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Abstract
Distributed tracing is crucial to achieve observability in modern
distributed systems. However, its adoption introduces performance
trade-offs, impacting throughput and latency. This paper inves-
tigates the overhead of distributed tracing in microservices and
serverless applications. We provide an analysis of the popular Open-
Telemetry and Elastic APM distributed tracing frameworks, eval-
uating their performance impact on microservices and serverless
workloads. We highlight and categorize the primary sources of
overhead and measure their contribution to performance degrada-
tion. The results reveal significant throughput reductions (19-80%)
and latency increases (up to 175%) depending on application con-
figurations and execution environments. Our findings reveal that
serializing trace data for export is the largest cause of overhead.

CCS Concepts
• Computer systems organization→ Cloud computing; •Gen-
eral and reference→Measurement.
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1 Introduction
Modern cloud software often contains microservices and serverless
applications [19, 23]. These new architectures have been adopted in
various domains, including web development, data processing, and
microservice architectures [10]. However, the complex intercon-
nected nature of these architectures demands high observability to
ensure reliability and performance [25].

Distributed tracing has emerged as a necessary tool for mon-
itoring and diagnosing the performance of distributed systems,
including microservices and serverless applications [22, 24]. By
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tracking requests as they flow through various services and compo-
nents, distributed tracing provides insights into the behavior and
interactions within applications [11, 26]. This level of observability
is necessary to identify performance bottlenecks, understand sys-
tem dependencies, and ensure the reliable operation of distributed
applications [22]. Despite its benefits, distributed tracing introduces
additional overhead, which can negatively impact the throughput
and latency of the applications being monitored [14, 16, 20, 27, 28].

Understanding the performance implications of distributed trac-
ing is crucial [11]. Applications that partition work into indepen-
dently processed tasks can be particularly sensitive to the over-
head introduced by tracing [17, 31]. These applications involve
low-latency operations, where even small increases in latency can
significantly impact overall performance. As a result, it is essential
to quantify the performance overhead of distributed tracing and
identify the main contributors to this overhead.

This paper aims to fill the gap in the understanding of distributed
tracing overhead, providing a detailed evaluation of the impact of
tracing on different system types.

This paper makes the following contributions:

(1) We introduce a systematic framework for measuring tracing
overhead across diverse applications and environments in
Section 3.

(2) We comparatively analyze the OpenTelemetry and Elastic
APM instrumentation tools and analyze their performance
for microservices in Section 4.

(3) We analyze the instrumentation overhead of OpenTelemetry
for serverless applications in Section 5.

(4) We provide insights into the main contributors to tracing
overhead, including the configuration, instrumentation, and
export stages in Section 6.

2 Background: Distributed Tracing in Serverless
Applications

Distributed tracing is a technique to monitor and track requests as
they move through different elements in a distributed system (e.g.,
messages in a serverless application). Capturing a request’s lifecycle
provides insights into how services interact, the sequence of oper-
ations, and where time is spent within the system. The resulting
visibility offers several key benefits. First, it enables (End-to-End
Traceability), allowing comprehensive monitoring in complex dis-
tributed architectures. Subsequently, it enables Performance Insights
by evaluating performance metrics, including request latency and
execution time of specific operations within the applications. It
favors Root Cause Analysis, as it provides additional context for
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troubleshooting errors, making it easier to pinpoint the cause of a
performance problem. Finally, it allows a better understanding of
Service Dependencies, offering a clear picture of service relation-
ships and interactions [22].

Given the importance of distributed tracing, several frameworks
have emerged in the last few years that integrate with the most
popular programming languages used to implement serverless ap-
plications. In this paper, we focus on the two most prominent frame-
works, namely OpenTelemetry and Elastic APM. In the following
sections, we briefly introduce the main properties of both frame-
works.

OpenTelemetry [8] is an open source observability framework
that provides standardized methods for collecting, processing, and
exporting telemetry data, including traces, metrics, and logs. Open-
Telemetry provides standardized APIs and SDKs for trace data
collection, supported in multiple languages and frameworks.

