
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Mewbie: Scale Adjustable Benchmark for
Microservice Deployments

Author: Ritul Satish (2801882)

1st reader: Prof. dr. Alexandru Iosup
2nd reader: Dr. Daniele Bonetta
Daily supervisor: Sacheendra Talluri, MSc
External Supervisors: Prof. dr. Rodrigo Miragaia Rodrigues

Dr. João Garcia
João Loff, MSc (INESC-ID, Lisbon)

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

October 14, 2025

“He who can listen to the music in the midst of noise can achieve great things.”

by Dr. Vikram Sarabhai

ii

Abstract

Microservice architectures have become essential for modern software systems

and services across diverse sectors. While they offer advantages in scalability

and agility, their inherent complexity and massive scale make it hard to under-

stand the performance implications of system architectural and design choices.

This limitation affects researchers and developers even more severely, as they

lack access to realistic production environments.

Furthermore, while a few microservice benchmarks exist, they fall short of this

goal as they are based on simplified applications, orders of magnitude smaller

than real-world deployments.

We present Mewbie, the first scale-adjustable benchmark that leverages produc-

tion traces to create flexible and representative microservice workloads. Mewbie

is based on very large scale production traces, but scales to any deployment

size through a novel trace downscaling technique that preserves key topological

features of the original trace, enabling realistic benchmarking of the various

components of a microservice architecture without the overhead of a full-scale

deployment.

We showcase Mewbie in a datastore-centric scenario, exploring how a microser-

vice deployment based on Alibaba’s production dataset responds to varying

datastore mixtures (Redis, MongoDB, and MySQL) and diverse consistency

semantics. Our evaluation focuses on Mewbie’s ability to simplify large traces,

measure the effects of different system designs, and adapt to various service

configurations. Together, these capabilities demonstrate how Mewbie helps

uncover the performance impact of architectural decisions.

iv

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Questions . 4

1.3 Research Methodology . 5

1.4 Thesis Contributions . 6

1.5 Societal Relevance . 7

1.6 Plagiarism Declaration . 8

1.7 Thesis Structure . 8

2 Mewbie Design 9

2.1 Requirements . 9

2.2 Architecture Overview . 10

2.3 Mewbie Target Metrics . 12

3 Trace Downscaling 13

3.1 Limitations of Existing Techniques. 13

3.2 Topological Properties of Microservice Traces. 14

3.3 Our approach: Microservice Trace focused Downscaling 15

4 Mewbie Implementation: Benchmark Generation & Execution 21

4.1 Benchmark Generation . 21

4.2 Benchmark Execution . 25

5 Evaluation 29

5.1 Experimental Setup . 29

5.2 Can Mewbie downscale large-scale microservice traces while preserving topo-

logical properties? . 30

5.3 Can Mewbie evaluate the performance of microservice deployments? 32

i

CONTENTS

5.4 Can Mewbie benchmarks be customized, in terms of adjusting service inter-

nal configurations? . 34

6 Related Work & Conclusion 39

6.1 Related Work . 39

6.2 Conclusion . 40

References 43

ii

1

Introduction

Microservice architectures were initially adopted by large-scale service providers, such as

Meta (1), Uber (2), Netflix (3), and Alibaba (4), and have since evolved into the de

facto standard for building modern web-based applications. Microservices deliver several

benefits such as flexibility, resilience, and independent development, deployment, and scal-

ability – qualities that have driven their widespread adoption across diverse use cases and

deployment sizes, from niche applications to enterprise-level systems (5). However, these

same advantages can result in inherently complex deployments, as multiple services must

coordinate, communicate, and evolve organically.

One major advantage of microservices is that they allow independent scalability (6).

Each service runs independently with resources required for its smooth performance. De-

velopers can scale only the parts of the systems that need more resources. For example,

netflix can scale its video streaming service during peak hours without having to scale other

services like payment or recommendation engine in a similar way (7). This helps avoid

over-provisioning of resources while still delivering smooth performance to the users (8).

Another key advantage of microservices is fault isolation (6). If one service fails, the

rest of the system is functionally thus avoiding full system outages in the case of service

crashes. Amazon uses this approach, this way, if the payment service has an issue, users

can still browse and add products to their carts (9).

These advantages, though powerful, come at the high cost of increased architectural com-

plexity, which in turn demands robust strategies for monitoring, testing, and performance

evaluation.

1

1. INTRODUCTION

Real World
Traces

Trace
Downscaler Downscaled

 Traces

Mewbie Outputs

InputsInputs

Figure 1.1: High-level Mewbie benchmarking pipeline.

1.1 Problem Statement

Identifying best practices and evaluating trade-offs between scalability, performance and

correctness in different design alternatives remains a significant challenge in microservice

architectures (10, 11, 12). These challenges stem from coordinating multiple services that

may use distinct communication protocols, datastores, and frameworks – all of which

increase the complexity of diagnosis and optimization. On top of that, microservices in

real-world deployments often reach an impressive scale (2, 4), far beyond that of traditional

distributed systems. This makes it hard to identify potential issues early and to validate

whether proposed solutions will hold up at production scale, thus hindering design iteration

and deployment speed.

which makes it difficult not only to discover potential problems ahead of time, but also

to ensure that proposed solutions will actually work at production-level size.

Given the growing importance of microservice architectures, several benchmarking efforts

have emerged – aiming to evaluate performance, resource utilization, and overall behav-

ior under realistic conditions. Such benchmarks are of great importance, as they enable

identifying performance bottlenecks, comparing architectural approaches, and highlight-

ing optimal configurations – much like what YCSB (13) did for the datastore community.

However, benchmarking microservices is inherently more complicated than benchmark-

ing databases. In particular, simply increasing the number of client requests or object

size does not suffice to evaluate scalability. Microservices involve heterogeneous datastores

(e.g., caching vs. relational databases), complex communication patterns (e.g., synchronous

vs. asynchronous), and various service roles (stateless vs. stateful).

To address these issues, a few microservice benchmarks emerged, including DeathStar-

Bench (14), µSuite (15), TeaStore (16), and Acme Air (17). While these benchmarks

have the nice feature of being inspired by realistic applications such as e-commerce or so-

cial networks, they all fail to capture true real-world scale and properties (as summarized

2

1.1 Problem Statement

Table 1.1: Comparison of existing demo and benchmark applications with Mewbie.

Application Category # Services Workload
Customization

Effort

Industry

Alibaba (4) E-Commerce ∼17’000 Real –
Uber (2, 18) Transport Service ∼4’500 Real –
Netflix (3) Media Streaming ∼700 Real –
Ebay (19) Online Auctioning ∼1’000 Real –
Monzo (20) Banking ∼1’500 Real –
Demo

Online Boutique (21) E-Commerce ∼10 None High
eShop (22) E-Commerce ∼10 None High
BookInfo (23) Catalog <10 None High
HotRod (24) Transport Service <10 None High
Benchmarks

Acme Air (25) Reservation Service <10 Artificial High
µSuite (15) Data Processing 10-50 Artificial High

DeathStarBench (14)
Social Network
Media Services
Hotel Reservation

10-40 Artificial High

TeaStore (16) E-Commerce <10 Artificial High
TrainTicket (26) Reservation Service ∼50 Artificial High
Mewbie Any Custom Based on Real Low-Medium

in table 1.1). For example, most applications of DeathStarBench use less than 25 ser-

vices each, which starkly contrasts with over 17,000 services found in Alibaba’s production

traces (4) or the 4,000+ services at Uber (2).

This leaves developers and researchers stuck in a binary choice of testing their archi-

tecture and code at an unrealistic scale using those benchmarks – which cannot reliably

predict system behavior under realistic loads – or invest significantly and without much

guidance in approximating a production environment at the scale of their specific testing

needs. Furthermore, the actual target scale can vary significantly, based on the resources

available to developers, which might be limited by factors such as cloud infrastructure

costs. As such, having the flexibility to scale up or down within a wide range is desirable,

as it would allow developers to use their available resources to approximate the character-

istics of real-world microservice deployments, even if they cannot replicate every nuance of

massive production environments.

We identify four core problems:

• Existing benchmarks do not reflect the scale and operational complexity of real-world

microservice deployments.

3

1. INTRODUCTION

• Simulating production environments is expensive, both in terms of infrastructure

costs and developer efforts.

• There is a lack of customizable benchmarking frameworks that adapt to varying

resource constraints.

• Open source microservice traces often lack critical information such as request se-

mantics, operation details or service roles, thus hindering their use for realistic and

representative benchmarking.

1.2 Research Questions

The goal of this work is to answer the Main Research Question (MRQ): How can

we design a scale-adjustable and customizable microservice benchmarking framework that

realistically captures real world application characteristics?

Given the challenges outlined in 1.1, the objective of this work is to propose, implement,

and evaluate a novel benchmarking system, Mewbie, that leverages real-world traces,

supports variable scale, and enables meaningful performance analysis of microservice-based

systems. This main goal is addressed through three subquestions, each aligned with a

specific problem statement (P1–P4):

This MRQ is addressed through the following subquestions:

1. Research Question 1 (RQ1): How to generate realistic and usable benchmarks and

workloads from production-scale microservice traces? As identified in P4, publicly

available microservice traces often lack essential information required to simulate

application behavior, such as object identifiers, operation semantics, and service

roles. This question focuses on the development of a trace enrichment tool that

suplements existing traces with such critical information. This enables the generation

of a realistic and representative benchmark application and workloads.

2. Research Question 2 (RQ2): How to design and implement a benchmarking

framework that enables scale-adjustability, customizablity, and automated deploy-

ment? P2 highlights the challenges of replicating production-scale environments,

while P3 emphasizes the lack of customizable benchmarking tools that adapt to dif-

ferent infrastructure constraints and target benchmarking scenarios. This research

question aims to answer the design and implementation of a modular, reusable bench-

marking system that allows users to define custom workloads, adjust architectural

features, and deploy them with minimal manual effort.

4

1.3 Research Methodology

3. Research Question 3 (RQ3): How effective is the Mewbie benchmark in uncov-

ering architectural tradeoffs and capturing the performance impact of service-level

configuration changes in microservice-based systems? As identified in P1, the lack of

realistic, scale-adjustable benchmarks for microservice systems, this question investi-

gates Mewbie’s effectiveness as a performance analysis tool. By leveraging enriched

and downscaled real-world traces, we examine how well Mewbie reveals architectural

tradeoffs, uncovers service-level bottlenecks, and captures the impact of configuration

changes.

1.3 Research Methodology

System Design & Implementation: To address RQ1 and RQ2, we adopt an iterative

and structured design approach, guided by the AtLarge Design Process (27), in combina-

tion with established software engineering practices as described by Sommerville (28) and

Bass et al. (29). The process consists of: (i) identifying design challenges , (ii) designing

architectural components and interfaces, (iii) implementing prototypes of key components,

and (iv) iterating the design and validation process until the research questions are an-

swered.

