemplary memory
usage of both GpJSON and cuDF from application start to finish.
We observe that cuDF takse 2x GpJSON’s total execution time just
to initialize. cuDF occupies during initialization (1,886 MB) 67%
as much as GpJSON takes at its peak (2,824 MB). cuDF has a peak
memory usage of 13,948 MBwhich is 5x GpJSON’s peak. The results
indicate that cuDF developers should investigate the cause of the



Index name Size [MB]

String index 105.27
String carry index 16.78
Newline carry Index 67.11
Newline index 1.24

Index name Size [MB]

Escape index 105.27
Escape carry index 16.78
Leveled bitmap carry 16.78
Leveled bitmap index 210.54

Table 2: Index sizes for Query TT1.
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high initialization time, and the extremely high memory utilization
during processing.

4.3.3 Varying the GPU model. We examine whether our results
generally hold across multiple GPU models and compare the per-
formance of the two libraries across 4 GPU models. We fix the file
size at 1,600MB, close to the largest size that can be processed by
cuDF. Figure 10 depicts the results of our experiment. We observe
that GpJSON consistently performs 5-6x faster than cuDF on all
GPU variants. The results demonstrate that the GpJSON architec-
ture can make different GPUs and their features the same as cuDF,
and with higher performance.

4.4 Performance breakdown

In addition to comparing against existing libraries, it is inter-
esting to analyze the performance of GpJSON internals. We first
compare the index construction time to the query execution time.
Figure 11 shows the performance breakdown for the queries of
Table 1 on a 1GB file on the A4000 GPU. As depicted in the figure,
index construction, particularly for string indexes, consumes most
of the execution time. This result is expected because, as mentioned
in Section 3.1, constructing string indexes requires the execution
of several GPU intermediate kernels.

The evaluation of the total memory usage of the indexes is an-
other important factor. Table 2 presents the memory consumed

by all GpJSON indexes with partition size 1GB on the TT1 query
(other queries have similar memory usage). The largest indexes
track each input data character, such as string, escape, and leveled
bitmap indexes. These indexes are similar in size to SIMD-based
solutions that generate structural indexes [30, 31]. In contrast to
existing SIMD-based frameworks, however, all GpJSON indexes are
exclusively allocated to GPU memory and never accessed from the
CPU. This design allows GpJSON to exploit the GPU’s very high
memory bandwidth during query execution, which is performed by
traversing indexes in parallel. Finally, GpJSON handles multiple file
lines concurrently using the data partitioning strategy from Sec-
tion 3.1.1. Consequently, the memory used by indexes of a partition
is allocated once and re-used across partitions.

Finally, another interesting aspect is how various query patterns
affect GpJSON performance. To evaluate this, we implemented
a final experiment using microbenchmarks on JSON objects and
arrays at different query depths. The microbenchmark executes
queries on two 1GB datasets consisting of uniformly structured
nested objects (or arrays), where all JSON objects are identical. We
execute queries on both datasets, starting at a single nesting level
(i.e., $.p0 for the first property of an object and $.[0] for arrays)
and progressively increasing the depth (e.g., $.p0.p1.p2.p3 for
nesting depth 4 in an object, etc.) up to a maximum depth of 15
properties or array elements. Figure 12 presents the results of the
microbenchmarks, which illustrate that queries at varying depths
generally execute at similar performance, with the query structure
having minimal impact. This aligns with Section 6 findings across
various selectivity levels, as GpJSON mainly spends its parallel
execution time on index construction for all input data, regardless
of the query structure, as shown in Figure 11.

5 RELATEDWORK
Mison [31] was previously discussed in Section 2.2. It is among
the first to leverage structural indexes and SIMD on CPUs for pro-
cessing JSON data. Simdjson [30] is another very popular SIMD-
based JSON parser. It fully parses and validates the document, rather
than only extracting some fields without validating them, as Mison
does. Unlike Mison, simdjson doesn’t allow querying via its API.
Users must manually query the JSON tree to extract data, as it lacks
support for query languages like JSONPath.Another parallel JSON
parsing system, Pison, was proposed by Jiang et al [24]. It is based
on methods developed by Mison and simdjson, however, instead of
building the structural index sequentially on the CPU, it combines
SIMD instructions with multi-threading. The authors claim a spee-
dup of 4.6× over simdjson when all records can be processed in
parallel. In our context, however, Pison has a significant limitation.
Its parallel implementation does not perform well out of the box
for Line-delimited JSON files, and it requires manually handling
the parallelism at the line level. In recent work, SIMD-based tech-
niques have been enhanced to handle a wider variety of queries,
such as handling descendants [15]. Besides structural indexes, other
techniques for JSON parsing exist. Given the inefficiencies of JSON
parsing, commercial databases typically store JSON objects using
optimized binary formats to increase query performance [32, 33]. A
notable exception to this is presented in [11], which introduces sev-
eral advanced JSON parsing techniques that can be used to query



JSON data directly. The techniques presented in [11] show that it
is possible to query JSON data on a CPU with high performance
exploiting the properties of the data being parsed. GpJSON, on the
contrary, achieves high performance on GPUs without the need to
analyze the properties of the data being queried.