Elastic APM [1] is an application performance monitoring sys-
tem designed to provide detailed performance data and end-to-end
distributed tracing for applications. It is part of Elastic Stack [2], an
observability framework designed to collect, analyze, and visualize
logs, metrics, and traces.

3 Distributed Tracing Overheads Analysis
In this work, we aim to study the performance trade-offs associated
with distributed tracing frameworks and evaluate their potential
influence on system performance. To this end, we measured the
overhead of tracing frameworks using controlled experiments in
a variety of popular applications and deployments. We focus on
quantifying the impact of tracing on throughput, latency, and re-
source utilization, as well as on identifying the main sources of
overhead. We have designed and executed three sets of experiments
that focused on different applications and purposes. First, we fo-
cused on the performance of standalone microservices. This had
the goal of measuring the instrumentation overhead of a single web
service (e.g., a single HTTP request handler). Second, we focused on
serverless applications and platforms. This second experiment had
the goal of measuring the impact of tracing and instrumentation in
more realistic cloud deployment scenarios. Finally, we expanded
on the two previous experiments and analyzed the sources of the
performance overhead measured in our experiments with the goal
of identifying the root causes of performance degradation.

3.1 Experimental Workloads and Frameworks
We based our microservice performance evaluation on the Tech-
Empower Framework [7]. For serverless applications, we used the
Serverless Benchmark Suite [13] (SeBS). Both benchmarking frame-
works provide a variety of workloads and implementations in dif-
ferent programming languages. In every experiment, the baseline
consisted of unmodified applications without instrumentation. We
utilized OpenTelemetry and Elastic APM to instrument all services,
allowing us to evaluate throughput and latency across different
workloads. The experiments were executed within a Kubernetes en-
vironment, using containerization to ensure consistent and repeat-
able configurations. The experimental setup involved multiple itera-
tions of tests to account for variability in system performance. Each
iteration measured key metrics such as request latency, throughput,

and CPU utilization in different tracing configurations. The results
were aggregated and analyzed to identify patterns and outliers.

3.2 Experimental setup
All experiments were conducted on a dedicated cluster node with
the following hardware specifications: Intel® Xeon® Silver 4416+
Processor at 2.00 GHz, with 20 cores and 40 threads; 256.0GB of
DDR4 RAM, consisting of four RAM units configured to operate
at 1200 MHz (2400 MT/s); 1.5 TB of SSD storage; Ubuntu 22.04.4
LTS. Regarding langauge runtimes, the versions used are: Python
v3.9, Node.js v18, Java 17, and Go 1.21. All experiments have been
deployed on a Kubernetes cluster (v 1.20) running Docker 27.2.1.
We have used the most recent stable versions of OpenTelemetry
APIs (1.25.1 for JavaScript and Python) and likewise for Elastic APM
(6.22.0) with a recent installation of the Flask framework (3.0.3).

4 Experiment 1: Microservices
In our first experiment, we explored how distributed tracing influ-
ences the performance of simple microservices implemented using
popular programming languages. This first experiment aimed to
quantify the overhead across different popular frameworks used
for microservices development, namely Python Flask, Java Spring,
Go http, and Node.js. For this purpose, we assessed these four web
frameworks in relation to four separate microservices. By testing
these diverse frameworks, we aim to cover a wide range of use
cases prevalent in software development due to their widespread
use [3, 4, 6]. The variety also ensures in-depth analysis of how dis-
tributed tracing performs across different programming paradigms
and runtime environments, and reduces the risk that overhead
measurements are impacted by language-specific aspects. In this
experiment, we evaluated the performance impact of distributed
tracing by measuring Requests Per Second (RPS) under realistic
conditions simulating peak traffic. We established the impact of
instrumentation on the applications by determining the maximum
RPS each application can handle while maintaining a constant CPU
utilization.