Experimental Research: To address RQ3, we adopt an experimental research method-

ology to evaluate the effectiveness of Mewbie in realistic scenarios. This includes: (i) defin-

ing relevant performance metrics such as request completion time, and application through-

put (ii) generate representative benchmarks and workloads, (iii) deploying the benchmark

infrastructure developed in RQ2 across varying configurations and scales, (iv) conducting

experiments that modify architectural features and service-level settings (e.g., communi-

cation mode, consistency level), and finally (v) analyzing the resulting performance data

to identify tradeoffs and bottlenecks.

Open Science: The Mewbie framework is released as open-source software1. This com-

mitment to open science ensures transparency, supports reproducibility, and encourages

future work that builds upon or extends our system. Evaluation data and configuration

details are also made available to enable independent validation and comparison.

1https://github.com/ritulS/MS_Benchmark

5

https://github.com/ritulS/MS_Benchmark

1. INTRODUCTION

1.4 Thesis Contributions

To address problems raised (P1-P4) and to answer the research questions (RQ1-RQ3), we

propose Mewbie, a benchmark for microservice ecosystems, which is the first benchmark

designed to capture the scale and complexity of real-world microservice deployments. When

developing Mewbie, instead of taking the conventional application-centric approach, which

is hard to scale to realistic deployment sizes, we propose a novel trace-driven design, which

leverages real-world production traces to create a benchmark based on modifiable skeleton

applications on top of a custom-scaled deployment.

More precisely, our benchmark generation method begins with existing traces from large-

scale Internet service providers – such as those released by Alibaba (4) – which capture

real user interactions. This approach enables us to replicate authentic request flows across

services and accurately mirror realistic service-to-service communication patterns. Then,

to create a practical benchmark, we addressed several technical challenges.

First, these traces often lack some of the required information to build a complete

benchmark, such as the application logic, underlying platforms, object identifiers, etc.

To overcome this, we developed a trace enrichment tool that enhances existing traces by

supplementing them with the information needed for a comprehensive analysis.

Second, the scale of the services operated by the above-mentioned real-world providers

can be overwhelming for duplication by a benchmark, in terms both of the time it might

take to run the benchmark, and, more importantly, of the monetary cost for purchasing or

accessing the respective resources. As such, we moved away from a fixed-scale benchmark,

opting instead for a flexible approach where the users of the benchmark can configure its

size according to their needs.

Finally, this flexibility introduces the challenge of downscaling the original traces that

Mewbie relies on, while still preserving their essential characteristics. In this respect,

traditional graph downscaling strategies like aggregation and coarsening tend to combine

multiple nodes into a single node (30, 31, 32), obscuring their individual characteristics

and losing information about request flow and contention. To address this, we developed

a downscaling technique tailored for microservice traces, with the goal of enabling users to

work with reduced, yet representative, versions of real-world traces.

We demonstrate the practical benefits of Mewbie through experiments using a down-

scaled Alibaba trace (4) and experimenting with different architectural decisions, such

as datastore and communication patterns, or different service-level configurations such as

datastore consistency settings. Our experimental evaluation shows how Mewbie is able to

6

1.5 Societal Relevance

showcase the performance tradeoffs of these decisions, and also to unveil covert bottlenecks

and cascading effects.

In summary, this paper makes the following contributions:

• We present Mewbie, the first benchmark for microservices that attempts to be rep-

resentative of the scale and complexity of real-world deployments. The design of

Mewbie uses production grade traces and supplements them with information like

object identifiers, stateful operations, read-write ratio, service types and async-sync

ratio. Mewbie is available as open source and can be instantiated in a similar manner

to popular benchmarks such as YCSB (13).

• We introduce a novel trace downscaling approach that reduces production microser-

vice traces to more manageable and deployable sizes, while preserving essential topo-

logical features of the call graph. Our method combines stratified and priority sam-

pling to select a representative subset of trace data. As shown in our evaluation, it

outperforms simpler sampling approaches by maintaining essential structural metrics

– such as trace depth, degree distribution, and clustering coefficient – relative to the

original graph.

• We streamline the generation, deployment, and configuration processes using our

trace enrichment and skeleton application. Mewbie effortlessly incorporates deployment-

level information into existing traces, enabling rapid benchmark creation tailored to

the user’s specific goals. Our experimental results shows that Mewbie is able to

highlight performance differences at the architectural and service level.

1.5 Societal Relevance

Answering the MRQ is not only of technical importance but also directly supports several

of the grand societal challenges outlined in the CompSys NL Manifesto (33). This work

directly addresses three out of the four challenges presented in the manifesto:- Responsi-

bility, Sustainability and Usability.

This work directly contributes toward Challenge 2: Responsibility. Microservice

systems power critical infrastrucure like transportation, healthcare, banking and public

services, therefore their availability, performance and resilience is essential for societal

well-being. By enabling realistic performance evaluation through representative bench-

marks, this research supports the design of more dependable and responsible computing

infrastructures.

7

1. INTRODUCTION

The benchmark’s scale-adjustability contributes to Challenge 3: Sustainability. In

large scale microservice application, inefficient designs and misconfigured services often

result in wasted computational and hence excess energy consumption. This research devel-

ops a benchmarking framework that allows for fine-grained iterative evaluation of different

architectural and configuration scenarios, allowing organizations to tune systems for better

energy efficiency.

Finally, the customizable nature of the benchmark aligns with Challenge 4: Usabil-

ity. By supporting performance evaluation at varying deployment scales, the benchmark

becomes accessible not only to large enterprises but also to smaller research labs and star-

tups.

Overall, this research supports the society in several ways by enabling the reliability,

efficiency, and accessibility of large scale microservice systems that make up our digital

world.

1.6 Plagiarism Declaration

I hereby declare that this thesis is the result of my own independent work and writing.

Unless explicitly cited, it does not include content copied from any external sources. Fur-

thermore, this work has not been submitted for evaluation in any other context.

1.7 Thesis Structure

The thesis is organized as follows. In chapter 2, we introduce the high-level design of

Mewbie. Next, chapter 3 details our trace downscaling process, which is followed by

a discussion of our benchmark generation approach in section 4.1, covering key design

aspects of both our trace enrichment and skeleton application components. We then present

the benchmark deployment and usage in section 4.2 and evaluate Mewbie’s downscaling

and configuration processes in chapter 5. Finally, section 6.2 concludes the paper with a

discussion and final remarks.

8

2

Mewbie Design

Mewbie is a benchmarking framework that enables realistic testing and evaluation of mi-

croservice architectures at scale. We begin by outlining the main requirements behind

Mewbie (section 2.1), followed by an overview of its architecture (section 2.2) and finally

detail the key metrics Mewbie logs and stores (section 2.3).

2.1 Requirements

To better guide the design of the Mewbie benchmark framework, we outline the following

set of requirements.

(R1) Scale Adjustability: System performance often degrades unpredictably at scale

due to resource contention, service fanout, and network delays (34, 35). Microservice in-

teractions that appear efficient at small scale can result in bottlenecks or instability as

the system grows. However, as mentioned, evaluating system behavior at production scale

is often infeasible in research or software development environments due to infrastructure

limitations (4). To address this, Mewbie must support scale-adjustable benchmarking,

allowing users to simulate systems of varying size from small testbeds to large-scale de-

ployments based on available compute resources. This can provide insights to uncover

scale sensitive issues such as tail-latency spikes, database overload, or cascading failures

without the associated costs and risks of testing in production (36).

(R2) Customizability: Microservice systems involve a wide and evolving set of design

choices including databases, caches, communication protocols, replication strategies, and

consistency models (37). Evaluating the trade-offs of these design choices not only requires

the ability to configure multiple system parameters, but also the flexibility to introduce

or replace system components as technologies evolve (38). To support this, Mewbie must

9

2. MEWBIE DESIGN

allow users to customize the benchmark at multiple levels: trace size, service settings

(e.g., consistency model), call-level semantics (e.g., sync or async), and deployment level

parameters like (e.g., CPU limits). Additionally Mewbie must support a modular archi-

tecture where individual components such as stateless services, databases and caches can

be independently extended or swapped.

(R3) Application-agnosticism: Existing microservice benchmarks are often restricted

to specific domains such as e-commerce or social networks (14, 15, 16, 17), which raises

the question of their applicability across broader use cases. This domain specificity limits

researchers and developers from evaluating systems in contexts that differ operationally;

for example applications in scientific computing or healthcare, which often involve differ-

ent communication patterns or service dependencies (39). To address this, Mewbie was

designed to be application-agnostic, so it can it be configured to approximate different

production workloads.

(R4) Readiness: Existing benchmarks often require significant manual setup before they

can be used effectively. Mewbie should overcome this by providing built-in tools for work-

load generation, deployment, telemetry, making it easy to evaluate system designs with

minimal effort.

2.2 Architecture Overview

fig. 2.1 illustrates the architecture of the Mewbie framework. Its workflow is organized into

two distinct phases: benchmark generation and benchmark execution. In the benchmark

generation phase, the user-provided traces and customization options are used to generate

a benchmark. This generated benchmark is then executed in the execution phase (as many

times as desired to evaluate a system design).

Benchmark Generation. In the generation phase, Mewbie takes as input a microservice

trace (as detailed in chapter 3) along with a set of user-defined benchmark configuration

options that specify the desired system behavior and deployment constraints. Raw traces

are often infeasible for benchmarking due to their large scale and missing execution se-

mantics, such as service types, operation and payload details. Mewbie addresses these

challenges using two key tools: trace downscaling and trace enrichment.

The trace downscaling tool ➀ (see fig. 2.1) reduces the size of the trace graph to a

manageable scale based on the user’s available computational resources. It uses graph

sampling techniques to generate a smaller, deployable version of the original trace that

retains essential structural characteristics such as service fanout, depth, and interaction

10

2.2 Architecture Overview

Scaling
Knobs

Downscaled Trace

Execution
Knobs

Enrichment
Knobs

Trace
Downscaler

1

Mewbie

Benchmark
Client

Skeletal Application

Trace
Enrichment

Logging
Module

Deployment Module

Output
Metrics

2 4

5

3

Request

DB1 Shim
DB2 Shim

7

6

Real World
Traces

Figure 2.1: Mewbie architecture.

patterns. This enables realistic benchmarking at a fraction of the original scale, satisfying

R1. We further detail this technique in chapter 3.

Mewbie’s Trace Enrichment tool ➁ enhances the downscaled trace by filling in execution

level details based on user input. These details include service types, operation type and

data payloads. From this enriched trace, the tool generates enriched request call graphs.