Several projects have already proven GPUs’ potential in speed-
ing up general-purpose databases. Due to the enormous parallelism
made possible by a GPU-based approach, such works demonstrate
a significant speedup over conventional CPU-based databases. He
et al. [20] show that their GPU-based join algorithms can achieve
a performance improvement of 2×-7× over their optimized CPU-
based counterparts. Bakkum and Skadron [3] achieve a speedup of
at least 20× in SQLite by merely accelerating SELECT SQL queries.
Simion et al. [44] demonstrated a speedup of at least 6× for simple
queries, where the transfer time from the CPU to the GPU is a
significant fraction of the query execution time. Their solution can
reach 62×–240× speedup for bigger queries, due to the consider-
ably lower memory transfer overhead. These studies demonstrate
that, by converting conventional CPU-based applications to GPU-
based techniques, considerable performance improvements can be
obtained. This is the reason why several GPU-optimized commer-
cial databases have been proposed over the last few years, such as
HeavyDB [21] (previously known as OmniSci), SQreamDB [45], and
Kinetica [22]. However, it is worth noticing that these GPU-based
database systems usually rely on their own storage or use binary
formats, such as Apache Arrow [12] and Apache Parquet [14]. Thus,
they cannot process raw files like textual LD-JSON. An interesting
solution in this direction is ParPaRaw by Stehle et al. [46]. They
use a Deterministic Finite Automaton (DFA) for parsing CSV files.
Since each GPU thread processes its chunk in parallel and does not
know what the starting point of the DFA should be, data is scanned
from all possible starting states. Later, the processed chunk will be
combined with the correct parsing state. Another more advanced
technique to parse CSV data in parallel is presented in [29]. Unlike
with ParPaRaw, [29] parses a CSV file on a GPU by first splitting
the input in multiple chunks, and then building parallel prefixes and
indexes in parallel. The approach discussed in [29] shares with our
approach the idea that input data needs to be split in equally-sized
partitions to better leverage the GPU processing power, and the
technique to identify new lines in [29] on a GPU is comparable to
the one we discuss in Section 3.1.2. Compared to those of [29], the
indexes that are built by GpJSON are more complex, as GpJSON
needs to construct and index the entire JSON object tree in order to
allow queries. In contrast [29] is a pure parser and does not provide
any mechanism to query the CSV data, and therefore does not need
to build structural indexes. To the best of our knowledge, GpJSON
is the first work that leverages structural indexes for parallel pars-
ing and querying of large JSON data using SIMT techniques on
GPUs. Moreover, by leveraging the polyglot GraalVM ecosystem,
GpJSON is available to multiple high-level dynamic programming
languages. The work presented in [25] discusses how to parse JSON
objects with a fixed JSON schema [42], which greatly simplifies
the task of data de-serialization In contrast, GpJSON can parse any
JSON object, regardless of its schema, format, and more in general
content. A similar approach is also implemented in the RAPIDS
cuDF library [27]. Like with [25], this is a framework that expects

the input JSON data to have a well-specified static structure, which
is more restrictive compared to what GpJSON supports.

In addition to CPUs and GPUs, specialized hardware has been
extensively investigated to accelerate data processing of popular
formats (e.g., XML [49, 51]). In recent years, FPGA accelerators
have also been explored for JSON. A first approach has been to
use FPGAs as co-processors to pre-process data for subsequent
CPU usage. Hahn et al. proposed raw filtering [17], which allows to
avoid unnecessary parsing by implementing approximate filters for
strings, numbers, and structural patterns on an FPGA. Peltenburg et
al. [39] developed an FPGA-based technique to convert JSON data
(with a known schema) to Arrow. Finally, Dann et al. [8] presented a
fully compliant FPGA-based JSON parser inspired by simdjson [30].
These co-processors deliver remarkable performance, but still re-
quire CPU involvement for query execution. In contrast, GpJSON’s
partitioned usage of the GPU memory and its pipelined execution
model allow it to perform both parsing and query execution fully
on the GPU, entirely eliminating CPU intervention.

Another significant line of research has focused on end-to-end
query execution, performing both parsing and querying on FPGAs.
In this domain, a notable example has been proposed in [18], and
later extended with support for decompression in [19]. In such
approaches, the FPGA is specialized for a given JSONPath query,
and hardware reconfiguration is needed to execute different quer-
ies. Specialized parsing and querying on an FPGA offer excellent
performance but sacrifice generality and require careful usage of
the FPGA resources. In contrast, GpJSON’s bytecode-based query
execution engine allows it to execute any arbitrary query on the
GPU without the need to re-compile and install a new CUDA kernel
for every different query.

6 CONCLUSION
This work introduces GpJSON, a JSON analytics library that can be
used to query LD-JSON documents using JSONpath expressions.
GpJSON entirely operates on the GPU and relies on the parallel
construction of structural indexes. JSONPath query execution in
GpJSON is achieved by means of a lightweight query engine oper-
ating on the GPU itself, and the partitioning mechanism used by
the library makes it possible to pipeline multiple query execution
stages, effectively increasing throughput. GpJSON is implemented
targeting the GraalVM language runtime, making it available to
multiple high-level dynamic programming languages such as JavaS-
cript or Python. In our experiments, we provided an evaluation
of GpJSON using datasets obtained from real-world applications,
showing that GpJSON outperforms cutting-edge technologies like
simdjson, Pison, RapidJSON, Java JSONPath, and RAPIDS in terms
of execution time.
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