4.1 Applications under test
This first experiment is based on four different microservices in-
cluded in TechEmpower [5]. TechEmpower is a comprehensive
benchmarking suite designed to measure the performance of web
frameworks. It provides a standardized methodology for a fair com-
parison between different web technologies. The suite includes
seven test types: JSON serialization, single and multiple database
queries, server-side templating, database updates, plain text pro-
cessing, and caching mechanisms. These endpoints cover various
application workflows, enabling a robust evaluation of applications
under different workloads. We selected four endpoints for our ex-
periments, covering multiple use cases to thoroughly compare the
applications under various workloads. The implemented endpoints
are json, db, object, and queries. These endpoints are described in
the Techempower benchmark documentation [5].

In this experiment, we compared OpenTelemetry and Elastic
APMwith a baseline uninstrumented application. Automatic instru-
mentation was applied to OpenTelemetry and Elastic APM setups
across all web frameworks assessed. Additionally, we employed
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Figure 1: Throughput of microservices benchmarks with dif-
ferent instrumentation frameworks.

PostgreSQL5, a widely-used open-source object-relational database
system. Its prevalent usage and support within the TechEmpower
Framework made it an appropriate choice for our experimental
architecture.

4.1.1 Load generation. To generate the experimental requests work-
load, we used k6 [9], an open source load testing tool designed to
test the performance and reliability of web applications. k6 of-
fers scripting capabilities and a variety of executors to simulate
real-world traffic patterns and stress test web applications. We se-
lected k6 because it can generate consistent and customizable load
patterns and supports distributed and large-scale performance test-
ing. In our experiment, we configured k6 to use scenarios and the
constant-arrival-rate executor to run the load tests. This configura-
tion allowed us to maintain a consistent request rate throughout
the duration of the test, ensuring that the applications are subjected
to a steady load for stable results. We defined a k6 test scenario
for each endpoint, instrumentation method, and combination of
framework. Each scenario is configured with duration, number of
virtual users, warmup period, and cooling period.

4.2 Results overview
The main findings for this experiment can be summarized as fol-
lows.

• Distributed tracing reduces throughput across all frame-
works, with declines ranging from 19.55% to 80.18%.

• Java Spring exhibits the lowest overhead with microservice
applications, while Node.js shows the most significant im-
pact on throughput.

• OpenTelemetry generally delivers higher throughput than
Elastic APM across most frameworks.

The results underscore the importance of selecting appropriate
tracing configurations based on application characteristics and
programming languages. For example, frameworks with high-level
abstractions, such as Python Flask, exhibited greater sensitivity to
tracing overhead. In contrast, lower-level frameworks like Go http
demonstrated more stable performance under similar conditions.

4.2.1 Throughput. Figure 1 shows the aggregated throughput in re-
quests per second across three configurations. The non-instrumented
configuration has the highest throughput, with a median of 395 RPS
and a mean of 691.88 RPS, reaching a maximum of 2,400 RPS. When
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Figure 2: Latency of microservice endpoints with different
instrumentation frameworks.

tracing is enabled, throughput decreases significantly. With Open-
Telemetry, the median throughput decreases by 38.6% compared
to the non-instrumented median. The mean throughput drops by
36.0% and the maximum throughput drops to 1,580 RPS (decreased
by 34.20%). The elastic APM instrumented configuration has an
even greater impact on throughput, with the median falling to 200
RPS, a 49.4% decrease. The mean throughput drops to 382.5 RPS,
marking a reduction of 44.7%, while the maximum value of RPS is
reduced to 1,480 RPS. We observe that elastic APM introduces a
more significant performance overhead with respect to throughput
than OpenTelemetry.