An enriched request call graph captures the full execution plan of a client-initiated request,

including the sequence of services to be invoked, the type of operation at each hop (e.g.,

read vs. write, or synchronous vs. asynchronous), and any other required metadata (e.g.,

payload size). The set of all enriched request call graphs forms the benchmark workload.

Importantly, this enrichment process is customizable. Users can also define how services

are mapped (e.g., databases, stateless services), specify operation semantics and control

workload properties such as object sizes and access patterns. This customizability enables

targeted benchmarking of different architectural choices, satisfying R2.

Benchmark Execution. Once the benchmark is generated, Mewbie moves to the exe-

cution phase, where the skeletal application ➂ and workload are deployed and run. The

skeletal application is a containerized placeholder code that emulates the original service

while preserving its interaction patterns with other related services, thus satisfying R3.

The skeletal application is deployed using Mewbie’s Deployment Module ➃, which auto-

matically deploys and configures the service nodes based on user-defined deployment set-

tings such as CPU/memory limits. Furthermore, Mewbie includes a benchmark client ➄

that injects the request into the skeletal application, to create the end-to-end request work-

flows. Throughout the execution, Mewbie’s Logging Module ➅ captures detailed perfor-

mance telemetry, including metrics such as request completion time, service-level latencies

and system throughput. Finally, Mewbie includes a set of Shim Components ➆, which are

wrappers that define the interaction logic with various service types. These shims manage

connection setup, query execution and response handling with service-specific code. As

11

2. MEWBIE DESIGN

such, by customizing or extending these shims, users can easily incorporate new services

or modify the existing ones.

By automating deployment, workload generation, and metric collection, the Mewbie

execution pipeline enables repeatable evaluation of microservice systems with little effort.

This makes the benchmarks easily usable, satisfying R4.

2.3 Mewbie Target Metrics

Request Completion Time. In microservice architectures, a single user request often

triggers a complex chain of service calls across the system (2). Prior studies show that

latency beyond acceptable thresholds can significantly degrade user satisfaction (40, 41,

42). This makes request completion time a fundamental performance metric, directly

impacting system responsiveness and user experience.

Mewbie records timestamps at the start of a request and at each service node during its

propagation. The completion time is computed as the difference between the client-issued

timestamp and the maximum timestamp at the leaf nodes in the request’s call graph. High

completion times may signal queueing delays, resource contention, or other inefficiencies.

Application Throughput. Throughput measures the rate at which the system com-

pletes end-to-end requests. Unlike monolithic systems, where throughput impacts are

relatively easy to identify, microservice architectures involve complex chains of service in-

teractions, including synchronous and asynchronous calls, retries and coordination mecha-

nisms (43). This complexity makes it difficult to pinpoint bottlenecks, as reduced through-

put might emerge from queueing, resource contention or cascading slowdowns/failures at

various points in the system (44, 45, 46).

Mewbie helps address this complexity by enabling controlled experimentation on these

behaviors, allowing developers to test how design changes such as switching datastores

or modifying consistency levels impact throughput – which is often hard to determine in

production settings (47).

12

3

Trace Downscaling

The design of the trace downscaling method was submitted to satisfy the requirements for

‘Industrial Internship’ (6 EC)

Microservice traces are often large and complex, containing thousands of services and

millions of unique nodes, each representing a distinct service invocation. For example,

a single 8-hour trace from Alibaba’s production system includes over 17,000 services (4).

To make benchmarking feasible across a broader range of environments than the original

large-scale infrastructure, we design and implement a trace downscaler. The goal of this

stage is to reduce the size of a raw microservice trace while preserving the characteristics

of the original. This addresses Research Question 1 (RQ1), and this section presents our

approach to solving it.

Trace definition. A microservice trace captures the set of end-to-end requests that flow

through a microservice system. Each request that arrives in the entire ecosystem triggers

a request call graph, which is a directed acyclic graph (DAG), where nodes correspond to

services and edges denote inter-service RPC/REST calls (see fig. 3.1). Then, we define a

trace as the union of all such request call graphs that are collected over a period of time

from production systems, typically done using distributed tracing infrastructure such as

OpenTelemetry (48).

3.1 Limitations of Existing Techniques.

Traditional graph reduction techniques, such as aggregation and coarsening (30, 31, 32),

are ill-suited for microservice trace graphs due to the unique semantic and structural

constraints of such data. In this context, nodes represent microservice instances (e.g.,

13

3. TRACE DOWNSCALING

Figure 3.1: Request Call Graph Structure.

front-end, database, caching layers) and edges represent directional service-to-service as-

sociations, typically API calls that include ordering and other relevant metadata.

The limitation of these reduction methods is that they operate by merging nodes or

simplifying edge structures to downscale the graph. For instance, aggregation may group

multiple microservice nodes into a super-node based on structural similarity or proximity in

the topology. However, this process can break the association between nodes and individual

requests, making it impossible to determine which microservices participated in a given

request — a critical requirement for trace analysis in microservice architectures, where

request-level visibility is essential. Similarly, coarsening techniques drop or relax edge

directionality, thereby losing caller–callee relationships that encode the temporal order of

service execution within a trace.

Additionally, microservice traces often exhibit functional diversity, where different types

of services (e.g. queues, storage) appear within a request call graph. Reducing the trace

(graph) without regard for this diversity can flatten distinctions between service roles,

which are often crucial for understanding latency bottlenecks or system failures.

3.2 Topological Properties of Microservice Traces.

Recent measurement studies highlighted several relevant characteristics of microservice

traces, such as heterogeneous fan-in and fan-out patterns, deep invocation chains, and

localized clusters of interdependent services (2). These structural patterns often reflect

design choices like service co-location, or shared caching and storage layers, which can

significantly influence system behavior under load. For a downscaled trace to serve as a

meaningful substitute in a microservice benchmark, we would like to retain the structural

properties of the original trace, not just for realism, but also to ensure that behaviors

such as queue buildup, retry storms, or cross-service contention are faithfully preserved

14

3.3 Our approach: Microservice Trace focused Downscaling

in simulations. To approach this goal in a systematic way, we highlight several graph

properties that characterize a trace of calls across services.

Call depth represents the number of hops a request takes, revealing the complexity of

the request. High call depth often correlates with increased tail latency and higher sen-

sitivity to stragglers (4). Degree distributions measure how many services each request

flowing through a service makes calls to, capturing communication intensity. Skewed de-

gree distributions can reveal services that handle too much traffic or act as central points

of coordination, which goes against the idea that microservices should be independent and

loosely coupled (2, 49). The in-degree of the request graph highlights the hotness of service

nodes, while its out-degree captures service branching and downstream dependencies. Fi-

nally, the clustering coefficient of the graph reflects the tendency of services to form tightly

connected groups. Mewbie’s downscaling approach is designed to preserve these properties,

ensuring that the scaled down version reflects the request patterns of the original trace. By

doing this, we ensure that the downscaled trace remains faithful to the original system’s

architectural topology, thus yielding more accurate insights into performance bottlenecks

and other behaviour.

3.3 Our approach: Microservice Trace focused Downscaling

To overcome the limitations of traditional methods while preserving the aforementioned

topological properties, we design a custom graph downscaling technique tailored to the

unique structure of microservice traces. Our approach provides user control over the target

trace size, allowing specification of the desired number of services (n), number of requests

(t′), and service composition (e.g., the ratio of stateful to stateless services).

Inspired by the graph sampling techniques of Leskovec et al. (50), our approach uses

a three-phase downscaling pipeline comprising scoring, sampling, and pruning. In the

scoring phase, importance values are assigned to service nodes and request call graphs.

The sampling phase then selects a representative subset (subgraph) guided by these scores

and user-defined constraints. Finally, the pruning phase removes unselected nodes and

edges, yielding a simplified yet structurally faithful downscaled trace. fig. 3.2 shows the

execution flow of the downscaling processs.

3.3.1 Scoring Phase

To guide the downscaling process, we first assess the relative importance of nodes and

request call graphs in a microservice trace. Scoring both is necessary because the goal

15

3. TRACE DOWNSCALING

Table 3.1: Topological properties and their significance (50).

Topological Property Significance

Call Depth Distribution Hotness/Coldness of nodes
In-degree Distribution Fan-in patterns
Out-degree Distribution Fan-out patterns
Clustering Coefficient Connectedness of Services

is to preserve not only individual services that play critical functions, but also represen-

tative end-to-end request paths that reflect typical execution behavior. Therefore, the

scoring process proceeds in two steps: computing the Node Importance Score (NIS) and

the Request Importance Score (RIS).

The Node Importance Score (NIS) quantifies the relevance of a node based on both

its frequency of use and its role in the system. The primary component of NIS is a popular-

ity score, defined as the number of unique request call graphs in which the node appears.

This captures the intuition that nodes invoked across many requests are structurally im-

portant to system behavior. Furthermore, to account for user preferences over service

composition, we introduce a configurable stateful-stateless weighting factor (sfsl). This

parameter allows users to adjust the relative importance of stateful and stateless nodes,

for example to prioritize stateful nodes in storage focused benchmarking scenarios. The

sfsl value specifies the relative weight assigned to stateful services relative to stateless ones.

During scoring, each node is assigned a weight of 1.0 (default) if it is stateless, and the

user-defined sfsl value (default is set to 1.0) if it is stateful. This weighted score is then

multiplied by the node’s popularity to compute the final NIS.

The Request Importance Score (RIS) then aggregates node-level scores to quantify

the importance of each request trace. Let Rj be the set of nodes in the j-th request

call graph, and let i ∈ Rj represent a node within that request. We define the Request

Importance Score (RIS) as the normalized sum of NIS values over all nodes in the request:

RIS(Tj) =
1

|Rj |
∑

i∈Rj
NIS(i).

This normalized formulation ensures that request call graphs of varying depths can be

fairly compared. Requests traversing more critical or frequently used services, as captured

by higher NIS values, are assigned higher RIS scores. These importance scores guide

the sampling process, ensuring that the downscaled trace retains the most topologically

representative portions of the original trace.

16

3.3 Our approach: Microservice Trace focused Downscaling

3.3.2 Sampling Phase

The goal of the sampling phase is to extract a reduced subset of nodes and request call

graphs that best represent the original trace (according to the previously defined metrics)

while adhering to user-specified scale constraints, namely, the number of services (n) and

request call graphs (t). This phase ensures that the downscaled trace remains representative

in terms of both critical services and request path diversity, as determined by the scoring

phase.

To retain the most important services, we begin by selecting nodes using priority sam-

pling based on the Node Importance Score (NIS). In particular, service nodes are ranked

in descending order of NIS, and the top n nodes are selected.

Next, we select t request call graphs using stratified sampling, guided by the Request

Importance Score (RIS). In particular, we partition request traces into strata based on their

call depth. From each stratum, a proportionate number of request call graphs are sampled,

such that the overall call-depth distribution mirrors that of the original trace. Within each

stratum, requests are prioritized by RIS, ensuring that the most representative traces are

selected. This achieves two important goals: first, to preserve the distribution of request

path lengths (i.e, call depths) and second, to favor request call graphs that traverse critical

services.

At this stage, the combined set of unique nodes in the t sampled request call graphs may

still exceed the node budget (n). This happens because request call graphs are selected

based on RIS and call-depth, and are not constrained by the top n nodes ranked using

NIS. To address this, we perform a final pruning step to ensure that all request call graphs

contain only nodes from the chosen set of n services.

3.3.3 Pruning Phase

The final phase of the downscaling process refines the trace by enforcing the node constraint

n on the sampled traces t. To this end, the nodes not included in top n nodes must be

pruned from the selected request call graphs.

A challenge that arises is that naively removing unselected nodes along with their as-

sociated edges risks fragmenting the request call graphs into disconnected subgraphs or

introducing orphaned service nodes. In these cases, the request execution flow would be

interrupted. To prevent this, we implement a removal strategy that checks if the node

to be removed is a bridge node, i.e., nodes whose removal would fragment the trace into

disjoint components. If so, then we modify the graph by reconnecting their predecessors to

17

3. TRACE DOWNSCALING

Figure 3.2: Downscaler execution flow.

Figure 3.3: Bridge node pruning.

18

3.3 Our approach: Microservice Trace focused Downscaling

their successors, effectively bypassing the node while preserving the original call flow. This

ensures that the trace graph remains connected and that the original sequence of service

interactions is preserved after pruning (refer to fig. 3.3).

The final output is a downscaled trace that adheres to both the node budget n and the

required request count t, while preserving the execution logic and topological properties of

the original trace.

19

3. TRACE DOWNSCALING

20

4

Mewbie Implementation: Benchmark
Generation & Execution

The Mewbie implementation is organised into two distinct phases: benchmark generation

(section 4.1) and benchmark execution (section 4.2). In the generation phase, Mewbie

takes microservice traces (downscaled) and user defined inputs to construct a realistic,

replayable and deployable benchmark. In the execution phase, the generated benchmark is

automatically deployed in a controlled environment where request workloads are replayed

and smetrics logged for further analysis of system behaviours under the user defined work-

loads. Together, these phases enable repeatable, customizable, and scalable benchmarking

of microservice architectures. This addresses Research Question 2 (RQ2), which focuses

on designing and implementing a benchmarking framework with support for scalability,

customizability, and automated deployment.

4.1 Benchmark Generation

Generating a realistic benchmark from production traces presents two challenges. First,

traces typically lack critical service-level information such as the type of service and inter-

service call information. Second, replicating the logic and execution behavior of production

services is infeasible without access to application code.

To address these challenges, Mewbie introduces two tightly connected components in

this phase: the trace enrichment tool and the skeletal application. The trace enrichment

tool (§4.1.1) augments raw traces with missing semantic information to produce enriched

request call graphs that encode the semantics and execution flow of each request. Enriched

21

4. MEWBIE IMPLEMENTATION: BENCHMARK GENERATION &
EXECUTION

request call graphs form the benchmark workload. Based on the structure of the down-

scaled trace and the semantics captured in the enriched request call graphs, Mewbie then

constructs a skeletal application (§4.1.2): a lightweight, containerized version of the service

logic. The skeletal application, when activated by the trace’s external user requests, will

then reproduce the trace’s observed microservice calls.

4.1.1 Trace Enrichment

To convert a microservice trace into a runnable benchmark, Mewbie must first bridge the

gap between what traces provide and what replaying them requires. Publicly available

traces typically omit critical semantic details needed for realistic replay (4). These include

service roles (e.g., SQL/NoSQL datastores, stateless logic), operation types (e.g., read,

write), and parameters like the payload size.

Mewbie’s trace enrichment tool fills in these semantic details by augmenting the trace

at two levels:

1. Service Level: At the service level (i.e., at each of the call graph nodes), our

tool defines the configuration of specific service types, to enable testing different

settings, workloads, and deployment environments. In particular, users can configure

parameters for these services, especially for datastores, including the database type

(e.g., Redis, MongoDB), the number of records, replication factors, and consistency

models.

2. Call Level: Mewbie generates a call object for each interaction between services.

This object encodes execution-level details such as the operation type (read or write),

object identifiers, and payload sizes. This detailed information enables trace-driven

evaluations that reflect how requests would propagate and behave in target microser-

vice environments.

Datastore Call Properties. Leaf nodes in request call graphs typically correspond

to datastore accesses and are treated with additional semantics. For these calls, Mewbie

specifies the operation types and the key-value pair being accessed. Keys are drawn from a

user defined distribution, such as Zipfian or uniform, to model realistic access skew. Values

are randomly generated based on a user-specified object size distribution.

Service Processing Time. To approximate the latency behavior of real systems, Mew-

bie assigns processing delays to stateless services based on observed execution latencies in

22

4.1 Benchmark Generation

the original trace. Specifically, for each service type, we extract the distribution of process-

ing times by measuring the duration between a service receiving a request and initiating

the next outbound call. These delays are collected across all occurrences of the service in

the trace.

Then, to construct the respective distribution, we compute latency percentiles at fixed 5%

intervals from the 5th up to the 95th percentile and sample from this distribution during

trace enrichment. This enables Mewbie to reproduce the timing variability observed in

production systems instead of relying on fixed delays for all services.

Benchmark Knobs. This phase exposes knobs for defining service roles and tuning

request behavior. Users assign roles such as stateless, cache, or datastore, which determine

the available configuration options. Stateless services support control over payload sizes

and call execution modes (synchronous or asynchronous). For caches and datastores, users

can specify the engine (e.g., Redis, MongoDB), storage size, record count, object size

distribution, and read/write ratios. Datastores can be tuned to adjust replication and

consistency levels. These knobs allow users to tailor trace semantics to reflect target

workloads and skeletal application behaviors.

4.1.2 Skeletal Application

The skeletal application is a lightweight, configurable replica of the processing logic of

the different microservices, closely replaying the computations that generated trace. This

enables realistic benchmarking without requiring access to the original applications. Gen-

erating the skeletal application begins with mapping each service node in the downscaled

and enriched trace to a corresponding containerized component. These components are

divided into stateless nodes, which simulate service processing latency based on the latency

distribution extracted from the original trace (as described above), and stateful nodes such

as databases, which are not simulated but instead implemented through accesses to real

systems (e.g., Redis, PostgreSQL).

Modular Design. An important feature of our design is its modularity, which is essential

for allowing different configurations or replacing service components, such as datastores,

message queues, and load balancers. In particular, users can easily swap service compo-

nents (e.g., replacing Redis with MongoDB) or adjust service configurations like replication

factors, consistency settings, or cache size to evaluate different architectural choices. This

modularity facilitates targeted benchmarking of individual or combinations of services,

making Mewbie adaptable to diverse testing scenarios and evolving architectural patterns.

The respective technical implementation details are further elaborated in section 5.1.

23

4. MEWBIE IMPLEMENTATION: BENCHMARK GENERATION &
EXECUTION

Benchmark
Client

Trace
Packet

Tp: 10ms
Op: Write
Key: k1
Snext: 23...

Run Local
Ops

Forward to
next service

Figure 4.1: Stateless processing.

Request Flow. To understand how the sequence of actions triggered by a request is

implemented, recall that each request in Mewbie is encapsulated in an enriched request

call graph generated by the trace enrichment tool (section 4.1.1). This encodes all the

information required to simulate the sequence of interactions across service nodes that

are triggered by a given request, namely it consists of a sequence of call objects, each

corresponding to a service invocation in a request call graph.

In this context, each call object in the enriched request call graphs can be of two types:

stateless or stateful. Stateless call objects specify parameters such as the communication

mode (sync/async), or the request processing time (Tp), indicating how long a stateless

node should simulate processing delays before performing the call to the downstream node.

In turn, stateful call objects specify datastore-specific information, namely the database

operation type (Op) and the key (Key) to be accessed. These parameters are then passed

to the shim layer associated with the respective datastore or message queue to execute the

operation. Each call object also includes a next-call field (Snext), instructing the skeletal

application on the subsequent service or set of services to invoke, thus defining the structure

of the request flow.

The implementation of each simulated stateless service node is a lightweight HTTP server

capable of receiving and processing requests. Upon receiving the request (enriched request

call graph), the service performs a controlled delay using the sleep function to simulate

processing time (refer to 4.1). It extracts the corresponding call objects and determines

whether to make a synchronous or asynchronous call. If the downstream target is another

stateless service, the enriched request call graph is forwarded as an HTTP request to that

service. If the next call targets a stateful service (e.g., a database), the node executes

the appropriate operation using shim logic and metadata provided in the call object. All

24

4.2 Benchmark Execution

Table 4.1: Configuration knobs in Mewbie, organized by group.

Knob Group Parameter

Trace
Downscaling

Number of services (node budget)
Number of request traces (call graphs)

Trace
Enrichment

Service role (stateless/cache/datastore)
Communication mode (sync/async)
Payload size distribution
Datastore engine & replicas
Number records per datastore
Object size distribution
Operation type (read, write)
Datastore consistency model

Benchmark
Execution

Request issuing pattern
Number of host machines
Hot vs. non-hot node resource
CPU & Memory per service

stateless services are pre-initialized with the necessary shims and client bindings to ensure

seamless interactions with real datastores.

Logging. During execution, stateless service nodes collect and log detailed telemetry for

each request, including timestamps, inter-service latencies, and throughput metrics. These

measurements are used to compute performance indicators such as request completion time

and system-wide throughput, as described in section 2.3.

4.2 Benchmark Execution

After downscaling the original trace, enriching the trace, and generating a skeletal applica-

tion, Mewbie transitions to the execution phase. Deploying and orchestrating a large num-

ber of services environment is complex and leads to various different resource bottlenecks,

port exhaustion, or performance variability, which can obscure the effects of architectural

decisions or lead to failed executions.

To address these challenges, and enable reliable and reproducible execution at scale

Mewbie automates the entire execution pipeline. It provides a deployment module that

provisions and configures all service containers, a benchmark client that replays enriched

request call graphs to drive the system, and a shim layer that facilitates communication

with the datastore engine. Additionally, Mewbie incorporates fine-grained instrumentation

within the skeletal application, allowing it to collect key performance metrics such as

request completion time and system throughput.

25

4. MEWBIE IMPLEMENTATION: BENCHMARK GENERATION &
EXECUTION

Together, these components enable Mewbie to run realistic benchmarks at scale, while

enabling a detailed analysis of system behavior under controlled conditions.