4.2.2 Latency. section 4.2.2 illustrates the distribution and median
latency in milliseconds for different instrumentation configura-
tions (non-instrumented, OpenTelemetry instrumented, and Elastic
APM instrumented) for the four benchmark endpoints (json, db,
updates, and queries). The data is aggregated over the evaluated
frameworks to present a general view of latency overhead across dif-
ferent requests. The figure shows that enabling distributed tracing
consistently increases latency compared to the non-instrumented
configuration. The extent of overhead highly varies depending on
the endpoint. For the json endpoint, latency increases by approxi-
mately 19%, from a median of 0.62 to 0.74 ms with OpenTelemetry,
while elastic APM introduces a lower increase 7%. The upper quar-
tile value is also significantly higher for OpenTelemetry. The impact
is more significant for the endpoints for updates and queries. The
median latency for the update endpoint increases by 16.5% for Open-
Telemetry and approximately 42% for Elastic APM. For queries, the
performance overhead for both instrumentation tools is similar:
39.6% for OpenTelemetry and 42.7% for Elastic APM. Overall, the
less intensive endpoints json and db incurred less overhead overall
and less overhead with Elastic APM compared to OpenTelemetry.
However, more intensive benchmark updates and queries exhibited
less overhead with OpenTelemetry in comparison to Elastic APM

5 Experiment 2: Serverless Applications
We performed a second experiment to evaluate the performance
overhead introduced by distributed tracing in serverless applica-
tions. We examine how tracing impacts application latency and
compare these effects across different programming frameworks.
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The analysis aims to provide insight into the trade-offs involved in
implementing tracing in serverless applications.

5.1 Application under test
We designed a series of test scenarios across multiple configurations
and environments to evaluate the performance overhead of tracing
in serverless applications. The experiments are centered on two
of the most popular programming frameworks for microservices,
namely Python Flask and Node.js, using five distinct benchmark
applications. Each application is executed in two configurations: in-
strumented (with tracing enabled) and non-instrumented (without
tracing). The setup allows us to analyze the impact of tracing across
different applications and frameworks, resulting in 20 individual
benchmark executions (10 per framework: 5 instrumented and five
non-instrumented).

The benchmark applications represent a range of microservices
workloads, including low- and high-latency services. We aim to
isolate the overhead introduced by tracing and assess how it varies
across different frameworks and workloads.

All experiments are based on the Serverless Benchmark Suite
(SeBS), a framework designed to evaluate the performance and
cost-efficiency of serverless platforms and functions [13]. SeBS fa-
cilitates the deployment, execution, and measurement of serverless
functions across multiple cloud platforms, including AWS Lambda,
Azure Functions, Google Cloud Functions, and Apache OpenWhisk.
The framework provides various benchmark applications that re-
flect typical serverless workloads. We used five SeBS applications,
each selected to represent different types of workload to assess the
performance impact of tracing comprehensively. The benchmarks
include web application tasks, multimedia processing, and a sci-
entific computation task. This diversity helps to evaluate tracing
overhead across a wide range of scenarios.

All applications are implemented in Python and Node.js. For
benchmarks without a native Node.js version, we developed Node.js
implementations based on the Python version and existing code
examples. Each application has both instrumented (tracing enabled)
and non-instrumented versions, resulting in 20 different configura-
tions (10 per programming language).

The applications used in this experiment are dynamic HTML,
uploader, thumbnailer, video processing, and graph pagerank. These
applications are described in the SeBS paper [13].

By evaluating these benchmarks, we can analyze how tracing
affects various serverless tasks, providing insights into its suitability
for different applications.

5.2 Results overview
Serverless functions exhibited different and diverse overhead pat-
terns. Short-duration tasks, often reliant on cold starts, faced latency
increases up to 175%. This overhead mainly stemmed from the trac-
ing configuration and data export stages. Long-duration tasks, on
the contrary, showed modest increases of 6.7%, highlighting a rel-
ative marginal impact of tracing when applications perform long
operations.

Cold-start latency was particularly pronounced in environments
with extensive configuration requirements: the initialization of
tracing components contributed significantly to cold start overhead,
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Figure 3: Mean execution time of different applications from
the SeBS benchmark.

and optimizing these initialization processes could mitigate the
impact on short-duration tasks.