4.2.1 Deployment Infrastructure

Mewbie provides an automated deployment infrastructure that provisions and configures

all service containers based on the enriched trace and skeletal application. The deploy-

ment module identifies unique service nodes and initializes stateful components using user-

provided container images. This allows the benchmark to run seamlessly across single or

multi-host environments, regardless of scale.

Even though Mewbie uses lightweight containerized components to simulate services,

executing benchmarks at scale introduces practical challenges – especially in resource con-

strained settings. In particular, the high request volume, shared compute resources, and

uneven service load can quickly lead to various different resource bottlenecks.

One particularly pressing challenge involves hot nodes: services that handle a dispropor-

tionately large number of requests and can become bottlenecks if not adequately handled.

During its trace enrichment phase, Mewbie automatically identifies these heavily utilized

nodes and allows users to assign additional CPU and memory via separate resource knobs

for hot and non-hot services. With this separation, Mewbie enables users to allocate ad-

ditional CPU and memory where needed, preventing artificial resource starvation and en-

suring that high-traffic services can sustain large volumes of concurrent connections. This

targeted approach, combined with optimized networking configurations, helps maintain

consistent performance across the entire microservice application.

Managing High-Throughput Service Calls. In microservice benchmarks, each ser-

vice node can be involved in thousands of calls per second, especially for stateless nodes

that act as intermediaries in many request call graphs. To support such high throughput

communication without overwhelming the network stack, Mewbie configures each con-

tainer with elevated network limits. These include file descriptor counts (ulimit), expand-

ing TCP port range (ip_local_ port_range), and enabling TCP reuse (tcp_tw_reuse).

These tweaks help avoid port exhaustion and reduce socket wait times, making the system

capable of handling a high volume of concurrent connections.

Resource Aware Scheduling. In microservice systems, some services are involved in

a much higher number of requests than others, placing them under significantly higher

load. We refer to these frequently invoked services as hot-nodes, as they tend to become

performance bottlenecks. During the enrichment phase (refer to section 4.1.1), Mewbie

analyses the trace to identify such hot-nodes.

26

4.2 Benchmark Execution

To account for this during deployment, Mewbie exposes two separate resource configura-

tion knobs: one for hot nodes and another for non-hot nodes. This allows users to allocate

additional CPU and memory to heavily utilized services, reducing the risk of performance

bottlenecks caused by resource starvation. As a result, the system’s performance reflects

architectural design choices rather than infrastructure misconfiguration.

Benchmark Client. To execute the benchmark, Mewbie includes a client that replays

the workload described in the generated enriched request call graphs. Each request is

injected into its designated entrypoint service, initiating its execution in the skeletal ap-

plication. The client supports a range of request arrival patterns, but users can also define

custom inter-arrival distributions to model specific traffic behaviors. This flexibility allows

Mewbie to simulate diverse load conditions, enabling evaluation of system responsiveness

and performance under target scenarios.

Benchmark Knobs. Mewbie exposes a set of knobs to control runtime behavior and

resource allocation during benchmark execution. Users can assign services to specific host

machines and configure CPU and memory limits for each container applying different set-

tings for hot and non-hot nodes as needed. On the workload side, the benchmark client

supports configurable request arrival patterns, including uniform, ramp-up, and custom

inter-arrival distributions, allowing users to model a uniform or a gradual increase or de-

crease in request rate over time. These knobs collectively enable realistic deployment

scenarios and help isolate performance effects tied to architectural and resource configura-

tions.

27

4. MEWBIE IMPLEMENTATION: BENCHMARK GENERATION &
EXECUTION

28

5

Evaluation

We evaluate Mewbie in terms of the core requirements outlined in section 2.1, examining

whether it meets these criteria and aligns with the broader goal of providing a flexible

microservice benchmarking solution. Our analysis is structured around three evaluation

questions:

1. Can Mewbie downscale large-scale microservice traces while preserving

essential topological properties?

2. Can Mewbie evaluate the performance of microservice deployments under

different architectural decisions?

3. Can Mewbie benchmarks be easily customized in terms of adjusting each

service’s internal configurations?

This addresses Research Question 3 (RQ3), which investigates the effectiveness of the

Mewbie benchmark in revealing architectural tradeoffs and quantifying the impact of

service-level configuration changes in microservice systems.

5.1 Experimental Setup

Trace Downsampling. Our experiments utilize production microservice traces from

Alibaba’s clusters (4). We randomly sampled 650k request graphs from the dataset to

obtain a manageable working set for analysis and benchmarking. To address structural

inconsistencies, we applied the Casper tool (51), followed by additional cleanup to han-

dle remaining issues such as missing node labels and absent entrypoint information. We

patched these cases using randomized labelling and by assigning entrypoints from the top

ten most frequent entrypoint services.

29

5. EVALUATION

(4x) (8x) (12x) (16x)
Downscale Factor

0.0

0.2

0.4

0.6

0.8

1.0

Ko
lm

og
or

ov
-S

m
irn

ov
 D

-S
ta

tis
tic Node Reduction

(20k) (40k) (60k) (80k)
Number of Traces

0.0

0.2

0.4

0.6

0.8

1.0 Trace Selection

In-degree (Downscaler)
In-degree (Naive)

Out-degree (Downscaler)
Out-degree (Naive)

Call Depth (Downscaler)
Call Depth (Naive)

Clust Coeff (Downscaler)
Clust Coeff (Naive)

Figure 5.1: Mewbie downscaling process evaluation: KSDS evaluation (lower is better).

The resulting cleaned trace contained 650k request call graphs with 8000 unique microser-

vices. Increasing the sample size is straightforward and impacts both the pre-processing

and downscaling time. Downscaling was executed on a single machine with 20 CPU cores

and 251 GB RAM.

Mewbie Execution. Experiments ran on a four-node cluster, each with 20 cores and

251 GB RAM. Unless stated otherwise, our evaluations used a downscaled trace with a

node budget of 500 microservices (n) and 250k request call graphs (t). This corresponds to

a 16x reduction from the sampled trace. We select the top 10 stateless and top 10 stateful

nodes (based on request frequency) as hot nodes, as described in section 4.2. Hot stateful

nodes are allocated 1 CPU core and 4 GB of memory, hot stateless nodes receive 6 cores

and 6 GB, while non-hot stateful and stateless nodes are assigned 0.5 cores / 4 GB and 1

core / 4 GB, respectively. We configured the trace enrichment knobs to use a fixed payload

size of 15 KB and a uniform access pattern across 10,000 objects per datastore.

5.2 Can Mewbie downscale large-scale microservice traces
while preserving topological properties?

Our first experiment evaluates whether Mewbie’s downscaling process can significantly

reduce trace size while preserving key topological properties, outlined in table 3.1.

Baseline. To assess the effectiveness of our trace downscaling technique, we compare it

against both the original trace and a simple sampling baseline. This baseline method selects

a subset of t request call graphs at random from the original trace dataset. In the interest

of adhering to the user defined node budget, each node within these selected request call

30

5.2 Can Mewbie downscale large-scale microservice traces while preserving
topological properties?

1 2 3 4 5 6 7 8 9 1011 15 20 25 30
Call Depth

0

10

20

30

40

50
Pe

rc
en

ta
ge

 o
f T

ra
ce

s Original Graph
Downscaler 4x Reduction
Downscaler 16x Reduction
Naive Sampler 4x Reduction
Naive Sampler 16x Reduction

Figure 5.2: Mewbie downscaling process evaluation: Call depth distribution comparison.

1000 1500 2000 2500 3000 35000

250

500

750

1000

1250

1500
Median

1000 1500 2000 2500 3000 35000

5000

10000

15000

20000

P90

1000 1500 2000 2500 3000 35000

10000

20000

30000

40000

50000

P99

Throughput [req/s]

RC
T

[m
s]

PostgreSQL-Heavy Mix Mongo-Heavy Mix Redis-Heavy Mix

Figure 5.3: Mewbie output for application throughput vs. request completion time under
different datastore mixtures.

graphs is then reassigned to new node identifiers. This straightforward approach provides

a basic form of trace reduction for comparative evaluation.

Downscaling Factor. A Mewbie user starts by simply specifying the desired number

of unique nodes (n), typically based on the available infrastructure, allowing the user to

tailor the downscaling to its resource availability. We evaluate the impact of the downscal-

ing process by analyzing how different reduction factors affect key topological properties.

Specifically, we consider downscaled traces at 4x, 8x, 12x, and 16x reductions, which reduce

the original set of 8000 services into, 2000, 1000, 665, 500 nodes, respectively.

To assess how well the distribution of several topological properties are preserved during

downscaling, we use the Kolmogorov–Smirnov D-statistic (KSDS) (52), which measures

the maximum difference between two distributions, making it well-suited for comparing

31

5. EVALUATION

structural similarity between the original and the downscaled graphs (50). fig. 5.1 presents

KSDS results across four important graph topological metrics: call-depth distribution, in-

degree & out-degree distribution, and clustering coefficient, for both Mewbie’s downscaler

and the sampling baseline, evaluated across downscaling factors from 4x to 16x.

Across all metrics except call-depth, Mewbie consistently achieves substantially lower

KSDS values compared to the baseline, thus indicating a closer alignment to the topological

structure of the original trace. This trend is particularly evident in the in-degree and out-

degree distributions, where the downscaler achieves up to 3-4x lower divergence across all

factors. Mewbie also maintains strong fidelity for the clustering coefficient, with KSDS

values remaining as low as 0.21, even at 16x reduction. In contrast, the sampling baseline

rapidly deteriorates, reaching KSDS values as high as 0.79.

The sampling baseline performs comparably in call-depth, which it tends to preserve

by virtue of randomly sampling full request call graphs with no pruning of service nodes.

Still, as shown in fig. 5.2, simple sampling introduces sharp deviations, particularly at low

downscaling factors. For example, the naive sampling technique exhibits a skew of ∼14%

at depth 3 at 4x reduction, whereas the downscaler maintains a closer approximation,

with a maximum skew of ∼6%. To revisit Research Question 1 (RQ1); How to generate

realistic and usable benchmarks and workloads from production-scale microservice traces

through systematic enrichment and transformation?, our results show that our downscaler

approach stands out by simultaneously optimizing multiple topological metrics, unlike

simpler strategies that neglect the effect of sampling on other key metrics. As a result, we

yield significantly higher overall fidelity to the original production-grade traces.

5.3 Can Mewbie evaluate the performance of microservice
deployments?

We evaluate Mewbie’s capability to benchmark the performance impact of different ar-

chitectural decisions on microservice deployments, particularly regarding various datastore

mixtures. The term “datastore mixture” refers to the percentage of different datastore

systems within a microservice-based application.

Modern microservice applications frequently use diverse datastores: caches for low-

latency access, relational databases for structured queries, and NoSQL stores for scala-

bility and flexibility (11, 12). Recent analysis shows that 42.35% of cloud architectures

used two or more storage services (10), highlighting the prevalence of datastore mixtures

in practice. These combinations significantly impact latency, throughput, and resource

32

5.3 Can Mewbie evaluate the performance of microservice deployments?

contention. Mewbie enables precise control to generate and evaluate such architectural

choices (10).

To demonstrate this capability, we generate and evaluate three datastore mixtures that

reflect common deployment patterns: one predominantly utilizing PostgreSQL, another

favoring MongoDB, and a third favoring Redis. In all cases, the predominant datastore

represents 80% of the storage systems, and the other represent 10%. The experimental

results for these mixtures are depicted in fig. 5.3, using the two essential metrics introduced

in section 4.2: request completion time (RCT), the end-to-end time to execute a complete

request chain, and application throughput, measured from the client’s perspective. To

precisely characterize these tradeoffs, we plot throughput-latency curves, where we increase

the load that clients submit in different runs, and each point plots the measured latency

and throughput for that load. For this experiment, all service calls are synchronous,

meaning the client actively waits for the entire downstream chain of requests to finish

before proceeding.

PostgreSQL-Heavy Mix. This mixture represents applications that require structured

data storage and ACID compliance. Such a mixture is ideal for applications like online

banking and e-commerce platforms, where transaction integrity and structured data storage

is crucial (53). As shown in fig. 5.3, this mixture yields the highest median and p90

request completion times (RCT) and lowest overall throughput among the three mixtures.

This is expected, given the additional overhead associated with transaction coordination

and complex relational operations in PostgreSQL, which increases latency under load.

Interestingly, the p99 latency for this mix remains comparatively stable, indicating lower

variability. This suggests that while PostgreSQL-heavy deployments may trade off average-

case responsiveness, they offer greater predictability at the tail.

Mongo-Heavy Mix. This mixture represents workloads that prioritize flexible schema

design and handling unstructured data, and is ideal for applications that involve real-time

analytics, and media streaming features (53). As shown in fig. 5.3, this mixture yields

consistently better throughput across all percentiles, outperforming the other two mixtures.

It shows a max throughput of 3400 requests per second (rps). These results indicate that

Mongo-heavy deployments are well-suited for our evaluation’s workload characteristics,

particularly where flexible data handling and high throughput are prioritized over strict

consistency or minimal tail latency.

Redis-Heavy Mix. This mixture is representative of workloads emphasizing fast data

retrieval and minimal latency, like social media platforms (54). As shown in fig. 5.3, the

Redis-heavy mixture delivers the lowest median request completion time (RCT) among

33

5. EVALUATION

1000 1500 2000 2500 30000

200

400

600

800

1000
Median

1000 1500 2000 2500 30000

2500

5000

7500

10000

12500

15000

P90

1000 1500 2000 2500 30000

10000

20000

30000

40000
P99

Throughput [req/s]

RC
T

[m
s]

PG Strong + Mongo Strong PG Strong + Mongo Eventual PG Eventual + Mongo Strong PG Eventual + Mongo Eventual

Figure 5.4: Consistency Models: Application throughput vs. Request Completion time.

0 20 40 60 80 100
DB Contribution to RCT (%)

PG E + Mn E

PG E + Mn S

PG S + Mn E

PG S + Mn SCo
nf

ig
ur

at
io

n

Median P75 P90

Figure 5.5: Backend pressure at ∼2500 rps (PG=PostgreSQL, Mn=MongoDB, S=Strong
consistency, E=Eventual consistency).

all three configurations, confirming Redis’s strength in quickly serving latency-sensitive

requests. However, this mixture performance comparably to the PostgreSQL-mix at the

tail, suggesting increased latency variability under load. For use cases that prioritize

low-latency responsiveness and can tolerate occasional tail latency spikes, Redis-heavy

deployments offer clear performance advantages.

5.4 Can Mewbie benchmarks be customized, in terms of ad-
justing service internal configurations?

Microservice systems are highly configurable and services are frequently tuned to balance

trade-offs between responsiveness, consistency, and scalability (2). A key configuration

point is the datastore consistency model, which defines how data is maintained across nodes

and replicas in a distributed architecture. The consistency model determines the trade-off

between data staleness and performance (55, 56). In this section, we evaluate Mewbie’s

ability to benchmark the impact of consistency tuning at the storage layer. We aim to

34

5.4 Can Mewbie benchmarks be customized, in terms of adjusting service
internal configurations?

demonstrate that Mewbie enables users to isolate, explore, and quantify the performance

effects of tuning such parameters without changing the overall architecture.

Additionally, by extracting backend pressure, i.e., how much the storage layer contributes

to the end-to-end request latency, Mewbie helps provide deeper visibility into how consis-

tency configurations impact performance. This helps uncover non-obvious behaviors, for

example, when relaxing consistency in one service increases load or delays in others, de-

pending on how services are ordered or interact in the request call graph.

Datastore Consistency Model. We build on the previous datastore mixture example

by further adjusting configuration options in both PostgreSQL and MongoDB, this time

focusing on variations in consistency models. Achieving an optimal balance between per-

formance and consistency is notoriously challenging in distributed systems (57), and can

significantly affect overall application behavior (58, 59).

For example, banking services require strong consistency to ensure correct transac-

tions (57), whereas social media platforms typically prioritize low latency to improve

responsiveness (60). In a microservice environment, these trade-offs become even more

complex due to the variety and interdependence of specialized datastores. In modern mi-

croservice environments, these trade-offs often co-exist within the same application. Dif-

ferent services may have varying consistency requirements based on their role, correctness

guarantees, performance constraints.

To model this diversity, we evaluate four consistency mixtures, analogous to our previous

datastore mixtures, but incorporating consistency parameters instead. We maintain a 50%-

50% distribution of services between PostgreSQL (PG) and MongoDB, altering only the

datastore consistency levels within each:

• PG & MongoDB Strong: PostgreSQL is configured for synchronous replica-

tion, ensuring that writes are acknowledged only after being flushed to a remote

standby. MongoDB employs linearizable consistency (readConcern: majority),

ensuring that all reads reflect the most recent writes.

• PG Strong & MongoDB Eventual: PostgreSQL uses the same configuration as

above, while Mongo is set to eventual consistency using (readPreference: secondary),

reducing coordination overheads for reads.

• PG Eventual & MongoDB Strong: PostgreSQL uses a relaxed isolation level

(async replication) paired with MongoDB using strong consistency.

35

5. EVALUATION

Increased
queuing +
replication

delays

Consistency speeds early
parts of the request path.

Figure 5.6: Increased queuing at Postgres in deeper parts of the request call graph.

• PG & MongoDB Eventual: Both PostgreSQL and MongoDB use eventual con-

sistency to maximize performance and availability, at the cost of potential data stal-

eness.

As shown in fig. 5.4, beyond approximately 2400 requests per second (rps), distinct

trends begin to emerge across configurations. The PG Eventual + Mongo Strong configu-

ration performs similarly, with only marginal improvements in median and p90, suggesting

that MongoDB’s strong consistency shapes the tail latency significantly. In contrast, the

fully eventual setup (PG Eventual + Mongo Eventual) achieves the highest throughput

and the lowest median and p90 latency. To better understand these effects, we examine

backend pressure. As shown in fig. 5.5, the fully strong setup shows consistently high back-

end pressure, while the fully eventual configuration, despite its lower median, exhibits a

significantly longer tail. This suggests that some requests still experience prolonged delays

in the storage layer under relaxed consistency.

Interestingly, the PG Strong + Mongo Eventual configuration performs worse than both

Mongo-strong setups, despite relaxing consistency on MongoDB. While it shows lower

backend latency contribution (median to p90) than the fully strong configuration, it hits

a throughput wall earlier. We conjecture that this is maybe due to MongoDB appearing

earlier in the request path, its faster completion under relaxed consistency leads to higher

request rate at Postgres, which remains strongly consistent. This increased downstream

pressure on Postgres, combined with its synchronous replication overhead, likely leads to

increased queueing, contention, and thus leading to earlier saturation. This showcases that

performance degradation can emerge not just from individual service behavior, but from

36

5.4 Can Mewbie benchmarks be customized, in terms of adjusting service
internal configurations?

how those behaviors interact within the structure of the request paths – a cascading effect

that is captured by Mewbie.

These observations highlight a key strength of Mewbie: it enables users to tune and

evaluate service-level configurations considering the causal structure of real-world traces.

37

5. EVALUATION

38

6

Related Work & Conclusion

6.1 Related Work

Existing solutions for exploring and evaluating microservice architectural decisions fall into

two categories: simplistic demo applications, or fixed-scale benchmarks. Neither approach

successfully mirrors the architectural complexity and scale found in production environ-

ments, where companies like Alibaba (4), Uber (2), and others (3, 19, 61) operate in the

range of thousands of microservices. table 1.1 summarizes existing systems across four

critical dimensions, each aligned with Mewbie’s requirements detailed in section 2.1.

Demo Applications. Perhaps the most common approach for experimenting with mi-

croservices tools and architectural decisions is through demo applications. Major industry

players with microservice-related offerings frequently provide their own reference imple-

mentations, with Google’s Online Boutique (21) (often used to showcase gRPC or Ku-

bernetes) standing as the most prominent example, alongside similar applications from

Microsoft (22), Jaeger (24), and Istio (23).

Although these demo applications are widely used to illustrate microservice concepts

because of their straightforward setup and deployment, they do not capture the full com-

plexity or performance demands of real-world systems. Typically, they include only a few

dozen services, lack realistic workload patterns, and require extensive customization to suit

specific research or testing needs.

Benchmarks. In response to the need for larger microservice testbeds, several bench-

marks have been introduced. Most of these benchmarks bundle together a set of applica-

tions, each geared toward a particular domain or workload. For example, TrainTicket (26)

focuses on tracing and debugging, µSuite (15) focuses on tail latency evaluation, and

DeathStarBench (14) provides a suite of cloud-native workloads to study the performance

39

6. RELATED WORK & CONCLUSION

and architectural implications of microservices across different layers of the cloud stack.

However, all of these are fundamentally tied to predefined applications, resulting in a small

and fixed scale deployment, and with limited customizability. This lack of flexibility pre-

vents users from tailoring scale, workload mixes, and service configurations to their specific

needs. Furthermore, as the microservice landscape rapidly evolves with new technologies

and frameworks, these benchmarks may struggle to keep pace.