5.2.1 Impact on different applications. Figure 3 presents box plots
for five serverless workloads across non-instrumented and instru-
mented configurations. The results of the benchmarks are aggre-
gated over both Python and Node.js evaluations.

The results indicate that the performance impact of tracing in-
strumentation varies widely depending on the workload type. For
example, dynamic-html workload, with a relatively low baseline
latency of 2.53 ms, shows an increase in median latency to 6.96 ms
when instrumented, showing an overhead of approximately 175%.

As the median request duration increases, the overhead gener-
ally decreases. For example, the uploader and thumbnailer with
moderate median request durations show a more modest increase
- 13.43% overhead for the uploader and 8.29% for the thumbnailer.
However, the video-processing workload with a median latency of
approximately 1,411 ms exhibits a substantial increase of 27.32%.
This considerable increase is the result of the 70.69% overhead in
Python as Table 4.3 shows. The graph pagerank workload, which
has the highest baseline latency among workloads with a median
of 4,579.33 ms, shows the lowest overhead with 6.69%.

The data highlight that tracing introduces a considerable perfor-
mance impact across workloads. The functions with lower request
duration show the highest increase but still the lowest increase
in absolute values. The more compute-intensive workloads incur
lower overhead in percentage but higher in terms of absolute values.

6 Overhead Analysis
In distributed tracing, various sources contribute to the overall
overhead observed in the application and its instrumentation. In a
final experiment, we evaluated the overhead sources in the compu-
tational part of distributed tracing [21]. The primary contributors
to overhead can be categorized and quantified as follows:

• Configuration: Initialization and setup of tracing compo-
nents, including metadata generation, contributed signifi-
cantly to cold-start latency in serverless environments.
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Figure 4: Contribution of different tracing stages to the in-
strumentation overhead for microservice applications.

• Instrumentation: Capturing trace points and enriching
metadata introduced computational overhead, particularly
in frameworks relying on runtime instrumentation. Detailed
profiling revealed that the frequency and granularity of trace
points were key factors influencing this overhead.

• Export: Transmitting trace data to external storage systems,
such as Elasticsearch, accounted for the majority of network-
related performance costs. Batch processing and compres-
sion techniques were explored as potential optimizations to
reduce export overhead.

An overview of the different impact of such overhead sources on
the microservices of Section 4 is depicted in Figure 4. As the figure
shows, exporting data to an external service is the largest con-
tributor to overhead for microservices. For serverless applications
the sources of overhead depend very much on workload-specific
aspects of an application, and are not directly influenced by the
framework being used.

7 Related Work
Several studies measured either throughput or latency [15, 17, 20,
28–30] of distributed tracing. However, many studies do not report
the absolute performance values, making it difficult to perform
direct comparisons between tools.

Given the impact of instrumentation overhead, several mitiga-
tion strategies have been proposed. Google Dapper [28] samples
0.1% of requests, resulting in 16.3% latency and 1.5% throughput
overhead. Canopy [20] uses sampling, with an 8.15% overhead for
short duration applications and 0.76% for long ones. NanoLog [29]
leads to a 4% increase in latency and a 19% reduction in throughput.

Popular tools such as OpenTelemetry, Jaeger, Zipkin, and Elastic
APM vary significantly in the overhead they introduce and in the
integration complexity with different systems [12, 18, 22].

8 Conclusion
Distributed tracing is essential for observability but introduces
significant performance overhead. Our study quantifies these im-
pacts, categorizes the sources of overhead, and provides actionable
insights for mitigating performance penalties while maintaining
system visibility. Future work includes exploring lightweight trac-
ing methodologies, dynamic sampling strategies, and integrating
machine learning models to predict and optimize tracing config-
urations in real-time. Our experiment code is open-source and

available at https://github.com/atlarge-research/serverless-tracing-
overhead.
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