In short, existing benchmarks and demo applications fail to capture the complexity and

demands of real-world microservice environments. They cannot be scaled to realistic sizes,

lack the versatility to adapt to different domains, and offer little flexibility for fine-tuning

parameters. As a result, researchers and practitioners struggle to evaluate whether a given

architecture, datastore, or design and configuration choice can handle production-scale

workloads.

In response, Mewbie tackles these limitations through a domain-agnostic skeleton appli-

cation that users can easily refine with various knobs, enabling both rapid prototyping and

more detailed customization. It is designed to scale dynamically – up to near-production-

level sizes – while providing architectural patterns that mirror those of real-world ap-

plications. For these reasons, Mewbie is an orthogonal contribution that could prove

useful to a vast body of work on techniques for improving the design, implementation,

and deployment of microservice systems, such as Antipode (62), Blueprint (63) and oth-

ers (37, 38, 49, 64, 65, 66, 67, 68).

6.2 Conclusion

Microservice architectures offer scalability and agility, but their complexity and scale make

it difficult to assess how specific design and architectural choices impact performance. To

evaluate and test such systems, developers today are limited to small-scale applications

that fall short of representing real-world deployment challenges.

We propose Mewbie an open-source benchmark that (1) generates an application archi-

tecture based on a real-world traces – thereby capturing realistic service-to-service com-

munication patterns; (2) can scale to the level of resources available, from a handful to

thousands of machines; and (3) requires minimal effort to adapt, making it easy to ex-

periment with various architectural and design options, whether evaluating datastores, or

other service-level parameters.

40

6.2 Conclusion

We believe Mewbie will play a key role in advancing the design, evaluation, and trans-

parency of microservice-based systems, providing the community a practical and powerful

tool for both research and real-world deployment testing.

41

6. RELATED WORK & CONCLUSION

42

References

[1] Darby Huye, Yuri Shkuro, and Raja R Sambasivan. Lifting the veil on

Meta’s microservice architecture: Analyses of topology and request work-

flows. In 2023 USENIX Annual Technical Conference (USENIX ATC 23), pages

419–432, 2023. 1

[2] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek Par-

wal, Timothy Sherwood, and Milind Chabbi. CRISP: Critical path analysis

of Large-Scale microservice architectures. In 2022 USENIX Annual Technical

Conference (USENIX ATC 22), pages 655–672, 2022. 1, 2, 3, 12, 14, 15, 34, 39

[3] f5.com. Adopting Microservices at Netflix: Lessons for Architectural De-

sign, 2015. [Accessed 26-08-2024]. 1, 3, 39

[4] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping

Zhang, Yu Ding, Jian He, and Chengzhong Xu. Characterizing microser-

vice dependency and performance: Alibaba trace analysis. In Proceedings of

the ACM Symposium on Cloud Computing, pages 412–426, 2021. 1, 2, 3, 6, 9, 13, 15,

22, 29, 39

[5] Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and

Nicolai Josuttis. Microservices in Practice, Part 1: Reality Check and

Service Design. IEEE Software, 34(1):91–98, 2017. 1

[6] Grzegorz Blinowski, Anna Ojdowska, and Adam Przybyłek. Monolithic

vs. microservice architecture: A performance and scalability evaluation.

IEEE access, 10:20357–20374, 2022. 1

[7] Netflix Technology Blog. Netflix video quality at scale with cosmos

microservices, Nov 2021. 1

43

https://www.f5.com/company/blog/nginx/microservices-at-netflix-architectural-best-practices
https://www.f5.com/company/blog/nginx/microservices-at-netflix-architectural-best-practices
https://netflixtechblog.com/netflix-video-quality-at-scale-with-cosmos-microservices-552be631c113
https://netflixtechblog.com/netflix-video-quality-at-scale-with-cosmos-microservices-552be631c113

REFERENCES

[8] Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Guodong

Yang, and Chengzhong Xu. The power of prediction: microservice auto

scaling via workload learning. In Proceedings of the 13th Symposium on Cloud

Computing, pages 355–369, 2022. 1

[9] Ajit Puthiyavettle Senthil Kumar. Architecting a highly available server-

less, microservices-based Ecommerce site. 1

[10] Sambhav Satija, Chenhao Ye, Ranjitha Kosgi, Aditya Jain, Romit

Kankaria, Yiwei Chen, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-

Dusseau, and Kiran Srinivasan. Cloudscape: A Study of Storage Services

in Modern Cloud Architectures. In 23rd USENIX Conference on File and Storage

Technologies (FAST 25), pages 103–121, Santa Clara, CA, February 2025. USENIX

Association. 2, 32, 33

[11] Rohan Basu Roy and Devesh Tiwari. StarShip: Mitigating I/O bottlenecks

in serverless computing for scientific Workflows. Proceedings of the ACM on

Measurement and Analysis of Computing Systems, 8, 2 2024. 2, 32

[12] Tao Li, Yongkun Li, Wenzhe Zhu, Yinlong Xu, and John C. S. Lui. Min-

Flow: High-performance and Cost-efficient Data Passing for I/O-intensive

Stateful Serverless Analytics. In 22nd USENIX Conference on File and Storage

Technologies (FAST 24), pages 311–327, Santa Clara, CA, February 2024. USENIX

Association. 2, 32

[13] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking cloud serving systems with YCSB. In

Proceedings of the 1st ACM symposium on Cloud computing, pages 143–154, 2010. 2,

7

[14] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,

Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon

Jackson, et al. An open-source benchmark suite for microservices and

their hardware-software implications for cloud & edge systems. In Pro-

ceedings of the Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 3–18, 2019. 2, 3, 10, 39

44

https://aws.amazon.com/blogs/architecture/architecting-a-highly-available-serverless-microservices-based-ecommerce-site/
https://aws.amazon.com/blogs/architecture/architecting-a-highly-available-serverless-microservices-based-ecommerce-site/
https://www.usenix.org/conference/fast25/presentation/satija
https://www.usenix.org/conference/fast25/presentation/satija
https://www.usenix.org/conference/fast24/presentation/li
https://www.usenix.org/conference/fast24/presentation/li
https://www.usenix.org/conference/fast24/presentation/li

REFERENCES

[15] Akshitha Sriraman and Thomas F Wenisch. µ suite: a benchmark suite for

microservices. In 2018 ieee international symposium on workload characterization

(iiswc), pages 1–12. IEEE, 2018. 2, 3, 10, 39

[16] Joakim Von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer,

Johannes Grohmann, and Samuel Kounev. Teastore: A micro-service ref-

erence application for benchmarking, modeling and resource management

research. In 2018 IEEE 26th International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS), pages 223–

236. IEEE, 2018. 2, 3, 10

[17] Takanori Ueda, Takuya Nakaike, and Moriyoshi Ohara. Workload char-

acterization for microservices. In 2016 IEEE international symposium on workload

characterization (IISWC), pages 1–10. IEEE, 2016. 2, 10

[18] Mathias Schwarz. Up: Portable Microservices Ready for the Cloud, 2023.

[Accessed 18 Apr 2025]. 3

[19] Ranju R. Microservices at eBay-What it looks like today, 2021. [Accessed 18

Apr 2025]. 3, 39

[20] Hrishikesh Barua. How Monzo Isolated Their Microservices Using Kuber-

netes Network Policies, 2019. [Accessed 18 Apr 2025]. 3

[21] Google. Google Microservice Demo: Online Boutique, 2025. [Accessed 18

Apr 2025]. 3, 39

[22] Microsoft. DotNet eShop, 2025. [Accessed 18 Apr 2025]. 3, 39

[23] Istio. Istio BookInfo, 2025. [Accessed 18 Apr 2025]. 3, 39

[24] Jaeger. Jaeger HotRod, 2025. [Accessed 18 Apr 2025]. 3, 39

[25] AcmeAir. Acmeair, 2015. [Accessed 18 Apr 2025]. 3

[26] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan

Ding. Fault Analysis and Debugging of Microservice Systems: Industrial

Survey, Benchmark System, and Empirical Study. IEEE Transactions on

Software Engineering, 22(4):243–260, 2021. 3, 39

45

https://www.uber.com/en-NL/blog/up-portable-microservices-ready-for-the-cloud/
https://www.sayonetech.com/blog/microservices-ebay/
https://www.infoq.com/news/2019/12/network-isolation-kubernetes/
https://www.infoq.com/news/2019/12/network-isolation-kubernetes/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod
https://acmeair.github.io/acmeair/

REFERENCES

[27] Alexandru Iosup, Alexandru Uta, Laurens Versluis, Georgios An-

dreadis, Erwin Van Eyk, Tim Hegeman, Sacheendra Talluri, Vincent

Van Beek, and Lucian Toader. Massivizing computer systems: a vision

to understand, design, and engineer computer ecosystems through and be-

yond modern distributed systems. In 2018 IEEE 38th International Conference

on Distributed Computing Systems (ICDCS), pages 1224–1237. IEEE, 2018. 5

[28] Ian Sommerville. Software engineering (ed.). America: Pearson Education Inc,

2011. 5

[29] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.

Addison-Wesley Professional, 2021. 5

[30] Andreas Loukas. Graph reduction with spectral and cut guarantees. Jour-

nal of Machine Learning Research, 20(116):1–42, 2019. 6, 13

[31] Yuanyuan Tian, Richard A Hankins, and Jignesh M Patel. Efficient ag-

gregation for graph summarization. In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, pages 567–580, 2008. 6, 13

[32] Andreas Loukas and Pierre Vandergheynst. Spectrally Approximating

Large Graphs with Smaller Graphs. In Jennifer Dy and Andreas Krause,

editors, Proceedings of the 35th International Conference on Machine Learning, 80 of

Proceedings of Machine Learning Research, pages 3237–3246. PMLR, 10–15 Jul 2018.

6, 13

[33] Alexandru Iosup, Fernando Kuipers, Ana Lucia Varbanescu, Paola

Grosso, Animesh Trivedi, Jan Rellermeyer, Lin Wang, Alexandru Uta,

and Francesco Regazzoni. Future Computer Systems and Networking Re-

search in the Netherlands: A Manifesto. Workingpaper, May 2022. Position

paper: 7 foundational research themes in computer science and networking research,

4 advances with outstanding impact on society, 10 recommendations, 50 pages. Co-

signatories from (alphabetical order): ASTRON, CWI, Gaia-X NL, NIKHEF, RU

Groningen, SIDN Labs, Solvinity, SURF, TNO, TU/e, TU Delft, UvA, U. Leiden, U.

Twente, VU Amsterdam. 7

[34] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delim-

itrou. Sage: practical and scalable ML-driven performance debugging in

46

https://proceedings.mlr.press/v80/loukas18a.html
https://proceedings.mlr.press/v80/loukas18a.html

REFERENCES

microservices. In Proceedings of the 26th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, pages 135–151,

2021. 9

[35] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk,

and Ravishankar K Iyer. FIRM: An intelligent fine-grained resource man-

agement framework for SLO-Oriented microservices. In 14th USENIX sym-

posium on operating systems design and implementation (OSDI 20), pages 805–825,

2020. 9

[36] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pan-

choli, and Christina Delimitrou. Seer: Leveraging big data to navigate the

complexity of performance debugging in cloud microservices. In Proceedings

of the twenty-fourth international conference on architectural support for programming

languages and operating systems, pages 19–33, 2019. 9

[37] Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma

Da Silva. Sora: A latency sensitive approach for microservice soft resource

adaptation. In Proceedings of the 24th International Middleware Conference, pages

43–56, 2023. 9, 40

[38] Kapil Agrawal and Sangeetha Abdu Jyothi. Cooperative Graceful Degra-

dation in Containerized Clouds. In Lieven Eeckhout, Georgios Smarag-

dakis, Kaitai Liang, Adrian Sampson, Martha A. Kim, and Christopher J.

Rossbach, editors, Proceedings of the 30th ACM International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, Volume 1,

ASPLOS 2025, Rotterdam, The Netherlands, 30 March 2025 - 3 April 2025, pages

214–232. ACM, 2025. 9, 40

[39] Donghyun Kim, Sriram Ravula, Taemin Ha, Alexandros G. Dimakis, Dae-

hyeok Kim, and Aditya Akella. Large Language Models as Realistic Mi-

croservice Trace Generators. 12 2024. 10

[40] Polona Caserman, Michelle Martinussen, and Stefan Göbel. Effects

of end-to-end latency on user experience and performance in immersive

virtual reality applications. In Entertainment Computing and Serious Games:

First IFIP TC 14 Joint International Conference, ICEC-JCSG 2019, Arequipa, Peru,

November 11–15, 2019, Proceedings 1, pages 57–69. Springer, 2019. 12

47

https://doi.org/10.1145/3669940.3707244
https://doi.org/10.1145/3669940.3707244

REFERENCES

[41] Ioannis Arapakis, Xiao Bai, and B Barla Cambazoglu. Impact of response

latency on user behavior in web search. In Proceedings of the 37th international

ACM SIGIR conference on Research & development in information retrieval, pages

103–112, 2014. 12

[42] Ioannis Arapakis, Souneil Park, and Martin Pielot. Impact of response

latency on user behaviour in mobile web search. In Proceedings of the 2021

Conference on Human Information Interaction and Retrieval, pages 279–283, 2021.

12

[43] Tatsushi Inagaki, Yohei Ueda, Moriyoshi Ohara, Sunyanan Choo-

chotkaew, Marcelo Amaral, Scott Trent, Tatsuhiro Chiba, and

Qi Zhang. Detecting layered bottlenecks in microservices. In 2022 IEEE

15th International Conference on Cloud Computing (CLOUD), pages 385–396. IEEE,

2022. 12

[44] Haryadi S Gunawi, Riza O Suminto, Russell Sears, Casey Golliher,

Swaminathan Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng, Ne-

matollah Bidokhti, Caitie McCaffrey, et al. Fail-slow at scale: Evidence

of hardware performance faults in large production systems. ACM Transac-

tions on Storage (TOS), 14(3):1–26, 2018. 12

[45] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi,

Nathan Bronson, and Wyatt Lloyd. I Can’t Believe It’s Not Causal!

Scalable Causal Consistency with No Slowdown Cascades. In 14th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 17), pages 453–

468, 2017. 12

[46] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel, and Peter Va-

jgel. Finding a needle in haystack: Facebook’s photo storage. In 9th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 10), 2010. 12

[47] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot tracing: Dy-

namic causal monitoring for distributed systems. ACM Transactions on Com-

puter Systems (TOCS), 35(4):1–28, 2018. 12

[48] OpenTelemetry. OpenTelemetry: High-quality, ubiquitous, and portable

telemetry to enable effective observability, 2025. [Accessed 18 Apr 2025]. 13

48

https://opentelemetry.io/
https://opentelemetry.io/

REFERENCES

[49] Shutian Luo, Jianxiong Liao, Chenyu Lin, Huanle Xu, Zhi Zhou, and

Chengzhong Xu. Embracing Imbalance: Dynamic Load Shifting among

Microservice Containers in Shared Clusters. In Proceedings of the 30th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 2, ASPLOS ’25, page 309–324, New York, NY, USA,

2025. Association for Computing Machinery. 15, 40

[50] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discov-

ery and data mining, pages 631–636, 2006. 15, 16, 32

[51] Darby Huye, Lan Liu, and Raja R Sambasivan. Systemizing and Mitigating

Topological Inconsistencies in Alibaba’s Microservice Call-graph Datasets.

In Proceedings of the 15th ACM/SPEC International Conference on Performance En-

gineering, pages 276–285, 2024. 29

[52] Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit.

Journal of the American statistical Association, 46(253):68–78, 1951. 31

[53] Avrilia Floratou, Jignesh M Patel, Willis Lang, and Alan Halverson.

When free is not really free: What does it cost to run a database workload

in the cloud? In Topics in Performance Evaluation, Measurement and Characteri-

zation: Third TPC Technology Conference, TPCTC 2011, Seattle, WA, USA, August

29-September 3, 2011, Revised Selected Papers 3, pages 163–179. Springer, 2012. 33

[54] Zeying Zhu, Yibo Zhao, and Zaoxing Liu. In-Memory Key-Value Store Live

Migration with NetMigrate. In 22nd USENIX Conference on File and Storage

Technologies (FAST 24), pages 209–224, 2024. 33

[55] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility

of consistent, available, partition-tolerant web services. ACM SIGACT News,

33(2):51–59, jun 2002. 34

[56] Daniel Abadi. Consistency Tradeoffs in Modern Distributed Database Sys-

tem Design: CAP is Only Part of the Story. Computer, 45:37–42, 1 2012. 34

[57] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno

Preguiça, and Rodrigo Rodrigues. Making Geo-Replicated Systems Fast

49

https://doi.org/10.1145/3676641.3716255
https://doi.org/10.1145/3676641.3716255
https://dl.acm.org/doi/abs/10.1145/564585.564601
https://dl.acm.org/doi/abs/10.1145/564585.564601
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li

REFERENCES

as Possible, Consistent when Necessary. In 10th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI ’12), 2012. 35

[58] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G An-

dersen. Don’t settle for eventual: scalable causal consistency for wide-area

storage with COPS. In Proceedings of the Twenty-Third ACM Symposium on Op-

erating Systems Principles, pages 401–416, 2011. 35

[59] Wojciech Golab, Muntasir R Rahman, Alvin AuYoung, Kimberly Kee-

ton, and Xiaozhou Li. Eventually consistent: Not what you were expect-

ing? Communications of the ACM, 57(3):38–44, 2014. 35

[60] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun

Song, Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd. Existential

consistency. In 25th ACM Symposium on Operating Systems Principles (SOSP ’15),

2015. 35

[61] Carlo Gutierrez. Spotify Runs 1,600+ Production Services on Kuber-

netes, September 2021. [Accessed 18 Apr 2025]. 39

[62] João Ferreira Loff, Daniel Porto, João Garcia, Jonathan Mace, and

Rodrigo Rodrigues. Antipode: Enforcing cross-service causal consistency

in distributed applications. In Proceedings of the 29th Symposium on Operating

Systems Principles, pages 298–313, 2023. 40

[63] Vaastav Anand, Deepak Garg, Antoine Kaufmann, and Jonathan Mace.

Blueprint: A Toolchain for Highly-Reconfigurable Microservice Applica-

tions. In Proceedings of the 29th Symposium on Operating Systems Principles, pages

482–497, 2023. 40

[64] Mafalda Sofia Ferreira, João Ferreira Loff, and João Garcia. Ren-

dezvous: Where Serverless Functions Find Consistency. In Proceedings of the

4th Workshop on Resource Disaggregation and Serverless, WORDS ’23, page 51–57,

New York, NY, USA, 2023. Association for Computing Machinery. 40

[65] Jacoby Johnson, Subash Kharel, Alan Mannamplackal, Amr S Abdelfat-

tah, and Tomas Cerny. Service Weaver: A Promising Direction for Cloud-

native Systems? arXiv preprint arXiv:2404.09357, 2024. 40

50

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
http://dl.acm.org/citation.cfm?id=2815400.2815426
http://dl.acm.org/citation.cfm?id=2815400.2815426
https://www.altoros.com/blog/spotify-runs-1600-production-services-on-kubernetes/
https://www.altoros.com/blog/spotify-runs-1600-production-services-on-kubernetes/
https://doi.org/10.1145/3605181.3626290
https://doi.org/10.1145/3605181.3626290

REFERENCES

[66] Rajiv Nishtala, Vinicius Petrucci, Paul Carpenter, and Magnus Sjalan-

der. Twig: Multi-agent task management for colocated latency-critical

cloud services. In Proceedings - 2020 IEEE International Symposium on High Per-

formance Computer Architecture, HPCA 2020, pages 167–179. Institute of Electrical

and Electronics Engineers Inc., 2 2020. 40

[67] Rohan Basu Roy, Vijay Gadepally, and Devesh Tiwari. DarwinGame:

Playing Tournaments for Tuning Applications in Noisy Cloud Environ-

ments. In Proceedings of the 30th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Volume 1, pages 264–

279. ACM, 3 2025. 40

[68] Divyanshu Saxena, William Zhang, Shankara Pailoor, Isil Dillig, and

Aditya Akella. Copper and Wire: Bridging Expressiveness and Perfor-

mance for Service Mesh Policies. In Proceedings of the 30th ACM International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, Volume 1, pages 233–248. ACM, 3 2025. 40

51

	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Research Methodology
	1.4 Thesis Contributions
	1.5 Societal Relevance
	1.6 Plagiarism Declaration
	1.7 Thesis Structure

	2 Mewbie Design
	2.1 Requirements
	2.2 Architecture Overview
	2.3 Mewbie Target Metrics

	3 Trace Downscaling
	3.1 Limitations of Existing Techniques.
	3.2 Topological Properties of Microservice Traces.
	3.3 Our approach: Microservice Trace focused Downscaling

	4 Mewbie Implementation: Benchmark Generation & Execution
	4.1 Benchmark Generation
	4.2 Benchmark Execution

	5 Evaluation
	5.1 Experimental Setup
	5.2 Can Mewbie downscale large-scale microservice traces while preserving topological properties?
	5.3 Can Mewbie evaluate the performance of microservice deployments?
	5.4 Can Mewbie benchmarks be customized, in terms of adjusting service internal configurations?

	6 Related Work & Conclusion
	6.1 Related Work
	6.2 Conclusion

	References

